

A service-oriented programming language

Fabrizio Montesi, University of Southern Denmark
<famontesi@gmail.com>

CC BY-SA

Jolie: a service-oriented programming language

● Nice logo:

● Formal foundations from the Academia.

● Tested and used in the real world:

● Open source (http://www.jolie-lang.org/), with a well-maintained code base:

FOCUS Research Team

Hello, Jolie!

include “console.iol”

main
{

println@Console(“Hello, world!”)()
}

● Our first Jolie program:

mailto:println@Console

Basics

● A Service-Oriented Architecture (SOA) is composed by services.
● A service is an application that offers operations.
● A service can invoke another service by calling one of its operations.
● Recalling Object-oriented programming:

Services Objects

Operations Methods

Service-oriented Object-oriented

Understanding Hello World: concepts

include “console.iol”

main
{

println@Console(“Hello, world!”)()
}

Include from standard
library

Program entry point

Operation The service I want to invoke

mailto:println@Console

Our first service-oriented application

main
{

sendNumber@B(5)
}

main
{

sendNumber(x)
}

● A sends 5 to B through the sendNumber operation.

● We need to tell A how to reach B.
● We need to tell B how to expose sendNumber.
● In other words, how they can communicate!

A: B:
A B

● A program defines the input/output communications it will make.

Ports and interfaces: overview

● Services communicate through ports.
● Ports give access to an interface.
● An interface is a set of operations.
● An output port is used to invoke interfaces exposed by other services.
● An input port is used to expose an interface.

● Example: a client has an output port connected to an input port of
 a calculator.

A B

sendNumbersendNumbersendNumber

Our first service-oriented application

include “interface.iol”

outputPort B {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber@B(5)
}

include “interface.iol”

inputPort MyInput {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber(x)
}

A: B:interface MyInterface {
OneWay:

sendNumber(int)
}

interface.iol

A.ol B.ol

Anatomy of a port

outputPort B {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

● A port specifies:
● the location on which the communication can take place;
● the protocol to use for encoding/decoding data;
● the interfaces it exposes.

● There is no limit to how many ports a service can use.

A.ol

B.ol

Anatomy of a port: location

● A location is a URI (Uniform Resource Identifier) describing:
● the communication medium to use;
● the parameters for the communication medium to work.

● Some examples:

● TCP/IP:

● Bluetooth:

● Unix sockets:

● Java RMI:

socket://www.google.com:80/

btl2cap://localhost:3B9FA89520078C303355AAA694238F07;nam
e=Vision;encrypt=false;authenticate=false

localsocket:/tmp/mysocket.socket

rmi://myrmiurl.com/MyService

Anatomy of a port: protocol

● A protocol is a name, optionally equipped with configuration parameters.

● Some examples: sodep, soap, http, xmlrpc, …

Protocol: sodep

Protocol: soap

Protocol: http { .debug = true }

Deployment and Behaviour

● A JOLIE program is composed by two definitions:
● deployment: defines how to execute the behaviour and how to

 interact with the rest of the system;
● behaviour: defines the workflow the service will execute.

// B.ol

include “interface.iol”

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber(x)
}

Deployment

Behaviour

Communication abstraction

● A program just needs its port definitions to be changed in order to support
 different communication technologies!

TCP/IP sockets Unix sockets Bluetooth ...

SODEP SOAP HTTP ...

● Jolie supports many different communication mediums and data protocols.

Operation types

● JOLIE supports two types of operations:
● One-Way: receives a message;
● Request-Response: receives a message and sends a response back.

● In our example, sendNumber was a One-Way operation.

● Syntax for Request-Response:

interface MyInterface {
RequestResponse:

sayHello(string)(string)
}

sayHello@B(“John”)(result) sayHello(name)(result) {
result = “Hello “ + name

}

mailto:sayHello@B

Behaviour basics

● Statements can be composed in sequences with the ; operator.
● We refer to a block of code as B

● Some basic statements:

● assignment: x = x + 1

● if-then-else: if (x > 0) { B } else { B }

● while: while (x < 1) { B }

● for cycle: for (i = 0, i < x, i++) { B }

Data manipulation (1)

● In JOLIE, every variable is a tree:

● Every tree node can be an array:

person.name = “John”;
person.surname = “Smith”

person.nicknames[0] = “Johnz”;
person.nicknames[1] = “Jo”

person.name = “John”;
person.surname = “Smith”;

<person>
<name>John</name>
<surname>Smith</surname>
</person>

SOAP

<form name=”person”>
<input name=”name” value=”John”/>
<input name=”surname” value=”Smith”/>
</form>

HTTP (form format)

01person02name114Johnsurname11Smith

SODEP

Data manipulation (2)

● You can dump the structure of a node using the standard library.

include “console.iol”
include “string_utils.iol”

main
{

team.person[0].name = “John”;
team.person[0].age = 30;
team.person[1].name = “Jimmy”;
team.person[1].age = 24;

team.sponsor = “Nike”;
team.ranking = 3;

valueToPrettyString@StringUtils(team)(result);
println@Console(result)()

}

mailto:valueToPrettyString@StringUtils
mailto:println@Console

Data manipulation: some operators

● Deep copy: copies an entire tree onto a node.
● team.person[2] << john

● Cardinality: returns the length of an array.
● size = #team.person

● Aliasing: creates an alias towards a tree.
● myPlayer -> team.person[my_player_index]

for(i = 0, i < #team.person, i++) {
println@Console(team.person[i].name)()

}

mailto:println@Console

Dynamic path evaluation

● Also known as associative arrays.
● Static variable path: person.name
● One can use an expression in round parenthesis when writing a path
 in a data tree. Dynamic path evaluation.

● Example:

● We make a map of cities indexed by their names:
● cityName = “Copenhagen”;
● cities.(cityName).state = “Denmark”

● Note that:
cities.(“Copenhagen”)

● is the same as:
cities.Copenhagen

● can be browsed with the foreach statement:

foreach(city : cities) {
println@Console(cities.(city).state)()

}

mailto:println@Console

Data manipulation: question

● What will be printed to screen?

include “console.iol”
include “string_utils.iol”

main
{

cities[0] = “Copenhagen”;
i = 0;
while(i < #cities) {

println@Console(cities[i])();
cities[i] = “Copenhagen”;
i++

}
}

mailto:println@Console

Data types

● In an interface, each operation must be coupled to its message types.
● Types are defined in the deployment part of the language.
● Syntax:

● type name:basic_type { subtypes }
● Where basic_type can be:

● int, long, double for numbers
● string for strings;
● raw for byte arrays;
● void for empty nodes;
● any for any possible basic value;
● undefined: makes the type accepting any value and any subtree.

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

Casting and runtime basic type checking

● For each basic data type, there is a corresponding primitive for:
● casting, e.g. x = int(s)
● runtime checking, e.g. x = is_int(y)

Data types: cardinalities

● Each node in a type can be coupled with a range of possible occurences.
● Syntax:

● type name[min,max]:basic_type { subtypes }
● One can also have:

● * for any number of occurences (>= 0);
● ? for [0,1].

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

Data types and operations

● Data types are to be associated to operations.

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

Parallel and input choice

● Parallel composition: B | B

● Input choice:

sendNumber@B(5) | sendNumber@C(7)

[ok(message)] { P1 }

[shutdown()] { P2 }

[printAndShutdown(text)() {
println@Console(text)()

}] { P3 }

mailto:sendNumber@B
mailto:sendNumber@C
mailto:println@Console

A calculator service

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

inputPort MyInput {
Location: “socket://localhost:8000/”
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum(request)(response) {
response = request.x + request.y

}
}

Dynamic binding

● In an SOA, a fundamental mechanism is that of service discovery.
● A service dynamically (at runtime) discovers the location and a protocol
 for communicating with another service.

● In JOLIE we obtain this by manipulating an output port as a variable.

● Type for bindings defined in
$JOLIE_DIR/include/types/Binding.iol

outputPort Calculator {
Interfaces: CalculatorInterface
}

main
{

Calculator.location = “socket://localhost:8000/”;
Calculator.protocol = “sodep”;
request.x = 2;
request.y = 3;
sum@Calculator(request)(result)

}

mailto:sum@Calculator

Multiple executions: processes

● The calculator works, but it terminates after executing once.
● We want it to keep going and accept other requests.
● We introduce processes.
● A process is an execution instance of a service behaviour.
● In JOLIE, processes can be executed concurrently or sequentially.

execution { concurrent } execution { sequential }

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

mailto:println@Console
mailto:println@Console
mailto:println@Console

More

● A service may engage in different separate conversations with other parties.
● Example: a chat server may manage different chat rooms.

● Each conversation needs to be supported by a private execution state.
● Example: each chat room needs to keep track of the posted messages.

● We call this support session.

● Sessions are independent of each other: they run in parallel.
● Some call them threads equipped with a private state.

● Therefore, a service has many parallel sessions running inside of it:

Service

Session

Message routing

● What happens when a service receives a message from the network?

● We need to assign the message to a session!

Network

Service
Mesg

● How can we establish which session the message is meant for?

Session identifiers

● A widely used mechanism for routing messages to sessions.

● Each session has a session identifier (sid).

● All received messages contain an sid.

● The service gives the message to the session with the same sid.

Network

Service

sid = 21

2

3
4

5

Correlation sets

● A generalisation of session identifiers.

● A session is identified by the values of some of its variables.
● These variables form a correlation set (or cset).
● Similar to unique keys in relational databases.

● Example:
● in a service where we have a session for every person in the world

a correlation set could be formed by the national identification number
and the country.

Network

Service

nin = nin5
country = IT

nin=nin1
country=CY

...more
data...

nin=nin5
country=IT

...more
data...

...

Session identifiers VS correlation sets
Session identifiers

Correlation sets

● Pros
● Usually handled by the middleware: hard to make mistakes.

● Cons
● All clients must send the sid as expected: no support for integration.

● Pros
● Programmability of correlation can be used for integration.
● Each cset is a different way of identifying a session: support for multiparty

interactions.

● Cons
● Almost totally controlled by the programmer: easier to make mistakes.

(research ongoing to tackle this).

Example: chat service

● We model a chat service handling separate chat rooms. Each room is a session.

main
{

openRoom(openRequest)(response) {
// Create the chat room...

}; run = true;
while (run) {

[publish(message)] { println@Console(message.content)() }
[close(closeRequest)] { run = false }

}
}

Chat service

Sports

Fun

Travel

interface ChatInterface {
RequestResponse:

openRoom(OpenRequest)(OpenResponse)
OneWay:

publish(PublishMesg),
close(CloseMesg)

}

Session starter

Correlating chats

● We want:
● to publish messages in the right rooms;
● to let the room creator close it, but only her!

● So we create two correlation sets:

main
{

openRoom(openRequest)(csets.adminToken) {
csets.adminToken = new

}; run = true;
while (run) {

[publish(message)] { println@Console(message.content)() }
[close(closeRequest)] { run = false }

}
}

interface ChatInterface {
RequestResponse: openRoom(OpenRequest)(OpenResponse)
OneWay: publish(PublishMesg), close(CloseMesg)
}

cset { name: OpenRequest.room PublishMesg.roomName }
cset { adminToken: CloseMesg.adminToken }

1

2

2

1

Fresh value generator

Exercise (together)

● We design an SOA for handling exams between students and professors.
● A student can start an examination session.
● A professor can ask a question in the session.
● The student answers and the professor can either accept or reject.
● The student is notified.

● Questions

● Architecture: roles and services.
● What are the involved services? Roles.
● Who controls the execution flow? Orchestrator.

● Work flow: operations, data types and activity composition.
● Who starts the session?
● How does the session behave?

Some other things you can do with Jolie

Leonardo

● A web server in pure Jolie.

● Can fit in a slide.
 (ok, I reduced the font size a little)

● ~50 LOCs

include "console.iol"
include "file.iol"
include "string_utils.iol"
include "config.iol"

execution { concurrent }

interface HTTPInterface {
RequestResponse:

default(undefined)(undefined)
}

inputPort HTTPInput {
Protocol: http {

.debug = DebugHttp; .debug.showContent = DebugHttpContent;

.format -> format; .contentType -> mime;

.default = "default"
}
Location: Location_Leonardo
Interfaces: HTTPInterface
}

init {
documentRootDirectory = args[0]

}

main {
default(request)(response) {

scope(s) {
install(

FileNotFound =>
println@Console("File not found: " + file.filename)()

);
s = request.operation;
s.regex = "\\?";
split@StringUtils(s)(s);
file.filename = documentRootDirectory + s.result[0];
getMimeType@File(file.filename)(mime);
mime.regex = "/";
split@StringUtils(mime)(s);
if (s.result[0] == "text") {

file.format = "text";
format = "html"

} else {
file.format = format = "binary"

};
readFile@File(file)(response)

}
}

}

Jolie and DBMS

● Equipped with protection from SQL injection.

Q = “select :value from people”;
query@Database

()(result);
print@Console(result.row[1].surname)() // “Duck”

id name surname

1 John Smith

2 Donald Duck

Jolie and Java

public class StringUtils
extends JavaService

{
public String trim(String s)
{

return s.trim();
}

}

include “string_utils.iol”

main
{

trim@StringUtils
(“ Hello “)(s)

// now s is “Hello”
}

Also...

● Jolie is based on the service-oriented programming paradigm, but it is
 a general purpose programming language.

● You can use it even for controlling a media player (ECHOES), or the
 brightness level of your Apple keyboard (Jabuka).

● Lots of other applications... ask about them!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

