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Jolie: a service-oriented programming language

● Nice logo:

 
 

● Formal foundations from the Academia.

● Tested and used in the real world: 

● Open source (http://www.jolie-lang.org/), with a well-maintained code base:

FOCUS Research Team



  

Hello, Jolie!

include “console.iol”

main
{

println@Console( “Hello, world!” )()
}

● Our first Jolie program:

mailto:println@Console


  

Basics

● A Service-Oriented Architecture (SOA) is composed by services.
● A service is an application that offers operations.
● A service can invoke another service by calling one of its operations.
● Recalling Object-oriented programming:

Services Objects

Operations Methods

Service-oriented Object-oriented



  

Understanding Hello World: concepts

include “console.iol”

main
{

println@Console( “Hello, world!” )()
}

Include from standard
library

Program entry point

Operation The service I want to invoke

mailto:println@Console


  

Our first service-oriented application

main
{

sendNumber@B( 5 )
}

main
{

sendNumber( x )
}

● A sends 5 to B through the sendNumber operation.

● We need to tell A how to reach B.
● We need to tell B how to expose sendNumber.
● In other words, how they can communicate!

A: B:
A B

● A program defines the input/output communications it will make.



  

Ports and interfaces: overview

● Services communicate through ports.
● Ports give access to an interface.
● An interface is a set of operations.
● An output port is used to invoke interfaces exposed by other services.
● An input port is used to expose an interface.

● Example: a client has an output port connected to an input port of
 a calculator.

A B

sendNumbersendNumbersendNumber



  

Our first service-oriented application

include “interface.iol”

outputPort B {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber@B( 5 )
}

include “interface.iol”

inputPort MyInput {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber( x )
}

A: B:interface MyInterface {
OneWay:

sendNumber(int)
}

interface.iol

A.ol B.ol



  

Anatomy of a port

outputPort B {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

● A port specifies:
● the location on which the communication can take place;
● the protocol to use for encoding/decoding data;
● the interfaces it exposes.

● There is no limit to how many ports a service can use.

A.ol

B.ol



  

Anatomy of a port: location

● A location is a URI (Uniform Resource Identifier) describing:
● the communication medium to use;
● the parameters for the communication medium to work.

● Some examples:

● TCP/IP:

● Bluetooth:

● Unix sockets:

● Java RMI:

socket://www.google.com:80/

btl2cap://localhost:3B9FA89520078C303355AAA694238F07;nam
e=Vision;encrypt=false;authenticate=false

localsocket:/tmp/mysocket.socket

rmi://myrmiurl.com/MyService



  

Anatomy of a port: protocol

● A protocol is a name, optionally equipped with configuration parameters.

● Some examples: sodep, soap, http, xmlrpc, …

Protocol: sodep

Protocol: soap

Protocol: http { .debug = true }



  

Deployment and Behaviour

● A JOLIE program is composed by two definitions:
● deployment: defines how to execute the behaviour and how to

  interact with the rest of the system;
● behaviour: defines the workflow the service will execute.

// B.ol

include “interface.iol”

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber( x )
}

Deployment

Behaviour



  

Communication abstraction

● A program just needs its port definitions to be changed in order to support
 different communication technologies!

TCP/IP sockets Unix sockets Bluetooth ...

SODEP SOAP HTTP ...

● Jolie supports many different communication mediums and data protocols.



  

Operation types

● JOLIE supports two types of operations:
● One-Way: receives a message;
● Request-Response: receives a message and sends a response back.

● In our example, sendNumber was a One-Way operation.

● Syntax for Request-Response:

interface MyInterface {
RequestResponse:

sayHello(string)(string)
}

sayHello@B( “John” )( result ) sayHello( name )( result ) {
result = “Hello “ + name

}

mailto:sayHello@B


  

Behaviour basics

● Statements can be composed in sequences with the ; operator.
● We refer to a block of code as B

● Some basic statements:

● assignment: x = x + 1

● if-then-else: if ( x > 0 ) { B } else { B }

● while: while ( x < 1 ) { B }

● for cycle: for ( i = 0, i < x, i++ ) { B }



  

Data manipulation (1)

● In JOLIE, every variable is a tree:

● Every tree node can be an array:

person.name = “John”;
person.surname = “Smith”

person.nicknames[0] = “Johnz”;
person.nicknames[1] = “Jo”

person.name = “John”;
person.surname = “Smith”;

<person>
<name>John</name>
<surname>Smith</surname>
</person>

SOAP

<form name=”person”>
<input name=”name” value=”John”/>
<input name=”surname” value=”Smith”/>
</form>

HTTP (form format)

01person02name114Johnsurname11Smith

SODEP



  

Data manipulation (2)

● You can dump the structure of a node using the standard library.

include “console.iol”
include “string_utils.iol”

main
{

team.person[0].name = “John”;
team.person[0].age = 30;
team.person[1].name = “Jimmy”;
team.person[1].age = 24;

team.sponsor = “Nike”;
team.ranking = 3;

valueToPrettyString@StringUtils( team )( result );
println@Console( result )()

}

mailto:valueToPrettyString@StringUtils
mailto:println@Console


  

Data manipulation: some operators

● Deep copy: copies an entire tree onto a node.
● team.person[2] << john

● Cardinality: returns the length of an array.
● size = #team.person

● Aliasing: creates an alias towards a tree.
● myPlayer -> team.person[my_player_index] 

for( i = 0, i < #team.person, i++ ) {
println@Console( team.person[i].name )()

}

mailto:println@Console


  

Dynamic path evaluation

● Also known as associative arrays.
● Static variable path: person.name
● One can use an expression in round parenthesis when writing a path
 in a data tree. Dynamic path evaluation.

● Example: 

● We make a map of cities indexed by their names:
● cityName = “Copenhagen”;
● cities.(cityName).state = “Denmark”

● Note that: 
cities.(“Copenhagen”)

● is the same as:
cities.Copenhagen

● can be browsed with the foreach statement:

foreach( city : cities ) {
println@Console( cities.(city).state )()

}

mailto:println@Console


  

Data manipulation: question

● What will be printed to screen?

include “console.iol”
include “string_utils.iol”

main
{

cities[0] = “Copenhagen”;
i = 0;
while( i < #cities ) {

println@Console( cities[i] )();
cities[i] = “Copenhagen”;
i++

}
}

mailto:println@Console


  

Data types

● In an interface, each operation must be coupled to its message types.
● Types are defined in the deployment part of the language.
● Syntax:

● type name:basic_type { subtypes }
● Where basic_type can be:

● int, long, double for numbers
● string for strings;
● raw for byte arrays;
● void for empty nodes;
● any for any possible basic value;
● undefined: makes the type accepting any value and any subtree.

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}



  

Casting and runtime basic type checking

● For each basic data type, there is a corresponding primitive for:
● casting, e.g.   x = int( s )
● runtime checking, e.g.   x = is_int( y )



  

Data types: cardinalities

● Each node in a type can be coupled with a range of possible occurences.
● Syntax:

● type name[min,max]:basic_type { subtypes }
● One can also have:

● * for any number of occurences (>= 0);
● ? for [0,1].

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}



  

Data types and operations

● Data types are to be associated to operations.

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum( SumRequest )( int )
}



  

Parallel and input choice

● Parallel composition: B | B

● Input choice:

sendNumber@B( 5 ) | sendNumber@C( 7 )

[ ok( message ) ] { P1 }

[ shutdown() ] { P2 }

[ printAndShutdown( text )() {
println@Console( text )()

} ] { P3 }

mailto:sendNumber@B
mailto:sendNumber@C
mailto:println@Console


  

A calculator service

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

inputPort MyInput {
Location: “socket://localhost:8000/”
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum( request )( response ) {
response = request.x + request.y

}
}



  

Dynamic binding

● In an SOA, a fundamental mechanism is that of service discovery.
● A service dynamically (at runtime) discovers the location and a protocol
 for communicating with another service.

● In JOLIE we obtain this by manipulating an output port as a variable.

● Type for bindings defined in
$JOLIE_DIR/include/types/Binding.iol

outputPort Calculator {
Interfaces: CalculatorInterface
}

main
{

Calculator.location = “socket://localhost:8000/”;
Calculator.protocol = “sodep”;
request.x = 2;
request.y = 3;
sum@Calculator( request )( result )

}

mailto:sum@Calculator


  

Multiple executions: processes

● The calculator works, but it terminates after executing once.
● We want it to keep going and accept other requests.
● We introduce processes.
● A process is an execution instance of a service behaviour.
● In JOLIE, processes can be executed concurrently or sequentially.

execution { concurrent } execution { sequential }

sum( request )( response ) {
response = request.x + request.y

};
print( message );
println@Console( message )()

sum( request )( response ) {
response = request.x + request.y

};
print( message );
println@Console( message )()

sum( request )( response ) {
response = request.x + request.y

};
print( message );
println@Console( message )()

mailto:println@Console
mailto:println@Console
mailto:println@Console


  

More 

● A service may engage in different separate conversations with other parties.
● Example: a chat server may manage different chat rooms.

● Each conversation needs to be supported by a private execution state.
● Example: each chat room needs to keep track of the posted messages.

● We call this support session.

● Sessions are independent of each other: they run in parallel.
● Some call them threads equipped with a private state.

● Therefore, a service has many parallel sessions running inside of it:

Service

Session



  

Message routing

● What happens when a service receives a message from the network?
 

● We need to assign the message to a session!

Network

Service
Mesg

● How can we establish which session the message is meant for?



  

Session identifiers

● A widely used mechanism for routing messages to sessions.

● Each session has a session identifier (sid).

● All received messages contain an sid.

● The service gives the message to the session with the same sid.

Network

Service

sid = 21

2

3
4

5



  

Correlation sets

● A generalisation of session identifiers.

● A session is identified by the values of some of its variables.
● These variables form a correlation set (or cset).
● Similar to unique keys in relational databases.

● Example:
● in a service where we have a session for every person in the world

a correlation set could be formed by the national identification number
and the country.

Network

Service

nin = nin5
country = IT

nin=nin1
country=CY

...more
data...

nin=nin5
country=IT

...more
data...

...



  

Session identifiers VS correlation sets
Session identifiers

Correlation sets

● Pros
● Usually handled by the middleware: hard to make mistakes.

● Cons
● All clients must send the sid as expected: no support for integration.

● Pros
● Programmability of correlation can be used for integration.
● Each cset is a different way of identifying a session: support for multiparty

interactions.

● Cons
● Almost totally controlled by the programmer: easier to make mistakes.

(research ongoing to tackle this).



  

Example: chat service

● We model a chat service handling separate chat rooms. Each room is a session.

main
{

openRoom( openRequest )( response ) {
// Create the chat room...

}; run = true;
while ( run ) {

[ publish( message ) ] { println@Console( message.content )() }
[ close( closeRequest ) ] { run = false }

}
}

Chat service

Sports

Fun

Travel

interface ChatInterface {
RequestResponse:

openRoom(OpenRequest)(OpenResponse)
OneWay:

publish(PublishMesg),
close(CloseMesg)

}

Session starter



  

Correlating chats

● We want:
● to publish messages in the right rooms;
● to let the room creator close it, but only her!

● So we create two correlation sets:

main
{

openRoom( openRequest )( csets.adminToken ) {
csets.adminToken = new

}; run = true;
while ( run ) {

[ publish( message ) ] { println@Console( message.content )() }
[ close( closeRequest ) ] { run = false }

}
}

interface ChatInterface {
RequestResponse: openRoom(OpenRequest)(OpenResponse)
OneWay: publish(PublishMesg), close(CloseMesg)
}

cset { name: OpenRequest.room PublishMesg.roomName }
cset { adminToken: CloseMesg.adminToken }

1

2

2

1

Fresh value generator



  

Exercise (together)

● We design an SOA for handling exams between students and professors.
● A student can start an examination session.
● A professor can ask a question in the session.
● The student answers and the professor can either accept or reject.
● The student is notified.

● Questions

● Architecture: roles and services.
● What are the involved services? Roles.
● Who controls the execution flow? Orchestrator.

● Work flow: operations, data types and activity composition.
● Who starts the session?
● How does the session behave?



  

Some other things you can do with Jolie



  

Leonardo

● A web server in pure Jolie.

● Can fit in a slide.
 (ok, I reduced the font size a little)

● ~50 LOCs

include "console.iol"
include "file.iol"
include "string_utils.iol"
include "config.iol"

execution { concurrent }

interface HTTPInterface {
RequestResponse:

default(undefined)(undefined)
}

inputPort HTTPInput {
Protocol: http {

.debug = DebugHttp; .debug.showContent = DebugHttpContent;

.format -> format; .contentType -> mime;

.default = "default"
}
Location: Location_Leonardo
Interfaces: HTTPInterface
}

init {
documentRootDirectory = args[0]

}

main {
default( request )( response ) {

scope( s ) {
install(

FileNotFound =>
println@Console( "File not found: " + file.filename )()

);
s = request.operation;
s.regex = "\\?";
split@StringUtils( s )( s );
file.filename = documentRootDirectory + s.result[0];
getMimeType@File( file.filename )( mime );
mime.regex = "/";
split@StringUtils( mime )( s );
if ( s.result[0] == "text" ) {

file.format = "text";
format = "html"

} else {
file.format = format = "binary"

};
readFile@File( file )( response )

}
}

}



  

Jolie and DBMS

● Equipped with protection from SQL injection.

Q = “select :value from people”;
query@Database

(  )( result );
print@Console( result.row[1].surname )() // “Duck”

id name surname

1 John Smith

2 Donald Duck



  

Jolie and Java

public class StringUtils
extends JavaService

{
public String trim( String s )
{

return s.trim();
}

}

include “string_utils.iol”

main
{

trim@StringUtils
( “ Hello “ )( s )

// now s is “Hello”
}



  

Also...

● Jolie is based on the service-oriented programming paradigm, but it is
 a general purpose programming language.

● You can use it even for controlling a media player (ECHOES), or the
 brightness level of your Apple keyboard (Jabuka).

● Lots of other applications... ask about them!
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