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Jolie: a service-oriented programming language
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e Formal foundations from the Academia.
.

» Tested and used in the real world: 1talianasoftware =

e Open source (http://www.jolie-lang.org/), With a well-maintained code base:




Hello, Jolie!

e Our first Jolie program:

include “console.iol”

main
{
println@Console( “Hello, world!” ) ()

}
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Basics

* A Service-Oriented Architecture (SOA) 1s composed by services.

» A service 1s an application that offers operations.

A service can invoke another service by calling one of its operations.
e Recalling Object-oriented programming;:

Service-oriented Object-oriented




Understanding Hello World: concepts
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Our first service-oriented application

e A program defines the input/output communications it will make.

A B

main main
{ {

sendNumber@B( 5 )————) sendNumber ( x )
} }

A sends 5 to B through the sendNumber operation.

* We need to tell A how to reach B.
* We need to tell B how to expose sendNumber.
e In other words, how they can communicate!



Ports and interfaces: overview

e Services communicate through ports.

e Ports give access to an interface.

* An interface is a set of operations.

* An output port is used to invoke interfaces exposed by other services.
* An input port is used to expose an interface.

« Example: a client has an output port connected to an input port of
a calculator.

sendNumber sendNumber




Our first service-oriented application

interface.iol

interface MyInterface {

OneWay:

sendNumber (int)

}

A.ol

include “interface.iol”

outputPort B ({

Location:
“socket://localhost:8000”

Protocol: sodep

Interfaces: MyInterface

}

main
{
sendNumber@B( 5 )

}

B.ol

include “interface.iol”

inputPort MyInput {

Location:
“socket://localhost:8000”

Protocol: sodep

Interfaces: MyInterface

}

main
{
sendNumber ( x )

}



Anatomy of a port

* A port specifies:
e the location on which the communication can take place;
e the protocol to use for encoding/decoding data;
e the interfaces it exposes.

e There 1s no limit to how many ports a service can use.

B.ol

inputPort MyInput {

Location: “socket://localhost:8000”
p» Protocol: sodep

Interfaces: MyInterface

}

A.ol

outputPort B {

Location: “socket://localhost:8000”
Protocol: sodep

Interfaces: MyInterface

}



Anatomy of a port: location

A location is a URI (Uniform Resource Identifier) describing:
e the communication medium to use;
e the parameters for the communication medium to work.

e Some examples:
« TCP/IP:
 Bluetooth:

e Unix sockets:

e Java RMI:

socket://www.google.com: 80/

btl2cap://localhost:3B9FA89520078C303355AAA694238F07 ; nam
e=Vision;encrypt=false;authenticate=false

localsocket:/tmp/mysocket. socket

rmi://myrmiurl.com/MyService



Anatomy of a port: protocol

» A protocol 1s a name, optionally equipped with configuration parameters.

e Some examples: sodep, soap, http, xmlrpc, ...

Protocol: sodep

Protocol: soap

Protocol: http { .debug = true }




Deployment and Behaviour

A JOLIE program 1s composed by two definitions:
» deployment: defines how to execute the behaviour and how to
interact with the rest of the system;
e behaviour: defines the workflow the service will execute.

// B.ol

include “interface.iol”

inputPort MyInput ({
Location: “socket://localhost:8000” Deployment
Protocol: sodep

Interfaces: MyInterface

}

main

{ -
sendNumber ( x ) Behaviour
}




Communication abstraction

» A program just needs its port definitions to be changed in order to support
different communication technologies!




Operation types

» JOLIE supports two types of operations:
* One-Way: receives a message;
* Request-Response: receives a message and sends a response back.

e In our example, sendNumber was a One-Way operation.

» Syntax for Request-Response:

interface MyInterface ({
RequestResponse:
sayHello (string) (string)

}

sayHello@B( “John” ) ( result ) sayHello( name ) ( result ) {
result = “Hello “ + name

}
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Behaviour basics

 Statements can be composed in sequences with the ; operator.
» We refer to a block of code as B

 Some basic statements:

e assignment: x = x + 1
e if-then-else:1if ( x > 0 ) { B } else { B }

e while:while ( x < 1) { B }

0, i < x, i++ ) { B }

e forcycle: for ( i




Data manipulation (1)

. . . person.name = “John”;
* In JOLIE, every variable 18 a tree:  .icon surname = “Smith”

“Johnz”;
\\ Jo 144

. person.nicknames|[0]
* Every tree node can be an array: . con nicknames [1]

Olperson0O2namell4JohnsurnamellSmith

SODEP

person.name = “John”;
person.surname = “Smith”;

SiAP/r “ITTP (form format)

<person> <form name="person”>

<name>John</name> <input name="name” wvalue="John”/>

<surname>Smith</surname> <input name="surname” value="”Smith”/>
</form>

</person>



Data manipulation (2)

* You can dump the structure of a node using the standard library.

include “console.iol”
include “string utils.iol”

main

{
team.person[0] .name = “John”;
team.person[0] .age = 30;
team.person[l] .name = “Jimmy”;

team.person[l] .age = 24;

team. sponsor
team.ranking

= “Nike”;

= 3;
valueToPrettyString@StringUtils( team ) ( result );
println@Console( result ) ()


mailto:valueToPrettyString@StringUtils
mailto:println@Console

Data manipulation: some operators

* Deep copy: copies an entire tree onto a node.
e team.person[2] << john

e Cardinality: returns the length of an array.
e size = f#team.person

e Aliasing: creates an alias towards a tree.
e myPlayer -> team.person[my player index]

for( i =0, i < #team.person, i++ ) {
println@Console( team.person[i] .name ) ()

}
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Dynamic path evaluation

» Also known as associative arrays.

e Static variable path: person.name

e One can use an expression in round parenthesis when writing a path
in a data tree. Dynamic path evaluation.

e Example:

 We make a map of cities indexed by their names:

e cityName = “Copenhagen”;
e cities. (cityName) .state = “Denmark”
e Note that:

cities. (“"Copenhagen”)
* 1s the same as:
cities.Copenhagen
e can be browsed with the foreach statement:
foreach( city : cities ) {

println@Console( cities. (city) .state ) ()
}
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Data manipulation: question

e What will be printed to screen?

include “console.iol”
include “string utils.iol”

main

{
cities[0] = “Copenhagen”;
i=20;

while( i < #cities ) {
println@Console( cities[i] ) ();
cities[i] = “Copenhagen”;
i++
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 In an interface, each operation must be coupled to its message types.
 Types are defined in the deployment part of the language.
e Syntax:
« type name:basic_type { subtypes }
 Where basic_type can be:
e int, long, double for numbers
e string for strings;
e raw for byte arrays;
e void for empty nodes;
e any for any possible basic value;
 undefined: makes the type accepting any value and any subtree.

type Team:void ({
.person[l,5] :void {
.name:string
.age:int
}
.sponsor:string
.ranking:int



Casting and runtime basic type checking

 For each basic data type, there is a corresponding primitive for:
e casting,e.g. x = int( s )
e runtime checking, e.g. x = is int( y )




Data types: cardinalities

e Each node 1n a type can be coupled with a range of possible occurences.
e Syntax:

« type name[min,max] :basic_ type { subtypes }
* One can also have:

e * for any number of occurences (>= 0);

e ? for[0,1].

type Team:void ({
.person[l,5] :void {
.name:string
.age:int

}

.sponsor:string
.ranking:int




Data types and operations

 Data types are to be associated to operations.

type SumRequest:void ({
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:
sum( SumRequest ) ( int )

}




Parallel and input choice

e Parallel composition:B | B
sendNumber@B( 5 ) | sendNumber@C( 7 )

* Input choice:
[ ok( message ) ] { P1 }

[ shutdown() 1 { P2 }

[ printAndShutdown ( text ) () {
println@Console( text ) ()

}1 { P31}
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A calculator service

type SumRequest:void ({
.X:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum (SumRequest) (int)
}

inputPort MyInput ({

Location: “socket://localhost:8000/”
Protocol: sodep

Interfaces: CalculatorInterface

}

main
{
sum( request ) ( response ) {
response = request.x + request.y

}



Dynamic binding

e In an SOA, a fundamental mechanism 1s that of service discovery.

e A service dynamically (at runtime) discovers the location and a protocol
for communicating with another service.

e In JOLIE we obtain this by manipulating an output port as a variable.

outputPort Calculator ({
Interfaces: CalculatorInterface

}

main

{
Calculator.location
Calculator.protocol
request.x = 2;
request.y = 3;
sum@Calculator( request ) ( result )

“socket://localhost:8000/"”;
\\ sodepll ;

 Type for bindings defined in
$JOLIE DIR/include/types/Binding.iol


mailto:sum@Calculator

Multiple executions: processes

 The calculator works, but it terminates after executing once.

* We want it to keep going and accept other requests.

* We introduce processes.

e A process 1s an execution instance of a service behaviour.

* In JOLIE, processes can be executed concurrently or sequentially.

execution { concurrent } execution { sequential }

sum( request ) ( response ) {
response = request.x + request.y

};
print ( message );
println@Console( message ) ()
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More

» A service may engage in different separate conversations with other parties.
 Example: a chat server may manage different chat rooms.

e Each conversation needs to be supported by a private execution state.
 Example: each chat room needs to keep track of the posted messages.

e We call this support session.

 Sessions are independent of each other: they run in parallel.
e Some call them threads equipped with a private state.

 Therefore, a service has many parallel sessions running inside of it:
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Message routing
e What happens when a service receives_from the-

* We need to assign the message to a session!
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* How can we establish which session the message 1s meant for?




Session 1dentifiers

* A widely used mechanism for routing messages to sessions.
e Each session has a session identifier (sid).
e All received messages contain an sid.

» The service gives the message to the session with the same sid.

Service
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Correlation sets

» A generalisation of session identifiers.

A session 1s 1dentified by the values of some of its variables.
e These variables form a correlation set (or cset).
e Similar to unique keys in relational databases.

e Example:
* in a service where we have a session for every person in the world
a correlation set could be formed by the national 1dentification number
and the country.

Service

-
(X ]




Session 1dentifiers VS correlation sets

Session identifiers

* Pros
e Usually handled by the middleware: hard to make mistakes.

* Cons
e All clients must send the sid as expected: no support for integration.




Example: chat service

 We model a chat service handling separate chat rooms. Each room 1s a session.

- Chat service

interface ChatInterface { e~

RequestResponse:

openRoom (OpenRequest) (OpenResponse)
OneWay:

publish (PublishMesqg),

close (CloseMesq) e

I
| Sports
I
L

=
=

n{uain / Session starter ~
openRoom( openRequest ) ( response ) {

// Create the chat room...

}; run = true;

while ( run ) {
[ publish( message ) ] { println@Console( message.content ) () }
[ close( closeRequest ) ] { run = false }



Correlating chats

* We want: @
* to publish messages in the right rooms;
e to let the room creator close 1t, but only her! @

* So we create two correlation sets:

interface ChatInterface ({ g

RequestResponse: openRoom (OpenRequest) (OpenResponse)

OneWay: publish (PublishMesg), close (CloseMesq)

}

cset { name: OpenRequest.room PublishMesg.roomName }

cset { adminToken: CloseMesg.adminToken }<::>

Tain E;J:
openRoom( openRequest ) ( csets.adminToken ) { Fredh walie generator

csets.adminToken = new g
}; run = true;

while ( run ) {
[ publish( message ) ] { println@Console( message.content ) () }

[ close( closeRequest ) ] { run = false }



Exercise (together)

* We design an SOA for handling exams between students and professors.
A student can start an examination session.

» A professor can ask a question 1n the session.

» The student answers and the professor can either accept or reject.

 The student 1s notified.

e Questions

e Architecture: roles and services.
e What are the involved services? Roles.
e Who controls the execution flow? Orchestrator.
 Work flow: operations, data types and activity composition.
e Who starts the session?
e How does the session behave?



Some other things you can do with Jolie
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* A web server in pure Jolie.

e Can fit 1n a slide.

(ok, I reduced the font size a little)

e ~50 LOCs

include "console.iol" -
include "file.iol" e~
include "string utils.iol"
include "config.iol"
execution { concurrent }
interface HTTPInterface ({
RequestResponse:

default (undefined) (undefined)
}
inputPort HTTPInput ({
Protocol: http {

.debug = DebugHttp; .debug.showContent = DebugHttpContent;

.format -> format; .contentType -> mime;

.default = "default"
}
Location: Location_Leonardo
Interfaces: HTTPInterface
}
init {

documentRootDirectory = args[0]
}
main {

default( request ) ( response ) {

scope( s ) {
install (
FileNotFound =>
println@Console( "File not found: " + file.filename ) ()

)

s = request.operation;

s.regex = "\\?";

split@StringUtils( s )( s );

file.filename = documentRootDirectory + s.result[0];
getMimeType@File( file.filename ) ( mime );

mime.regex = "/";

split@StringUtils( mime ) ( s );

if ( s.result[0] == "text" ) {
file.format = "text";
format = "html"

} else {
file.format = format = "binary"

};
readFile@File( file ) ( response )



Jolie and DBMS

id name surname
1 John Smith
2 Donald Duck
Q = “select :value from people”; —

query@Database
( )( result );
print@Console( result.row[l].surname ) () // “Duck”

* Equipped with protection from SQL injection.




Jolie and Java

public class StringUtils
extends JavaService

{

public String trim( String s )
{

return s.trim() ;

}

q\

include “string utils.iol”

main

{

trim@StringUtils
( © Hello ™ )( s )
// now s is “Hello”




e Jolie is based on the service-oriented programming paradigm, but it is
a general purpose programming language.

* You can use it even for controlling a media player (ECHOES), or the
brightness level of your Apple keyboard (Jabuka).

 Lots of other applications... ask about them!
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