=
Jolie

A service-oriented programming language

Fabrizio Montesi, University of Southern Denmark
<famontesi@gmail.com>

CC BY-SA

Jolie: a service-oriented programming language

~
| e @ ZE Wi | ol
 Nice logo:
© O Ie FOCUS Research Team IT University

of Copenhagen|

P

e Formal foundations from the Academia.
.

» Tested and used in the real world: 1talianasoftware =

e Open source (http://www.jolie-lang.org/), With a well-maintained code base:

Hello, Jolie!

e Our first Jolie program:

include “console.iol”

main
{
println@Console(“Hello, world!”) ()

}

mailto:println@Console

Basics

* A Service-Oriented Architecture (SOA) 1s composed by services.

» A service 1s an application that offers operations.

A service can invoke another service by calling one of its operations.
e Recalling Object-oriented programming;:

Service-oriented Object-oriented

Understanding Hello World: concepts

mailto:println@Console

Our first service-oriented application

e A program defines the input/output communications it will make.

A B

main main
{ {

sendNumber@B(5)————) sendNumber (x)
} }

A sends 5 to B through the sendNumber operation.

* We need to tell A how to reach B.
* We need to tell B how to expose sendNumber.
e In other words, how they can communicate!

Ports and interfaces: overview

e Services communicate through ports.

e Ports give access to an interface.

* An interface is a set of operations.

* An output port is used to invoke interfaces exposed by other services.
* An input port is used to expose an interface.

« Example: a client has an output port connected to an input port of
a calculator.

sendNumber sendNumber

Our first service-oriented application

interface.iol

interface MyInterface {

OneWay:

sendNumber (int)

}

A.ol

include “interface.iol”

outputPort B ({

Location:
“socket://localhost:8000”

Protocol: sodep

Interfaces: MyInterface

}

main
{
sendNumber@B(5)

}

B.ol

include “interface.iol”

inputPort MyInput {

Location:
“socket://localhost:8000”

Protocol: sodep

Interfaces: MyInterface

}

main
{
sendNumber (x)

}

Anatomy of a port

* A port specifies:
e the location on which the communication can take place;
e the protocol to use for encoding/decoding data;
e the interfaces it exposes.

e There 1s no limit to how many ports a service can use.

B.ol

inputPort MyInput {

Location: “socket://localhost:8000”
p» Protocol: sodep

Interfaces: MyInterface

}

A.ol

outputPort B {

Location: “socket://localhost:8000”
Protocol: sodep

Interfaces: MyInterface

}

Anatomy of a port: location

A location is a URI (Uniform Resource Identifier) describing:
e the communication medium to use;
e the parameters for the communication medium to work.

e Some examples:
« TCP/IP:
 Bluetooth:

e Unix sockets:

e Java RMI:

socket://www.google.com: 80/

btl2cap://localhost:3B9FA89520078C303355AAA694238F07 ; nam
e=Vision;encrypt=false;authenticate=false

localsocket:/tmp/mysocket. socket

rmi://myrmiurl.com/MyService

Anatomy of a port: protocol

» A protocol 1s a name, optionally equipped with configuration parameters.

e Some examples: sodep, soap, http, xmlrpc, ...

Protocol: sodep

Protocol: soap

Protocol: http { .debug = true }

Deployment and Behaviour

A JOLIE program 1s composed by two definitions:
» deployment: defines how to execute the behaviour and how to
interact with the rest of the system;
e behaviour: defines the workflow the service will execute.

// B.ol

include “interface.iol”

inputPort MyInput ({
Location: “socket://localhost:8000” Deployment
Protocol: sodep

Interfaces: MyInterface

}

main

{ -
sendNumber (x) Behaviour
}

Communication abstraction

» A program just needs its port definitions to be changed in order to support
different communication technologies!

Operation types

» JOLIE supports two types of operations:
* One-Way: receives a message;
* Request-Response: receives a message and sends a response back.

e In our example, sendNumber was a One-Way operation.

» Syntax for Request-Response:

interface MyInterface ({
RequestResponse:
sayHello (string) (string)

}

sayHello@B(“John”) (result) sayHello(name) (result) {
result = “Hello “ + name

}

mailto:sayHello@B

Behaviour basics

 Statements can be composed in sequences with the ; operator.
» We refer to a block of code as B

 Some basic statements:

e assignment: x = x + 1
e if-then-else:1if (x > 0) { B } else { B }

e while:while (x < 1) { B }

0, i < x, i++) { B }

e forcycle: for (i

Data manipulation (1)

. . . person.name = “John”;
* In JOLIE, every variable 18 a tree: .icon surname = “Smith”

“Johnz”;
\\ Jo 144

. person.nicknames|[0]
* Every tree node can be an array: . con nicknames [1]

Olperson0O2namell4JohnsurnamellSmith

SODEP

person.name = “John”;
person.surname = “Smith”;

SiAP/r “ITTP (form format)

<person> <form name="person”>

<name>John</name> <input name="name” wvalue="John”/>

<surname>Smith</surname> <input name="surname” value="”Smith”/>
</form>

</person>

Data manipulation (2)

* You can dump the structure of a node using the standard library.

include “console.iol”
include “string utils.iol”

main

{
team.person[0] .name = “John”;
team.person[0] .age = 30;
team.person[l] .name = “Jimmy”;

team.person[l] .age = 24;

team. sponsor
team.ranking

= “Nike”;

= 3;
valueToPrettyString@StringUtils(team) (result);
println@Console(result) ()

mailto:valueToPrettyString@StringUtils
mailto:println@Console

Data manipulation: some operators

* Deep copy: copies an entire tree onto a node.
e team.person[2] << john

e Cardinality: returns the length of an array.
e size = f#team.person

e Aliasing: creates an alias towards a tree.
e myPlayer -> team.person[my player index]

for(i =0, i < #team.person, i++) {
println@Console(team.person[i] .name) ()

}

mailto:println@Console

Dynamic path evaluation

» Also known as associative arrays.

e Static variable path: person.name

e One can use an expression in round parenthesis when writing a path
in a data tree. Dynamic path evaluation.

e Example:

 We make a map of cities indexed by their names:

e cityName = “Copenhagen”;
e cities. (cityName) .state = “Denmark”
e Note that:

cities. (“"Copenhagen”)
* 1s the same as:
cities.Copenhagen
e can be browsed with the foreach statement:
foreach(city : cities) {

println@Console(cities. (city) .state) ()
}

mailto:println@Console

Data manipulation: question

e What will be printed to screen?

include “console.iol”
include “string utils.iol”

main

{
cities[0] = “Copenhagen”;
i=20;

while(i < #cities) {
println@Console(cities[i]) ();
cities[i] = “Copenhagen”;
i++

mailto:println@Console

 In an interface, each operation must be coupled to its message types.
 Types are defined in the deployment part of the language.
e Syntax:
« type name:basic_type { subtypes }
 Where basic_type can be:
e int, long, double for numbers
e string for strings;
e raw for byte arrays;
e void for empty nodes;
e any for any possible basic value;
 undefined: makes the type accepting any value and any subtree.

type Team:void ({
.person[l,5] :void {
.name:string
.age:int
}
.sponsor:string
.ranking:int

Casting and runtime basic type checking

 For each basic data type, there is a corresponding primitive for:
e casting,e.g. x = int(s)
e runtime checking, e.g. x = is int(y)

Data types: cardinalities

e Each node 1n a type can be coupled with a range of possible occurences.
e Syntax:

« type name[min,max] :basic_ type { subtypes }
* One can also have:

e * for any number of occurences (>= 0);

e ? for[0,1].

type Team:void ({
.person[l,5] :void {
.name:string
.age:int

}

.sponsor:string
.ranking:int

Data types and operations

 Data types are to be associated to operations.

type SumRequest:void ({
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:
sum(SumRequest) (int)

}

Parallel and input choice

e Parallel composition:B | B
sendNumber@B(5) | sendNumber@C(7)

* Input choice:
[ok(message)] { P1 }

[shutdown() 1 { P2 }

[printAndShutdown (text) () {
println@Console(text) ()

}1 { P31}

mailto:sendNumber@B
mailto:sendNumber@C
mailto:println@Console

A calculator service

type SumRequest:void ({
.X:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum (SumRequest) (int)
}

inputPort MyInput ({

Location: “socket://localhost:8000/”
Protocol: sodep

Interfaces: CalculatorInterface

}

main
{
sum(request) (response) {
response = request.x + request.y

}

Dynamic binding

e In an SOA, a fundamental mechanism 1s that of service discovery.

e A service dynamically (at runtime) discovers the location and a protocol
for communicating with another service.

e In JOLIE we obtain this by manipulating an output port as a variable.

outputPort Calculator ({
Interfaces: CalculatorInterface

}

main

{
Calculator.location
Calculator.protocol
request.x = 2;
request.y = 3;
sum@Calculator(request) (result)

“socket://localhost:8000/"”;
\\ sodepll ;

 Type for bindings defined in
$JOLIE DIR/include/types/Binding.iol

mailto:sum@Calculator

Multiple executions: processes

 The calculator works, but it terminates after executing once.

* We want it to keep going and accept other requests.

* We introduce processes.

e A process 1s an execution instance of a service behaviour.

* In JOLIE, processes can be executed concurrently or sequentially.

execution { concurrent } execution { sequential }

sum(request) (response) {
response = request.x + request.y

};
print (message);
println@Console(message) ()

mailto:println@Console
mailto:println@Console
mailto:println@Console

More

» A service may engage in different separate conversations with other parties.
 Example: a chat server may manage different chat rooms.

e Each conversation needs to be supported by a private execution state.
 Example: each chat room needs to keep track of the posted messages.

e We call this support session.

 Sessions are independent of each other: they run in parallel.
e Some call them threads equipped with a private state.

 Therefore, a service has many parallel sessions running inside of it:

[[
= G C Session 1
[] [|

Service

[|
= J
il E .
S [—
[] [

Message routing
e What happens when a service receives_from the-

* We need to assign the message to a session!

' ’
/
/
/

—

Service

[| [|
_l _l
il il)
N N _l
[| [| m .
—
[|
[|
== J
il = .
g e
[] []

4__--

* How can we establish which session the message 1s meant for?

Session 1dentifiers

* A widely used mechanism for routing messages to sessions.
e Each session has a session identifier (sid).
e All received messages contain an sid.

» The service gives the message to the session with the same sid.

Service

I___ I___

| | == =1

L2 I
|___': |"'1\ -
\\,’ \\’/

\'— —a
\'— —a

/

Correlation sets

» A generalisation of session identifiers.

A session 1s 1dentified by the values of some of its variables.
e These variables form a correlation set (or cset).
e Similar to unique keys in relational databases.

e Example:
* in a service where we have a session for every person in the world
a correlation set could be formed by the national 1dentification number
and the country.

Service

-
(X]

Session 1dentifiers VS correlation sets

Session identifiers

* Pros
e Usually handled by the middleware: hard to make mistakes.

* Cons
e All clients must send the sid as expected: no support for integration.

Example: chat service

 We model a chat service handling separate chat rooms. Each room 1s a session.

- Chat service

interface ChatInterface { e~

RequestResponse:

openRoom (OpenRequest) (OpenResponse)
OneWay:

publish (PublishMesqg),

close (CloseMesq) e

I
| Sports
I
L

=
=

n{uain / Session starter ~
openRoom(openRequest) (response) {

// Create the chat room...

}; run = true;

while (run) {
[publish(message)] { println@Console(message.content) () }
[close(closeRequest)] { run = false }

Correlating chats

* We want: @
* to publish messages in the right rooms;
e to let the room creator close 1t, but only her! @

* So we create two correlation sets:

interface ChatInterface ({ g

RequestResponse: openRoom (OpenRequest) (OpenResponse)

OneWay: publish (PublishMesg), close (CloseMesq)

}

cset { name: OpenRequest.room PublishMesg.roomName }

cset { adminToken: CloseMesg.adminToken }<::>

Tain E;J:
openRoom(openRequest) (csets.adminToken) { Fredh walie generator

csets.adminToken = new g
}; run = true;

while (run) {
[publish(message)] { println@Console(message.content) () }

[close(closeRequest)] { run = false }

Exercise (together)

* We design an SOA for handling exams between students and professors.
A student can start an examination session.

» A professor can ask a question 1n the session.

» The student answers and the professor can either accept or reject.

 The student 1s notified.

e Questions

e Architecture: roles and services.
e What are the involved services? Roles.
e Who controls the execution flow? Orchestrator.
 Work flow: operations, data types and activity composition.
e Who starts the session?
e How does the session behave?

Some other things you can do with Jolie

[.eonardo

S Ry _ug_.—wq;*:ﬁ":":r—_rﬁﬂ 1
N 00 - \':"‘;"1‘:-:?“*""

* A web server in pure Jolie.

e Can fit 1n a slide.

(ok, I reduced the font size a little)

e ~50 LOCs

include "console.iol" -
include "file.iol" e~
include "string utils.iol"
include "config.iol"
execution { concurrent }
interface HTTPInterface ({
RequestResponse:

default (undefined) (undefined)
}
inputPort HTTPInput ({
Protocol: http {

.debug = DebugHttp; .debug.showContent = DebugHttpContent;

.format -> format; .contentType -> mime;

.default = "default"
}
Location: Location_Leonardo
Interfaces: HTTPInterface
}
init {

documentRootDirectory = args[0]
}
main {

default(request) (response) {

scope(s) {
install (
FileNotFound =>
println@Console("File not found: " + file.filename) ()

)

s = request.operation;

s.regex = "\\?";

split@StringUtils(s)(s);

file.filename = documentRootDirectory + s.result[0];
getMimeType@File(file.filename) (mime);

mime.regex = "/";

split@StringUtils(mime) (s);

if (s.result[0] == "text") {
file.format = "text";
format = "html"

} else {
file.format = format = "binary"

};
readFile@File(file) (response)

Jolie and DBMS

id name surname
1 John Smith
2 Donald Duck
Q = “select :value from people”; —

query@Database
()(result);
print@Console(result.row[l].surname) () // “Duck”

* Equipped with protection from SQL injection.

Jolie and Java

public class StringUtils
extends JavaService

{

public String trim(String s)
{

return s.trim() ;

}

q\

include “string utils.iol”

main

{

trim@StringUtils
(© Hello ™)(s)
// now s is “Hello”

e Jolie is based on the service-oriented programming paradigm, but it is
a general purpose programming language.

* You can use it even for controlling a media player (ECHOES), or the
brightness level of your Apple keyboard (Jabuka).

 Lots of other applications... ask about them!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

