

Integrated and Mobile
Distributed Systems

2

Fabrizio Montesi

<fmontesi@imada.sdu.dk>

● Distributed system:
 a network of endpoints that communicate by exchanging messages.

● Widespread! Let's see some examples...

Distributed Systems

● The Internet is a distributed system:

The Internet

=
Endpoint

● The Internet is a distributed system:

The Internet

OS

● The OS and apps in your computer (or phone):

Your Computer

● Even applications can be distributed systems. Google Chrome:

Tab Manager

Google Chrome

● Distributed systems are big! Some numbers:

System Number of Endpoints

My computer 160

A house Hundreds

A company Thousands (or millions)

The Internet At least 20 billions

Complexity

● How do we program all these endpoints?

● We write a program for each.

● Programs interact by sending and receiving messages.

Endpoint Programming

● Programming distributed systems is usually harder than
programming non distributed ones.

● Some problems are:
● handling communications;
● handling heterogeneity;
● handling faults;
● handling the evolution of systems.

Not so easy...

● The basic feature for any distributed system.
● Let us look at how Java does it. We open a TCP/IP socket and we

 send some data:

SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect(new InetSocketAddress("http://someurl.com", 80));

Buffer buffer = . . .; // Create a byte buffer with data to be sent.

while(buffer.hasRemaining()) {
channel.write(buffer);

}

A B

Not so easy... - Communications

● That is not good Java code.
● We need to remember to:

● handle eventual exceptions;
● remember to close the channel.

● Better version:

SocketChannel socketChannel = SocketChannel.open();
try {
 socketChannel.connect(new InetSocketAddress("http://someurl.com", 80));
 Buffer buffer = . . .; // Create a byte buffer with data to be sent.

 while(buffer.hasRemaining()) {
 channel.write(buffer);
 }
}
catch(UnresolvedAddressException e) { . . . }
catch(SecurityException e) { . . . }
/* . . . many catches later . . . */
catch(IOException e) { . . . }
finally { channel.close(); }

Not so easy... - Communications

● Phew...! Are we done?

● No! The server-side code can be much more complicated!

● Also: what if we want to reuse previously opened channels?

Not so easy... - Communications

Selector selector = Selector.open();

channel.configureBlocking(false);

SelectionKey key = channel.register(selector, SelectionKey.OP_READ);

while(true) {
 int readyChannels = selector.select();
 if(readyChannels == 0) continue;

 Set<SelectionKey> selectedKeys = selector.selectedKeys();
 Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
 while(keyIterator.hasNext()) {
 SelectionKey key = keyIterator.next();
 if(key.isAcceptable()) {
 // a connection was accepted by a ServerSocketChannel.
 } else if (key.isConnectable()) {
 // a connection was established with a remote server.
 } else if (key.isReadable()) {
 // a channel is ready for reading
 } else if (key.isWritable()) {
 // a channel is ready for writing
 }

 keyIterator.remove();
 }
}

● A “simple” example that listens to events on a channel... and does not
 even handle exceptions!

Not so easy... - Communications

● In the real world, distributed systems can be heterogeneous.

● Different applications that are part of the same system could...
● use different communication mediums (Bluetooth? TCP/IP?, …);
● use different data protocols (HTTP? SOAP? X11?);
● use different versions of the same data protocol (SOAP 1.1? 1.2?);
● and so on...

Not so easy... - Heterogeneity

● Applications in a distributed system can perform a distributed transaction.

● Example:
● a client asks a store to buy some music;
● the store opens a request for handling a payment on a bank;
● the client sends his credentials to the bank for closing the payment;
● the store sends the goods to the client.

● Looks good, but a lot of things may go wrong, for instance:
● the store (or the bank) could be offline;
● the client may not have enough money in his bank account;
● the store may encounter a problem in sending the goods.

Not so easy... - Faults

● Distributed systems usually evolve over time.

● Each application could be made by a different company.

● A company may update its application.

● Again, many possible pitfalls:
● the updated version may use a new data protocol, unsupported by the

clients;
● the updated version may have a different interface, e.g. first it took an

integer as a parameter for a functionality, now a string;
● the updated version may have a different behaviour, e.g. first it did not

require clients to log in, now it does.

Not so easy... - Evolutions

● Things can be made easier by hiding the low-level details.

● Two main approaches:
● make a library/tool/framework for an existing programming language;
● make a new programming language.

● Question: What is the difference between the two approaches?

How to simplify?

● Objects can bridge to remote objects executing in other applications.

● Local execution:

● With Java RMI we can use a calculator from another remote application:

● Question: what is nice about Java RMI?

Registry registry = LocateRegistry.getRegistry(host);
Calculator calculator =

(Calculator) registry.lookup("Calculator");

int sum = calculator.sum(11, 2);
System.out.println(sum);

Calculator calculator = new Calculator();
int sum = calculator.sum(11, 2);
System.out.println(sum);

Framework example: Java RMI

● A design paradigm for distributed systems.

● A service-oriented system is a network of services.

● Services communicate through message passing.

● Messages are tagged with operations (similar to method names in OO).

● Services are typed with interfaces, which define message data types for
 operations.

● Reference technology: Web Services.
● Based on XML;
● WS-BPEL (BPEL for short) for programming composition.

Service-oriented Computing (SOC)

● Everybody was using custom solutions for distributed computing.

● We need more integration with existing software.
● Programs using different data protocols cannot interact.

● We need support for more dynamicity.
● Service Discovery: we can discover where services are located at runtime.

● We need support for structured interactions.
● Many web applications implement logical orderings between actions.
● Example: in a newspaper web portal, a user may need to log in before

reading the news.

Why SOC? A few reasons...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

