
Notes and Exercises

Marco Peressotti

Week 38

The term process algebra is used in different meanings and often interchange-
ably with process calculus. First, the term “process” refers to the observable
behaviour or dynamics of a system under scrutiny. Here a system can be anything
that can be observed like the execution of a program, a chemical process, a
physical machinery etc. To precisely describe system dynamics in its entirety
is challenging at best. Instead, systems are modelled abstracting information
that is not relevant to the current analysis or properties of interest. What is
left is what is referred as observable. For instance, when discussing deadlock
it is not relevant whether processes are awaiting for a message, a resource, or
a memory location to hold a certain value. What is relevant instead is that
they are waiting for events that will never occur. The observable events (or
just observations) that a system exhibits are called its (observable) behaviour.
In this sense, processes are sometimes also called discrete event systems. It is
important to stress that what is relevant is not absolute but rather depends on
the specific scenario and property modelled e.g. to know the possibility or the
likelihood of deadlock.

The term “algebra” denotes an algebraic/axiomatic approach to system
modelling. Intuitively this means to have operations and axioms (algebraic
laws) for building processes, reasoning about them, and in general performing
calculations. Additionally, operations and terms freely generated from them
provide a syntax for system behaviours.

1 Exercises

1.1 Parallel composition and synchronisation
Fix a set C of channel names. Define a process as any (ground) term generated
by the grammar

P,Q ::= 0 | c.P | c.P | P ‖ Q

where c ∈ C.1 Intuitively, the term 0 represents a terminated system that does
not exhibit any event; terms c.P and c.P represent processes that respectively
send and receive over channel c before continuing as P ; the term P ‖ Q represents
a process composed by two sub-processes P and Q running in parallel. This
intuitive behaviour is formalised by means of a reduction semantics i.e. a relation
(_) assigning to each process its possible evolutions. Additionally, algebraic

1That is any string obtained starting from P (or Q) and iteratively replacing any occurrence
of symbols P and Q with any of the strings 0, c.P , c.P , and P ‖ Q until there are no occurrences
left.

1

laws (e.g. commutativity of operators) are formalised in terms of a structural
congruence (≡) i.e. an equivalence relation on processes that is preserved by all
operations (‖ etc.). The reduction relation _ and the structural congruence ≡
are defined as the least relations closed under the following rules.

c.P ‖ c.Q _ P ‖ Q
bCome

P _ P ′

P ‖ Q _ P ′ ‖ Q
bPare

P ≡ Q Q _ Q′ Q′ ≡ P ′

P _ P ′
bStre

P ‖ Q ≡ Q ‖ P
bPCe

(P ‖ Q) ‖ R _ P ‖ (Q ‖ R)
bPAe

Rule bCome formalise how two processes running in parallel synchronise by
communicating over the channel c and reduce to the parallel composition of
their respective continuations (P and Q). Rule bPare formalise the fact that
parallel processes can reduce independently. Rule bStre allows derivation of
reductions from structurally equivalent processes. Rules bPCe and bPAe assert
that the operator ‖ satisfy the algebraic laws of commutativity and associativity,
respectively. Rules stating that ≡ is a structural congruence are standard and
usually omitted. For the sake of precision, these are listed below.

P ≡ P

P ≡ Q Q ≡ R

P ≡ R

P ≡ Q

c.P ≡ c.Q

P ≡ Q

c.P ≡ c.Q

P ≡ P ′ Q ≡ Q′

P ‖ Q ≡ P ′ ‖ Q′

1. Write all reductions of 0, (c.a.0 ‖ c.b.0), and (c.a.0 ‖ c.b.0 ‖ c.c.0).

2. Show that the symmetric of rule bPare
Q _ Q′

P ‖ Q _ P ‖ Q′
bPar′e

is derivable i.e. show a proof of P ‖ Q _ P ‖ Q′ from Q _ Q′ without
using rule bPar′e.

3. Is there a process U with the property that

P _ Q ⇐⇒ U ‖ P _ Q

for any P and Q?

4. If there is U as above then, U acts as a unit for the operator ‖. State this
fact in terms of algebraic laws and extend ≡ accordingly.

5. What kind of algebraic structure (magma, monoid, group, ring, etc.) is
(Proc, ‖,0)?

1.2 Progress and termination
A process P is said “to admit a reduction” (“to reduce”, for short) whenever there
is a process Q (not necessarily distinct from P) such that P _ Q. Write P _

2

or P 6_ to denote whether P admits a reduction or not i.e.:

P _ 4⇐⇒ ∃Q(P _ Q) P 6_ 4⇐⇒ 6 ∃Q(P _ Q).

1. Is it appropriate to say that if P 6_ then P is terminated?

2. Which processes among 0, 0 ‖ 0, c.0, c.0 ‖ c.0 reduces and which are
terminated?

3. Define “terminated” and “deadlock” in this setting.

A process P may terminate iff it can reduce to a process that is terminated.
Likewise for deadlock.

Write _∗ for the transitive and reflective closure of the reduction relation _
i.e. the smallest relation such that

P _∗ P

P _∗ Q Q _ R R _∗ S

P _∗ S

4. Formally define “P may terminate” and “P may reach a deadlock”.

In the sequel various extensions of the syntax (signature) and semantics of
CCS processes (_ and ≡) will be discussed. Given the crucial role played by 0,
any extension is required to preserve its absence of reductions. Reworded, when
adding new reduction or congruence rules to the definition of _ and ≡, always
check that 0 6→.

1.3 Restriction
Communication channels in CCS are global i.e. any process can access any
channel. As a consequence, termination and absence of deadlocks are not
preserved by parallel composition. For instance, (a.0 ‖ a.0) terminates whereas
its parallel composition with a.R does not. To this end, CCS is extended with
a restriction operator that intuitively prevents any interaction on a restricted
channel between its argument any other parallel process.

Formally, the syntax and semantics of CCS processes are extended adding
the following production rule to the grammar:

P ::= · · · | P \ L for L ⊆ C

and the following derivation rule to the definition of the reduction relation _:
P _ P ′

P \ L _ P ′ \ L
bH0e

1. Derive all reductions for the process (a.b ‖ a.c) \ {a} ‖ a.b.

2. Does rule bH0e capture the intuitive behaviour of the restriction operator?

3. Define a function gc: Proc → ℘(C) mapping each process to the set of
channels it uses e.g. gc(c.c.0) = {c}, gc((c.a.0) \ {c}) = {a} (proceed by
induction on the argument structure)

3

Consider the function gc: Proc → ℘(C) given Add to the definition ≡ the
following laws concerning redundant restrictions:

P \ ∅ ≡ P
bH1e

L′ 6⊆ gc(P)

P \ L ≡ P \ (L ∪ L′)
bH2e

4. Is ≡ a congruence?

5. Is any law for ‖ violated?

6. Does 0 reduce?

7. Is (−) \ L idempotent?

8. Does (a.P)\{a} ≡ 0 hold? Is this law meaningful (think about termination
and deadlocks).

4

	Exercises
	Parallel composition and synchronisation
	Progress and termination
	Restriction

