
Lecture Notes on Choreographies, Part 5

Fabrizio Montesi
fmontesi@imada.sdu.dk

December 14, 2017

Abstract

This document contains lecture notes for the course on Concur-
rency Theory (2017) at the University of Southern Denmark.

1 Amendment

Consider again the unprojectable choreography from part 4, below.

Cunproj , (if p.f then p.true -> q.x; 0 else0) ; 0 (1)

Now that we have selections, we can easily fix it by adding more selections
until we obtain a projectable choreography.

(if p.f then p -> q[l]; p.true -> q.x; 0 else p -> q[r]; 0) ; 0 (2)

This manual intervention suggests a general principle: if we have an un-
projectable choreography, we can try to obtain a projectable one by adding
selections inside of conditionals. More precisely, if we add selections with dif-
ferent labels from the process that makes a conditional to the other processes
that need to behave differently in the two branches but do not know which
branch they are in, then we should obtain a projectable choreography. This
intuition is formalised in the following definition, which gives us a mechanical
method to “amend” a choreography and obtain a projectable version.

Definition 1 (Amendment [Cruz-Filipe and Montesi, 2016]). Let C be a
choreography. The transformation Amend(C) repeatedly applies the following
procedure until no longer possible, starting from the innermost subterms in
C. For each conditional subterm if p.f thenC1 elseC2 in C, let {r1, . . . , rn} ⊆
(procs(C1) ∪ procs(C2)) be the largest set not containing p such that JC1Kri t

1

mailto:fmontesi@imada.sdu.dk

JC2Kri is undefined for all i ∈ [1, n]; then, the subterm if p.f thenC1 elseC2 is
replaced with:

if p.f then p -> r1[l]; · · · ; p -> rn[l];C1 else p -> r1[r]; · · · ; p -> rn[r];C2

.

As an example, the result of Amend(Cunproj) (where Cunproj is defined in
eq. (1)) is the choreography in eq. (2).

Amendment is a complete procedure—it is defined for every choreography
C. It also guarantees projectability, as we desired.

Proposition 1. Let C be a choreography and Amend(C) = C ′. Then, for all
σ, J〈C ′, σ〉K is defined.

Exercise 1. Prove proposition 1.

Exercise 2. Write the result of Amend(C), where C is the following chore-
ography.

(if p.f then p.x -> q.y; 0 else p.x -> r.z; 0) ; 0

Exercise 3. Write the result of Amend(C), where C is the following chore-
ography.

(if p.f then p.x -> q.y; 0 else p.(x+ 1) -> r.z; p.(x+ 2) -> q.y; 0) ; 0

2 Smart Projection

An alternative to amending choreographies is to change the definition of EPP,
such that the auxiliary selections are inserted automatically by the projection
procedure. The modification is pretty simple: when we project a conditional,
we project a selection towards all other processes involved in the conditional
from the process that evaluates the guard, and we project a corresponding
branching for all such other processes. Here is the modification:

Jif p.f thenC1 elseC2;CKr =
(if f thenB1; JC1Kr elseB2; JC2Kr) ; JCKr if r = p

B; JCKr if r 6= p and B = JC1Kr t JC2Kr
pN{l : JC1Kr ,r : JC2Kr}; JCKr otherwise

where B1 = r1 ⊕ l; · · · ; rn ⊕ l and B2 = r1 ⊕ r; · · · ; rn ⊕ r
such that JC1Ks t JC2Ks undefined for all s ∈ {r1, . . . , rn}

2

.
Let ? JCK be EPP with the rule for projecting conditionals replaced by

the rule above. (Notice that we adopt this rule only in this section, and do
not use smart EPP in the other sections.)

Proposition 2 (Harmony of amendment and smart projection). Let C be
a choreography and σ be a global memory state. Then, J〈Amend(C), σ〉K =
? J〈C, σ〉K.

Exercise 4 (!). Prove proposition 2.

3 Recursion

All the choreographies that we have seen so far have finite behaviour, in
the sense that all their reduction chains have finite length. Even more, all
choreographies in the models that we explored so far must terminate. Let us
formalise this property.

Definition 2 (Termination). We say that 〈C, σ〉 must terminate if: for all
C ′ and σ′ such that 〈C, σ〉 →∗ 〈C ′, σ′〉, there exists σ′′ such that 〈C ′, σ′〉 →∗
〈0, σ′′〉.

We say that a choreography C must terminate if 〈C, σ〉 must terminate
for all σ.

In other words, a choreography must terminate if its execution will nec-
essarily end in 0.

We are now going to extend our choreography model to allow for recursive
behaviour—“repetitions” of the same communication structures. In this new
model, not all choreographies necessarily terminate, as we are going to see.

3.1 Choreographies

Syntax We extend the syntax our choreography model with two ingredi-
ents. The new syntax is displayed in fig. 1.

First, we add a set of procedure definitions, ranged over by C . A set of
procedure definitions is a (possibly empty) set of definitions like X(p̃) = C,
read “procedure X has parameters p̃ and body C”. We assume that all
procedures defined in a set C have distinct names. This means that we
can abstract from the order in which procedures are defined, and thus write
X(p̃) = C ∈ C to state that the definition X(p̃) = C is in C . The notation
p̃ is a shortcut for a sequence p1, . . . , pn for some n (a list of process names).

3

C ::= I;C | 0
I ::= p.f -> q.g | p -> q[l] | p.f | if p.f thenC1 elseC2 | X(p̃) | 0
C ::= X(p̃) = C,C | ∅

Figure 1: Recursive choreographies, syntax.

We assume that all process names in a list of parameters p̃ are distinct (they
are all different).

Second, we add a new primitive to choreographies for invoking procedures,
namely X(p̃), read “run procedure X with arguments p̃”. Also here, we
assume that the list of arguments p̃ contains distinct process names.

Example 1. A typical way of transmitting a large file over a network is
to split the file into multiple parts (or “chunks”, or packets) that are then
re-assembled at the destination. We implement this strategy here.

First, we write a procedure S that streams a series of packets from a
server s to a client c.

S(c, s) = if s.(n > 0) then
s -> c[next];
s.next -> c.recvNext;
s.dec(n);
S(c, s);
0

else
s -> c[end];
0

; 0

Procedure S is recursive. The guard of the conditional checks that variable
n at s contains a value bigger than 0 (the number zero). If so, s informs the
client c that it will receive a packet. Function next returns the current packet
to send, and function recvNext stores it appropriately in some data structure
(e.g., an array) at the client. Then, we decrement n by 1 at the server s and
we recursively invoke S to send the remaining packets. When we have finished
the packets to send (n ≤ 0), s sends the label end to c to inform it that the
procedure will terminate.

Using S, we can write our choreography for sending a large file as chunks.

c.f ilename -> s.x; s.buildChunks; S(c, s); 0

4

Here, the client sends the filename of the file it wishes to download to s.
Then s uses function buildChunks, which we assume sets up the right index
n and the chunks for next used in procedure S. Finally, we invoke S to
perform the streaming.

Since we extended the syntax of choreographies, we have to update our
definition of procs.

procs (I;C) = procs(I) ∪ procs(C)

procs(0) = ∅
procs (p.f -> q.g) = {p, q}
procs (p -> q[l]) = {p, q}

procs (p.f) = {p}
procs (if p.f thenC1 elseC2) = {p} ∪ procs(C1) ∪ procs(C2)

procs(X(p̃)) = {p̃}

In the remainder, whenever we consider a procedure definition X(p̃) = C,
we assume that procs(C) = {p̃}, meaning that the process names used in the
body of the procedure are exactly those declared as parameters.

Semantics We extend the semantics of our choreography model to con-
sider also the set of procedure definitions under which we are executing.
This means that the definition of our reduction relation now depends on
the set of procedure definitions C that we are considering. We thus denote
reductions as 〈C, σ〉 →C 〈C ′, σ′〉, read “the configuration 〈C, σ〉 reduces to
〈C ′, σ′〉 assuming that procedures are defined as in C ”.

Remark 1. An alternative notation for reductions that consider procedure
definitions could be 〈C, σ,C 〉 → 〈C ′, σ′,C ′〉. However, this notation makes
it look like C is part of the “state of the system”, just like C (the program
to run next) and σ (the memory of processes). The state of a system can
typically change during execution. Thus the question become: is C ever going
to change?

In most programming systems, the definitions of procedures never do, and
this will be the case also in our model. Therefore it makes more sense to put
C out of the notation for the state of the system, and write 〈C, σ〉 →C 〈C ′, σ′〉
as we do.

There are, however, examples of programming models where the code of
procedures might change at runtime. In these settings, the alternative nota-
tion makes more sense, since C might change. A model where the definitions

5

f(σ(p)) ↓ v g(σ(q), v) ↓u
〈p.f -> q.g;C, σ〉 →C 〈C, σ[q 7→ u]〉 Com 〈p -> q[l];C, σ〉 →C 〈C, σ〉

Sel

f(σ(p)) ↓ v
〈p.f ;C, σ〉 →C 〈C, σ[p 7→ v]〉 Local

i = 1 if f(σ(p)) ↓ true, i = 2 otherwise

〈if p.f thenC1 elseC2;C, σ〉 →C 〈Ci;C, σ〉
Cond

C �C C1 〈C1, σ〉 →C 〈C2, σ
′〉 C2 �C C ′

〈C, σ〉 →C 〈C ′, σ′〉
Struct

Figure 2: Recursive choreographies, semantics.

of choreographies can evolve at runtime was presented by Dalla Preda et al.
[2017].

The new rules defining the semantics of choreographies are displayed in
figs. 2 and 3. Structural precongruence is also annotated with C now, since it
requires to know the definitions of procedures. The only new rule is Unfold,
in fig. 3. It states that an invocation of procedure X can be replaced by the
body of the procedure, replacing the parameters of the procedure with the
arguments passed by the invocation site—p̃/q̃ is a shortcut for replacing each
occurrence of qi in C with the corresponding pi (assuming that p̃ and q̃ have
the same length).

Example 2. Let C be the singleton set containing the definition of procedure
S in example 1. Let C be the choreography in the same example:

C , c.f ilename -> s.x; s.buildChunks; S(c, s); 0

. By rule Unfold, we can replace the invocation of S inside of C with the

6

procs(I) # procs(I ′)

I; I ′ ≡C I ′; I
I-I

p 6∈ procs(I)

I; if p.f thenC1 elseC2 ≡C if p.f then (I;C1) else (I;C2)
I-Cond

p 6∈ procs(I) I 6= 0

if p.f thenC1 elseC2; I ≡C if p.f then (C1; I) else (C2; I)
Cond-I

0;C �C C
GCNil

X(q̃) = C ∈ C

X(p̃) �C C[p̃/q̃]
Unfold

Figure 3: Recursive choreographies, structural precongruence.

body of S, as follows.

C �D c.f ilename -> s.x;
s.buildChunks;
if s.(n > 0) then

s -> c[next];
s.next -> c.recvNext;
s.dec(n);
S(c, s);
0

else
s -> c[end];
0

; 0

Example 3. We can now write choreographies that can always continue
running, i.e., they never terminate.

The following procedure implements a ping-pong communication structure
between two processes p and q, which take turns in pinging each other. Notice
how, when we invoke the procedure, we invert the order of processes to make
them take turns.

PingPong(p, q) = p.ping -> q.x; q.pong -> p.y; PingPong(q, p); 0

7

N ::= p .v B | N |N | 0
B ::= p!f ;B | p?f ;B | p⊕ l;B | pN{li : Bi}i∈I ;B

| if f thenB1 elseB2;B | 0;B | X(p̃) | 0
B ::= X(p̃) = B,B | ∅

Figure 4: Recursive processes, syntax.

The turns are evident by looking at the unfolding of PingPong:

p.ping -> q.x;
q.pong -> p.y;
PingPong(q, p);
0

�D

p.ping -> q.x;
q.pong -> p.y;
q.ping -> p.x;
p.pong -> q.y;
PingPong(p, q);
0;
0

.

Exercise 5. Prove that the choreography PingPong(p, q); 0 never termi-
nates.

3.2 Processes

The extension to our process model to include recursion is very similar to
that for choreographies. The new syntax and semantics of processes are
displayed in figs. 4 to 6. The additions are the new syntax term for invoking
procedures and an unfolding rule for structural precongruence.

3.3 Projection

Consider again our procedure PingPong and a choreography Cpp that invokes
it.

Cpp , PingPong(p, q) = p.ping -> q.x; q.pong -> p.y; PingPong(q, p); 0

Cpp , PingPong(p, q); 0

How should we project Cpp? The idea is that procedure PingPong should
be translated to two procedures on the process level: one that describes the
behaviour of p inside of its body—let us call this procedure PingPongp—
and another that describes the behaviour of q—let us call this procedure

8

f(v) ↓ v′ g(u, v′) ↓u′

p .v q!f ;B | q .u p?g;B′ →B p .v B | q .u′ B
′ Com

j ∈ I
p .v q⊕ lj;B | q .u pN{li : Bi}i∈I ;B′ →B p .v B | q .uBj;B

′ Sel

i = 1 if f(v) ↓ true, i = 2 otherwise

p .v (if f thenB1 elseB2) ;B →B p .v Bi;B
Cond

N1 →B N ′1
N1 |N2 →B N ′1 |N2

Par
N �B N1 N1 →B N2 N2 �B N ′

N →B N ′
Struct

Figure 5: Recursive processes, semantics.

(N1 |N2) |N3 ≡B N1 |(N2 |N3)
PA

0;B �B B
GCB

N1 |N2 ≡B N2 |N1
PC

N |0 �B N
GCN

p .v 0 �B 0 GCP

X(q̃) = B ∈ B

X(p̃) �B B[p̃/q̃]
Unfold

Figure 6: Recursive processes, structural precongruence.

9

PingPongq. Thus we obtain the following set of procedure definitions for
process behaviours.

Bpp ,

PingPongp(q) = q!ping;
q?y;
PingPongq(q)
0,

P ingPongq(p) = p?x;
p!pong;
PingPongp(p)
0

We can then project Cpp as follows, for some σ.

J〈Cpp, σ〉K = p .σ(p) PingPongp(q); 0 | p .σ(p) PingPongq(p); 0

Exercise 6. Write down the first four reductions of Cpp and its projection
above. Do they correspond?

Our example shows that now we need to be able to project both chore-
ographies and procedure definitions.

For projecting choreographies, the definition is the same as before (but
we will have to update behaviour projection, JCKp).

Definition 3 (EndPoint Projection (EPP)). The EPP of a configuration
〈C, σ〉, denoted J〈C, σ〉K, is defined as:

J〈C, σ〉K =
∏

p∈procs(C)

p .σ(p) JCKp

.

To update behaviour projection to deal with procedure invocations, we
first update merging. This is done by adding the following rule.

X(p̃);C tX(p̃);C ′ = X(p̃); (C t C ′)

Then, we simply need to define the projection of a procedure invocation.

JX(p̃);CKr =

{
Xi(p̃ \ pi); JCKr if p̃ = p1, . . . , pn and r = pi and 1 ≤ i ≤ n
JCKr otherwise

The notation p̃ \ r means “the list obtained by removing r from p̃”. Ob-
serve that the procedure invocation that we output for a process involved

10

in the choreographic invocation is for Xr, which we assume implements the
behaviour for process r in X.

Now that we know how to project a recursive choreography, we can write
the definition of projection for procedure definitions.

Definition 4. The EPP of a set of procedure definitions C , denoted JC K, is
defined as:

JC K =

{
Xi(p̃ \ pi) = JCKp

∣∣∣∣ X(p̃) = C ∈ C and
p̃ = p1, . . . , pn and 1 ≤ i ≤ n

}
.

Exercise 7. Write the EPP of the procedure and choreography in example 1.

We can formulate an operational correspondence for recursive choreogra-
phies and their EPP as follows.

Theorem 1 (Operational Correspondence). Let J〈C, σ〉K = N and JC K = B.
Then,

Completeness If 〈C, σ〉 →C 〈C ′, σ′〉 for some C ′ and σ′, then there exists
N ′ such that N →B N ′ and N ′ �B w J〈C ′, σ′〉K.

Soundness If N →B N ′ for some N ′, then there exists C ′ and σ′ such that
〈C, σ〉 →C 〈C ′, σ′〉 and N ′ �B w J〈C ′, σ′〉K.

11

References

L. Cruz-Filipe and F. Montesi. A core model for choreographic programming.
In O. Kouchnarenko and R. Khosravi, editors, FACS, volume 10231 of
LNCS. Springer, 2016. doi: 10.1007/978-3-319-57666-4\ 3.

M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro.
Dynamic choreographies: Theory and implementation. Logical Methods in
Computer Science, 13(2), 2017.

12

	Amendment
	Smart Projection
	Recursion
	Choreographies
	Processes
	Projection

