
Lecture Notes on Choreographies, Part 2

Fabrizio Montesi
fmontesi@imada.sdu.dk

November 6, 2017

Abstract

This document contains lecture notes for the course on Concur-
rency Theory (2017) at the University of Southern Denmark.

1 Towards a correct EPP

In part 1, we defined a simple choreography language and its EPP towards
a simple process calculus. However, this framework does not support a key
desirable property: the EPP of a choreography should only do what the
original choreography prescribes.

The counterexample is simple. Take the following choreography:

Cproblem , p -> q; r -> s;0

. The EPP of this choreography is:

JCproblemK = p . q!;0 | q . p?;0 | r . s!;0 | s . r?;0

. We have the following reduction for this network, by synchronising r with
s:

p . q!;0 | q . p?;0 | r . s!;0 | s . r?;0 → p . q!;0 | q . p?;0

. However, this reduction cannot be mimicked by Cproblem, which can only
reduce the first interaction between p and q according to the semantics given
in the previous lecture notes.

The example above shows that our framework is not sound yet, because
the projection of a choreography can perform “extra” reductions with respect
to the choreography. There are two ways to fix this.

1

mailto:fmontesi@imada.sdu.dk

Forbidding independent sequences of interactions One way is to say
that choreographies like Cproblem are “forbidden”, because the sequence of
interactions p -> q; r -> s is not enforced by any causality relation between the
two interactions. More specifically, since the processes p, q, r, and s are all
different, they operate independently—as the reduction for the projection of
Cproblem shows. However, if the process names of the two interactions inter-
sected in any way, this problem would not appear. For example, consider the
choreography p -> q; r -> q;0. Its projection reduces as expected by the chore-
ography because process q necessarily needs to complete the first interaction
before participating in the second.

Exercise 1. Check that the EPP of p -> q; r -> q;0 reduces as expected by the
choreography (i.e., their respective reduction chains match).

Detecting sequences of interactions that do not have causal dependen-
cies can be done mechanically. Thus, it is possible to automatically detect
whether a choreography respects the condition of not having sequences of
independent interactions, as in Cproblem. Forbidding programmers to write
choreographies like Cproblem was a popular approach (and still is in some
works, when useful) in the first studies on choreographies, like [Fu et al.,
2005; Qiu et al., 2007; Carbone et al., 2007].

Out of order execution The other way to solve our issue with sequences
of independent interactions is to extend the semantics of choreographies to
correctly capture the parallel nature of processes. Going back to Cproblem

again, if we could somehow design a semantics that allowed for the following
reduction

p -> q; r -> s;0 → p -> q;0

then we would be fine, because that is the reduction that we need to match
the problematic one that the EPP of the choreography can do. Observe that
this reduction does not respect the order in which instructions are given in
the choreography. This kind of semantics is typically called “out-of-order
execution”. The idea is widespread in many domains. For example, modern
CPUs and/or language runtimes may change the order in which instructions
are executed to increase performance, when it is safe to do so—a typical
example is the single-threaded imperative code x++; y++;, where the order
in which the two increments are done is ininfluential and the runtime may
thus decide to parallelise it.

Since the inception of out-of-order execution for choreographies [Car-
bone and Montesi, 2013], similar ideas have been adopted in different works
[Deniélou and Yoshida, 2013; Honda et al., 2016]. In the next section, where

2

C ::= p -> q;C | 0

Figure 1: Simple choreographies, syntax.

p -> q;C → C
Com

C � C1 C1 → C2 C2 � C ′

C → C ′ Struct

Figure 2: Simple choreographies, semantics.

we develop the technical details, we borrow the formulation by Cruz-Filipe
and Montesi [2016].

2 Concurrent Simple Choreographies

We update our model of simple choreographies to capture concurrent execu-
tion of different processes.

The syntax of choreographies remains unchanged. It is displayed in fig. 1.
The semantics of choreographies, instead, needs some updating to capture

out-of-order execution of interactions. We obtain this by adding a structural
precongruence � for choreographies1. The reduction rules are given in fig. 2.
The only change is the addition of rule Struct, which closes reductions
under �. There is only one rule defining �, which is displayed in fig. 3.

Recall that C ≡ C ′ stands for C � C ′ and C ′ � C. (We will see rules that
use � in only one direction later on, so it is still useful to explicitly formulate
these rules using precongruences.) Rule Swap states that two interactions
p -> q and r -> s can be exchanged in a choreography if the processes p, q, r,
and s are distinct (they are all different). This is captured by the premise
{p, q}#{r, s}, which states that the sets {p, q} and {r, s} must be disjoint.
Formally, given two sets S and S ′, S#S ′ is a shortcut notation for S∩S ′ = ∅
(empty intersection).

Example 1. This is the reduction we wished we could do in section 1.

p -> q; r -> s;0 → p -> q;0

1We use the same symbol as for the structural precongruence for networks, since we
can easily distinguish them from the context (they operate on different domains, one
choreographies and the other networks).

3

{p, q}#{r, s}
p -> q; r -> s ≡ r -> s; p -> q Swap

Figure 3: Simple choreographies, structural precongruence.

. We can now perform it with our new semantics. Here is the derivation:

p -> q;
r -> s;0

� r -> s;
p -> q;0

r -> s;
p -> q;0

→ p -> q;0

Com

p -> q;0 � p -> q;0

p -> q; r -> s;0 → p -> q;0 Struct

.

Exercise 2. Prove the following statement.
Let JCK = N . If C � C ′ for some C ′, then N � JC ′K.

Exercise 3 (!). Prove the following statement.
Let JCK = N . If N → N ′ for some N ′, then there exists C ′ such that

C → C ′ and N ′ � JC ′K.
Suggestion: proceed by structural induction on C, and then by cases on

the possible reductions N → N ′.

Exercise 4. Prove the following statement.
Let JCK = N . If C → C ′ for some C ′, then there exists N ′ such that

N → N ′ and N ′ � JCK.

We can now formally state that EPP is correct, in the sense that the
behaviour implemented by the network projected from a choreography is
exactly the one defined in the choreography.

Theorem 1 (Operational Correspondence). Let JCK = N . Then,

Completeness If C → C ′ for some C ′, then there exists N ′ such that N →
N ′ and N ′ � JC ′K.

Soundness If N → N ′ for some N ′, then there exists C ′ such that C → C ′

and N ′ � JC ′K.

Intuitively, the completeness part means that the network generated by
the EPP of a choreography does all that the choreography says. Conversely,
the soundness part means that the network generated by the EPP of a chore-
ography does only what the choreography says. The two parts combined give
us correctness: the network generated by EPP does exactly what is defined
in the originating choreography. So what happens is what we want, finally!

4

The correctness of EPP gives us a powerful result for free: the EPP of a
choreography never gets stuck (for example, there cannot be deadlocks). In-
tuitively, this works because interactions in choreographies are written atom-
ically, in the sense that they specify both the send and receive actions needed
for the communication in a single term. To have a deadlock, one typically
needs a language where send and receive actions are defined separately (hence
the opportunity for mistakes).

Let us formalise this result. First, we observe that choreographies never
get stuck.

Theorem 2 (Progress for choreographies). Let C be a choreography. Then,
either C = 0 (C has terminated) or there exists C ′ such that C → C ′.

Proof. By cases on C. If C = 0, the thesis follows immediately. Otherwise,
we can just apply rule Com.

We now combine theorem 2 with the completeness part of theorem 1,
which respectively say that “a choreography can always reduce until it ter-
minates” and “the EPP of a choreography can always do what the choreogra-
phy does”. This means that “the EPP of a choreography can always reduce
until it terminates”, as formalised below.

Corollary 1 (Progress for EPP). Let JCK = N . Then, either N = 0 (N has
terminated) or there exists N ′ such that N → N ′.

Proof. Direct consequence of theorems 1 and 2.

3 Local Computation

Now that we know the basic soundness principles of choreographies and
EPP, we can play with extending our model such that we can capture more
interesting—and realistic—examples.

In this section, we equip processes with the ability to perform local com-
putation. This will enable us to capture our initial scenario from Part 1
precisely, i.e., we want to define the content of the messages exchanged by
Buyer and Seller.

3.1 Stateful Choreographies

Syntax We augment the syntax of choreographies with functions—ranged
over by f , g, . . . —which can be used by processes to perform local compu-
tation. The new syntax is given in fig. 4.

5

C ::= η;C | 0
η ::= p.f -> q.g | p.f

Figure 4: Stateful choreographies, syntax.

The key idea is that now processes are equipped with their own local
memories, which they can manipulate through computation. The new term
p.f reads “process p stores the result of function f in its memory”. The
new communication term p.f -> q.g;C reads “process p sends the result of
computing function f to q; q then computes function g according to the
received message and its local memory, and updates its memory with the
result”.

It will be convenient to reason about the process names used in chore-
ographic statements—ranged over by η. We thus update the definition of
procs as follows.

procs (η;C) = procs(η) ∪ procs(C)

procs(0) = ∅
procs (p.f -> q.g) = {p, q}

procs (p.f) = {p}

Semantics Now that processes have functions that may refer to their mem-
ories, the execution of a choreography depends on the state of process mem-
ories. To formalise this, we need to formulate reductions on more than just
choreographies, but rather pairs of choreographies and memory states.

It is convenient to abstract from how process memory is concretely imple-
mented, since different processes may use different kinds of data structures.
Let v, u, . . . range over memory states (or values), which we leave unspeci-
fied. Also, let σ range over global memory states, mapping process names to
values. Intuitively, σ maps each process to its memory state. For example,
σ(p) = v means that process p has v as memory. We assume that σs are
total functions (they are never undefined).

We define a semantics for stateful choreographies in terms of reductions
〈C, σ〉 → 〈C ′, σ′〉, where 〈C, σ〉 is a runtime configuration. The rules defining
→ are given in fig. 5. It is based as usual on a structural precongruence �,
defined by the rule in fig. 6.

Let us look at rule Local first, which gives a semantics for local computa-
tions. The premise uses the evaluation operator ↓, which we leave unspecified.

6

f(σ(p)) ↓ v g(σ(q), v) ↓u
〈p.f -> q.g;C, σ〉 → 〈C, σ[q 7→ u]〉 Com

f(σ(p)) ↓ v
〈p.f ;C, σ〉 → 〈C, σ[p 7→ v]〉 Local

C � C1 〈C1, σ〉 → 〈C2, σ
′〉 C2 � C ′

〈C, σ〉 → 〈C ′, σ′〉 Struct

Figure 5: Stateful choreographies, semantics.

procs(η) # procs(η′)

η; η′ ≡ η′; η
Swap

Figure 6: Stateful choreographies, structural precongruence.

More specifically, we write f(v1, . . . , vn) ↓u when the evaluation of function
f—where its parameters are instantiated with the values v1, . . . , vn—returns
the value u. In rule Local, we pass the current memory state of p—σ(p)—to
f and get a value v, which then becomes the new state for process p. The
notation σ[p 7→ v] is a mapping update and means “σ, but where p is now
mapped to v”. Formally:

(σ[p 7→ v]) (q) =

{
v if q = p
σ(q) otherwise

.
Rule Com is the natural extension of interactions to include internal

computation. In the first premise, we evaluate the function f used by the
sender p under its memory state, getting a value v. Then, we evaluate the
function g used by the receiver under the memory state of the receiver and
the value v (the message received from p), obtaining a value u. The memory
of the receiver q is then updated to become this value.

We assume that evaluating a function always terminates. In practice, this
means that evaluation may yield error values (like empty values), and that
infininte computations may be interrupted by timeouts. We abstract from
such details, since what we are interested in here is communications, not the
algorithmic details of internal computation. It is easy to plug in existing
techniques for ensuring that the parameters passed to local functions are
always of the right type, as shown in [Cruz-Filipe and Montesi, 2017].

Rule Swap is updated to deal with all kinds of choreographic statements,
be they interactions or internal computations.

7

Modelling variables Mainstream programming languages typically pro-
grammers to manipulate different variables whose values reside in memory.
Let x, y, z, . . . range over variable names (variables for short). A variable
mapping h is a total function that maps variables to values. From now on,
we adopt the following shortcut notation2: p.f -> q.x stands for p.f -> q.setx,
where setx is the function that replaces x in the variable mapping of q with
the value received from p. Formally, given x, the evaluation of setx is defined
as:

setx(h, v) ↓h[x 7→ v]

.

Exercise 5. Prove the following statement.
For all 〈p.f -> q.x;C, σ〉 such that σ(q) = h and h is a variable mapping,

we have that
〈p.f -> q.x;C, σ〉 → 〈C, σ[q 7→ h′]〉

where f(σ(p)) = v and h′ = h[x 7→ v].

Conversely, it is useful to have a shortcut notation for sending the content
of a variable. Thus, from now on, we adopt also another shortcut notation:
p.x -> q.g stands for p.getx -> q.g, where getx is the function that returns the
value of variable x from the variable mapping of p. Formally, given x, the
evaluation of getx is defined as:

getx(h) ↓h(x)

.

Example 2. We can finally give a precise choreography for our example
introduced in Part 1, including computation and message contents as well.
Recall the informal description of the example:

1. Buyer sends the title of a book she wishes to buy to Seller;

2. Seller replies to Buyer with the price of the book.

A corresponding choreography that defines this behaviour is:

Buyer.title -> Seller.x; Seller.cat(x) ->Buyer.price;0

where title is a variable, cat is a function (cat stands for catalogue, if you
like) that given a book title returns the price for it, and price is a variable.

2Shortcut notations for programming languages are sometimes called syntactic sugar.

8

N ::= p .v B | N |N | 0
B ::= p!f ;B | p?f ;B | f ;B | 0

Figure 7: Stateful processes, syntax.

Exercise 6. Let σ be such that σ(p) = hp and σ(q) = hq for some variable
mappings hp and hq. Also, let hp(title) = “Flowers for Algernon” and cat be
a function such that cat(“Flowers for Algernon”) = 100. Show the reduction
chain for the choreography in the previous example:

Buyer.title -> Seller.x; Seller.cat(x) ->Buyer.price;0

.

3.2 Stateful Processes

Since we updated our choreography model, we also need to update our process
model to describe the implementations of choreographies. This is a straight-
forward extension of our previous calculus of simple processes, obtained by
adding memories to processes. The new syntax is given in fig. 7.

A process term p .v B now holds a value v, representing the memory
state of the process. Send and receive actions are now extended to applying
functions. A send action p!f sends the result of computing f in the local
state of the process. Conversely, a receive action p?f computes f by using
the value received from the other process and the local process memory, and
then stores the result in the local process memory. An action f executes
function f and updates the local memory of the process according to the
result.

The semantics of stateful processes is also a straightforward extension,
which uses the same evaluation function used for choreographies. The rules
are given in fig. 8. The rules for the structural precongruence are the same
(modulo the addition of values v in process terms, but they are ininfluential),
but we report them for the reader’s convenience anyway in fig. 9.

3.3 EndPoint Projection

We have to update our definition of EPP to our new language model.
First, as usual, let us gain some intuition. Given any σ, the network

implementation of the choreography given in example 2 should look like the

9

f(v) ↓ v′ g(u, v′) ↓u′

p .v q!f ;B | q .u p?g;B′ → p .v B | q .u′ B
′ Com

f(v) ↓u
p .v f ;B → p .u B

Local
N1 → N ′

1

N1 |N2 → N ′
1 |N2

Par

N � N1 N1 → N2 N2 � N ′

N → N ′ Struct

Figure 8: Stateful processes, semantics.

(N1 |N2) |N3 ≡ N1 |(N2 |N3)
PA

N1 |N2 ≡ N2 |N1
PC

N |0 � N
GCN

p .v 0 � 0 GCP

Figure 9: Stateful processes, structural precongruence.

following.
Buyer .σ(Buyer) Seller!title; Seller?price;0
|
Seller .σ(Seller) Buyer?x;Buyer!cat(x);0

Exercise 7. Define EPP for stateful choreographies. EPP should now take a
configuration as input—J〈C, σ〉K—since we need to know the memory states
of processes to generate a network in stateful processes. As guideline, the
choreography in example 2 should be projected to the network above.

10

References

M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty asyn-
chronous global programming. In POPL, pages 263–274. ACM, 2013.

M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred
programming for web services. In R. D. Nicola, editor, ESOP, volume 4421
of LNCS, pages 2–17. Springer, 2007. doi: 10.1007/978-3-540-71316-6\ 2.

L. Cruz-Filipe and F. Montesi. A core model for choreographic programming.
In O. Kouchnarenko and R. Khosravi, editors, FACS, volume 10231 of
LNCS. Springer, 2016. doi: 10.1007/978-3-319-57666-4\ 3.

L. Cruz-Filipe and F. Montesi. Procedural choreographic programming. In
FORTE, LNCS. Springer, 2017.

P. Deniélou and N. Yoshida. Multiparty compatibility in communicating au-
tomata: Characterisation and synthesis of global session types. In ICALP
(2), volume 7966 of Lecture Notes in Computer Science, pages 174–186.
Springer, 2013.

X. Fu, T. Bultan, and J. Su. Realizability of conversation protocols with
message contents. International Journal on Web Service Res., 2(4):68–93,
2005.

K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session
Types. J. ACM, 63(1):9, 2016. doi: 10.1145/2827695. URL http://doi.

acm.org/10.1145/2827695.

Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation
of choreography. In WWW, pages 973–982. ACM, 2007.

11

http://doi.acm.org/10.1145/2827695
http://doi.acm.org/10.1145/2827695

	Towards a correct EPP
	Concurrent Simple Choreographies
	Local Computation
	Stateful Choreographies
	Stateful Processes
	EndPoint Projection

