
Lecture Notes on Choreographies, Part 1

Fabrizio Montesi
fmontesi@imada.sdu.dk

October 30, 2017

Abstract

This document contains lecture notes for the course on Concur-
rency Theory (2017) at the University of Southern Denmark.

1 Introduction

In the previous lectures, we have familiarised ourselves with deductive rea-
soning based on inference rules and, building on those, formal models for
processes (process calculi, or process algebras).

Process calculi are interesting because they abstract significantly from
the implementation details of concurrent systems, yet they retain enough
expressivity to allow for the abstract modelling of interaction structures.
They help in reasoning about the design and implementation of concurrent
systems, because such systems typically operate in terms of Input/Output
actions (I/O for short). Summarising, what we do in this paradigm is: we
program each process separately, by defining the I/O that it should perform;
then, we compose processes in a network by using the parallel operator |.
Let us call this the local-view paradigm, since the focus is on the local actions
performed by processes and how the composition of these lead to process
interaction.

The local-view paradigm is adequate for the (abstract) modelling of what
will happen in the execution of a system. However, another aspect that is
just as important is the design of what a system should do. If we could
mathematically define our expectations for what a system should do, then
we could hope for building methods that ensure that what the system will
do and what the system should do match. Exploring these aspects is what
we are going to do in these lecture notes.

1

mailto:fmontesi@imada.sdu.dk

2 From action to interaction: towards global

views

How do we define what a concurrent system should do? There are many pos-
sible ways to do this, depending on what kind of properties we are interested
in. Arguably, one of the most foundational aspects is “what interactions do
we want our concurrent system to implement?”.

Let us see a simple example to get a bit more concrete about our question.
Suppose that we want to define a system that consists of two processes, called
Buyer and Seller. Suppose also that we want these two processes to interact
as follows:

1. Buyer sends the title of a book she wishes to buy to Seller;

2. Seller replies to Buyer with the price of the book.

The description above is informal, so it does not serve our purpose of
mathematically defining our expectations1. However, it gives us an important
indication about how a mathematical formalism that supports our objective
may look like: our description talks about multiple processes and how they
interact. In other words, when we describe what we want to happen, we
are adopting a global view on all the interactions among the processes that
we are interested in. This is in contrast with the local view on the actions
performed by each process. Hopefully, we can work towards bridging the
two2.

3 A simple global language

We now move to studying how we can design formal models for a global view
of concurrent interactions. Technically, we are going to study languages for
choreographies, drawing from a research line that has been particularly pro-
ductive over the last decade. For reference, two surveys that contain relevant
information have been written by Ancona et al. [2016] and Hüttel et al. [2016].
Choreographies are the basis for theories of communication protocols, Mul-
tiparty Session Types [Honda et al., 2016] being a prominent example, and
emerging programming paradigms, like Choreographic Programming [Mon-
tesi, 2013, 2015]. We are going to see more about some of these applications
in later lectures.

1 Software engineers actually specify concurrent systems in similar ways using different
kinds of tools, like Message Sequence Charts [International Telecommunication Union,
1996]. The artifacts produced are similar, in essence, to our informal description.

2Mathematically, of course!

2

C ::= p -> q;C | 0

Figure 1: Simple choreographies, syntax.

p -> q;C → C
Com

Figure 2: Simple choreographies, semantics.

We start by defining a very simple choreography language, given by the
grammar in fig. 1. We use C to range over choreographies. Choreographies
describe interactions between processes. We refer to processes by using pro-
cess names, ranged over by p, q.

The syntax of simple choreographies is minimalistic. Term p -> q;C is
an interaction and reads “process p sends a message to process q; then, the
choreography proceeds as C”. We always assume that p and q are different in
interactions p -> q, i.e., p 6= q (meaning that a process cannot send a message
to itself). Term 0 is the terminated choreography (no interactions, or end of
program, if you like).

Example 1. The following choreography defines the behaviour that we in-
formally described in section 2.

Buyer -> Seller; Seller ->Buyer; 0

Note that what we have is actually an abstraction of what we described in
section 2, because we are not formalising what is being sent from a process to
another. For example, the informal description stated that Buyer sends “the
title of a book she wishes to buy” to Seller in the first interaction, but our
choreography above does not define this part. It simply states that Buyer sends
some unspecified message to Seller, and that Seller replies to Buyer afterwards.
We are going to add the possibility to specify the content of messages later
on.

We give a semantics for simple choreographies in terms of a reduction
relation →, which is defined as the smallest relation satisfying the rule dis-
played in fig. 2. Reductions have the form C → C ′.

There is only one rule, called Com, which always allows us to reduce inter-
actions. This formalises the fact that if the programmer wants an interaction
to take place, it will actually happen.

We can formally observe whether a choreography matches our intended
behaviour by studying its reduction chains.

3

Definition 1. We say that there is a reduction chain from C1 to Cn whenever
there exists a sequence of choreographies (C1, . . . , Cn) such that Ci → Ci+1

for each i ∈ [1, n− 1].
When there is a reduction chain from C1 to Cn, we write C1 →+ Cn

(when showing the intermediate steps is not necessary, only their existance)
or C1 → · · · → Cn (when we want to show the intermediate steps).

Example 2. The program in example 1 has the following reduction chain:

Buyer -> Seller; Seller ->Buyer; 0 → Seller ->Buyer; 0 → 0

. So we first reduce an interaction where Buyer sends a message to Seller and
then we reduce an interaction where Seller sends a message to Buyer, which
is exactly the communication flow that we wanted in section 2.

As for process calculi, it will be convenient to consider the transitive and
reflective closure of → for choreographies to define properties of runs with
potentially many steps. We denote this closure with →∗.

Definition 2. We write C →∗ C ′ if either:

Base case: C = C ′; or,

Inductive case: there exists C ′′ such that C → C ′′ and C ′′ →∗ C ′.

Exercise 1. Prove that C →+ C ′ implies C →∗ C ′. Does the converse also
hold?

4 A process model with process identifiers

In this section we define a simple process model to describe system imple-
mentations. We will use it later to build a notion of correspondence between
what should happen (given as a choreography) and what the system actually
does (given as a term in this process model).

Differently from the process models that we have seen so far, we are going
to have processes communicate by referring to their identifiers, inspired by
mainstream frameworks based on actors.

The syntax of simple processes is given in fig. 3. We model systems as
networks, ranged over by N . A network N can be: a single process term p.B,
where p is the name of the process and B its behaviour; a parallel composition
of two networks N and N ′, written N |N ′; or the empty network 0. A
process behaviour, ranged over by B, can be: a send action p!;B, read “send

4

N ::= p . B | N |N | 0
B ::= p!;B | p?;B | 0

Figure 3: Simple processes, syntax.

p . q!;B | q . p?;B′ → p . B | q . B′
Com

N1 → N ′1
N1 |N2 → N ′1 |N2

Par
N � N1 N1 → N2 N2 � N ′

N → N ′
Struct

Figure 4: Simple processes, semantics.

a message to process p and then do B”; a receive action p?;B, read “receive
a message from process p and then do B”; or the terminated behaviour 0.

The semantics of simple processes is given by the reduction rules displayed
in fig. 4. Rule Com models communications, by matching a send action by
process p towards process q with a receive action at q waiting for a message
from p. Each process then proceeds with its respective continuation (B for
p, B′ for q). Rule Par allows for reductions to happen in a sub-network.
Rule Struct closes reductions under the structural precongruence �, which
is defined as the smallest precongruence satisfying the rules in fig. 53. We
N ≡ N ′ as a shortcut for N � N ′ and N ′ � N (this means that the
precongruence is symmetric for that case).

The rules defining � are standard, and similar to those seen in previous
lectures for process models. Parallel is associative (PA) and commutative
(PC). Empty networks can be garbage collected (GCN), and the same for

3 By precongruence, we mean that it is reflexive (N ≡ N for all N), it is transitive,
but it is not necessarily symmetric.

(N1 |N2) |N3 ≡ N1 |(N2 |N3)
PA

N1 |N2 ≡ N2 |N1
PC

N |0 � N
GCN

p . 0 � 0 GCP

Figure 5: Simple processes, structural precongruence.

5

processes with terminated behaviour (GCP).

Example 3. We write a process implementation for the communication sce-
nario informally described in section 2.

Buyer . Seller!; Seller?; 0 | Seller . Buyer?;Buyer!; 0

The network proceeds as expected, as the following reduction chain shows.

Buyer . Seller!; Seller?; 0 | Seller . Buyer?;Buyer!; 0
→
Buyer . Seller?; 0 | Seller . Buyer!; 0
→
Buyer . 0 | Seller . 0

Exercise 2 (!). Prove the following statement.
If N � N ′ and N � N ′′, there exists N ′′′ such that N ′ � N ′′′ and

N ′′ � N ′′′.

5 From choreographies to processes

The network in example 3 works as intended, but we had to come up with
it manually. If we could figure out a mechanical method of going from a
choreography (which formalises what we want) to a network (which formalises
an implementation), we would save time. If we could also prove that such
method always gives us a correct result, we would also save ourselves the
potential mistakes that come from the manual activity of writing a process
network that should implement what we want.

To gain some intuition on how we could develop the method we want,
we can look at our examples. Let us see our choreography from example 1
again:

Buyer -> Seller; Seller ->Buyer; 0

. It is evident, albeit informally, that our network from example 3 implements
exactly the interactions defined in the choreography:

Buyer . Seller!; Seller?; 0 | Seller . Buyer?;Buyer!; 0

. This informal correspondence is preserved by reductions—remember, reduc-
tions model execution, if you think in computational terms. Indeed, whenever
we take a step in the reduction chain shown in example 2 (for the choreog-
raphy), we can “mimic” it by following the reduction chain in example 3

6

(for the process network), and vice versa (if we take a step for the process
network, we can mimic it for the choreography).

The intuition that we can gain from our examples is that a network “im-
plements” a choreography if the actions performed by processes give rise
to the interactions described in the choreography. Therefore, an automatic
method that produces networks from choreographies should generate a net-
work that consists of the processes described in the choreography, and the
behaviour of each of these processes should be the actions that the process
needs to perform to implement the interactions that it is involved in in the
choreography.

We can now move to formally defining our desired method, as a function
from choreographies to networks. This function is commonly called EndPoint
Projection (EPP for short), since it projects each interaction in the chore-
ography to the local action that each process (an endpoint) should perform
in the network [Qiu et al., 2007; Lanese et al., 2008; Carbone et al., 2012].
Indeed, we can think of an interaction like Buyer -> Seller as consisting of two
parts, i.e., the send action by Buyer and the receive action by Seller. So the
send action that the process implementing Buyer should perform is the first
component of the interaction, and the receive action by Seller is the second
component.

Let procs(C) be the set of process names used in C. We can define this
function inductively on the structure of C, as follows.

procs (p -> q;C) = {p, q} ∪ procs(C)

procs(0) = ∅

We write JCK for the EPP of a choreography C.

Definition 3 (EndPoint Projection (EPP)). The EPP of a choreography C,
denoted JCK, is defined as:

JCK =
∏

p∈procs(C)

p . JCKp

.

In definition 3, the notation
∏

p∈procs(C) p . JCKp stands for “the parallel

composition of all p . JCKp such that p is in procs(C)”. The auxiliary func-
tion JCKp—not to be confused with JCK—projects the actions that process
p should perform in order to implement its part in choreography C. We call
JCKp a behaviour projection, since it outputs a behaviour B. It is inductively
defined by the rules given in fig. 6.

7

Jp -> q;CKr =

q!; JCKr if r = p
p?; JCKr if r = q
JCKr otherwise

J0Kp = 0

Figure 6: Behaviour projection for simple choreographies.

Example 4. Let CBuyerSeller be the choreography in example 1. We recall it
here (, stands for “defined as”):

CBuyerSeller , Buyer -> Seller; Seller ->Buyer; 0

. The process names in CBuyerSeller are:

procs(CBuyerSeller) = {Buyer, Seller}

. The behaviour projection for Buyer is:

JCBuyerSellerKBuyer = Seller!; Seller?; 0

. The EPP of CBuyerSeller is exactly the network that we defined in example 3:

JCBuyerSellerK = Buyer . Seller!; Seller?; 0 | Seller . Buyer?;Buyer!; 0

.

Exercise 3. Write the outputs of procs and JK (EPP) for the choreography

p -> q; r -> q; q -> r; q -> p; 0

.

Exercise 4. What are the reduction chains for the choreography in exercise 3
and its EPP? Do you think that they informally correspond to one another?
(We have not formally defined correspondence yet.)

Exercise 5 (!). Is the following statement true?
Let N = JCK. If N → N ′ for some N ′, then there exists C ′ such that

C → C ′ and N ′ � JC ′K.
If it is not true, how would you change the choreography model to fix this?

8

References

D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou, S. J.
Gay, N. Gesbert, E. Giachino, R. Hu, E. B. Johnsen, F. Martins, V. Mas-
cardi, F. Montesi, R. Neykova, N. Ng, L. Padovani, V. T. Vasconcelos, and
N. Yoshida. Behavioral types in programming languages. Foundations and
Trends in Programming Languages, 3(2-3):95–230, 2016.

M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst., 34(2):
8, 2012.

K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session
Types. J. ACM, 63(1):9, 2016. doi: 10.1145/2827695. URL http://doi.

acm.org/10.1145/2827695.

H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Za-
vattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016.

International Telecommunication Union. Recommendation Z.120: Message
sequence chart, 1996.

I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between
interaction- and process-oriented choreographies. In SEFM, pages 323–332,
2008.

F. Montesi. Choreographic Programming. Ph.D. Thesis, IT Univer-
sity of Copenhagen, 2013. URL http://fabriziomontesi.com/files/

choreographic_programming.pdf.

F. Montesi. Kickstarting choreographic programming. In WS-FM, volume
9421 of Lecture Notes in Computer Science, pages 3–10. Springer, 2015.

Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation
of choreography. In WWW, pages 973–982. ACM, 2007.

9

http://doi.acm.org/10.1145/2827695
http://doi.acm.org/10.1145/2827695
http://fabriziomontesi.com/files/choreographic_programming.pdf
http://fabriziomontesi.com/files/choreographic_programming.pdf

	Introduction
	From action to interaction: towards global views
	A simple global language
	A process model with process identifiers
	From choreographies to processes

