

Concurrent Programming

3: Threads and Locks

Fabrizio Montesi

<fmontesi@imada.sdu.dk>

Questions from the exercises?

Threads

● Smallest execution unit found in operating systems.

● A single application can have many concurrent threads.

● https://docs.oracle.com/javase/tutorial/essential/concurrency/th
reads.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

Scheduling

● The Operating System (OS) decides when a thread executes.

● You have many threads, but only a few CPUs.

● So only a few threads at a time can execute in parallel.

● The scheduler in the OS decides when each thread can
execute some of its code for some time.

Interleaving VS True Concurrency

● True Concurrency: multiple actions happening at the same time.

● Interleaving: only one action happens at a time.

● The scheduler makes interleaving “look like” true concurrency.

● What do you have? Depends on how many threads and CPUs.

Interleaving or True Concurrency?

● What do you have?

● nCPU = 1 gives interleaving.

● nCPU >= nThreads gives true concurrency.

● 1 < nCPU < nThreads gives a mix.

● Remember that the system probably has more threads than you
run in your application.

Threads share memory

● Threads share the same memory!

● Sharing is the biggest...

● ...advantage for performance. :-)

● ...cause of bugs. :-(

Multi-threaded programming is hard

● Mutable object state makes multi-threading difficult.

● Mutable = can change at runtime.

● Accessing mutable data from multiple threads is dangerous!

● [Example]

Thread safety

● If a class is accessed by multiple threads, we want it to be
thread safe.

● Thread-safe class: a class that behaves correctly when
accessed by multiple threads, regardless of how they are
scheduled or how they coordinate with each other.

● The definition of “behaves correctly” depends on the class.
(Or rather, the programmer of the class gives it.)

Fixing Concurrency

● To make a class thread-safe, we need to control access to data.

● Important operations on data should be atomic:
once we start them, we should finish them before the next
thread can access the data.

● How can we make an operation atomic?

● Locks!

Synchronized

● Java native support for locking.

● https://docs.oracle.com/javase/tutorial/essential/concurrency/lo
cksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

Locks and Deadlocks

● Lock objects can be used for programmable locking.

● It is easy to carelessly have deadlocks and get stuck!

Guarded Blocks

● A block of code that waits for some signal before running.

● Implemented via monitors in Java.

● https://docs.oracle.com/javase/tutorial/essential/concurrency/g
uardmeth.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

The Producer-Consumer Problem

● Some producers insert elements in a shared data structure.

● Some consumers take elements from the shared data structure.

● Example: a product delivery system.

Questions?

Exercises

● Read the links in the slides.

● Modify the SynchronizedMutableField example such that each
thread does 10 (increment or decrement) operations before
allowing the other thread to access the counter.

● Same as above, but for LockedMutableField.

● In the Producer-Consumer example, have each consumer add a
log message to a StringBuilder shared among all threads when
it takes an item for delivery. Ensure thread safety!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

