CSLib
The Lean Computer Science Library

Lean Together, 20 January 2026

Presenter:

Fabrizio Montesi

Director, Professor, FORM

CSLib Lead Maintainer Centre for Formal Methods

. ‘ and Future Computing
fabriziomontesi.com

linkedin.com/in/fmontesi

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

http://www.fabriziomontesi.com

Computing is under pressure

Computing is under pressure

More quantity

More systems!
More features!
Cheaper!

Faster!

Computing is under pressure

More quantity

More systems!
More features!
Cheaper!

Faster!

More quality

More securel
More robust!
More sustainable!

More privacy!

A convergence of ambitions in 2025 g\q

A convergence of ambitions in 2025

Clark Barrett

Stanford & Amazon

Pushmeet Kohli

Google DeepMind

Swarat Chaudhuri
Google DeepMind & UT Austin

Fabrizio Montesi

FORM, University of Southern Denmark

Jim Grundy

Amazon

Leonardo de Moura
Lean FRO & Amazon

A convergence of ambitions in 2025 g\q

-> Scale up formal computer science and programming by building a
common infrastructure. CSLib — www.cslib.io

Clark Barrett Swarat Chaudhuri Jim Grundy
Stanford & Amazon Google DeepMind & UT Austin Amazon
Pushmeet Kohli Fabrizio Montesi Leonardo de Moura

Google DeepMind FORM, University of Southern Denmark Lean FRO & Amazon

http://www.cslib.io

What is CSLib? g\%

An open source repository (github.com/leanprover/cslib) of

1. computer science definitions and results,
2. verified software components, and

3. verification infrastructure.

http://github.com/leanprover/cslib

What is CSLib? E\C%

An open source repository (github.com/leanprover/cslib) of

1. computer science definitions and results,
verified software components, and
verification infrastructure.

2.
3.
% Written in Lean, with mathlib as dependency.

http://github.com/leanprover/cslib

What is CSLib? E\C%

An open source repository (github.com/leanprover/cslib) of

1. computer science definitions and results,
verified software components, and
verification infrastructure.

2.
3.
% Written in Lean, with mathlib as dependency.
% Curated by experts.

http://github.com/leanprover/cslib

What is CSLib? gg‘

An open source repository (github.com/leanprover/cslib) of

1. computer science definitions and results,
verified software components, and
verification infrastructure.

Written in Lean, with mathlib as dependency.
Curated by experts.
Done in collaboration with the Lean community and FRO.

* Ok wN

http://github.com/leanprover/cslib

Governance g\q

e Steering Group (strategy, funding)
o Clark Barrett, Swarat Chaudhuri, Jim Grundy, Pushmeet Kohli, Fabrizio
Montesi, Leonardo de Moura.
e Maintainer Group (technical leadership and supervision)
o Lead Maintainer: Fabrizio Montesi
o Tech Leads: Alexandre Rademaker, Sorrachai Yingchareonthawornchai
o Area Maintainers: Chris Henson, Kim Morrison
e Discussions on GitHub, Zulip, Email, ...
o https://qithub.com/leanprover/cslib/graphs/contributors

https://github.com/leanprover/cslib/graphs/contributors

Who is CSLib for?

e Researchers
o Verify your claims.
o Speed up your development.
o Consolidate and offer your findings through our APIs.

Who is CSLib for?

e Researchers

e Educators & Learners

o Explore CS through a unified language.
o Interact with the tool.

Who is CSLib for? g\q

e Researchers
e FEducators & Learners

e Programmers
o Use CSLib components to write reliable software.
o Use CSLib’s languages and logics to model and implement systems.
o Use CSLib's verification infrastructure to verify new and old code.

Who is CSLib for?

Researchers
Educators & Learners
Programmers

Al Developers
o Train Al on CSLib.
o Increase the production of specs, programs, and proofs.

Who is CSLib for?

Researchers
Educators & Learners
Programmers

Al Developers

Interdisciplinary Researchers
o Explore the application of formal methods to provide actionable
information to users.

Where are we now?

Credits:
https://github.com/leanprover/cslib/graphs/contributors

https://github.com/leanprover/cslib/graphs/contributors

Current structure

Cslib/
Algorithms/
Computability/
Foundations/ # General, reusable foundations
Languages/ # Modelling and programming
Logics/ # Various logics for reasoning

[more to come...]

Current structure

Many answers found!

A lot more questions lie ahead...

Foundations g\q

Introduction to

% Labelled Transition Systems.

. : L BISIMULATION
Classes of LTSs (image-finite, deterministic, etc.) AND COINDUCTION
Bisimilarity, weak bisimilarity. TG
Similarity.
Trace equivalence (w/ inclusion in bisimilarity).
% Reduction systems.

o Lots about relations (confluence, etc.).

Y Freer monads.

©)
©)
®)
©)

ax=

Grind-first approach. (See Chris’ talk tomorrow!)

Foundations

Grind-first approach.

118
119
120
alpal
122
123
124
125
126
127
128
129
130
131
132
133
134
135

130

131

132
133

/-- The inverse of a bisimulation is a bisimulation.

theorem Bisimulation.inv (h

Bisimulation 1lts (flip r)

Bis

by

simp only [Bisimulation] at h

simp only [Bisimulation]
intro s1 s2 hrinv p
constructor
case left =>
intro s1' htr
specialize h s2 s1 hrinv
have h' := h.2 s1' htr
obtain ¢(s2', h') := h'
exists s2'
case right =>
intro s2' htr
specialize h s2 s1 hrinv
have h' := h.1 s2' htr
obtain ¢ s1', h') := h'
exists s1'
@[grind]
theorem Bisimulation.inv (h

lts.IsBisimulation (flip r)

lts

imulation 1lts r)

.IsBisimulation r)

by grind [flip]

Languages

% A-calculus.
o Untyped, typed (STLC, System Fsub).
o Alternative formalisations of a-equivalence: named
(standard), locally nameless, well-scoped (WIP).
% Calculus of Communicating Systems (CCS).

o Behavioural theory, w/ equivalences and proof that
bisimilarity is a congruence.

% Combinatory Logic (SKI).

o Rice's theorem.

¢ Generality; reusable APIs.

studias

Lecture Notes in
Computer Science

ind by G Goos and) Histmuon

92

Robin Milner

A Calculus of
Communicating Systems

x'é‘!

Spnnger-Verlag
Berlin Heldelberg New York

Languages

¢ Generality; reusable APIs.

‘g
e
class HasFresh (a : Type

fresh : Finset a »> a

"fresh’
fresh_notMem (s : Finset a) : fresh s ¢ s

Logics g\q

LINEAR LOGIC : ITS SYNTAX AND

% Linear Logic. SEMANTICS
o Sequent calculus.

o Many logical equivalences.
m a®0=0,a¢(bec)=(ae®b)e(a®c),etc.

o n-expansion (proven correct).

o Phase semantics.

% WIP: Propositional Logic.

Jean-Yves Girard

¢ Derivations are in Type; notation can be controversial; ‘pray to

grind’ for dealing with Multiset rewriting.

=

.rwConclusion (by grind : 1+ ::n {1} = {1, 1+})

Automata and Their Languages g\q

Introduction to

Deterministic and nondeterministic 4B Automata

.y Theory,
automata based on labelled transition [
systems. and Computation

% Acceptors for finite and infinite words
(generalisations of DFA, NFA, eNFA, Buchi,

Muller, etc.).
% Theory of w-languages and w-regular
I a n g u ag eS . Formal Models and Semantics -
¢ Interactions between Labelled Transition R —
Systems and Automata. g

Automata and Their Languages

=

Interactions between Labelled Transition Systems and Automata.

STr

start

Automata and Their Languages

=

Uct

ure

Interactions between Labelled Transition Systems and Automata.

, , (LTSS v
e NA (State Symbol : Type*) extends LTS State Symbol where

: Set State

Automata and Their Languages

a=

STtructu

start

Interactions between Labelled Transition Systems and Automata.

, LTSS
NA (State Symbol : Type*) extends LTS State Symbol where

: Set State

structure FinAcc (State Symbol : Type*) extends NA State Symbol where

accept : Set State

Automata and Their Languages F}C%

Interactions between Labelled Transition Systems and Automata.

L LTS
structure NA (State Symbol : Type*) extends LTS State Symbol where

start : Set State

structure FinAcc (State Symbol : Type*) extends NA State Symbol where
accept : Set State
structure Muller (State Symbol : Type*) extends NA State Symbol where

accept : Set (Set State)

Automata and Their Languages

=

Interactions between Labelled Transition Systems and Automata.

"DA.FinAcc’ n "NA.FinAcc’
ped grind _=_]
toDAFinAcc_language_eq {na : NA.FinAcc State Symbol} :

LTS images:

language na.toDAFinAcc = language na := by
axt xs
grind

Automata and Their Languages

¥ Interactions between Labelled Transition Systems and Automata.
"DA.FinAcc’ n "NA.FinAcc’
d grind _=_]
. . t 1 toDAFinAcc_language_eq {na : NA.FinAcc State Symbol} :
l:1-s; IfT1Ei§J€3£5. language na.toDAFinAcc = language na := by
ext xs
grind
theorem toNAFinAcc_language_eq {ena : eNA.FinAcc State Symbol} :
language ena.toNAFinAcc = language ena := by
. . ext xs
E;Eitl]rfit|()r]. . : Vs s', ena.saturate.MTr s (xs.map some) s' = ena.saturate.noe.MTr s xs s' := by

) [LTS.noe_saturate_mTr]

Automata and Their Languages F}C%

Interactions between Labelled Transition Systems and Automata.

"DA.FinAcc’

@[scoped grind _=_]

theorem toDAFinAcc_language_eq {na : NA.FinAcc State Symbol} :
language na.toDAFinAcc = language na := by

ext Xxs

grind

n "NA.FinAcc’

LTS images:

theorem toNAFinAcc_language_eq {ena : eNA.FinAcc State Symbol} :
language ena.toNAFinAcc = language ena := by
t XS
have : ¥V s s', ena.saturate.MTr s (xs.map some) s' = ena.saturate.noe.MTr s xs s' := by
simp [LTS.noe_saturate_mTr]

grind

Saturation:

Plus general results on infinite executions and saturation (not shown).

Algorithms

% Framework for writing algorithms and proving their

time complexity in terms of atomic operations.
o MergeSort (functional correctness, time complexity on
number of comparisons). ALGORITHMS
o WIP: more algorithms, space complexity, more automation.

* WIP: Framework based on query models.

o Separate definition of query model.
o Algorithms perform queries.

ax

Balancing robustness with ergonomics.

Algorithms O

Balancing robustness with ergonomics.

List a - List a - TimeM (List a)
[], ys => return ys N ——

| &
| xs, [] => return xs ALCORITHMS
| x::xs', yroys' =>do |

let ¢ « v (X £y : Bool)
i f

\

let rest - mexrge xs (y::ys')

return (x :: rest) theorem mergeSort_time (xs : List a)
1se let n := xs.length
let rest - merge (x::xs') ys' (mergeSort xs).time < n * clog2 n:= by

return (y :: rest) grind [mergeSort_time_le, timeMergeSortRec_le]

Algorithms -

Balancing robustness with ergonomics.

List a - List a - TimeM (List a)

[], yS =3 return yS NTRODUCTION TO =
vs. [1 =t zeturn xe ALGORITHMS

X::xs', J::ys' => do
t+et—ePr{v J(Xx < y : Bool)
f c iheﬂ
let rest - merge xs' (y::ys')
retuxrn (x :: rest)

\

}.__..

theorem mergeSort_time (xs : List a)
let n := xs.length
' (mexrgeSort xs).time < n * clog2 n:= by

grind [mergeSort_time_le, timeMergeSortRec_le]

else
let rest - merge (x::xs') ys
return (y i rest)

What next?

Next steps

-=> More Computer Science.

L 2R R 2K 4

L R 4

Database theory. g
Cost|Probabilistic|Denotational|* semantics.
Concurrency theory (Petri nets, pi-calculus, etc.).
Choreographic languages (security protocols,
choreographic programming, business
processes, multiparty session types, etc.). \ ,
Logics: modal logics, separation logic, etc. . e =

MICHAEL SIPSER

Next steps

-=> More Computer Science.

-> Verification infrastructure.
€ Development of IRs for verification (Boole).
€ Compilers from mainstream languages to Boole.
€ Integration of logics with verification infrastructure.

Next steps

-=> More Computer Science.
-> Verification infrastructure.
- Programming infrastructure.

4

L 4

Design and implementation of high-level languages with
certified compilers.

Bridge to SE: Architecture Description Languages, Design
Patterns, Provably-Correct Refactorings, etc.

Integration w/ system middleware (microservices, serverless,
etc.).

Dick G
Henri

PATTERNS FOR
API DESIGN
SIMPLIFYING INTEGRATION

Thank you for the amazing contributions!

And thanks for
funding my time and
our group to:

-)

Funded by
the European Union

Thank you for listening!

European Research Council
the £

&A

Co-funded by the European Union (ERC,
CHORDS, 101124225). Views and
opinions expressed are however those of
the author(s) only and do not necessarily
reflect those of the European Union or the
European Research Council. Neither the
European Union nor the granting authority
can be held responsible for them.

University of Southern Denmark

Centre for Formal Methods
and Future Computing

VILLUM FONDEN

