
Ozone: Fully Out-of-Order Choreographies
Dan Plyukhin #

University of Southern Denmark, Denmark

Marco Peressotti #

University of Southern Denmark, Denmark

Fabrizio Montesi #

University of Southern Denmark, Denmark

Abstract
Choreographic programming is a paradigm for writing distributed applications. It allows program-
mers to write a single program, called a choreography, that can be compiled to generate correct
implementations of each process in the application. Although choreographies provide good static
guarantees, they can exhibit high latency when messages or processes are delayed. This is because
processes in a choreography typically execute in a fixed, deterministic order, and cannot adapt to
the order that messages arrive at runtime. In non-choreographic code, programmers can address
this problem by allowing processes to execute out of order—for instance by using futures or reactive
programming. However, in choreographic code, out-of-order process execution can lead to serious
and subtle bugs, called communication integrity violations (CIVs).

In this paper, we develop a model of choreographic programming for out-of-order processes that
guarantees absence of CIVs and deadlocks. As an application of our approach, we also introduce an
API for safe non-blocking communication via futures in the choreographic programming language
Choral. The API allows processes to execute out of order, participate in multiple choreographies
concurrently, and to handle unordered or dropped messages as in the UDP transport protocol. We
provide an illustrative evaluation of our API, showing that out-of-order execution can reduce latency
by overlapping communication with computation.

2012 ACM Subject Classification Computing methodologies → Concurrent computing methodologies

Keywords and phrases Choreographic programming, Asynchrony, Concurrency.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Choreographic programming [16] is a paradigm that simplifies writing distributed applications.
In contrast to a traditional development style, where one implements a separate program
for each type of process in the system, choreographic programming allows a programmer to
define the behaviors of all processes together in a single program called a choreography [17].
Through endpoint projection (EPP), a choreography can be compiled to generate the programs
implementing each process that would otherwise need to be written by hand. Aside from
convenience, the advantage of this approach is that certain classes of bugs (such as deadlocks)
are impossible by construction [5]. Choreographic programming has been applied to popular
languages such as Java [9] and Haskell [22], and has been used to implement real-world
protocols such as IRC [14].

Processes in choreographic programs typically execute in a fixed, sequential order. Con-
sider Figure 1a, which shows a simple choreography performed by processes p1, p2, and q.
The syntax p.e → val q.x means “p evaluates expression e and sends the result to q, which
binds the result to a local variable x”. According to the usual semantics for choreographies,
p1.produce() and p2.produce() in the choreography can be evaluated in parallel because p1
and p2 are distinct processes [17]. However, q must execute each step sequentially: first q

© Dan Plyukhin, Marco Peressotti, and Fabrizio Montesi;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

40
1.

17
40

3v
1

 [
cs

.P
L

]
 3

0
Ja

n
20

24

mailto:dplyukhin@imada.sdu.dk
mailto:peressotti@imada.sdu.dk
mailto:fmontesi@imada.sdu.dk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Ozone: Fully Out-of-Order Choreographies

1 : p1.produce() → val q.x1;
2 : p2.produce() → val q.x2;
3 : q.compute(q.x1) → val p1.y1;
4 : q.compute(q.x2) → val p2.y2

(a) Choreography (b) In-order execution (c) Out-of-order execution

Figure 1 A choreography where out-of-order execution can improve performance.

waits until it receives x1; then q waits until it receives x2; and only then can q send p1 the
result of processing x1.

Figure 1b depicts an execution of the choreography, showing the drawback of a fixed
processing order: if x2 arrives before x1, q wastes time waiting for x1 instead of processing
x2. Ideally, q would evaluate compute(q.x1) and compute(q.x2) according to the arrival
order of x1 and x2, as shown in Figure 1c. Assuming these two expressions are safe to
reorder, such an optimization would allow q to overlap computation with communication
and reduce the average latency experienced by p1 and p2. We are therefore interested in
studying choreographic programming models where processes may execute some statements
out-of-order, or even concurrently. We call such processes out-of-order processes and the
corresponding choreographies (fully) out-of-order choreographies.

Processes with out-of-order features have been considered in prior work. Process models
such as the actor model [1] or the π-calculus with delayed receive [15] are expressive enough
to implement the behavior in Figure 1c, but these models lack the static guarantees of
choreographic programming. More recently, Montesi gave a semantics for nondeterministic
choreographies [17], i.e., choreographies with nondeterministic choice. Nondeterministic
choreographies can implement the execution in Figure 1c, but they are unwieldy when
it comes to expressing out-of-order process execution: they require explicitly writing all
possible schedulings. For our example, we would get a choreography twice the size of the
one in Figure 1a. Consequently, nondeterministic choreographies are both hard to write and
brittle—a typical drawback when using syntactic operators to express interleavings. This
raises the question:

Can we develop a choreographic programming model for out-of-order processes that
marries the simple syntax of Figure 1a with the semantics of Figure 1c?

The simplicity of this problem is deceptive, since common-sense approaches can lead to
pernicious compiler bugs. For instance, consider Figure 2: two microservices cs (a “content
service”) and ks (a “key service”) send values txt, key to a server s (lines 1 and 2). The server
in turn forwards those values to a client c (lines 3 and 4). Notice that if s is an out-of-order
process, then it can forward the results in any order, as shown in Figures 2b and 2c. This
causes a problem for c: since both txt and key were sent by s, and since both values have
the same type (String), c has no way to determine whether the first message contains txt (as
in Figure 2b) or key (as in Figure 2c). This problem is easy for compiler writers to miss,
leading to disastrous nondeterministic bugs where variables are bound to the wrong values.
We call such bugs communication integrity violations (CIVs).

D. Plyukhin, M. Peressotti, and F. Montesi XX:3

1 : cs.getT ext() → val s.txt;
2 : ks.getKey() → val s.key;
3 : s.txt → val c.txt;
4 : s.key → val c.key;
5 : c.display(txt);
6 : c.decrypt(key)

(a) Choreography (b) Safe execution (c) Buggy execution

Figure 2 A choreography where naïve out-of-order execution is unsafe. Process c cannot
distinguish whether the first message it receives represents key or txt.

In this paper, we investigate CIVs and other complications that arise from mixing
choreographies with out-of-order processes. Although the problem in Figure 2 can easily be
solved by attaching static information (such as variable names) to each message, we show in
Section 2 that a general solution requires mixing static and dynamic information, replicated
across multiple processes. We also find that formalizing fully out-of-order choreographies
requires several features uncommon in standard choreographic programming models, such as
scoped variables and an expanded notion of well-formedness.

We make the following key contributions:
1. We present O3, a formal model for asynchronous, fully out-of-order choreographies. Our

model prevents CIVs by attaching integrity keys to messages. A nice consequence of our
solution is that messages no longer need to be delivered in FIFO order. We prove that
O3 choreographies ensure deadlock-freedom (Theorem 2) and communication integrity
(Theorem 4).

2. We present an EPP algorithm to project O3 choreographies into out-of-order processes.
We prove an operational correspondence theorem, which states that a choreography and
its projection evolve in lock-step (Theorem 6). The key to making this proof tractable is
a new notion of well-formedness that formalizes a communication integrity invariant. The
theorem implies that a correct compiler will not generate code with deadlocks or CIVs.

3. As an application of our approach, we present a non-blocking communication API
called Ozone for the choreographic programming language Choral [9]. Choreographies
implemented with Ozone can use futures [2] to process messages concurrently (as in
Figure 1c) without violating communication integrity. Ozone also allows programmers to
handle dropped or unordered messages, as might occur in the UDP transport protocol.
We give a proof-of-concept evaluation for Ozone with two microbenchmarks, confirming
that out-of-order execution can indeed reduce latency for certain operations.

The outline of the paper is as follows. Section 2 explores CIVs and other issues in
out-of-order choreography models. Section 3 presents our formal model O3. Section 4
presents our model for out-of-order processes and our EPP algorithm. Section 5 presents our
non-blocking API for Choral and our evaluation. We conclude with related work in Section 6
and discussion in Section 7.

2 Overview

In this section we explore the challenges that must be solved to develop a fully out-of-order
choreography model, along with our approach.

XX:4 Ozone: Fully Out-of-Order Choreographies

(a) Using selections (b) Using integrity keys

Figure 3 Two approaches to prevent CIVs: selections and integrity keys.

(a) (b) (c)

Figure 4 The challenges of non-FIFO delivery. Part (a) depicts head-of-line blocking when using
a FIFO transport protocol: The message containing k arrives first, but it cannot be processed until
t arrives. Part (b) depicts a CIV caused by using an unordered transport protocol without integrity
keys. Part (c) depicts how the processes can use integrity keys to prevent CIVs.

2.1 Intraprocedural Integrity

Informally, communication integrity is the property that messages communicated in a
choreography are bound to the correct variables. To ensure this property, processes sometimes
need extra information; in Figure 2, process c needs to know which value will arrive first: txt

or key.
A traditional solution would be for s to send a selection to c. Selections [17] are

communications of constant values, used in choreography languages when one process makes
a control flow decision that other processes must follow. Figure 3a shows how s could send
the selection [KEY] to inform c that key will arrive before txt. Indeed, this is the approach
used by nondeterministic choreographies [17]. However, selections impose overhead: any time
nondeterminism could occur, the programmer would need to insert new selection messages.
These extra messages would have both a cognitive cost for the programmer (as programs
become littered with selections) and a runtime cost in the form of an extra message.

Instead, we opt to pair each message with a disambiguating tag called an integrity key.
When c receives a message, it checks the integrity key to find the meaning of the message.
Figure 3b uses line numbers as integrity keys: for example, the txt message is tagged with
the number 3 because it ws produced by the instruction on line 3 in Figure 2. Equivalently,
one could use variable names (assuming that all variables have distinct names), message

D. Plyukhin, M. Peressotti, and F. Montesi XX:5

types (assuming that all messages have distinct types), or operators [4]. However, as we will
see in the next section, none of these solutions will suffice once we introduce procedures and
recursion.

Integrity keys have another advantage over selections: they make it safe for the network
to reorder messages. Previous theories and implementations of choreographic languages
require a transport protocol that ensures reliable FIFO communication [9, 17]. These models
are therefore susceptible to head-of-line blocking [21], where one delayed message can prevent
others from being processed (Figure 4a). Figure 4b shows why FIFO is necessary in these
models: unordered messages can cause CIVs. Because our model combines unordered
messages, integrity keys, and out-of-order processes, it circumvents the head-of-line blocking
problem—as shown in Figure 4c.

2.2 Procedural Choreographies
Choreographies can use procedures parameterised on processes for modularity and recursion [7,
17]. Figure 5a shows an example: a procedure X with three roles (i.e., process parameters)
a, b, c. The procedure X is invoked twice—once with processes p, q, r1 (line 7) and again
with p, q, r2 (line 8). In the body of X, role a produces a value and sends it to b; then b
transforms the value and sends it to c; finally, c processes the value and sends it to a. As
usual in most programming languages, we will assume the variables a.w, b.x, c.y, and a.z

are locally scoped—this is in contrast to many choreography models [17], where variables at
processes are all mutable fields accessible anywhere in the program.

In existing choreography models, a process can only participate in one choreographic
procedure at a time. This is no longer the case with fully out-of-order choreographies.
Consider Figure 5a, where process p invokes procedure X twice. The process may begin by
invoking the first procedure call (line 7), computing p.w (line 2), and sending p.w to r1 (line
3). Then, instead of executing its next instruction—i.e. becoming blocked by waiting for a
message on line 6—p can skip the instruction and proceed to invoke the second procedure
call (line 8). Thus, we can have an execution like in Figure 5b, in which p sends a message
to r1 as part of the first procedure call and immediately sends a message to r2 as part of
the second procedure call. This unusual semantics is exactly what we would expect in a
choreography language with non-blocking receive—such as Choral when using the Ozone
API (Section 5).

2.2.1 Interprocedural Integrity
Concurrent choreographic procedures add another dimension of complexity to the communic-
ation integrity problem. Figures 5b and 5c show why: depending on the order that r1 and
r2’s messages arrive at q, the messages from q may arrive at p in any order. (This occurs even
if we assume reliable FIFO delivery!) Like in the previous section, p cannot distinguish which
message pertains to which procedure invocation. But now static information is insufficient
to ensure communication integrity: both messages from q pertain to the same variable in the
same procedure, so the integrity keys fail to distinguish the different procedure calls. We call
this the interprocedural CIV problem.

The example above shows that integrity keys need dynamic information prevent CIVs.
We can solve the problem by combining the line numbers used in Section 2.1 with some
session token t that uniquely identifies each procedure invocation. Applied to Figures 5b
and 5c, p could inspect the session token to determine whether the messages pertain to the
first procedure call (line 7) or the second (line 8). But note that it is insufficient for p and q

XX:6 Ozone: Fully Out-of-Order Choreographies

1 : X(a, b, c) =
2 : val a.w = produce();
3 : a.w → val b.x;
4 : b.transform(x) → val c.y;
5 : c.process(y) → val a.z;
6 : a.store(w, z)
7 : X(p, q, r1);
8 : X(p, q, r2)

(a) (b) (c)

Figure 5 A choreography and two possible executions. In both diagrams, the green lines
correspond to X(p, q, r1) and the blue lines correspond to X(p, q, r2).

to compute different session tokens for each procedure call; the processes must agree on the
same token value for each procedure call.

One solution to the interprocedural CIV problem would be to select a “leader” process
for each procedure call, and let the leader compute a session token for all the other roles
to use. However, this would make the leader a bottleneck. Instead we propose a method
for processes to compute session tokens independently, using only local data, so that the
resulting values agree.

Observe that a procedure call is uniquely identified by its caller (i.e. the procedure call
that called it) and its line number l. Assuming the caller already has a unique token t, the
callee’s token can be computed as some injective function nextToken(l, t). This function
would need to satisfy two properties:

Determinism: For any input pair l, t, nextToken(l, t) always produces the same value t′.
Injectivity: Distinct input pairs l, t produce distinct output tokens.

Determinism ensures that if two processes in the same procedure call (with token t) invoke
the same procedure (on line l) then both processes will agree on the value of nextToken(l, t).
Injectivity ensures that if a process concurrently participates in two different procedure calls
(with distinct tokens t1, t2) and invokes two procedures (on lines l1, l2—possibly l1 = l2) then
the resulting session tokens will be distinct (nextToken(l1, t1) ̸= nextToken(l2, t2)). In the
next section, we realize these constraints by representing tokens as lists of line numbers and
defining nextToken to be the list-prepend operator.

3 Choreography Model

In this section we present O3, a formal model for asynchronous, fully out-of-order choreo-
graphies. Statements can be executed in any order (up to data dependency) and messages
can be delivered out of order. The section concludes with proofs of deadlock-freedom and
communication integrity.

3.1 Syntax
The syntax for choreographies in O3 is defined by the grammar in Figure 6. Two example
choreographies are shown in Figure 7; we explain their semantics in Section 3.2.2.

D. Plyukhin, M. Peressotti, and F. Montesi XX:7

C ::= {Xi(p, p.x) = Ci}i∈I (decls)
C ::= I; C (seq) | { C } (block)

| 0 (end)
I ::= l, t : p.e → val q.x (comm) | l, t : p → q[L] (sel)

| l, t : val p.x = e (expr) | l, t : if e@p then C1 else C2 (cond)
| l, t : X(p, a) (call) | l, t : p⇝ q.x (comm†)
| l, t : p⇝ q[L] (sel†) | l, t : p. X(q, a) { C } (call†)

t ::= t (placeholder) | ti (token†)
e ::= f(e) (app) | a (atom)
a ::= v@p (val) | p.x (var)

†runtime only

Figure 6 Syntax for fully out-of-order choreographies

A choreography C is executed in the context of a collection of procedures C . Each
procedure Xi(p, p.x) = Ci is parameterized by a list of roles p = p1, . . . , pn and role-local
parameters p.x = pj1 .x1, . . . , pjm .xm where every parameter pjk

.xk is located at one of the
roles in p. We assume that procedures do not contain runtime terms (such as l, t : p⇝ q.x).

A choreography C consists of a sequence of instructions I, followed by the end symbol 0
which is often omitted. Each instructions is prefixed with a line number l and a token t. We
call this pair an integrity key. If Ci is the body of a procedure in C , then the token t on
every instruction in Ci must be a token placeholder t. When the procedure is invoked, all
token placeholders t in Ci will be replaced with a fresh token value tj .

We assume that line numbers in C are similar to line numbers in a real computer program:
Each instruction I in C has a distinct line number l. When a procedure Xi(p, p.x) = Ci

is invoked, the line numbers in Ci will remain unchanged. This will allow us to access the
static location of an instruction at runtime in order to compute the integrity key.

Choreographies consist of five kinds of instructions. A communication p.e → val q.x

instructs process p to evaluate expression e and send it to process q, which will bind the
result to q.x. A selection p → q[L] conveys knowledge of choice [17]: it instructs p to send a
value literal L to q, informing q that a decision (represented by L) has been made. A local
computation val p.x = e instructs p to evaluate e and bind the result to p.x. A conditional
if e@p then C1 else C2 instructs p to evaluate e and for the processes to proceed with C1 or C2
according to the result. A procedure call Xi(p, a) instructs processes p to invoke procedure
Xi(q, q.y) = Ci defined in C , with processes p playing roles q and arguments a (which may
take the form of values v@p or variables p.x) substituted for parameters q.y. In addition to
these basic instructions, a choreography may also contain blocks { C } which limit the scope
of variables.

In addition, choreographies can contain runtime instructions that represent an instruction
in progress; these terms are an artifact of the semantics, not written explicitly by the
programmer. A communication-in-progress p ⇝ q.x indicates that p sent a message to q,
which q has not yet received. Similarly, a selection-in-progress p⇝ q[L] indicates that p sent
a selection. A procedure-call-in-progress p. X(q, a) { C } indicates that some processes have
invoked X, and others have not—we leave the details to Section 3.2.

XX:8 Ozone: Fully Out-of-Order Choreographies

BuyItem(s, b, b.itemID) =
1, t : b.itemID → val s.itemID;
2, t : val s.item? = sell(s.itemID);
3, t : s.item? → val b.item?

4, t0 : BuyItem(seller, buyer1, 123@buyer1);
5, t0 : BuyItem(seller, buyer2, 543@buyer2)

(a)

StreamIt(p, c) =
1, t : p.produce() → val c.x;
2, t : val c.z = consume(c.x);
3, t : if (itemsLeft() > 0)@p then

4, t : p → c[More]
5, t : StreamIt(p, c)

else
6, t : p → c[Done]

7, t0 : StreamIt(p1, c);
8, t0 : StreamIt(p2, c)

(b)

Figure 7 Two example choreographies. On the left, processes buyer1 and buyer2 concurrently
attempt to buy products from seller. On the right, producers p1 and p2 concurrently send streams
of data to a shared consumer c.

Expressions e are composed of atoms a (i.e. variables p.x and values v@p) and function
applications f(e). We assume that a function f evaluated by p can mutate the state of p as
a side-effect. However, the variables p.x themselves are immutable.

3.2 Semantics
We now give a fully out-of-order semantics for choreographies in O3. The semantics is a
labelled transition system on configurations

〈
C, Σ, K

〉
, where:

C is a choreography;
Σ is a mapping from process names p to process states σ; and
K is a mapping from process names p to multisets of messages M yet to be delivered to
p.

We also assume there exists a set of unchanging procedure declarations C , not shown explicitly
in the configuration.

An initial configuration is a configuration
〈

C, Σ, K
〉

where Σ maps each p to an arbitrary
state, K maps each p to the empty set, and all instructions in C use the same token t0, called
the initial token. We also assume the initial configuration is well-formed, cf. Section 3.3. The
transition relation (p−→) is a relation on configurations, where p identifies which process took
a step.

Messages in our semantics are represented as triples (l, ti, v). Here l is the line number
of the communication that sent the message, ti is the token associated with the procedure
invocation that sent the message, and v is a value called the payload. Together, the pair
(l, ti) is called the integrity key of the message.

3.2.1 Transition rules
Figure 8 defines the semantics for O3, based on textbook models for procedural and asyn-
chronous choreographies. Full out-of-order execution is achieved by weakening the classic
C-Delay rule [17]. This yields a semantics in which any pair of statements can be executed

D. Plyukhin, M. Peressotti, and F. Montesi XX:9

out of order, up to data- and control-dependency. That is, in a choreography of the form
I1; I2; C, the statement I2 can always be executed before I1 unless:
1. (Data dependency) I1 binds a variable p.x that is used in I2; or
2. (Control dependency) I1 is a selection of the form p → q[L] or p ⇝ q[L], and I2 is an

action performed by q.
This semantics overapproximates the concurrency of Choral’s Ozone API (Section 5) where
actions are only evaluated out of order if they are wrapped in a CompletableFuture.

The semantics for communication is defined by rules C-Send and C-Recv. In C-Send
for the communication term l, ti : p.e → val q.x, the expression e is evaluated in the context
of p’s state using the notation Σ(p) ⊢ e ⇓ (v, σ). Evaluating e produces a value v and a new
state σ for p; we assume that (⊢) is defined for any e that contains no free variables and for
any state Σ(p). The C-Send rule transforms the communication term into a communication-
in-progress term l, ti : p ⇝ q.x and adds the message (l, ti, v) to q’s set of undelivered
messages. The message can subsequently be received by q using the C-Recv rule. This rule
removes the communication-in-progress term and substitutes the message payload v into
the continuation C. Notice that the integrity key l, ti of the message is matched against the
integrity key of the communication-in-progress, l, ti : p⇝ q.x. Notice also that the semantics
for communication is not defined if the token t is merely a placeholder t—it must be a token
value ti. Indeed, in Section 3.3 we show that placeholders only appear in C , never in C.

Rules C-Select and C-OnSelect closely mirror the semantics of C-Send and C-Recv—
the key difference is that a label L is communicated instead of a value. Rules C-Compute
and C-If are standard, except for changes made to use lexical scope instead of global scope:
C-Compute substitutes the value v into the continuation C (instead of storing it in the
local state Σ) and C-If places the continuation Ci in a block to prevent variable capture. To
garbage collect empty blocks, C-If uses a concatenation operator (#) defined as:

{I; C} # C ′ = {I; C}; C ′ {0} # C ′ = C ′

The C-Delay rule is also standard, except it has been weakened so processes can execute
out of order.

C-First, C-Enter, C-Last, and C-Delay-Proc are standard rules for invoking
choreographic procedures in a decentralized way [17]. Given a procedure call l, ti : X(p, a), rule
C-First indicates that p ∈ p has entered the procedure but processes p \ p have yet to enter.
The rule replaces the procedure call with a procedure-call-in-progress l, ti : p\p. X(p, a) { C ′

1 }
to reflect this fact. The choreography C ′

1 is the body of the procedure, which p may begin
executing via the C-Delay-Proc rule. The remaining processes can enter the procedure
via the C-Enter rule, and the last process to enter the procedure uses the C-Last rule.

The key difference between our procedure calls and the standard is our use of nextToken
to determine the token used in the procedure. Note that, although nextToken is atomic in
the semantics, we show in Section 4 that it can also have a decentralized interpretation.
The function nextToken : N × Token → Token is a pure injective function for computing new
tokens (of type Token) using integrity keys (of type N × Token). To ensure the integrity keys
from two concurrent procedures never collide, nextToken must produce unique, non-repeating
keys upon iterated application. This is realized by representing Token = N∗ as lists of
numbers, the initial token t0 as an empty list [], and implementing nextToken(l, ti) = l :: ti

by prepending the line number l to the list. Intuitively, this means the token associated with
a procedure invocation is a simplified call stack of line numbers from which the procedure
was called.

XX:10 Ozone: Fully Out-of-Order Choreographies

Σ(p) ⊢ e ⇓ (v, σ) M = K(q) ⊎ {(l, ti, v)}
C-Send〈

l, ti : p.e → val q.x; C, Σ, K
〉 p−→

〈
l, ti : p⇝ q.x; C, Σ[p 7→ σ], K[q 7→ M]

〉
(l, ti, v) ∈ K(q) M = K(q) \ {(l, ti, v)}

C-Recv〈
l, ti : p⇝ q.x; C, Σ, K

〉 q−→
〈

C[q.x 7→ v@q], Σ, K[q 7→ M]
〉

M = K(q) ∪ {(l, ti, L)}
C-Select〈

l, ti : p → q[L]; C, Σ, K
〉 p−→

〈
l, ti : p⇝ q[L]; C, Σ, K[q 7→ M]

〉
K(q) = {(l, ti, L)} ∪ M

C-OnSelect〈
l, ti : p⇝ q[L]; C, Σ, K

〉 q−→
〈

C, Σ, K[q 7→ M]
〉

Σ(p) ⊢ e ⇓ (v, σ)
C-Compute〈

l, ti : val p.x = e; C, Σ, K
〉 p−→

〈
C[p.x 7→ v@p], Σ[p 7→ σ], K

〉
Σ(p) ⊢ e ⇓ v if v = true then i = 1 else i = 2

C-If〈
l, ti : if e@p then C1 else C2; C, Σ, K

〉 p−→
〈

{ Ci } # C, Σ, K
〉

〈
C1, Σ, K

〉 p−→
〈

C′
1, Σ′, K′ 〉

C-Block〈
{ C1 }; C2, Σ, K

〉 p−→
〈

{ C′
1 } # C2, Σ′, K′ 〉

〈
C, Σ, K

〉 q−→
〈

C′, Σ′, K′ 〉 I is not a selection at q
C-Delay〈

I; C, Σ, K
〉 q−→

〈
I; C′, Σ′, K′ 〉

(X(q, q.y) = C1) ∈ C C′
1 = C1[q, q.y, t 7→ p, a, tj]

p ∈ p tj = nextToken(l, ti)
C-First〈

l, ti : X(p, a); C2, Σ, K
〉 p−→

〈
l, ti : p \ p. X(p, a) { C′

1 }; C2, Σ, K
〉

p ∈ p
C-Enter〈

l, ti : p. X(q, a) { C1 }; C2, Σ, K
〉 p−→

〈
l, ti : p \ p. X(q, a) { C1 }; C2, Σ, K

〉
C-Last〈

l, ti : p. X(q, a) { C1 }; C2, Σ, K
〉 p−→

〈
{ C1 } # C2, Σ, K

〉
〈

C1, Σ, K
〉 p−→

〈
C′

1, Σ′, K′ 〉 p /∈ p
C-Delay-Proc〈

l, ti : p. X(q, a) { C1 }; C2, Σ, K
〉 p−→

〈
l, ti : p. X(q, a) { C′

1 }; C2, Σ′, K′ 〉
Figure 8 Semantics for fully out-of-order choreographies

D. Plyukhin, M. Peressotti, and F. Montesi XX:11

3.2.2 Discussion
Figure 7a expresses a choreography in which two buyer processes concurrently buy items from
a seller process. In the initial configuration, buyer1 can enter the procedure on line 4, buyer2
can enter the procedure on line 5, and seller can enter either procedure. If buyer2 enters first
(using C-Delay and C-Enter), it can proceed to send 543@buyer2 to seller (using C-Com).
Then seller can enter the procedure on line 5 (using C-Delay and C-Last) and proceed to
receive the message from buyer2 (using C-Recv). This execution would be impossible in a
standard choreography model because seller would need to complete the procedure invocation
on line 4 before it could enter the procedure on line 5. The added concurrency ensures that
slowness in buyer1 does not prevent buyer2 from making progress.

Note that the out-of-order semantics of Figure 7a also adds nondeterminism. Suppose
buyer1 and buyer2 attempt to buy the same item and the seller only has one copy in stock.
One of the buyers will receive the item, and the other buyer will receive a null value. In
a standard choreography model, the item would always go to buyer1. In O3, the item
will be sold nondeterministically according to the order that messages arrive to the seller.
This nondeterminism can be problematic—it makes reasoning about choreographies harder—
but also increases expressivity: nondeterminism is essential in distributed algorithms like
consensus and leader election. Reasoning about nondeterminism in choreographies is an
important topic for future work.

Figure 7b shows we can also express recursive choreographies. In each iteration of the
procedure StreamIt, a producer p sends a value to a consumer c (line 1) and decides whether
to start another iteration (line 3). Then the producer asynchronously informs the consumer
about its decision (lines 4 and 6) and can proceed with the next iteration (line 5) without
waiting for the consumer. Because messages in O3 are unordered, the consumer can consume
items (line 2) from different iterations in any order; this prevents head-of-line blocking [21].

In the initial choreography of Figure 7b, producers p1, p2 and a consumer c invoke two
instances of StreamIt. As in Figure 7a, the two procedures evolve concurrently; a slowdown
in p1 will not prevent c from consuming items produced by p2.

Conspicuously absent from our semantics is the standard C-Delay-Cond rule [17], which
might be written as follows:〈

C1, Σ, K
〉 p−→

〈
C ′

1, Σ′, K ′ 〉 〈
C2, Σ, K

〉 p−→
〈

C ′
2, Σ′, K ′ 〉〈

l, ti : if e@p then C1 else C2; C, Σ, K
〉 p−→

〈
l, ti : if e@p then C ′

1 else C ′
2; C, Σ′, K ′ 〉

This rule allows one to evaluate the branches of an if-instruction before the guard e. In O3,
it is not clear how to add such a rule without violating the EPP Theorem (Theorem 6): the
rule would allow the following reduction (omitting Σ and K for simplicity):

1, t0 : if e@q then
2, t0 : val p.x = compute();
3, t0 : val p.y = compute();
4, t0 : val p.z = print(p.x)

else
5, t0 : val p.x = compute();
6, t0 : val p.y = compute();
7, t0 : val p.z = print(p.x)

p−→

1, t0 : if e@q then
3, t0 : val p.y = compute();
4, t0 : val p.z = print(v)

else
5, t0 : val p.x = compute();
7, t0 : val p.z = print(p.x)

The resulting choreography allows print(v) to be evaluated in the “then” branch, but not in
the “else” branch. Thus the resulting choreography is not projectable.

XX:12 Ozone: Fully Out-of-Order Choreographies

Instead of attempting to accommodate the C-Delay-Cond rule, we follow prior work [10,
22, 19] and remove the rule entirely. This decision slightly simplifies the definition of endpoint
projection (Section 4.3) at the cost of additional communication in certain cases.

3.3 Properties
In this section we prove that O3 choreographies are deadlock-free and we formalize the
communication integrity property. Combined with the EPP Theorem presented in Section 4,
these results imply that projected code inherits the same properties.

We restrict our attention to configurations that are reachable from the initial configuration.
For example, the following configurations are not reachable:〈

l, t0 : p⇝ q.x, Σ, {p 7→ ∅, q 7→ ∅}
〉

〈
l, t0 : p.e → val q.x, Σ, {p 7→ ∅, q 7→ {(l, ti, v)}}

〉
〈

{1, t1 : p.e → val q.x}; {1, t1 : p.e′ → val q.x}, Σ, {p 7→ ∅, q 7→ ∅}
〉

〈
3, t0 : p. X(p, q) { 1, t0 : p.e → val q.x }, Σ, {p 7→ ∅, q 7→ ∅}

〉
The first configuration is not reachable because l, ti : p⇝ q.x never occurs unless q has an
undelivered message from p. Dually, the second configuration is not reachable because p
has a message in its queue that, according to the choreography, has not yet been sent. The
third configuration is unreachable because the two instructions share the same integrity key;
we will show that nextToken ensures such configurations never arise. Likewise, nextToken
also forbids the last configuration, since the token of the instruction 1, t0 : p.e → val q.x

must have been derived from the integrity key of the enclosing call 3, t0 : p. X(p, q) { . . . }.
Specifically, t0 ̸= nextToken(3, t0).

To specify the last property above, recall that tokens are represented as lists of integers
l1 :: l2 :: We say (l1, t1) is a prefix of (l2, t2)—written (l1, t1) ≺ (l2, t2)—if the list l1 :: t1
is a prefix of l2 :: t2 and we say the keys are disjoint if neither is a prefix of the other.

We formalize the properties of reachable configurations by defining which configurations
are well-formed. Our notion of well-formedness expands on the standard definition [17] in
the following ways:
1. A communication-in-progress l, ti : p⇝ q.x occurs in C if and only if (l, ti, v) ∈ K(q) for

some v.
2. A selection-in-progress l, ti : p⇝ q[L] occurs in C if and only if (l, ti, L) ∈ K(q).
3. Each instruction I in C has a distinct integrity key l, t, where t is a token value (not a

placeholder).
4. If the integrity key of I is a prefix of the integrity key of I ′ then I is a communication-in-

progress l, t : p. X(p, a) { C ′ } and I ′ is in C.
A full definition of well-formedness is presented in Appendix A.

▶ Theorem 1 (Preservation). If
〈

C, Σ, K
〉

is well-formed and
〈

C, Σ, K
〉 p−→

〈
C ′, Σ′, K ′ 〉,

then
〈

C ′, Σ′, K ′ 〉 is well-formed.

Proof. By induction on the definition of p−→. We focus on the rules for communication and
procedure invocation.

C-Send replaces a term l, ti : p.e → val q.x with l, ti : p ⇝ q.x and adds a message
(l, ti, v). By the induction hypothesis, (l, ti, v) is not already in K.

C-Recv eliminates the runtime term l, ti : p⇝ q.x and removes a message (l, ti, v). By
the induction hypothesis, no other l, ti : p⇝ q.x term occurs in C.

D. Plyukhin, M. Peressotti, and F. Montesi XX:13

C-First introduces new terms into the choreography by invoking the call l1, t1 : X(p, a).
By the induction hypothesis, for any other instruction l2, t2 : I in C, either (a) keys l1, t1
and l2, t2 are disjoint; or (b) l2, t2 : I is a call-in-progress containing l1, t1 : X(p, a). In case
(a), disjointness implies any instruction in the body of the procedure C ′[q, q.y, t 7→ p, p.x, tj]
will also have a key that is disjoint from l2, t2. In case (b), notice ∀l, (l2, t2) ≺ (l1, t1) ≺
(l, nextToken(l1, t1)); hence any interaction in the body has a key of which (l2, t2) is a
prefix. ◀

▶ Theorem 2 (Deadlock-Freedom). If
〈

C, Σ, K
〉

is well-formed, then either C ≡ 0 or〈
C, Σ, K

〉 p−→
〈

C ′, Σ′, K ′ 〉 for some p, C ′, Σ′, K ′.

Proof. By induction on the structure of C, making use of the full definition of well-formedness
in Appendix A. In each case, we observe the first instruction I of C can always be executed.
For instance, if I ≡ l, ti : p.e → val q.x then the C-Send rule can be applied because
well-formedness implies e has no free variables. If I ≡ l, ti : p⇝ q.x, there must be a message
(l, ti, v) ∈ K(q) because the configuration is well-formed. The other cases follow similarly. ◀

We end this section with a formalization of communication integrity. Consider the buggy
execution in Figure 2: in a model without integrity keys, the execution reaches a configuration〈

s⇝ c.txt; s⇝ c.key; . . . , Σ, c 7→ vkey, vtxt

〉
,

where vkey is the value produced by ks.getKey() and vtxt is the value produced by cs.getText().
A CIV occurs if the configuration can make a transition that consumes s⇝ c.txt and vkey

together, binding c.txt to vkey. We therefore want to ensure:
There is only one way a communication-in-progress instruction can be consumed; and
The instruction is consumed together with the correct message.

▶ Definition 3 (Send/receive transitions). A send transition
〈

C, Σ, K
〉 p−→

〈
C ′, Σ′, K ′ 〉 is

a transition with a derivation that ends with an application of C-Send. Likewise, a receive
transition is a transition with a derivation that ends with C-Recv.

▶ Theorem 4 (Communication Integrity). Let e = c0
p1−−→ · · · pk+1−−−→ ck+1 be an execution

ending with a send transition ck
p−→ ck+1, which produces instruction l, tk : p ⇝ q.x and

message m. Let e′ = c0
p1−−→ · · · pn−−→ cn (n > k) be an execution extending e, where l, tk :

p⇝ q.x has not yet been consumed. Then there is at most one receive transition cn
q−→ cn+1

consuming l, tk : p⇝ q.x. Namely, it is the transition that consumes l, tk : p⇝ q.x and m

together.

Proof. By definition of C-Send, m has the form (l, tk, v). By definition of C-Recv, if there
exists a transition cn → cn+1 that consumes l, tk : p⇝ q.x, then the transition also consumes
a message (l, tk, v′), for some v′. It therefore suffices to show the message (l, tk, v′) is unique
and that v′ = v. This follows by induction on the length m of the extension:

Base case: Well-formedness implies there is no message (l, tk, v′) in ck. Hence the message
(l, tk, v) in ck+1 is unique.
Induction step: Observe that the transition cm → cm+1 cannot remove (l, tk, v); this
would require consuming l, tk : p⇝ q.x, which cannot happen in e′ by hypothesis. Also
observe that the transition cannot add a new message with integrity key (l, tk); this
would require consuming an instruction l, tk : p′.e → val q.x′, which cannot exist in cm

by well-formedness. Hence (l, tk, v) is unique in cm+1.
◀

XX:14 Ozone: Fully Out-of-Order Choreographies

P ::= {Xi(pi, xi) = Ci}i∈I (decls)
P, Q ::= I; P (seq) | { P } (block)

| 0 (end)
I ::= p !l,t e (send) | ?l,t x (receive)

| val x = e (expr) | p ⊕l,t L (choice)
| N{(li, ti, Li) ⇒ Pi}i∈I (branch) | if e then P else Q (cond)
| l, t : X(p, a) (call)

e ::= f(e) (app) | a (atom)
a ::= x (var) | v (val)

N, M ::= p[P] (proc) | (N | M) (par)

Figure 9 Syntax for out-of-order processes

4 Process Model

4.1 Syntax
Figure 9 presents the syntax for out-of-order processes. A term p[P] is a process named p
with behavior P . Networks, ranged over by N, M , are parallel compositions of processes.
Compared to prior work [17], certain process instructions need to be annotated with integrity
keys (for instance, message send p !l,t e and procedure call l, t : X(p, a)). In addition, when
receiving a message it is no longer necessary to specify a sender—for instance, it suffices to
write ?l,t x; P instead of the more traditional p ?l,t x; P .

4.2 Semantics
The semantics for out-of-order processes is presented in Figure 10. It is defined as a labelled
transition system on process configurations

〈
N, Σ, K

〉
, where N is a network and Σ, K

have the same meaning as in Section 3.2. We also let P be an implicit set of procedure
declarations.

The transition rules of Figure 10 are similar to prior work. P-Send adds a message (l, ti, v)
to the undelivered messages of q, whereas P-Recv removes the message and substitutes
it into the body of the process. Similarly, P-Select adds (l, ti, L) to the message set and
P-OnSelect selects a branch from the set of options N{(lj , tj , Lj) ⇒ Pj}j∈J . P-Call
invokes a procedure, locally computing the next token and substituting the body of the
procedure into the process. Rules P-Compute, P-If, and P-Par are standard.

The key novelty of out-of-order processes is the P-Delay rule, which allows a process to
perform instructions in any order, up to data- and control-dependencies. The latter implies
processes cannot evaluate instructions nested within an if or N-expression.

4.3 Endpoint Projection
Figure 12 defines the endpoint projection (EPP) JCK of a choreography C, translating it
into a network. All the rules follow from trivial modifications of the standard EPP for
procedural choreographies [17], except the definition of merging (⊔). Merging is used to
define the EPP for conditionals Jif e@p then C1 else C2Kr when r ̸= p; the process JC1Kr ⊔ JC2Kr
is one that may behave like JC1Kr or like JC2Kr, depending on p’s decision. In our model,
merging must only be defined when JC1Kr and JC2Kr are both branching processes of the

D. Plyukhin, M. Peressotti, and F. Montesi XX:15

Σ(p) ⊢ e ⇓ (v, σ) M = K(q) ⊎ {(l, ti, v)}
P-Send〈

p[q !l,ti
e; P], Σ, K

〉 p−→
〈

p[P], Σ[p 7→ σ], K[q 7→ M]
〉

(l, ti, v) ∈ K(q) M = K(q) \ {(l, ti, v)}
P-Recv〈

q[?l,ti
x; Q], Σ, K

〉 q−→
〈

q[Q[x 7→ v]], Σ, K[q 7→ M]
〉

M = K(q) ∪ {(l, ti, L)}
P-Select〈

p[q ⊕l,ti L; P], Σ, K
〉 p−→

〈
p[P], Σ, K[q 7→ M]

〉
K(q) = {(li, ti, Li)} ∪ M i ∈ I

P-OnSelect〈
q[N{(lj , tj , Lj) ⇒ Qj}j∈I ; Q], Σ, K

〉 q−→
〈

q[{Qi}; Q], Σ, K[q 7→ M]
〉

Σ(p) ⊢ e ⇓ (v, σ)
P-Compute〈

p[val x = e; P], Σ, K
〉 p−→

〈
p[P [x 7→ v]], Σ[p 7→ σ], K

〉
Σ(p) ⊢ e ⇓ v if v = true then i = 1 else i = 2

P-If〈
p[if e then P1 else P2; P], Σ, K

〉 p−→
〈

p[{Pi}; P], Σ, K
〉

〈
p[P1], Σ, K

〉 p−→
〈

p[P ′
1], Σ′, K ′ 〉

P-Block〈
p[{P1}; P2], Σ, K

〉 p−→
〈

p[{P ′
1}; P2], Σ′, K ′ 〉

〈
p[P], Σ, K

〉 p−→
〈

p[P ′], Σ′, K ′ 〉
P-Delay〈

p[I; P], Σ, K
〉 p−→

〈
p[I; P ′], Σ′, K ′ 〉

(X(q, y) = Q) ∈ P nextToken(l, ti) = tj
P-Call〈

p[l, ti : X(p, a); P], Σ, K
〉 p−→

〈
p[{Q[q, y, t 7→ p, a, tj]}; P], Σ, K

〉
〈

N, Σ, K
〉 p−→

〈
N ′, Σ′, K ′ 〉

P-Par〈
N | M, Σ, K

〉 p−→
〈

N ′ | M, Σ′, K ′ 〉
Figure 10 Semantics of out-of-order processes

XX:16 Ozone: Fully Out-of-Order Choreographies

BuyItem1(b) =
?1,t itemID;
val item? = sell(itemID);
b !3,t item?

BuyItem2(s, itemID) =
s !1,t itemID;
?3,t item?

seller[4, t0 : BuyItem1(buyer1);
5, t0 : BuyItem1(buyer2)] |

buyer1[4, t0 : BuyItem2(seller, 123)] |
buyer2[5, t0 : BuyItem2(seller, 543)]

(a)

StreamIt1(c) =
c !1,t produce();
if (itemsLeft() > 0) then

c ⊕4,t More; 5, t : StreamIt1(c)
else c ⊕6,t Done

StreamIt2(p) =
?1,t x; val z = consume(x);
N {(4, t, More) ⇒ 5, t : StreamIt2(p),

(6, t, Done) ⇒ 0}
p1[7, t0 : StreamIt1(c)] |
p2[8, t0 : StreamIt1(c)] |
c[7, t0 : StreamIt2(p); 8, t0 : StreamIt2(p)]

(b)

Figure 11 Projected processes from Figure 7.

form N{(li, ti, Li) ⇒ Pi}i∈I . In models with C-Delay-Cond (c.f. Section 3.2.2) merging
must accommodate other kinds of processes.

Figure 11 shows networks projected from the choreographies of Figure 7. Notice the
choreographic procedures BuyItem and StreamIt are each split into two process procedures—
one for each role. Communications in the choreography are, as usual, projected into send and
receive instructions. Conditionals in the choreography are projected into an if-instruction at
one process and a branch-instruction at the other processes awaiting its decision.

Below we formulate the hallmark EPP Theorem, which states that a choreography C

and its projection JCK evolve in lock-step, up to the usual (⊒) relation [17]. The proof
technique is standard, although our result requires checking many more cases because of
the extra concurrency inherent in the model. The statement of the theorem itself is slightly
modified, restricting attention to only the well-formed networks. We say that a network N is
well-formed if the keys in each process are distinct, i.e. keys(P) is distinct for each p[P] in N ,
where keys(P) is defined in Figure 13. The restriction allows us to consider only networks
reachable from the initial configuration, ignoring ill-formed processes such as

p[N{(1, t0, L) ⇒ P1}; N{(1, t0, L) ⇒ P2}].

▶ Lemma 5.
1. JC[p.x 7→ v]Kp = JCKp[x 7→ v].
2. JC[p.x 7→ v]Kq = JCKq if p ̸= q.
3. If P ⊒ Q then P [x 7→ v] ⊒ Q[x 7→ v].
4. JI; CKq = JIKq # JCKq, where (#) is the concatenation operator on choreographies, if I is

not a selection at q. That is, I does not have the form l, t : p → q[L] or l, t : p⇝ q[L].
5. If P ⊒ JCKp then keys(P) ⊇ keysp(C).

▶ Theorem 6 (EPP Theorem). Let
〈

C, Σ, K
〉

be a well-formed configuration.
1. (Completeness) If

〈
C, Σ, K

〉 p−→
〈

C ′, Σ′, K ′ 〉 then
〈
JCK, Σ, K

〉 p−→
〈

N ′, Σ′, K ′ 〉
for some well-formed N ′ where N ′ ⊒ JC ′K.

D. Plyukhin, M. Peressotti, and F. Montesi XX:17

JC K =
⋃
i∈I

JXi(p, p.x) = CiK

JXi(p, p.x) = CiK = {Xi,j(p \ pj , Jp.xKpj) = JCiKpj | p = p1, . . . , pn, j ≤ n}

Jl, t : p.e → val q.x; CKr =

q !l,t e; JCKr if r = p
?l,t x; JCKr if r = q
JCKr otherwise

Jl, t : p⇝ q.x; CKr =

{
?l,t x; JCKr if r = q
JCKr otherwise

Jl, t : val p.x = e; CKr =

{
val x = JeKr; JCKr if r = p
JCKr otherwise

Jl, t : p → q[L]; CKr =

q ⊕l,t JeKr; JCKr if r = p
N{(l, t, L) ⇒ JCKr} if r = q
JCKr otherwise

Jl, t : p⇝ q[L]; CKr =

{
N{(l, t, L) ⇒ JCKr} if r = q
JCKr otherwise

Jl, t : if e@p then C1 else C2; CKr =

if JeKr then JC1Kr else JC2Kr; JCKr if r = p
JC1Kr ⊔ JC2Kr; JCKr if r ∈ pn(C1, C2) \ p
JCKr otherwise

Jl, t : Xi(p, a); CKr =

{
l, t : Xi,j(p \ pj , JaKpj); JCKpj if r = pj where p = p1, . . . , pn

JCKr otherwise

Jl, t : q. Xi(p, a) { C1 }; C2Kr =

l, t : Xi,j(p \ pj , JaKpj); JC2Kpj if r ∈ q and r = pj

JC1; C2Kr if r ∈ p \ q
JC2Kr otherwise

J{ C1 }; C2Kr = {JC1Kr}; JC2Kr

Ja1, . . . , anKr = Ja1Kr, . . . , JanKr

Jf(e1, . . . , en)Kr = f(Je1Kr, . . . , JenKr)

Jv@pKr =

{
v if r = p
⊥ otherwise

Jp.xKr =

{
x if r = p
⊥ otherwise

(N{(li, ti, Li) ⇒ Pi}i∈I) ⊔ (N{(lj , tj , Lj) ⇒ Pj}j∈J) = N{(lk, tk, Lk) ⇒ Pk}k∈I∪J

if {Li : i ∈ I} # {Lj : j ∈ J }

0 ⊒ 0
(P1; P2) ⊒ (Q1; Q2) if Pi ⊒ Qi for i = 1, 2
(if e then P1 else P2) ⊒ (if e then Q1 else Q2) if Pi ⊒ Qi for i = 1, 2
I1 ⊒ I2 if I1 = I2 or I1 = I1 ⊔ I2

Figure 12 Endpoint projection

XX:18 Ozone: Fully Out-of-Order Choreographies

keys(0) = ϵ

keys(I; P) = keys(I), keys(P)
keys(p !l,t e) = (l, t)
keys(?l,t x) = (l, t)
keys(val x = e) = ϵ

keys(p ⊕l,t L) = (l, t)

keys(N{(li, ti, Li) ⇒ Pi}i∈I) =
[(li, ti) | i ∈ I], [keys(Pi) | i ∈ I]

keys(if e then P1 else P2) = keys(P1), keys(P2)
keys(l, t : X(p, a)) = (l, t)
keys({P1}; P2) = keys(P1), keys(P2)

Figure 13 Endpoint projection, continued

2. (Soundness) If
〈

N, Σ, K
〉 r−→

〈
N ′, Σ′, K ′ 〉 for some well-formed N where N ⊒ JCK,

then
〈

C, Σ, K
〉 p−→

〈
C ′, Σ′, K ′ 〉 for some C ′ where N ′ ⊒ JC ′K.

Proof. Relegated to Appendix B. ◀

5 A Non-Blocking Communication API for Choral

Choral [9] is a state-of-the-art choreographic programming language based on Java. Because
Choral is designed to interoperate with Java, its syntax differs from that of our formal
model: for instance, data locations are lifted to the type level in Choral and communication
is expressed using first-class channels. However, the core semantics of Choral can still be
understood using simplified choreography models like ours.

Choral’s intended programming model consists of sequential processes that block to receive
messages. However, to improve performance programmers can use Java’s CompletableFuture
API to introduce intraprocess concurrency and out-of-order execution. This breaks the
programming model and introduces CIVs (cf. Section 2) that could cause crashes or silent
memory corruption. Motivated by our formal model, we developed Ozone: an API for Choral
programmers to safely mix choreographies with futures. As an added benefit, the Ozone
API allows Choral programmers to safely use unreliable transport protocols such as UDP
without causing CIVs or hangs. In this section, we introduce Choral and Ozone and we give
an illustrative evaluation to compare the two approaches.

5.1 Concurrent Messages
We introduce the Ozone API with an implementation of the choreographic procedure
from Figure 2. The implementation is shown in Figure 14, which defines a class called
ConcurrentSend parameterized by four roles (i.e. process parameters): KS, CS, S, and C.
In this class, the start method implements the procedure itself. As in our formal model,
the procedure is parameterized by distributed data: On line 3, parameter key is a String
located at KS; txt is a String located at CS; and client is a Client object at C, representing
the client’s user interface. The start procedure is also parameterized by session tokens,
which we introduced in Section 2, on line 4. The parameter Token@(KS, CS, S, C) tok is
syntactic sugar for the parameter list Token@KS tok_KS, ..., Token@C tok_C.1 The last

1 This syntactic sugar is provided for readability and is not currently supported by the Choral compiler.
We will also use syntactic sugar for lambda expressions and omit obvious type annotations later in this
section. Our actual implementation uses desugared versions of the syntax.

D. Plyukhin, M. Peressotti, and F. Montesi XX:19

1 public class ConcurrentSend@(KS, CS, S, C) {
2 public void start(
3 String@KS key, String@CS txt, Client@C client,
4 Token@(KS, CS, S, C) tok,
5 AsyncChannel@(KS, S) ch1, AsyncChannel@(CS, S) ch2, AsyncChannel@(S, C) ch3
6) {
7 // Services send data to the server.
8 CompletableFuture@S keyS = ch1.fcom(key, 1@(KS,S), tok);
9 CompletableFuture@S txtS = ch2.fcom(txt, 2@(CS,S), tok);

10

11 // Server forwards data to the client.
12 ch3.fcom(keyS, 3@(S,C), tok)
13 .thenAccept(client::decrypt);
14 ch3.fcom(txtS, 4@(S,C), tok)
15 .thenAccept(client::display);
16 }
17 }

Figure 14 An implementation of the choreography in Figure 2 using Choral and the Ozone API.

three parameters on line 5 are channels. In Choral, channels are used to communicate data
from one role to another. If ch is a channel of type Channel@(A,B)<T> and e is an expression
of type T@A, then the expression ch.com(e) is a communication that produces a value of
type T@B.

Our main contribution in the Ozone API is a custom channel AsyncChannel@(A,B)<T>
with a method fcom for safely communicating data with non-blocking semantics. The fcom
method is similar com, but with the following differences:

Whereas com takes one argument, fcom takes three: a payload, a line number, and a
session token. The latter two arguments form an integrity key, of which both the sender
and receiver have a copy.
When the receiver B executes a com instruction, its thread becomes blocked until the
value (of type T@B) has been delivered. In contrast, fcom creates a Java future (of type
CompletableFuture@B<T>) which is a placeholder at B that will hold a value of type T
once the message is delivered. Instead of blocking, fcom immediately returns that future
to the calling thread. The thread can then assign a callback to handle the message and
proceed with other useful work.

Lines 8 and 9 of Figure 14 show fcom being used to transport key and txt to the server S.
The expression 1@(KS, S) is sugar for the list 1@KS, 1@S and we assume the replicated value
tok is expanded into the list tok_KS, tok_S. Thus both sender and receiver pass integrity
keys as arguments to fcom.

Lines 12-15 of Figure 14 show how the server S and client C use the future values. On line
12, the server uses an overloaded version of fcom that takes CompletableFuture@S instead of
T@S. The method assigns to the future a callback, which forwards the result to the client once
the future has been completed. The result of fcom on line 12 is a CompletableFuture@C,
to which the client binds a callback on line 13: when the key from S finally arrives at C,
the client will proceed to invoke the method client.decrypt with the key as an argument.
Lines 14 and 15 do the same, but with the value of txt. As we will see below, the values of
key and txt can arrive at the client in any order, so the callbacks on lines 13 and 15 can
execute in any order—even in parallel.

XX:20 Ozone: Fully Out-of-Order Choreographies

1 public class ConcurrentSend_KS {
2 public void start(
3 String key, Token tok_KS,
4 AsyncChannel ch1
5) {
6 ch1.fcom(key, 1, tok_KS);
7 }
8 }
9 public class ConcurrentSend_S {

10 public void start(
11 Token tok_S, AsyncChannel ch1,
12 AsyncChannel ch2, AsyncChannel ch3
13) {
14 CompletableFuture keyS =
15 ch1.fcom(1, tok_S);
16 CompletableFuture txtS =
17 ch2.fcom(2, tok_S);
18

19 ch3.com(keyS, 3, tok_S);
20 ch3.com(txtS, 4, tok_S);
21 }
22 }

23 public class ConcurrentSend_CS {
24 public void start(
25 String txt, Token tok_CS,
26 AsyncChannel ch2
27) {
28 ch2.fcom(txt, 2, tok_CS);
29 }
30 }
31

32 public class ConcurrentSend_C {
33 public void start(
34 Client client, Token tok_C,
35 AsyncChannel ch3
36) {
37 ch3.fcom(3, tok_C)
38 .thenAccept(client::decrypt);
39 ch3.fcom(4, tok_C)
40 .thenAccept(client::display);
41 }
42 }

Figure 15 Endpoint projection of Figure 14.

5.1.1 Endpoint projection
By running the Choral compiler, ConcurrentSend@(KS,CS,S,C) is projected to generate four
Java classes, shown in Figure 15. Each class implements the behavior of its corresponding
role. For example, ConcurrentSend_KS implements the behavior of KS. Its start method is
parameterized by: key, which corresponds to the key in Figure 14; tok_KS, the copy of the
token tok belonging to KS; and ch1, a channel endpoint that connects KS to S. Following the
reasoning in Figure 12, these behaviors will not exhibit deadlocks or communication integrity
errors when composed.

Let us see how integrity keys prevent CIVs in Figure 15. Notice that the Choral instruction
CompletableFuture@S keyS = ch1.fcom(key, 1@(KS,S), tok); on line 8 of Figure 14 is
projected into two instructions:

ch1.fcom(key, 1, tok_KS) at the sender KS; and
CompletableFuture keyS = ch1.fcom(1, tok_S) at the receiver S.

The former instruction is parameterized by a payload and an integrity key and produces
nothing. The latter instruction is parameterized only by an integrity key (with no payload)
and produces a future. When KS sends key to S, it combines the payload with integrity key
(1, tok_KS). Dually, S creates a future that will only be completed when a message with
the integrity key (1, tok_S) is received. Since tok_KS and tok_S have the same value, the
send- and receive-operations are guaranteed to match.

On lines 14-17 of Figure 15, the server S sets listeners for key and txt. On lines 19-20, S
schedules the values to be forwarded to C; notice that even with FIFO channels, key and
txt may arrive in any order. Consequently, S may forward their values to C in any order.
On lines 37-40 of Figure 15, the client creates futures to hold the values of key and txt and
sets callbacks to be invoked when the values arrive. Here we see the importance of integrity
keys: the client uses (3, tok_C) and (4, tok_C) to disambiguate the key message from
the txt message. Without integrity keys, mixing Choral choreographies with Java Futures

D. Plyukhin, M. Peressotti, and F. Montesi XX:21

1 public class ConcurrentSend2@(KS, CS, S, C) {
2 public void start(...) {
3 ...
4 ch3.fcom(keyS, 3@(S,C), tok, 1000@C) // time out after 1000 ms
5 .exceptionally(_ -> null@C) // default to null on timeout
6 .thenAccept(client::decrypt);
7 ch3.fcom(txtS, 4@(S,C), tok, 1000@C) // time out after 1000 ms
8 .exceptionally(_ -> "Server timed out"@C) // default content
9 .thenAccept(client::display);

10 }
11 }

Figure 16 A Choral choreography using the Ozone API to time out when messages take more
than a second to arrive.

would be unsafe. As shown in Section 4.3, our solution is correct even when the underlying
transport protocol can deliver messages out of order.

5.2 Handling dropped messages

Section 2 introduced communication integrity violations (CIVs). One source of CIVs not
considered in that section is dropped messages: Figure 16 shows how, if messages are not
tagged with unique integrity keys, a dropped message can cause silent data corruption.
Because of this scenario, it is unsafe for ordinary Choral programs to simply “time out” when
a message has taken too long to arrive. A complete treatment of dropped messages in O3
would require a significantly more complex model [18]. However, we argue informally that
the Ozone API allows programmers to handle dropped messages safely and idiomatically.

Figure 16 shows a modified snippet of ConcurrentSend that uses yet another overloaded
version of fcom. In this version of the method, the receiver process (in this case C) passes
a non-negative value as a timeout (in this case 1000 milliseconds). When the timeout
elapses, a thread on the receiver process will complete the future exceptionally, triggering the
.exceptionally callback (lines 5 and 8) to complete the future with a default value. For
example, on lines 4-6, if the message from the server is not received within one second, the
client will invoke decrypt(null). Crucially, the callback on lines 6 will only ever be invoked
once: If the message arrives after the future timed out, the callback will not be triggered.

One complication of our approach is garbage collection. Recall that in an asynchronous
distributed computing model, messages can take any amount of time to be transmitted from
sender to receiver. Hence it is theoretically always possible for a message to be delivered
after its future has timed out. If the future was immediately garbage collected after timing
out, this message would appear “fresh”: the receiver would save the message indefinitely,
not knowing that its payload is no longer needed, and create a memory leak. In theory, this
means the receiver can never garbage collect futures that have timed out—this creates yet
another memory leak. However, in practice it may suffice to assume that all messages arrive
within a certain deadline T (say, one minute) or not at all. This heuristic allows timed-out
futures to be garbage collected after T has elapsed, while avoiding memory leaks in most
situations.

XX:22 Ozone: Fully Out-of-Order Choreographies

1 public class ConcurrentSend2_C {
2 public void start(...) {
3 ch3.com(3, tok)
4 .exceptionally(_ -> null)
5 .thenAccept(client::decrypt);
6 ch3.com(4, tok)
7 .exceptionally(_ -> "Server timed out")
8 .thenAccept(client::display);
9 }

10 }

Figure 17 Endpoint projection of Figure 16 (representative example).

(a) Concurrent producers (b) Concurrent forwarders

Figure 18 Microbenchmarks.

5.3 Procedure calls
Section 5.1 showed how the line numbers in an integrity key could prevent CIVs. We now
briefly show how the tokens in an integrity key prevent interprocedural CIVs. Figure 19
depicts a choreography that invokes two instances of ConcurrentSend2: the first instance
with client C1, and the second instance with client C2. On lines 12 and 16, the roles all
compute fresh tokens for each procedure they’re involved in, like in our formal model;
the syntax tok.nextToken(0@(KS,CS,S,C1)) is sugar for tok_KS.nextToken(0@KS),
..., tok_C1.nextToken(0@C1), and the method t.nextToken(l) implements the func-
tion nextToken(l, t). These fresh tokens ensure that, even if messages from KS to S are
delivered out of order (as might occur in the UDP transport protocol) there is no chance
that messages from the first procedure invocation will be confused for messages from the
second invocation.

5.4 Evaluation
We evaluated Ozone using two microbenchmarks.

The first microbenchmark is a modified version of Figure 1 from the Introduction. We
implemented two versions of the microbenchmark: one using Ozone, and the other using

D. Plyukhin, M. Peressotti, and F. Montesi XX:23

1 public class ConcurrentClients@(KS, CS, S, C1, C2) {
2 public void start(
3 AsyncChannel@(KS, S) ch1, AsyncChannel@(CS, S) ch2,
4 AsyncChannel@(S, C1) ch3, AsyncChannel@(S, C2) ch4,
5 KeyService@KS keyService, ContentService@CS contentService,
6 Client@C1 client1, String@(KS, CS) clientID1,
7 Client@C2 client2, String@(KS, CS) clientID2,
8 Token@(KS, CS, S, C1, C2) tok
9) {

10 (new ConcurrentSend2()).start(ch1, ch2, ch3,
11 keyService.getKey(clientID1), contentService.getContent(clientID1),
12 client1, tok.nextToken(0@(KS,CS,S,C1)));
13

14 (new ConcurrentSend2()).start(ch1, ch2, ch4,
15 keyService.getKey(clientID2), contentService.getContent(clientID2),
16 client2, tok.nextToken(1@(KS,CS,S,C2)));
17 }
18 }

Figure 19 A Choral choreography invoking ConcurrentSend2.

1 public class ConcurrentClients_KS {
2 public void start(...) {
3 (new ConcurrentSend2_KS()).start(ch1,
4 keyService.getKey(clientID1),
5 tok.next(0));
6

7 (new ConcurrentSend2_KS()).start(ch1,
8 keyService.getKey(clientID2),
9 tok.next(1));

10 }
11 }

12 public class ConcurrentClients_S {
13 public void start(...) {
14 (new ConcurrentSend2_S()).start(
15 ch1, ch2, ch3, tok.next(0));
16

17 (new ConcurrentSend2_S()).start(
18 ch1, ch2, ch3, tok.next(1));
19 }
20 }

Figure 20 Endpoint projection of Figure 19 (representative examples).

Choral’s existing API. To measure the effect of network latency, we used network emulation
to add 2 milliseconds of latency and 2 milliseconds of normally-distributed jitter. To simulate
computation, the server compute() function sleeps for 5 milliseconds. Figure 18a shows
the end-to-end latency experienced by the two workers in each implementation. With the
ordinary Choral API, Worker 1 (p1 in Figure 1) consistently outperforms Worker 2 (p2)
because the server always prioritizes the first worker. With the Ozone API, requests from the
two workers are handled fairly, resulting in lower latency for Worker 2. Worker 1 experiences
slightly higher latency due to the cases where Worker 2’s message arrives while Worker 1’s
message is still being processed.

The second microbenchmark is a modified version of Figure 2 from Section 2. As before,
we compared an Ozone implementation against an ordinary Choral implementation and we
inserted delays to simulate a system under load. To measure time accurately, every iteration
of the choreography is initiated and terminated by the server. Figure 18b shows the time,
measured by the server, for the client (c in Figure 2) to acknowledge receipt of key and txt.
With the Choral API, the average latency for txt is higher than key because txt cannot be
forwarded until key is received. With the Ozone API, the two values can be forwarded out
of order and therefore have identical latency graphs.

XX:24 Ozone: Fully Out-of-Order Choreographies

6 Related Work

In early choreographic languages, the sequencing operator I; C had strict sequential semantics;
concurrency could only be introduced via an explicit parallelism operator C || C ′ [20, 13, 4].
Explicit parallelism was later replaced by a relaxed sequencing operator I; C that would allow
instructions in C to be evaluated before I under certain conditions [5]. Our present work
makes the sequencing operator even more relaxed, allowing all instructions to be executed
out of order, up to data- and control-dependency.

Our present work is closely related to choreographic multicoms: sets of communications
that can be executed out of order, up to data dependency [8]. However, multicoms do not
allow computation to be performed out of order, as in Figure 1c. Multicoms therefore do not
need to address the communication integrity problem, which we focus on in this work.

To the best of our knowledge, our choreography model is the first to allow non-FIFO
communication between processes. We have also observed that the Ozone API can recover
from dropped messages by using timeouts, although we do not formalize this. Choreographies
with unreliable communication were formalized in the RC model [18]. RC and O3 both
attach tags to messages to prevent CIVs but the former only uses dynamic counters, which
are insufficient when processes can execute out of order. On the other hand, RC allows
processes to test if sending a message succeeded, which our model does not.

In terms of expressivity, there is significant overlap between our model and nondetermin-
istic choreographies [17], which use an explicit choreographic choice operator C +p C ′. Non-
deterministic choreographies can implement the execution in Figure 1c with:buyer1.id → val seller.id1;

buyer2.id → val seller.id2;
. . .

+seller

buyer2.id → val seller.id2;
buyer1.id → val seller.id1;

. . .

Figure 2 can also be expressed with nondeterministic choreographies:

1 : cs.getText() → val s.txt;
2 : s → c[TxtFirst];
3 : s.txt → val c.txt;
4 : c.display(c.txt);
5 : ks.getKey() → val s.key;
6 : s.key → val c.key;
7 : c.decrypt(c.key)

+s

8 : ks.getKey() → val s.key;
9 : s → c[KeyFirst];

10 : s.key → val c.key;
11 : c.decrypt(c.key);
12 : cs.getText() → val s.txt;
13 : s.txt → val c.txt;
13 : c.display(c.txt)

Compared to O3, these implementations are much larger and use selections instead of integrity
keys to prevent CIVs. Nondeterministic choreographies are also sensitive to instruction
reordering: the seemingly innocuous refactor of moving line 12 up to line 10 would completely
destroy the extra concurrency of receiving messages out of order. Thus, our approach is both
more robust and much simpler for the programmer.

On the other hand, nondeterministic choreographies can express some nondeterministic
programs that our model cannot. For example, choreographic choice can assign different
variable names to messages, according to their arrival order. Doing so is a key ingredient in
some distributed algorithms, such as Paxos [12]. Other choreographic languages that include
nondeterministic operators include those presented in [13] and [3], but they do not support
computation (a requirement for choreographic programming) or recursion.

Previous works investigated different ways of modeling asynchronous communication in
choreographic languages by making send actions non-blocking [5, 11, 6, 19, 10, 17], but none

D. Plyukhin, M. Peressotti, and F. Montesi XX:25

of them considered non-blocking reception. Thus, they are not expressive enough to capture
the behaviors that we are interested in here, like the one in Figure 1c.

7 Conclusion

We investigated a model for choreographic programming in which processes can execute out of
order and messages can be reordered by the network. These features improve the performance
of choreographies, without requiring programmers to rewrite their code, by allowing processes
to better overlap communication with computation. However, compilers that use these
features must have mechanisms in place to prevent communication integrity violations (CIVs).
We presented a scheme to prevent CIVs by attaching dynamically-computed integrity keys
to each message. Our results enlarge the class of behaviors that can be captured with
choreographic programming without renouncing its correctness guarantees.

An important aspect for future work is confluence. Statements can read and write to
the local state of a process, so executing statements out of order can cause nondeterminism.
Sometimes this nondeterminism is desirable (for instance, to implement consensus algorithms)
but sometimes the nondeterminism is unexpected and causes bugs. In our formal model,
nondeterminism could be controlled manually by allowing programmers to insert synthetic
data dependencies. For example, below we use a hypothetical keyword barrierp to prevent a
file from being closed before it has been written-to:

val p.file = open(“foo.txt”); p.write(p.file, “hello”); barrierp; p.close(p.file)

More generally, future work could develop a static analysis that identifies when two statements
are not safe to execute out of order.

Another opportunity for static analysis to improve on our work concerns the size of session
tokens. We chose to represent session tokens as lists of integers, which allowed processes to
compute new session tokens without coordinating with one another. However, this encoding
means the size of a token is proportional to the depth of the call stack—a problem for
tail-recursive programs such as StreamIt in Figure 7b. Fortunately, it is easy to see that
communication integrity in StreamIt could be achieved in constant space by representing the
token as a single integer, incremented upon each recursive call—assuming that processes do
not participate in multiple instances of the choreography concurrently. With static analysis,
a compiler could identify such programs and use a more efficient session token representation.

References
1 Gul Agha. ACTORS - a Model of Concurrent Computation in Distributed Systems. MIT Press

Series in Artificial Intelligence. MIT Press, Cambridge, MA, 1990.
2 Henry C. Baker and Carl Hewitt. The incremental garbage collection of processes. ACM

SIGART Bulletin, (64):55–59, August 1977. doi:10.1145/872736.806932.
3 Mario Bravetti, Ivan Lanese, and Gianluigi Zavattaro. Contract-driven implementation of

choreographies. In Christos Kaklamanis and Flemming Nielson, editors, Trustworthy Global
Computing, 4th International Symposium, TGC 2008, Barcelona, Spain, November 3-4, 2008,
Revised Selected Papers, volume 5474 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2008. doi:10.1007/978-3-642-00945-7_1.

4 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-Centered
Programming for Web Services. ACM Transactions on Programming Languages and Systems,
34(2):1–78, June 2012. doi:10.1145/2220365.2220367.

https://doi.org/10.1145/872736.806932
https://doi.org/10.1007/978-3-642-00945-7_1
https://doi.org/10.1145/2220365.2220367

XX:26 Ozone: Fully Out-of-Order Choreographies

5 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 263–274. ACM, 2013. doi:10.1145/2429069.2429101.

6 Luís Cruz-Filipe and Fabrizio Montesi. On Asynchrony and Choreographies. Electronic
Proceedings in Theoretical Computer Science, 261:76–90, November 2017. doi:10.4204/EPTCS.
261.8.

7 Luís Cruz-Filipe and Fabrizio Montesi. Procedural choreographic programming. In Ahmed
Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects, Components,
and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of
the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec
2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, volume 10321 of Lecture Notes
in Computer Science, pages 92–107. Springer, 2017. doi:10.1007/978-3-319-60225-7_7.

8 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Communications in choreographies,
revisited. In Hisham M. Haddad, Roger L. Wainwright, and Richard Chbeir, editors, Proceedings
of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April
09-13, 2018, pages 1248–1255. ACM, 2018. doi:10.1145/3167132.3167267.

9 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choral: Object-oriented choreo-
graphic programming. ACM Tranactions on Programming Languages and Systems, November
2023. doi:10.1145/3632398.

10 Andrew K. Hirsch and Deepak Garg. Pirouette: Higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1–27, 2022. doi:10.1145/3498684.

11 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

12 Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

13 Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging the gap
between interaction- and process-oriented choreographies. In Antonio Cerone and Stefan
Gruner, editors, Sixth IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2008, Cape Town, South Africa, 10-14 November 2008, pages 323–332. IEEE
Computer Society, 2008. doi:10.1109/SEFM.2008.11.

14 Lovro Lugovic and Fabrizio Montesi. Real-world choreographic programming: An experience
report. CoRR, abs/2303.03983, 2023. URL: https://doi.org/10.48550/arXiv.2303.03983,
arXiv:2303.03983, doi:10.48550/ARXIV.2303.03983.

15 Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. Math-
ematical Structures in Computer Science, 14(5):715–767, October 2004. doi:10.1017/
S0960129504004323.

16 Fabrizio Montesi. Choreographic Programming. Ph.D. thesis, IT University of Copenhagen,
2013. https://www.fabriziomontesi.com/files/choreographic-programming.pdf.

17 Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, Cambridge,
2023.

18 Fabrizio Montesi and Marco Peressotti. Choreographies meet communication failures. CoRR,
abs/1712.05465, 2017. URL: http://arxiv.org/abs/1712.05465, arXiv:1712.05465.

19 Johannes Aman Pohjola, Alejandro Gómez-Londoño, James Shaker, and Michael Norrish.
Kalas: A Verified, End-To-End Compiler for a Choreographic Language. In June Andronick
and Leonardo de Moura, editors, 13th International Conference on Interactive Theorem
Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 27:1–27:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.27.

20 Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoretical foundation
of choreography. In Proceedings of the 16th International Conference on World Wide Web,
pages 973–982, Banff Alberta Canada, May 2007. ACM. doi:10.1145/1242572.1242704.

https://doi.org/10.1145/2429069.2429101
https://doi.org/10.4204/EPTCS.261.8
https://doi.org/10.4204/EPTCS.261.8
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1145/3632398
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.48550/arXiv.2303.03983
http://arxiv.org/abs/2303.03983
https://doi.org/10.48550/ARXIV.2303.03983
https://doi.org/10.1017/S0960129504004323
https://doi.org/10.1017/S0960129504004323
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
http://arxiv.org/abs/1712.05465
http://arxiv.org/abs/1712.05465
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.1145/1242572.1242704

D. Plyukhin, M. Peressotti, and F. Montesi XX:27

21 Michael Scharf and Sebastian Kiesel. Head-of-line Blocking in TCP and SCTP: Analysis
and Measurements. In Proceedings of the Global Telecommunications Conference, 2006.
GLOBECOM ’06, San Francisco, CA, USA, 27 November - 1 December 2006. IEEE, 2006.
doi:10.1109/GLOCOM.2006.333.

22 Gan Shen, Shun Kashiwa, and Lindsey Kuper. Haschor: Functional choreographic programming
for all (functional pearl). Proc. ACM Program. Lang., 7(ICFP):541–565, 2023. doi:10.1145/
3607849.

https://doi.org/10.1109/GLOCOM.2006.333
https://doi.org/10.1145/3607849
https://doi.org/10.1145/3607849

XX:28 Ozone: Fully Out-of-Order Choreographies

A Well-formedness

fv(0) = ∅
fv({ C }; C′) = fv(C) ∪ fv(C′)
fv(l, t : p.e → val q.x; C′) = fv(e) ∪ fv(C′) \ {q.x}
fv(l, t : val p.x = e; C′) = fv(e) ∪ fv(C′) \ {p.x}
fv(l, t : if e@p then C1 else C2; C′) =

fv(e) ∪ fv(C1) ∪ fv(C2) ∪ fv(C′)
fv(l, t : X(p, a); C′) = {p.x | p.x ∈ a} ∪ fv(C′)
fv(l, t : p. X(q, a) { C }) = {p.x | p.x ∈ a} ∪ fv(C′)
fv(I; C) = fv(C) otherwise.

pn(0) = ∅
pn(I; C) = pn(I) ∪ pn(C)
pn({ C }) = pn(C)
pn(l, t : p.e → val q.x) = {p, q}
pn(l, t : p⇝ q.x) = {q}
pn(l, t : p → q[L]) = {p, q}
pn(l, t : p⇝ q[L]) = {q}
pn(l, t : val p.x = e) = {p}
pn(l, t : if e@p then C1 else C2) =

{p} ∪ pn(C1) ∪ pn(C2)
pn(l, t : X(p, a)) = p
pn(l, t : q. X(p, a) { C }) = p
pn(v@p) = {p}
pn(p.x) = {p}

stats(0) = ϵ

stats(I; C) = stats(I), stats(C)
stats({ C }) = stats(C)
stats(l, t : if e@q then C1 else C2) = (l, t : if e@q then C1 else C2), stats(C1), stats(C2)
stats(l, t : q. X(p, a) { C }) = (l, t : q. X(p, a) { C }), stats(C)
stats(l, t : η) = (l, t : η) otherwise
stats(C) = [stats(C) | p ∈ pn(C)]
keys(C) = [(l, t) | (l, t : η) ∈ stats(C)]
keysq(C) = [(l, t) | (l, t : p.e → val q.x) ∈ stats(C)], [(l, t) | (l, t : p⇝ q.x) ∈ stats(C)]

pn(C) ⊆ dom(Σ) pn(C) ⊆ dom(K) fv(C) = ∅
keys(C) distinct ∀(l, t) ∈ keys(C), t ̸= t

∀I1, I2 ∈ stats(C), if key(I1) ≺ key(I2) then I1 = l1, t1 : q.X(p, a){C′} and I2 ∈ stats(C′)
(X(p, p.x) = C)✓ for each (X(p, p.x) = C) ∈ C ⟨I, K⟩✓ for each I ∈ stats(C)

C-WF⟨C , C, Σ, K⟩✓

p distinct p.x distinct pn(C) ⊆ p
∀p.x ∈ p.x, p ∈ p ⟨I, K⟩✓ for each I ∈ stats(C)

C contains no runtime terms keys(C) distinct ∀(l, t) ∈ keys(C), t = t
C-WF-Def

X(p, p.x) = C✓

∀v, (l, ti, v) /∈ K(q)
C-WF-Send⟨l, ti : p.e → val q.x, K⟩✓

∃!v, (l, ti, v) ∈ K(q)
C-WF-Recv⟨l, ti : p⇝ q.x, K⟩✓

(l, ti, L) /∈ K(q)
C-WF-Select⟨l, ti : p → q[L], K⟩✓

D. Plyukhin, M. Peressotti, and F. Montesi XX:29

(l, ti, L) ∈ K(q)
C-WF-OnSelect⟨l, ti : p⇝ q[L], K⟩✓

C-WF-Compute⟨l, ti : val p.x = e, K⟩✓

C1, C2 contain no runtime terms
C-WF-If⟨l, ti : if e@p then C1 else C2, K⟩✓

C-WF-Block⟨{ C1 }, K⟩✓

(X(q1, . . . , qn, q1.x1, . . . , qm.xm) = C) ∈ C

p1, . . . , pn distinct ∀i ≤ n, j ≤ m, if pn(aj) = pi then qj = qi
C-WF-Call⟨l, ti : X(p1, . . . , pn, a1, . . . , am), K⟩✓

⟨l, ti : X(q, a), K⟩✓ (X(q1, . . . , qn, q1.x1, . . . , qm.xm) = C′) ∈ C

{r1, . . . , rk} ⊆ {p1, . . . , pn} ∀i ≤ k, j ≤ n if ri = pj then JCKri = JC′Kqj

C-WF-Calling⟨l, ti : r1, . . . , rk. X(p1, . . . , pn, a1, . . . , am) { C }, K⟩✓

B EPP Theorem
▶ Theorem 6 (EPP Theorem). Let

〈
C, Σ, K

〉
be a well-formed configuration.

1. (Completeness) If
〈

C, Σ, K
〉 p−→

〈
C′, Σ′, K′ 〉 then

〈
JCK, Σ, K

〉 p−→
〈

N ′, Σ′, K′ 〉 for
some well-formed N ′ where N ′ ⊒ JC′K.

2. (Soundness) If
〈

N, Σ, K
〉 r−→

〈
N ′, Σ′, K′ 〉 for some well-formed N where N ⊒ JCK, then〈

C, Σ, K
〉 p−→

〈
C′, Σ′, K′ 〉 for some C′ where N ′ ⊒ JC′K.

Completeness, sketch. The proof proceeds by induction on the derivation D that produces
〈

C, Σ, K
〉 p−→〈

C′, Σ′, K′ 〉. In most cases it suffices to let N ′ = JC′K. In the case of C-If, we find a network N ′

such that N ′ ̸= JC′K but N ′ ⊒ JC′K.
Because O3 uses scoped variables, the proof requires the substitution lemmas in Lemma 5. The
C-Delay rule is also slightly novel: if I is not a selection at q then completeness requires Lemma 5
(4) and an application of P-Delay. ◀

Soundness, sketch. The proof proceeds by induction on the structure of the choreography C. The
base case, C ≡ 0, is trivial. Otherwise, C ≡ (I; C′) and there is a distinct case for each instruction
I. The key novelty in this proof is handling P-Delay and the frequent use of well-formedness to
guarantee that K does not contain certain messages. We consider two representative cases.

Case 1. Let C = l, ti : p.e → val q.x; C′′. Then, by the definition of EPP, N has the form

N = p[q !l,ti e; P] | q[?l,ti x; Q] | (N \ p, q).

There are three sub-cases.

Case 1.1. Assume r = p. In standard choreography models, this case can only proceed by P-Send.
In our model, it could also proceed by P-Delay. Hence there are two sub-cases:
Case 1.1.1. (P-Send) Satisfied by letting C′ = l, ti : p⇝ q.x; C′′.
Case 1.1.2. (P-Delay) By the induction hypothesis, there exists C′′′ such that N ′′′ ⊒ JC′′′K. The
case is then satisfied by letting C′ = l, ti : p.e → val q.x; C′′′.

Case 1.2. Assume r = q. Again, we consider the two rules by which the case could proceed:
Case 1.2.1. (P-Recv) We must show that it is impossible for q to receive a message in

〈
N, Σ, K

〉
.

Since C is well-formed, it cannot contain a communication-in-progress term l, ti : p⇝ q.x with the
integrity key (l, ti). Hence M does not contain any messages of the form (l, ti, v).

XX:30 Ozone: Fully Out-of-Order Choreographies

Case 1.2.2. (P-Delay) This case proceeds similarly to the previous P-Delay case.

Case 1.3. Assume r /∈ {p, q}. Follows from the induction hypothesis, as in Case 1.1.2.

Case 2. Let C = l, ti : if e@p then C1 else C2; C3. Then N has the form

N = p[if e then P1 else P2; P3] |

(∏
qi∈q

qi[N{(lj , tj , Lj) ⇒ Qi,j}j∈I ; Qi]

)
| (N \ p, q).

Consider the case where r = qi ∈ q and
〈

N, Σ, K
〉 q−→

〈
N ′, Σ′, K′ 〉 proceeds by P-OnSelect.

That is,
qi[N{(lj , tj , Lj) ⇒ Qi,j}j∈I ; Qi]

qi−−→ qi[Qi,k; Qi]
for some k ∈ J . We must show that this case is impossible. Notice that the step can only occur
if (l, tk, Lk) ∈ K(qi). Such a message can only occur if l, tk : p ⇝ q[Lk] occurs in C1, C2, or C3.
Because C is well-formed, C1 and C2 do not contain runtime terms; hence the term could only occur
in C3. But then Qi would contain a branch (l, tk, Lk) ⇒ Q′ and keys(N |qi) would not be distinct; a
contradiction of Lemma 5 (5). ◀

	1 Introduction
	2 Overview
	2.1 Intraprocedural Integrity
	2.2 Procedural Choreographies
	2.2.1 Interprocedural Integrity

	3 Choreography Model
	3.1 Syntax
	3.2 Semantics
	3.2.1 Transition rules
	3.2.2 Discussion

	3.3 Properties

	4 Process Model
	4.1 Syntax
	4.2 Semantics
	4.3 Endpoint Projection

	5 A Non-Blocking Communication API for Choral
	5.1 Concurrent Messages
	5.1.1 Endpoint projection

	5.2 Handling dropped messages
	5.3 Procedure calls
	5.4 Evaluation

	6 Related Work
	7 Conclusion
	A Well-formedness
	B EPP Theorem

