
A Model of Evolvable Components�

Fabrizio Montesi and Davide Sangiorgi

Focus Research Team, Inria/University of Bologna

Abstract. We present a model of components following the process cal-
culus approach. The main problem was isolating primitives that capture
the relevant concepts of component-based systems. The key features of
the calculus are: a hierarchical structure of components; a prominent
role to input/output interfaces; the possibility of stopping and capturing
components; a mechanism of channel interactions, orthogonal to the ac-
tivity of components, which may produce tunneling effects that bypass
the component hierarchy.

We present the calculus, explain the syntax, formulate its operational
semantics and a basic type system. We show a number of examples of
use of the calculus, with particular emphasis to common evolvability
patterns for components.

1 Introduction

Complex software systems, in particular distributed systems, are often being
thought and designed as structured composition of computational units referred
to as components. These components are supposed to interact with each other
following some predefined patterns or protocols. The notion of component is
widely used in industry but there is no single answer to the question of what
is, exactly, a software component. In industry, the following informal definition,
from Szyperski et al. [SGM02], is often used: “A software component is a unit of
composition with contractually specified interfaces and explicit context depen-
dencies. An interface is a set of named operations that can be invoked by clients.
Context dependencies are specifications of what the deployment environment
needs to provide, such that the components can function.” Key ingredients of a
component are therefore their input and output interfaces. Moreover, to promote
composition, the structure of a component system is often hierarchical.

In this paper we study models of components following the process calcu-
lus approach. Process calculi have been successfully employed in the modeling,
analysis, and verification of concurrent and distributed systems. In recent years,
proposals of calculi for distributed systems have been put forward with explicit
notions of location, or site. While locations may be suggestive components, the
differences between the two concepts remain noticeable. In particular locations
do not have explicit input and output interfaces.

An important issue in complex software system is evolvability. The needs and
the requirements on a system change over time. This may happen because the
� Work supported by the EU project “Hats”.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 153–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



154 F. Montesi and D. Sangiorgi

original specification was incomplete or ambiguous, or because new needs arise
that had not been predicted at design time. As designing and deploying a system
is costly, it is important that the system be capable of adapting itself to changes in
the surrounding environment. Evolvability was another major target in this work.

The challenge in the formalisation of a calculus of components was to isolate
key aspects of component-based systems and reflect these into specific constructs.
The main features that we have decided to retain are: a hierarchical structure
of components; a prominent role to input/output interfaces; the possibility of
stopping and capturing components to produce dynamicity; a mechanism of
channel interactions, orthogonal to the activity of components, with tunneling
effects that bypass the component hierarchy. Interactions along channels may
be triggered when a method in the input interface of a component is invoked.
Channels can be used to implement sessions of interactions between components.

Components are stopped by means of a construct, extract, reminiscent of the
passivation operator of calculi such as Kell [SS05] and Homer [HGB04, BHG06].
The extract operator is the only one that permits modifications of the structure
of components, which is otherwise static.

In the paper we first present the calculus and explain the syntax. Then we
formulate its operational semantics. We found it convenient to formulate the
component activity by means of a reduction semantics, and channel interaction
by means of a labelled semantics. We equip the calculus with a basic type system
to avoid run-time errors. A number of examples of use of the calculus are pre-
sented. In particular, we show how various patterns of evolvability of components
are captured.

2 Syntax

Table 1 presents the syntax of the calculus, MECo (Model of Evolvable Compo-
nents). Components are the unit of composition. Each component has: an identity;
a set of input ports that represent the functionalities that the component offers to
the environment; a set of output ports that specify the dependencies of the com-
ponents, that is, what the deployment environment has to provide for the compo-
nents to function; an internal structure, itself containing components (which gives
the hierarchical structure). Thus the general form of a component is

a {i∈1..h mi = (x). Pi} [ P ]{ j∈1..k nj �→ fj } , (1)

where: a is the component identity; mi is an input port and mi = (x). Pi the
method implementing the port; nj is an output port and nj �→ fj a link specifying
the binding for the port; P is the internal structure of the component. Both the
mi’s and the nj ’s should all be distinct. The method bodies Pi may refer to
inner components (i.e., components inside P ) as well as to the output ports
nj ’s. An output port of the component may be bound to the input port of a
sibling component or to an output port of the enclosing component. The set of
input ports form the input interface; the set of output ports form the output
interface.



A Model of Evolvable Components 155

Table 1. The syntax of the calculus

Input/output ports m,n
Unit value �

Names a, b, . . . , p, q . . . , r, s . . . , x, y

Method set I ::= m = (x).P, I method

| ∅ empty list

Link set O ::= m �→ f, O link

| ∅ empty list

Skeleton K ::= { I }[ P ]

Values v ::= p | K | �

Process P ::= P | P parallel comp.

| νp P restriction

| v w{O } component

| extract v as x in P passivation

| f v call

| v w.P channel output

| v(x).P channel input

| 0 nil

Call subject f ::= v m method selection

| m port

The activity of components is local: when the body of the method of a compo-
nent is executed, calls may only be issued to inner components or to components
that are reachable via output port bindings. In particular, the environment sur-
rounding a component a may call a but not components internal to a. Such com-
ponents may only be reached if some input port of a forwards messages to them.

Other than through component methods, interactions can take place through
channels. When a component calls another one, the first may pass a private
channel to the second; this channel may be used for further interactions, thus
creating sessions of interaction between the two components (other components
may actually get involved, if the channel is sent around). Creation and commu-
nication of channels may have tunneling effects: for instance a component a may
call a component b and this may forward the message to some inner component
c. If the message contains a channel, then a and c may use the channel for direct
interactions.

In a link m �→ f , the binding f for the output port m can either be of the form
a n, meaning that m is bound to the input port n of the sibling component a, or
n, meaning that m is bound to the output port n of the enclosing component.

On the terminology, we should stress that an input interface refers to the
signature of the methods of a components, excluding their actual implementation
as a method set. Similarly for output interface with respect to link sets.



156 F. Montesi and D. Sangiorgi

In (1), the body [P ] of the component together with its set of methods form
its skeleton. The extract construct permits to stop a component and extract its
skeleton. This skeleton may then be manipulated, as a first-class value. Skeleton
extraction is a form of passivation as found in calculi such as Kell and Homer,
and is the basis for expressing modifications of components and thus modelling
evolvability.

The set of values includes, besides skeletons, also component identities, chan-
nels, and the unit value � (other basic values such as integers and booleans could
be added). In contrast, input and output ports are not values; this because the
ports associated to a component are specified by the type of the component.
Similarly, method and link sets are not values; this is both for simplicity in the
calculus, and because it is unclear how useful this extensions would be (given
that the calculus is typed). We discuss types in the next section.

The syntax does not distinguish between channels and component identities:
they are all names. The distinction will be made by the typing. However, in
examples and explanations, a, b will be component identities and r, s channels.
Similarly, as in the π-calculus, we do not have a separate syntactic class for
variables. In Table 1, in the definitions of method, channel input, and extract,
variable x is bound in P . Similarly, a restriction νpP binds the free occurrences
of p in P . The definitions of free (fn) and bound name (bn) of a term are as
expected. We use i, j, h, k for integers.

We require that a method p = (x). P has no free channels: the only channels
that the method can use are those provided by the callee, and those that are
created in P itself. This constraint will be enforced by the type system.

The forwarding action of output ports makes calls to components naturally
asynchronous; hence the call construct, f v, has no continuation. In contrast,
channel interaction could be asynchronous or synchronous; we have preferred it
synchronous because it fits well with the use of channels for session interactions.

3 Operational Semantics

The operational meaning of a process calculus is usually explained either by
means of a reduction semantics, or by means of a labelled transition semantics.
A reduction semantics uses the auxiliary relation of structural congruence, with
which the participants of an interaction are brought into contiguous positions.
This makes it possible to express interaction by means of simple term-rewriting
rules. In a labelled transition semantics, by contrast, the rules are given in a
purely SOS style, without a prior rewriting of the structure of terms. The par-
ticipants of an interaction therefore need not be contiguous. This makes it nec-
essary to define also transitions that describe the potential interaction of a term
with its environment (the input and output actions of CCS and π-calculus).

For our calculus, we explain component activities (use of input and output
ports, passivation) by means of a reduction semantics, whereas we explain chan-
nel interaction by means of a labelled semantics. The reason for the separa-
tion is that component activity is local, whereas channel interaction is global



A Model of Evolvable Components 157

(the component structure is transparent to them). A reduction semantics makes
it possible to express component activity in a simple and neat way. A reduction
semantics for channel interaction, in contrast, would be more complex; due to
tunneling, interacting particles could be located far away in the structure of a
term. To bring such particles into contiguous positions we would have to al-
low, in the structural congruence, the possibility of moving them in and out of
a component. This is however unsound in presence of passivation (unsound in
the sense that one could derive undesired reductions). For the same reasons, in
structural congruence restrictions cannot escape the boundaries of components.

We write P −→R P ′ for an internal step of the process P that is derived using
the reduction semantics, and that therefore represents a component activity;
and P

τ−→ P ′ for an internal step derived using the labeled semantics, and that
therefore represents a channel interaction. Finally, −→ is the unions of the two
relations −→R and τ−→, and =⇒ is the reflexive and transitive closure of −→.
Relation −→R and τ−→ are explained in the following two sections. We assume
that at any point bound names can be renamed (alpha-conversion).

3.1 Component Activity

Structural congruence As explained above, the presence of passivation makes
the component boundaries rigid for structural congruence. The structural con-
gruence relation is written ≡, and defined as the smallest congruence satisfying
the following rules:

P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

P | νp Q ≡ νp (P | Q) if p �∈ fn(P ) νp νq P ≡ νq νp P

Reduction rules. There are three reduction axioms. The first axiom shows a call
to an input port. The second axiom explains the forwarding action of an output
port. The third axiom is a skeleton extraction. In calculi with passivation, some
care is needed when extruding restricted names out of “boxes” that may be
passivated: the extrusion takes place only when messages containing that name
are sent. This corresponds to the extrusion of names p̃ in rule R-Oport below.

[R− Iport]
m = (x). Q ∈ I

a m v | a { I }[ P ]{ O } −→R a { I }[ P | Q{v/x} ]{ O }

[R− Oport]
m �→ f ∈ O p̃ ⊆ fn(v)

a { I }[ νp̃ (P | m v) ]{ O } −→R νp̃ ( a { I }[ P ]{ O } | f v)

[R− extract]
a K{ O } | extract a as x in P −→R P{K/x}

Now the inference rules for reduction. Reduction can occur within a parallel
composition, a restriction, or a component boundary. The final rule introduces
structural congruence.



158 F. Montesi and D. Sangiorgi

[R− par]
P −→R P ′

P | Q −→R P ′ | Q

[R− res]
P −→R P ′

νp P −→R νp P ′

[R− comp]
P −→R P ′

a { I }[ P ]{ O } −→R a { I }[ P ′ ]{ O }

[R− equiv]
P ≡ P ′ −→R P ′′ ≡ P ′′′

P −→R P ′′′

3.2 Channel Interaction

Communications along channels is explained with an LTS. The rules are en-
tirely standard, following the SOS of message-passing calculi such as π-calculus
and Higher-Order π-calculus, as channel communications are independent of the
component hierarchy. The label (or action) of a transition can be τ , rv (input),
and (νp̃ )r v (output). In the output label, p̃ are private names, appearing free
in v, that are being extruded. We use μ to range over actions. The bound names
of an action μ, written bn(μ), is the empty set for an input or silent action, they
are p̃ for an output action (νp̃ )r v. We omit the definitions of free names and
names of μ, respectively written fn(μ) and n(μ), which are the expected ones.
We have omitted the symmetric of L-parR and L-comR.

[L− out]
r v. P r v−−→ P

[L− inp]
r(x). P rv−−→ P{v/x}

[L− parR]
P

μ−→ P ′ bn(μ) ∩ fn(Q) = ∅
P | Q

μ−→ P ′ | Q

[L− comR]
P

rv−−→ P ′ Q
(νp̃ )r v−−−−−→ Q′ p̃ ∩ fn(P ) = ∅

P | Q
τ−→ νp̃ (P ′ | Q′)

[L− res]
P

μ−→ P ′ p �∈ n(μ)

νp P
μ−→ νp P ′

[L− open]
P

(νp̃ )r v−−−−−→ P ′ p �= r p ∈ fn(v) − p̃

νp P
(νp,p̃ )r v−−−−−−→ νp P ′

[L− comp]
P

μ−→ P ′ bn(μ) ∩ (a ∪ fn(I, O)) = ∅
a { I }[ P ]{ O } μ−→ a { I }[ P ′ ]{ O }



A Model of Evolvable Components 159

4 Types

We comment the form of types with which the terms of the calculus are typed.
The syntax is in Table 2. An input (or output) interface is a set of ports, say
m1. . mh. The type [j∈1..h mj : Tj] of such an interface shows what are the ports
and, for each of them, say mj, the type Tj of the values that may be sent along
mj . We use A, B to range over interface types.

A skeleton has type A�B, in which A is the type of the input interface of the
skeleton, and B the type of its output interface. This means that a component
using such skeleton offers the functionalities specified in A, and requires binders
for the output ports as specified in B. Using H for a skeleton type, �H is then
the type of the name of a component whose skeleton has type H .

We also assign a skeleton type to sets of methods or links; in this case a type
A�B means that the methods or links implement an (input or output) interface of
type A and their body use output ports in the interface B. The type of a process
is an interface type; it tells us the use of output ports made from the process.

The assignment of an output interface type A to a term means that the term
uses output ports in A; it need not use all of them, though. This implicitly
introduces a form of subtyping. We deliberately avoid however subtyping judge-
ments. As in object-oriented languages, so here subtyping brings in subtle issues,
outside the scope of the present paper.

The type � T for channels is as in π-calculus: T is the type of the values that
may be carried along that channel.

Table 2. The syntax of types

Value types T ::= � T channel type

| H skeleton type

| �H component id. type

| unit unit type

Interface type A,B ::= [j∈1..h mj : Tj ]

Skeleton type H ::= A � B

4.1 Typing

Typing environments, ranged over by Γ , are partial functions from names to
value types; dom(Γ ) is the domain of Γ , i.e., the set of names on which Γ is
defined. A typing judgement Γ 
 P : A says that under the assumptions in Γ ,
process P has an output interface type A. Similarly for other syntactic objects
of the calculus. In the typing rules:



160 F. Montesi and D. Sangiorgi

– we write m : T ∈ A if the type A has a component m : T (that is, A is
[j∈1..h mj : Tj ] and, for some j, m = mj and T = Tj);

– we write Γ (a m) = T if a is typed in Γ as a component identity with an input
interface in which there is a method m of type T ; that is, Γ (a) = �(A � B)
and m : T ∈ A.

Typing rules for methods, links, and values. In rule T-method-set, a skeleton
type A�B is assigned to a set of methods. The rule checks that the set implements
the input interface A and that the body of each method only needs output ports
in B. In the premise of the rule, Γ/ch indicates the removal from Γ of all names
with a channel type. This constraint ensures us that the methods of a component
have no free channels.

Rule T-link-set, for typing a set of links, is similar. A case distinction is made
in the premise of the rule for the two possible forms of a link (binding to an out-
put port or to the input port of another component). In T-skeleton, for typing a
skeleton, we check that the skeleton offers the correct input interface A, and that
both the methods and the body of the skeleton use output ports in B.

T− method− set
∀j Γ/ch, xj : Tj 
 Pj : B

Γ 
 {j∈1..h mj = (xj). Pj} : [j∈1..h mj : Tj] � B

T− link− set
∀j either fj =n and n : Tj ∈ B, or fj = p n and Γ (p n)=Tj

Γ 
 {j∈1..h mj �→ fj} : [j∈i..h mj : Tj ] � B

T− unit
Γ 
 � : unit

T− skeleton
Γ 
 I : A � B Γ 
 P : B

Γ 
 { I }[ P ] : A � B

T− names
Γ (p) = T

Γ 
 p : T

Typing rules for processes. The interesting rules for processes are those for com-
ponents and for the extract construct. In T-comp, we check that the types of
the component identity and of the skeleton agree, and that the skeleton can be
composed with the links. In T-extract, we type the body P under the typing
extended with the skeleton type for the variable x derived from the type of the
component identity p. The remaining rules are the usual one of process calculi.

T− comp
Γ (p) = �(A � B′) Γ 
 v : A � B′ Γ 
 O : B′ � B

Γ 
 p v{ O } : B



A Model of Evolvable Components 161

T− extract
Γ (p) = �H Γ, x : H 
 P : B

Γ 
 extract p as x in P : B

T− par
Γ 
 Pi : B i = 1, 2

Γ 
 P1 | P2 : B

T− res1
Γ, p : �H 
 P : B

Γ 
 νp P : B

T− res2
Γ, p : � T 
 P : B

Γ 
 νp P : B

T− call− Iport
Γ (p m) = T Γ 
 v : T

Γ 
 p m v : B

T − call− Oport
m : T ∈ B Γ 
 v : T

Γ 
 m v : B

T − out
Γ (p) = � T Γ 
 v : T Γ 
 P : B

Γ 
 p v. P : B

T− inp
Γ (p) = � T Γ, x : T 
 P : B

Γ 
 p(x). P : B

T− nil
Γ 
 0 : B

Suppose Γ 
 P : B. Then P is closed if the type of each name in Γ is either a
channel type or a component identity type.

4.2 Soundness

Lemma 1 (Weakening). If Γ 
 P : A and p �∈ dom(Γ ) then also Γ, p : T 

P : A, for any T .

The fundamental theorem for typing is Subject Reduction. It is stated for ar-
bitrary processes, though it would be reasonable to admit reductions only on
closed processes.

Theorem 1 (Subject Reduction). If Γ 
 P : A and P −→P ′, then Γ
P ′ : A.

The proof of the theorem is along the lines of Subject Reduction theorems in
process calculi. Thus one first establishes invariance for typing under structural
congruence.

In the calculus, there are four kinds of values: component identities, channels,
skeletons, unit. Each of them has a specific role, and a use in wrong places may
produce run-time errors. Typing guarantees absence of run-time errors. This is
proved by defining a tagged semantics of the calculus as follows. Given a well-
typed process P and a typing derivation for it, we tag each occurrence of a



162 F. Montesi and D. Sangiorgi

value in P with one of the symbols �, �, �, unit, depending on whether in the
typing derivation the value is assigned a channel type, a component identity
type, a skeleton type, or the unit type. The operational semantics of tagged
processes is defined as that of ordinary processes except that the following rules
are added. They indicate the appearance of a run-time error by the introduction
of the special process wrong. The rules are added to the reduction semantics
(they could have been equally placed in the labeled semantics). There is one
rule for each process construct making use of values. We use γ, δ to range over
�, �, �, unit.

– vγ wδ{ O } −→R wrong, if γ �= � and δ �= �;
– extract vγ as xδ in P −→R wrong, if γ �= � and δ �= �;
– vγ m wδ −→R wrong, if γ �= �;
– vγ wδ. P −→R wrong, if γ �= �;
– vγ(xδ). P −→R wrong, if γ �= �.

We then say that a well-typed process P has a run-time error if there is a typing
derivation for P and a tagging R of P under the typing derivation such that
R =⇒ R′ for some tagged R′ containing wrong. Exploiting type information
and a correspondence between the two semantics (that in turn, uses Subject
Reduction and tag preservation under substitutions), we prove that no run-time
error can occur.

Theorem 2. If P is well-typed then P has no run-time error.

Other forms of error that typing avoids are: emission on an output port that is
not bound, that is, the appearance of a process

a { I }[ νp̃ (P | m v) ]{ O }
where O contains no link at m; calls to a component that exists but does not
have the expected method, that is, the appearance of a process

a m v | a { I }[ P ]{ O }
where I contains no m method.

The absence of such run-time errors can be formalised similarly to above,
using the special process wrong; in this case, however, we do not need tagged
processes, as the rules producing wrong can be inserted directly into the ordinary
operational semantics.

The type system can be refined in various ways, following existing type sys-
tems for process calculi. In particular, using linearity, one can enforce unicity of
component identities, which may often be a desirable feature.

5 Examples

In this section we discuss some simple examples. The first is about mutable
storage, the others are evolvability-related patterns. The examples show the



A Model of Evolvable Components 163

various constructs of the language, including tunneling on channels. They also
show how to implement atomicity constrains on methods via a lock mechanism.
We present a larger example in Section A. We omit the typing judgements, as
they are very simple. We write r. P and r. P for inputs and outputs of unit type;
we omit trailing 0, e.g., writing r v for r v.0.

5.1 Store

Cell〈v, P 〉 is a memory cell that stores the value v. It is realised as a component,
called cell, with a single method read, whose parameter is a channel on which the
stored value is sent. As we shall see, it is also useful to have a second parameter
for the cell, as a process P that runs inside the cell:

Cell〈v, P 〉 def= cell { read = (r). r v }[ P ]{ ∅ }
We can use this component to implement a mutable variable Var〈v〉. This be-
comes a component var, with methods get and set for reading and changing the
value stored, and with intial value v. Return channels in the methods implement
a rendez-vous synchronisation with the callees.

Var〈v〉 def= var{ get = (r). cell read r,
set = (y, s). extract cell as x in (s | Cell〈y, νa a x{ ∅ }〉) }
[Cell〈v,0〉] {∅}

The skeleton x resulting from the extract of cell is run inside the new cell because
x may contain uncompleted calls to the read method. Note the tunneling on the
get method: the callee of the var component receives the answer directly from
the inner cell component. As an example, we show an evolution of a system
composed by Var〈5〉, a reader, and a writer; we abbreviate the methods of var
as I, and those of cell as I ′; we omit empty output interfaces.

(νr, s )( var get r. r(x). P
| var set 〈3, s〉. s. Q )
| var { I }[ Cell〈5,0〉 ]

−→−→ (νr, s )( r(x). P
| var set 〈3, s〉. s. Q
| var { I }[ Cell〈5, r 5〉 ] )

−→−→ (νr, s )( r(x). P | s. Q
| var { I }[ s | Cell〈3, νa a { I ′ }[ r 5 ]〉 ] )

−→−→ (νr, s )( P{5/x} | Q
| var { I }[ Cell〈3, νa a { I ′ }[ 0 ]〉 ] )

� P{5/x} | Q
| var { I }[ Cell〈3,0〉 ]{ ∅ }

where � is barbed congruence [SW01], defined in the expected way, and obtained
by application of the garbage-collection law νa a{I }[0 ]{O} � 0, and assuming
r, s not free in P and Q.



164 F. Montesi and D. Sangiorgi

Next we implement a counter, initially set to v; it offers methods for reading
and incrementing its internal value. There is an atomicity issue now: multiple
executions of the increment method should not be allowed as they might interfere
with each other. This synchronisation is achieved by means of a lock. We use,
as abbreviations, remove a . P for extract a as x in P if x not free in P , and
νr a m r. r. P for νr (a m r | r. P ).

Counter〈v〉 def
=

counter{ read = (r). var get r,
incr = (s). remove lock .νr var get r. r(x).νr′ var set 〈x+ 1, r′〉. r′. (s | Lock) }

[ Var〈v〉 | Lock ]
{ ∅ }

and with Lock
def= lock { ∅ }[ 0 ]{ ∅ }. The use of locks could also be forced on the

read method.
A different design for the counter exploits var as an external (rather than

internal) component reachable via output ports oget and oset:

CAux
def
= counter{ read = (r). oget r,

incr = (s). remove lock .νr oget r. r(x).νr′ oset 〈x+ 1, r′〉. r′. (s | Lock) }
[ Lock ]
{ oget �→ var get, oset �→ var set }

and then the system is

Counter′〈v〉 def= ν var (CAux | Var〈v〉)

The difference between Counter〈v〉 and Counter′〈v〉 is similar to that between
interceptors and wrappers discussed in Section 5.3.

5.2 Rebinding

Rebinding is a tecnique for modifying the output port bindings of a component at
runtime. This is done by extracting the component and putting it into execution
with the new output port definitions. Below, the component is c, its current
output binders are O, and the new ones are O′.

c { I }[ P ]{ O } | extract c as x in c x{ O′ } −→ c { I }[ P ]{ O′ }

5.3 Interceptors and Wrappers

Both the interceptor and the wrapper patterns are about modifications of the
functionality of a given legacy component. The two techniques are similar in their
basic concepts but the structures resulting from their applications are different,
and this may affect the interactions with other components, as commented at
the end of the section.



A Model of Evolvable Components 165

Interceptors. There are two kinds of interceptors: input interceptors and out-
put interceptors. Input interceptors are used to adapt the input interface of the
legacy component by intercepting calls for it from other components, whereas
output interceptors intercept calls coming out of the output ports of the legacy
component. Below the legacy component is c{i∈1..hmi(x). Pi}[P ]{j∈1..knj �→ fj}.

Input interceptors. The simplest input interceptor is the direct forwarder. It
exposes the same input interface as the legacy component and simply forwards
method calls to it. For this, the output port of the forwarder are mapped onto
the input ports of the legacy component:

a {i∈1..h mi = (x). ni x}[0]{ j∈1..h nj �→ c mj }

Direct forwarders can be used for making the same component available under
multiple identities. Input interceptors can also be used for exposing a different
interface; there are three possible cases: offering a new method (the system may
have more requirements than what the legacy component supports); hiding a
method (for encapsulation or security purposes); changing the behaviour of a
method. In the first two cases, and sometimes also in the third, the types of the
direct forwarder and of the legacy component are different.

Exposing a new method mh+1(x). Ph+1, where mh+1 was not in the input
interface of the legacy component, can be done by augmenting the interface of
the direct forwarder:

a {i∈1..h mi = (x). ni x, mh+1 = (x). Ph+1}[0]{ j∈1..h nj �→ c mj, Onew }

where Onew collects all the links necessary for the execution of Ph+1.
Hiding a method can be done by removing this, and its related link, from the

definition of the forwarder. The following is an example that hides method mh:

a {i∈1..h−1 mi = (x). ni x}[0]{ j∈1..h−1 nj �→ c mj }

The case in which the body of a method is modified is similar — we change the
body of such method in the definition of the forwarder.

Output interceptors. Output interceptors are supposed to capture outgoing calls
issued by the legacy component and then trigger some actions.

We consider a component a that relies on a mail server b for its functioning.
In particular, a makes use of the sendMail method of b in some of its method
bodies. This system is:

a {i∈1..h mi(x). Pi}[0]{ sendMail �→ b sendMail }
| b { sendMail = (x). PsendMail }[ Q ]{ O }

Now we want to log how many times a makes use of the sendMail functionality.
Doing this with an input interceptor could be hard, because we do not know,
a priori, how many times the execution of a method mi will cause sendMail



166 F. Montesi and D. Sangiorgi

to be invoked. Instead, we contruct an output interceptor c that is responsible
for executing process Plog whenever it receives a call for method sendMail and
we rebind component a so that its link for sendMail points to c. Process Plog

is executed together with a forwarding of the original sendMail request to the
mail server b. These modifications are realised by the extract construct below:

Sys
def
=

a {i∈1..h mi = (x).Pi}[0]{ sendMail �→ b sendMail }
| b { sendMail = (x).PsendMail }[Q ]{O }
| extract a as x in ( a x{ sendMail �→ c sendMail }

| c { sendMail = (x). (Plog | sendMail x) }[ 0 ]{ sendMail �→
b sendMail } )

We have:

Sys −→ b { sendMail = (x).PsendMail }[ Q ]{ O }
| a {i∈1..h mi = (x).Pi}[0]{ sendMail �→ c sendMail }
| c { sendMail = (x). (Plog | sendMail x) }[ 0 ]{ sendMail �→ b sendMail }

Wrappers. While interceptors execute as siblings of the legacy component, a
wrapper captures the legacy component (the wrapped component) and executes
it as an inner component of another one (the wrapper), that is responsible for
offering a modified view of the wrapped component. Wrapping can be applied in
all the scenarios considered above with interceptors. For brevity, we only analyze
the case of addition a method to a component interface.

As usual, the given legacy component is LC def= c{i∈1..hmi = (x). Pi}[P ]{ j∈1..k

nj �→ fj }. We want to use this component so to create a new one, called a, that
exposes an additional method mh+1(x). Ph+1. We do so by wrapping the legacy
component inside a new component a that implements the new method and for-
wards calls for the other methods to the legacy component:

WR
def= extract c as x in

a{i∈1..h mi(x). c mi x, mh+1 = (x). Ph+1}
[ c x{ j∈1..k nj �→ n′

j }]
{j∈1..h n′

j �→ fj , Onew}
where Onew collects the output port binders necessary for the execution of Ph+1.
The wrapper defines, in its output ports, all the links needed by the wrapped
component, whereas the output ports of the wrapped component refer to the
wrapper for communicating with the outside world. We have:

LC | WR −→ a{i∈1..h mi = (x). c mi x, mh+1 = (x). Ph+1}
[ c {i∈1..h mi = (x). Pi}[P ]{ j∈1..k nj �→ n′

j }]
{j∈1..h n′

j �→ fj , Onew}



A Model of Evolvable Components 167

A client that invokes a at one of the “old” methods will have its message for-
warded to c; then the client will be able to start a dialogue directly with c,
exploiting the tunneling effect of channels.

Discussion. There are important differences between interceptors and wrappers
when adapting a legacy component. A wrapper has a tighter control on the legacy
component since only with the wrapper the legacy component becomes an inner
component. It can thus be captured by the wrapper with the extract operator.
Moreover, wrapping and wrapper components can be treated as a single unit.
For instance, in the wrapping example above, we can throw this unit away thus:

extract a as x in 0 | a { . . }[ . . ]{ . . } −→ 0

This is not possible with interceptors, as these are run in parallel with the legacy
components and therefore both components are reachable from the environment.

On the other hand, a wrapped legacy component is not anymore reachable
from the rest of the system other than through the wrapper itself, whereas with
interceptors the legacy component remains reachable by those components that
know its identity.

6 Conclusions and Extensions

We have presented a basic calculus of components, MECo, that tries to formalise
the notion of component and evolvability patterns for components. We have
experimented with a number of operators, especially related to adaptability and
evolvability: those retained for MECo seemed to us a reasonable compromise
between practical component needs (as in, e.g., Fractal component systems)
and conciseness. Key component concepts that we wished to have were input
and output interfaces, hierarchical structures, local interaction with possibile
tunneling sessions that bypass the hierarchy. On top of this, for evolvability,
MECo has a construct that allows one to stop a component and extract its
skeleton.

The study of MECo is, admittedly, in a preliminary stage; for instance, as
discussed below, typing is very rigid, and behavioural equivalences remain unex-
plored. We hope however that the work reported conveys the idea of component
that MECo tries to formalise, and that this may trigger further study.

The closest process calculi to ours are Kell [SS05] and Homer [HGB04, BHG06].
These are calculi of mobile distributed processes in which computational entities
may move in a dynamic hierarchy of locations. They have passivation opera-
tors that behave similarly to the extract of MECo. We may also see these
calculi as calculi of components, thinking of locations as component boundaries
(indeed, one of the main motivations behind Kell is to provide a model for Frac-
tal components [Fra]). The main differences between Kell/Homer and MECo
is the explicit use of input/output interfaces in MECo (input interfaces make
MECo components look like objects, in fact, more than Kell/Homer locations;



168 F. Montesi and D. Sangiorgi

but even in objects the notion of output interface is usually absent). Another
difference is the presence of channels in MECo; the resulting tunneling effects
are not possible in Kell or Homer where communication is local. The relations
of MECo with other process calculi with locations, e.g., Ambients [CG98] and
Seal [VC99], is weaker. The following are component models more loosely related
(in particular they are not process calculi): Barros et al. [BHM05], also inspired
by Fractal, model component behaviours as hierarchical synchronised transition
systems and a composite system as a product of these, with the goal of applying
model-checking techniques; Pucella [Puc02] proposes a form of typed λ-calculus
targeted to modeling execution aspects of Microsoft Component Object Model;
van Ommering et al. [vOvdLKM00] give an account of the architecture of Philips
Koala component systems; Larsen et al. [LNW06], building on earlier work by de
Alfaro and Henzinger [dAH01], study an interface language based on automata
that separates the behavioural assumptions and guarantees for a component
towards its environment.

Among the directions for future work, we are interested in exploring refine-
ment of the basic type system, especially subtyping. Ideas from object-oriented
languages should be useful here too, though output interfaces will require extra
care. This may also lead to refining the present channel interactions of MECo into
notions of session from Service-Oriented calculi, e.g., [CHY07, LMVR07, Vas09].

On another direction, we would like to examine stronger forms of run time
error, whereby if a m appears in a process, then one is ensured that a component
a capable of consuming the message exists. For this one would probably have
to record the set of components that a process needs for its execution. This is
non-trivial, as component identities may be communicated and components may
be passivated.

Another issue to study in MECo may be behavioural equivalence; for instance,
one may be able to establish behavioural properties on the evolvability patterns
of Section 5. For this, recent advances in bisimulation for higher-order process
calculi (e.g., [LSS09, SKS07, JR05]) should be useful.

MECo has been partly inspired by the Fractal component system [Fra]. Mod-
elling in MECo some of the applications built in Fractal should be useful both
to understand the expressiveness of MECo and to provide a formal description
of such applications.

Acknowledgements. We have benefited from discussions and many useful sug-
gestions from A. Poetzsch-Heffter, I. Lanese, A. Schmitt, and J.-B. Stefani.

References

[BHG06] Bundgaard, M., Hildebrandt, T.T., Godskesen, J.C.: A cps encoding
of name-passing in higher-order mobile embedded resources. Theor.
Comput. Sci. 356(3), 422–439 (2006)

[BHM05] Barros, T., Henrio, L., Madelaine, E.: Behavioural models for hierar-
chical components. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 154–168. Springer, Heidelberg (2005)



A Model of Evolvable Components 169

[CG98] Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOS-
SACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

[CHY07] Carbone, M., Honda, K., Yoshida, N.: Structured communication-
centred programming for web services. In: De Nicola, R. (ed.) ESOP
2007. LNCS, vol. 4421, pp. 2–17. Springer, Heidelberg (2007)

[dAH01] de Alfaro, L., Henzinger, T.A.: Interface automata. In:
ESEC/SIGSOFT FSE, pp. 109–120 (2001)

[Fra] The fractal project, http://fractal.ow2.org
[HGB04] Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation con-

gruences for homer, a calculus of higher order mobile embedded re-
sources. Technical Report ITU-TR-2004-52, IT University of Copen-
hagen (2004)

[JR05] Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order pi-
calculus revisited. Logical Methods in Computer Science 1(1) (2005)

[LMVR07] Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining or-
chestration and conversation in service-oriented computing. In: SEFM
2007, pp. 305–314. IEEE, Los Alamitos (2007)

[LNW06] Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output au-
tomata. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 82–97. Springer, Heidelberg (2006)

[LSS09] Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s method for calculi with
passivation. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 448–462. Springer, Heidelberg (2009)

[Puc02] Pucella, R.: Towards a formalization for com part i: the primitive cal-
culus. In: OOPSLA, pp. 331–342 (2002)

[SGM02] Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, Reading (2002)

[SKS07] Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations
for higher-order languages. In: LICS 2007, pp. 293–302. IEEE Comp.
Soc., Los Alamitos (2007)

[SS05] Schmitt, A., Stefani, J.-B.: The kell calculus: A family of higher-order
distributed process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004.
LNCS, vol. 3267, pp. 146–178. Springer, Heidelberg (2005)

[SW01] Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, Cambridge (2001)

[Vas09] Vasconcelos, V.T.: Fundamentals of session types. In: Bernardo, M.,
Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp.
158–186. Springer, Heidelberg (2009)

[VC99] Vitek, J., Castagna, G.: Seal: A framework for secure mobile compu-
tations. In: Bal, H.E., Cardelli, L., Belkhouche, B. (eds.) ICCL-WS
1998. LNCS, vol. 1686, p. 47. Springer, Heidelberg (1999)

[vOvdLKM00] van Ommering, R.C., van der Linden, F., Kramer, J., Magee, J.: The
koala component model for consumer electronics software. IEEE Com-
puter 33(3), 78–85 (2000)

A An Electronic Store Example

In the example in this section, a music store wants to build an E-Commerce
business by means of an online service. The store already possesses a simple ap-
plication for handling their products and selling them to customers. We represent
such application as a component:

http://fractal.ow2.org


170 F. Montesi and D. Sangiorgi

STORE
def= store{ buy = (data, r). Pbuy ,

listProducts = (r). PlistProducts,
Istore }

[ Pstore ]
{ j∈1..h nj �→ fj }

Component STORE offers a method buy(data, r), for buying a product (where
data contains both the name of the product and the money that the client is
willing to spend for it) and performing the appropriate bank transaction; then
STORE confirms the execution of the transaction along channel r. STORE also
offers method listProducts(r) which sends a list of the available products at r.
Other methods may be available at STORE, indicated by Istore. The set of links
in STORE, namely j∈1..h nj �→ fj , represent its deployment requirements.

Component STORE was designed to run in a local environment that guarantees
at most one buy transaction (one execution of the buy method) at a time.

Now we reuse STORE to implement a new component, E-STORE, that is meant
to be exposed on a public network (e.g. the Internet). Other than adapting the
behaviour of the legacy component, we want E-STORE to offer a new method
getV isits for reading the number of visits received by the online store. The
implementation of E-STORE with its explanation follows. The parameter z is the
skeleton of the inner store component.

E− STORE(z)
def
=

estore{ buy = (data, r). extract lock as x in νs (store buy 〈data, s〉 | s. r. Lock),
listProducts = (r).νs (counter incr s | s. store listProducts r),
getV isits = (r). counter read r

[ store z { j∈1..h nj �→ n′
j } | Lock | Counter(0) ]

{ j∈1..h n′
j �→ fj}

Components Lock and Counter〈v〉 are defined in Section 5. concurrent invoca-
tions of buy are prevented using a lock mechanism. Whenever buy is called, we
first extract the Lock component. Thus other concurrent invocations of method
buy will not proceed because lock is not anymore available and their extract
instructions is blocking. After extracting lock, the necessary data exchanges be-
tween the client and the legacy component are performed; the final message
from the legacy component is however intercepted; this is necessary because we
need to know when we can put Lockback into execution and allow for another
instance of buy in E-STORE to continue.

We take the number of received visits that should be monitor as the number
of invocations for method listProducts. This number, v, is stored in the counter
Counter〈v〉.



A Model of Evolvable Components 171

We can finally obtain the desired system using the extract instruction:

extract store as z in E− STORE(z) | STORE
−→ { buy = (data, r). extract lock as x in νs (store buy 〈data, s〉 | s. r. Lock),

listProducts = (r). νs (counter incr s | s. store listProducts r),
getV isits = (r). counter read r

[ store { . . . }[ . . . ] { j∈1..h nj �→ n′
j } | Lock | Counter(0) ]

{ j∈1..h n′
j �→ fj}

Note that the use of channels enables direct communications between a client
and inner components. For instance, when a client calls method getV isits the
answer is sent back directly from component cell situated inside component
counter; this can be seen graphically in Figure 1 (which, for the sake of clarity,
does not report communications with the internal lock).

Fig. 1. An abstract graphical representation of the communication flow of method
getV isits


	A Model of Evolvable Components
	Introduction
	Syntax
	Operational Semantics
	Component Activity
	Channel Interaction

	Types
	Typing
	Soundness

	Examples
	Store
	Rebinding
	Interceptors and Wrappers

	Conclusions and Extensions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




