
A Conceptual Framework for API Refactoring in
Enterprise Application Architectures

Fabrizio Montesi1 , Marco Peressotti1 , Valentino Picotti1 , and Olaf
Zimmermann2

1 Department of Mathematics and Computer Science, University of Southern
Denmark {fmontesi,peressotti,picotti}@imada.sdu.dk

2 University of Applied Sciences of Eastern Switzerland olaf.zimmermann@ost.ch

Abstract. Enterprise applications are often built as service-oriented ar-
chitectures, where the individual services are designed to perform specific
functions and interact with each other by means of well-defined APIs
(Application Programming Interfaces). The architecture of an enterprise
application evolves over time, in order to adapt to changing business re-
quirements. This evolution might require changes to the APIs offered by
services, which can be achieved through appropriate API refactorings.
Previous studies on API refactoring focused on the effects on API defi-
nitions, with general considerations on related forces and smells. So far,
instead, the development strategy for realising these refactorings has re-
ceived little attention. This paper addresses exactly this aspect.
We introduce a conceptual framework for the implementation of API
refactorings. Our framework elicits that there are important trade-offs
and choices, which significantly affect the efficiency, maintainability, and
isolation properties of the resulting architecture. We validate our frame-
work by implementing several refactorings that introduce established
API patterns with different choices, which illustrates the guiding princi-
ples offered by our framework. Our work also elicits, for the first time,
how certain programming language features can reduce friction in apply-
ing API refactoring and open up more architectural choices.

Keywords: Enterprise application · Microservices · API Refactoring

1 Introduction

Enterprise applications are distributed information systems designed to support
the needs of complex organisations, for example by managing business processes
and handling data [10]. Such applications are often built using (micro)service-
oriented architectures, where individual services perform specific functions and
interact through well-defined APIs (Application Programming Interfaces) [6].

As organisations evolve, so do their applications: enterprise application ar-
chitectures must continuously adapt to changing business requirements [7–9]. In
the context of APIs, this prompted studying API refactoring : the modification
of interfaces to improve quality attributes, such as efficiency [24,25].

ar
X

iv
:2

40
7.

07
42

8v
1

 [
cs

.S
E

]
 1

0
Ju

l 2
02

4

https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0001-7713-1461

2 F. Montesi et al.

Recently, a catalogue of API patterns provided a basis for API refactor-
ings [25,31]. Previous studies mainly focused on the high-level forces and smells,
like modifiability and high latency, that motivate and guide API refactorings.
Conversely, it is yet unknown how developers are supposed to implement an API
refactoring and assess its quality; a research gap that we address in this work.

In this paper, we introduce EMI (efficiency, maintainability and isolation),
a conceptual framework for assessing the implementation of API refactoring in
service architectures. EMI centres around two dimensions: 1) generality, which
assesses the degree of abstraction of the refactored API source code; 2) dis-
tribution, which elicits where the refactored API source code resides. Realising
the combination of both dimensions results in six development strategies, each
representing design choices for the implementation with respective trade-offs.
The trade-offs pertain the quality aspects of efficiency (E), maintainability (M),
and isolation (I) of the resulting architecture. We score each of these three as-
pects from 1 to 3 for our strategies, yielding the EMI score for API refactoring.
Clearly, there is no silver bullet: no strategy scores perfectly (9), emphasising
the importance of making conscious implementation decisions.

To validate our framework in practice, we apply it to several API refactorings
implemented in the service-oriented programming language Jolie [19]. We choose
Jolie because of its abstraction and expressiveness capabilities. Firstly, Jolie of-
fers a technology-agnostic language for defining APIs and native constructs for
declaring endpoints that consume and provide APIs. This makes our refactor-
ings direct and easy to understand. Secondly, Jolie offers features not present in
other programming languages, such as API polymorphism and aggregation (the
merging of endpoints), allowing us to implement design choices declaratively.

In more detail, we apply our six development strategies to the same refactor-
ing: the introduction of the API Key pattern – which rejects requests without
a valid key (Section 4.1) – to a service that offers a catalogue of scientific publi-
cations. We then broaden our study to patterns that do not require behavioural
changes, Merge Endpoints and Version Identifier, reaching modular so-
lutions (Section 4.2). A main finding is that our framework can be used to distill
systematic recipes for API refactoring, which developers can mechanically apply
step by step to achieve an implementation with a declared EMI score (Section 5).

In summary, we contribute the EMI framework, a scheme to assess the adap-
tion of API refactorings, we validate EMI by applying API refactorings to (mi-
cro)service architectures, and provide canonical recipes to obtain certain EMI
scores for the architecture evolution. Thus, our work offers developers the possi-
bility to assess and implement API refactorings in practice and lays the grounds
to explore the impact of refactoring APIs in further detail.

2 Related Work

Our study builds on the reference catalogue of patterns for API design [31],
which addresses the challenge of remote API design [29] through peer-reviewed
patterns published in the period 2017–2020 [17,26–28,30].

A Conceptual Framework for API Refactoring 3

API refactoring was previously investigated based on the same catalogue [24,
25]. Those studies focus on architectural considerations and especially why and
when an API pattern should be introduced, considering forces and smells. Dif-
ferently, our work is the first to investigate how an API pattern is implemented.
Specifically, our interest lies in the different choices that one can make regarding
the code of a refactoring, and the quality trade-offs that they yield. Another
difference is that we study how to refactor also the implementation of an API,
whereas previous work discusses only how to refactor the API definition. Our
frameworks can be seen as a refinement of Attribute-Driven Design and Ar-
chitecture Trade-off Analysis Method which are concerned with informing and
assessing architectural decisions in light of quality attribute requirements [2].

Jolie is an emerging programming language for service-oriented comput-
ing [19], which has recently been gaining traction because of its native features
for defining and composing services [1, 11–13, 15, 16]. Previous work has vali-
dated Jolie in different domains, including system integration [11, 18], Internet
of Things [11,16], journalism [5], and cloud provisioning [14].

The work nearest to ours is perhaps the implementation of an API- and
location-agnostic circuit breaker [20] – a pattern for increasing resilience [21].
In that development, Jolie’s high-level abstractions are used to obtain a flexi-
ble implementation and experiment with different deployment strategies (in the
client, in a forwarding proxy, or in the server). These have important security
implications [20] that were later confirmed in an independent study [4]. The de-
velopments in [20] fall under the Parametric/Adjacent and Parametric/External
strategies in our framework (see Section 3). Our interest in the present work is
much more general: rather than focusing on a specific use case, we formulate a
framework that can be used to reason about any API refactoring. Furthermore,
the quality aspects considered here are not considered in [20].

Many frameworks and languages for service-oriented systems have been pro-
posed, including Spring Boot, Express for Node.js, Ballerina [23], and WS-
BPEL [22]. Some of Jolie’s features that we use in our work can be found or
implemented in these technologies. Aggregation and redirection – Jolie for merg-
ing and redirecting endpoints – recall the routing mechanism in Express. Jolie
uses structural typing, like Ballerina [23], which is more suitable to networked
(and multi-technology) systems than nominal typing. On top of offering all the
features we need in a single package, Jolie’s primitives are designed to make the
resulting APIs statically known, which is useful in the context of API design.

3 The EMI Framework for API Refactoring

We now present our conceptual framework for API refactoring – the EMI frame-
work. It is depicted in Table 1. We explain it in the rest of this section.

API refactoring changes both an interface and its implementation, while im-
proving at least one quality attribute [24, 25]. This may affect the external be-
haviour of an API observed by clients, without altering its capabilities.

https://spring.io/projects/spring-boot
https://expressjs.com/

4 F. Montesi et al.

Distribution

Internal Adjacent External

G
en

er
al

it
y

E E E
Parametric M M M

I I I

E E E
Ad-hoc M M M

I I I

Table 1. The EMI framework.

We introduce some terminology. In the remainder, we refer to the changes
introduced by an API refactoring as the new functionality, bearing in mind that
such functionality does not alter the feature set of the API [25]. In line with
the API domain model of [31], we consider an API to be a collection of opera-
tions that can be invoked by clients. Services can offer APIs through endpoints,
which expose operations at a designated location according to a given transport
protocol. We call such services API providers. We distinguish the API and im-
plementation that we start from and then end up with after a refactoring with
the prefixes original and refactored.

3.1 Generality and distribution

The EMI framework focuses on two dimensions to assess the quality attributes
of the implementation of an API refactoring: generality and distribution.

The generality dimension concerns whether the implementation of the new
functionality depends on or abstracts from the definition of the original API. We
identify two possibilities.

Ad-hoc The code of the new functionality depends on hardcoded information
on the names, types, or behaviours of the operations in the original API.

Parametric The code of the new functionality abstracts from the names, types,
or behaviours of the operations in the original API.

Generality serves as an indicator of the logical coupling between the new code
and the old. It is significant because API patterns provide, at least conceptually,
reusable solutions to recurring problems. Thus, in a way, generality indicates
how much this reusability is achieved in real code.

The distribution dimension concerns where the code for the new functionality
is located in relation to the original API provider and its clients. There are three
possibilities, depicted in Fig. 1.

Internal The code of the new functionality is mixed with the code of the original
API provider. Thus, they share state. After the refactoring, the original API
provider becomes the refactored API provider.

A Conceptual Framework for API Refactoring 5

Initial Position C O C Client

O Original API provider

R Refactored API provider

API provider endpoint
API consumer endpoint
Network link
In-memory link

Deployment location

Internal C R

Adjacent C R O

External C R O

Fig. 1. Possible choices for distribution.

Adjacent The refactored API provider is a separate service. They have separate
state and are executed independently, but they are deployed such that they
can communicate efficiently through local resources (local memory channels,
inter-process communication, loopback network interfaces, etc.).

External The refactored API provider is a separate service. It is deployed re-
motely from the original, and thus can communicate with it only through
network communication.

3.2 EMI scores

The combination of the axes of generality and distribution gives rise to six pos-
sible development strategies, each presenting different trade-offs. To help in nav-
igating these trade-offs, we score each strategy on three quality attributes using
a three-level scale (, , or): efficiency (E), maintainability (M),
and isolation (I). We explain each score next.

Efficiency (E)
E The new functionality is implemented optimally, with no extra over-

head caused by design choices.
E Design choices cause extra overhead in terms of local resources

(memory, local communication, etc.).
E Design choices cause extra overhead in terms of remote resources

(e.g., network communication).
Maintainability (M)

M The original and refactored API providers can be maintained inde-
pendently.

M The implementations of the new functionality and the original API
provider are separate but tightly coupled.

M The implementations of the new functionality and the original API
provider are completely mixed.

Isolation (I)

6 F. Montesi et al.

I The original and refactored API providers do not share any local
resources for their execution.

I The original and refactored API providers share execution resources
(e.g., CPUs, memory), but do not share state and interact purely by
means of the original API.

I The new functionality and the original API implementation share
internal program state (e.g., stack, variables, heap).

The levels of these scales are intentionally broad, in order to avoid being
tied up by very specific technological details. This is in line with the technology-
agnosticism of microservices [6].

3.3 Scoring development strategies

We end the presentation of our framework with an analysis that justifies the EMI
scores of each development strategy, referring also to examples of API patterns
and technologies where relevant.

Ad-hoc/Internal (E M I) This is the most efficient strat-
egy, because the new functionality is implemented directly by changing the
behaviour of the original API provider. Thus, the code of the new function-
ality encounters no unnecessary overhead in integrating with the original
implementation. For example, introducing the Pagination pattern to an
implementation that queries a database gives the possibility to modify the
query in order to retrieve fewer results – those for the page being requested.
For the very same reasons, however, this is also the least maintainable and
isolated choice, since the new code is mixed and shares all resources with the
old code. Examples of this strategy are shown in Sections 4.1 and 5.

Parametric/Internal (E M I) This strategy trades some
efficiency for maintainability by abstracting from the operation names and
behaviours of the original API. The code of the new functionality can be
reused across different APIs, but has limited access to changing their be-
haviour: the new functionality can only intercept, modify, and conditionally
forward request and response message to and from the original implementa-
tion. Examples of this strategy are implementations adopting Java Servelet
Filters or Express middleware functions.

Ad-hoc/Adjacent (E M I) Compared to Ad-hoc/Internal,
implementing the new functionality in a separate component trades some
efficiency for partially improved maintainability and isolation. However, the
new functionality remains coupled with the original API (ad-hoc), so changes
to the original API require updating the refactored API provider, too. Thus,
maintainability is still not ideal. Improved isolation comes at the cost of
some overhead in the interaction between the refactored and original API
providers. Efficiency is further affected by the new functionality not having
access to changing the internal behaviour of the original API provider. This
strategy can be implemented with, for example, the sidecar pattern, the
ambassador pattern, or Jolie’s embedded services (see Section 4.1).

https://jakarta.ee/specifications/platform/10/apidocs/jakarta/servlet/filter
https://jakarta.ee/specifications/platform/10/apidocs/jakarta/servlet/filter
https://expressjs.com/en/guide/using-middleware.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador

A Conceptual Framework for API Refactoring 7

Parametric/Adjacent (E M I) This strategy has the same
efficiency and isolation characteristics as the previous one, but greatly im-
proved maintainability by decoupling the implementation of the new func-
tionality from the operation names and message types of the original API.
The sidecar and ambassador patterns are again useful to implement this
strategy. Jolie’s embedded services combined with couriers and interface ex-
tenders (see Section 4.1) offer an interesting solution, because the refactored
API can be automatically and statically computed.

Ad-hoc/External (E M I) The strategy with the highest
level of isolation, since the new functionality interacts with the original API
provider only via remote access. For the same reason, it is also the least
efficient strategy. This strategy does not achieve the highest maintainability
score due to the coupling between the new functionality and the original
API. This strategy can be implemented simply by developing a proxy service
offering the refactored API and forwarding each operation invocation to the
original API provider when appropriate.

Parametric/External (E M I) This strategy has the same
efficiency and isolation scores as the previous one, but also the highest main-
tainability score for the same reason given for Parametric/Adjacent.

No strategy scores a perfect 9. The reason lies in the unavoidable tension
between efficiency and isolation: optimal efficiency requires sharing resources,
which prevents achieving optimal isolation.

4 Validation

In this section, we validate our framework by applying it in depth – exploring all
our strategies for a single pattern – and in breadth – applying selected strategies
to other patterns.

4.1 API Key in Jolie

We illustrate the use of our framework by applying each strategy to a concrete use
case: the introduction of the API Key pattern to a service managing a catalogue
of scientific publications. API Key identifies clients through respective unique
keys, which must be included in requests.

We code our examples in Jolie. In Jolie, the operations and message types of
an API are defined as an interface. The next interface defines the API of our
publication catalogue service.

1 type Publications: { publications*: Publication }
2 type Publication: Proceeding | InProceeding | Article
3
4 interface PubCatInterface {
5 RequestResponse:
6 getAuthorPubs({authorId: string})(Publications)
7 getConfPubs({confId: string})(Publications)
8 }

8 F. Montesi et al.

PubCatInterface comprises two operations: getAuthorPubs, which expects the
unique identifier of an author (as the field authorId of the request message) and
returns all their publications (message type Publications); and getConfPubs,
which given a conference identifier (confId) returns the publications of that
conference. The type Publications describes a record with a field publications
containing zero o more (*) values of type Publication. Publication is the union
of three types (omitted) corresponding to proceedings (Proceeding), papers in
proceedings (InProceeding), and journal articles (Article).

Interfaces are offered to clients by defining an inputPort, Jolie for an endpoint
that accepts remote invocations. An input port is defined inside of its enclosing
service and commits to a concrete location and transport protocol (HTTP,
SOAP, binary protocols, etc.). The definition of our publication catalogue service
is given next (abstracting some internal implementation details).

Listing 1. Original API Provider.
1 /* Service definition */
2 service PubCat {
3 /* API Endpoint */
4 inputPort ip {
5 location: "socket://localhost:8080"
6 protocol: http { format = "json" }
7 interfaces: PubCatInterface
8 }
9 /* Behaviour */

10 main {
11 [getAuthorPubs(request)(response) { /* fetch the data from db */ }]
12 [getConfPubs(request)(response) { /* fetch the data from db */ }]
13 }
14 }

In Lines 4 to 8, service PubCat exposes PubCatInterface on TCP port 8080
over the HTTP protocol with message payloads in JSON format. Its implementa-
tion (Lines 10 to 13) consists of an input choice that can react to any invocation
of the operations it lists. Each branch in the choice has the form:

[operation(request)(response){ B }]

where operation is the name of the operation, request and response are the
input and output parameters, and B is the code block computing the response.

Introducing the API Key pattern requires extending request message types
with an additional field apiKey (storing the key as a string) and declaring a
faulty response message NotAuthorised for invocations with invalid keys. The
refactored API is given next.

Listing 2. Refactored API.
1 interface PubCatInterfaceWithAPIKey {
2 RequestResponse:
3 getAuthorPubs({authorId: string, apiKey: string})(Publications)
4 throws NotAuthorised
5 getConfPubs({confId: string, apiKey: string})(Publications)
6 throws NotAuthorised
7 }

A Conceptual Framework for API Refactoring 9

The refactoring of service PubCat and its interface PubCatInterface to ob-
tain a service exposing the refactored API PubCatInterfaceWithAPIKey can be
accomplished following any of the strategies outlined in Section 3. We illustrate
their application and elicit the different features of Jolie that come to aid.

Ad-hoc/Internal We directly modify the code of both the original interface
PubCatInterface and the service PubCat. PubCatInterface becomes the refactored
API PubCatInterfaceWithAPIKey above. In PubCat, instead, the implementation
of each operation is edited to validate the API key in the request message.

1 service PubCat {
2 inputPort ip {... interfaces: PubCatInterfaceWithAPIKey }
3 main {
4 [getAuthorPubs(request)(response) {
5 /* check validity of request.apiKey */
6 if(isKeyValid) { /* fetch the data from db */ }
7 else { throw NotAuthorised(/* fault data */) }
8 }]
9 [getConfPubs(request)(response){ /* as for getAuthorPubs */ }]

10 }
11 }

Ad-hoc/External We introduce a new service, PubCatWithAPIKey, with an end-
point exposing the interface PubCatInterfaceWithAPIKey. This service acts as
an adapter for the original API provider, PubCat, which remains unchanged.
The implementation of the API Key pattern is entirely confined to the new
service, which forwards valid invocations to PubCat. This requires the service
PubCatWithAPIKey to declare an output port (Line 2) pointing to the API endpoint
of PubCat. Its implementation (Lines 4 to 13) consists of an input choice where
each operation checks the validity of the key in the request (request.apiKey).
If the key is valid, then the key is erased from request (Line 8) before invok-
ing the original operation getAuthorPubs@pc to obtain the intended response.
Otherwise, the service replies with a faulty NotAuthorised message. Although
the implementations of refactored and original API providers are separate, they
must be kept in sync wrt future changes to the API, resulting in a negative
impact to maintainability.

Listing 3. Ad-hoc/External refactored API provider.
1 service PubCatWithAPIKey {
2 outputPort pc { /* PubCat endpoint */ }
3 inputPort ip { /* ... */ interfaces: PubCatInterfaceWithAPIKey }
4 main {
5 [getAuthorPubs(request)(response) {
6 /* check validity of request.apiKey */
7 if(isKeyValid) {
8 undef(request.apiKey) /* remove API key before forwarding */
9 getAuthorPubs@pc(request)(response) /* forward call */

10 } else { throw NotAuthorised(/* fault data */) }
11 }]
12 [getConfPubs(request)(response) { /* as for getAuthorPubs */ }]
13 }}

10 F. Montesi et al.

Ad-hoc/Adjacent Jolie supports running separate services in the same applica-
tion with its native embedded primitive. Thus, this strategy closely resembles the
previous one, with the only difference being the deployment configuration of the
two services PubCat and PubCatWithAPIKey. First, the service PubCat is promoted
to an in-memory service by changing its location to "local" (Listing 1, Line 5).
Then, we make the refactored API provider, PubCatWithAPIKey, embed the origi-
nal PubCat. This is achieved by the statement embed PubCat as pc (Line 2), which
instructs the Jolie runtime to load the service PubCat alongside PubCatWithAPIKey
and make it reachable via an in-memory channel through the output port pc.
These linguistic features allow for easily switching Jolie codebases between the
Adjacent and External columns of the EMI framework, changing the deployment
strategy based on performance considerations (i.e., trade network overhead for
CPU and memory consumption). However, in this strategy, the two interfaces
PubCatInterface and PubCatInterfaceWithAPIKey are still separate definitions
that need to be manually kept in sync.

Listing 4. Ad-hoc/Adjacent refactored API provider.
1 service PubCatWithAPIKey {
2 embed PubCat as pc
3 inputPort ip { /* Same as in Listing 1 */ }
4 main { /* Same as in Listing 3 */ }
5 }

Parametric/Adjacent To eliminate the coupling between refactored and original
API providers, we leverage the Jolie language construct of an interface extender,
which uniformly extends the types of all operations in an API. The extender
APIKeyExtender defined in Listing 5 adds the apiKey field to all (*) request mes-
sages and NotAuthorised as a new potential faulty response. APIKeyExtender
precisely describes the changes we have to apply to PubCatInterface in order to
obtain PubCatInterfaceWithAPIKey.

Listing 5. Parametric/Adjacent refactored API provider.
1 interface extender APIKeyExtender {
2 RequestResponse: *({apiKey:string})(void) throws NotAuthorised
3 }
4
5 service PubCatWithAPIKey {
6 embed PubCat as pc
7 inputPort ip { /* ... */ aggregates: pc with APIKeyExtender }
8 courier ip {
9 [interface PubCatInterface(request)(response) {

10 /* check validity of request.apiKey */
11 if(isKeyValid) { forward(request)(response) }
12 else { throw NotAuthorised(/* fault data */) }
13 }]
14 }
15 }

We use the interface extender to define the refactored API provider, service
PubCatWithAPIKey (Lines 5 to 15). The service embeds PubCat (Line 6) and refers
to it through output port pc as in Listing 4 above. Differently, however, input

A Conceptual Framework for API Refactoring 11

port ip now aggregates pc with APIKeyExtender (Line 7), which instructs Jolie
to forward messages for the API of pc, extended with APIKeyExtender, to pc.

Messages forwarded by means of aggregation (applications of aggregates)
can be intercepted by means of a courier block. A courier is a piece of code
attached to an input port, which gets executed whenever one of the input port’s
operations is invoked. The courier at Lines 8 to 14 implements the API Key
pattern for all operations of the interface PubCatInterface. Unlike a regular input
choice, a courier can be parametric over the operation names of an interface:

[interface PubCatInterface(request)(response){ B }]

where B is the code that is executed on each invocation of an operation of
PubCatInterface on input port ip, and which can then decide whether to forward
the request to the PubCat service, or return the error message NotAuthorised. The
forward primitive automatically removes fields added by any interface extenders,
so messages to pc are well-typed.

Parametric/External This solution differs from the previous one only on the de-
ployment configuration of the refactored and original API providers, each having
their own remote endpoint. The output port of Listing 5 must now describe the
remote API endpoint of PubCat.

1 service PubCatWithAPIKey {
2 outputPort pc { /* PubCat endpoint */ }
3 inputPort ip { /* Same as in Listing 5 */ }
4 courier ip { /* Same as in Listing 5 */ }
5 }

Parametric/Internal This strategy can be easily expressed in Jolie’s syntax by
adding an interface extender and courier to the original API provider.

1 service PubCat {
2 inputPort ip { /* ... */ interfaces: PubCatInterface with APIKeyExtender }
3 courier ip { /* Same as in Listing 5 */ }
4 main { /* Same as in Listing 1 */ }
5 }

This is the only strategy that we could not test in Jolie, since its current
interpreter does not support applying extenders to an interface that is not ag-
gregated. This limitation is an implementation detail. Our study motivates the
inclusion of this feature in future versions.

4.2 Other patterns: Merge Endpoints and Version Identifier

We now illustrate how to introduce two other patterns: Merge Endpoints
and Version Identifier. Differently from API Key, these patterns are fully
architectural, in the sense that they do not introduce behavioural changes but
rather affect only how APIs are accessed. We apply the Parametric/External
strategy for both cases.

12 F. Montesi et al.

Merge Endpoints exposes the operations of two endpoints through a single
endpoint. Suppose, for example, that we have a PubCat service for a publication
catalogue and a CitInd service for citation indexing. We develop a new service,
PublicationIndex, that merges their APIs by using aggregation.

1 service PublicationIndex {
2 outputPort pc { // publication catalogue
3 location: /* ... */ protocol: /* ... */
4 interfaces: PubCatInterface
5 }
6 outputPort ci { // citation index
7 location: /* ... */ protocol: /* ... */
8 interfaces: CitIndInterface
9 }

10 inputPort ip {
11 location: /* ... */ protocol: /* ... */
12 aggregates: pc, ic
13 } }

Note that aggregation requires the operations of the aggregated ports to have
distinct names, which is in line with the pattern here. If this is not the case, one
can use the other Jolie feature of redirection, explained in the next case.

Version Identifier exposes two (or more) different versions of the same
API under a single endpoint. Here aggregation does not work, because the op-
eration names in two versions of the same API likely overlap. Jolie solves this
problem by offering the APIs under different resource paths at the same physical
endpoint. In the next example, input port ip offers PubCatInterfaceV1 under
path v1 and PubCatInterfaceV2 under path v2. Assuming that a client reaches
the refactored API provider at location pubcat.com, this means that version 1 will
be accessible at location pubcat.com/v1 and version 2 at location pubcat.com/v2.

1 service PubCatWithAPIKey {
2 outputPort pcv1 {
3 location: /* ... */ protocol: /* ... */
4 interfaces: PubCatInterfaceV1
5 }
6 outputPort pcv2 {
7 location: /* ... */ protocol: /* ... */
8 interfaces: PubCatInterfaceV2
9 }

10 inputPort ip {
11 location: /* ... */ protocol: /* ... */
12 redirects: v1 => pc1, v2 => pc2
13 }
14 }

This approach does not alter the original (versions of) the APIs, by distin-
guishing between versions based on the accessed location. Therefore, clients just
need to be connected to the right location. An alternative to this approach is to
extend the request types of all operations with a version identifier. However, this
would require updating the clients to include this information. Furthermore, re-
sponse types would become less precise, since they would need to accommodate
the possible responses across all versions.

A Conceptual Framework for API Refactoring 13

5 API Refactoring Recipes

In this section, we illustrate how our framework can be used to distill recipes that
can be followed mechanically by programmers to apply an API refactoring. We
cover the cases of a parametric implementation of the API Key pattern and an
ad-hoc implementation of the Pagination pattern. The latter is representative
of situations where obtaining efficiency requires big sacrifices in maintainability
and isolation.

We start with our recipe for API Key.

Refactoring recipe: Introduce API Key (Parametric)

Intent. Introduce the API Key pattern by means of a dedicated service that is
parametric on the original API.

Participants and Preconditions.

1. Participant: A Jolie service, say Original, exposing the API subject to refac-
toring as an interface, say OriginalAPI.

2. Precondition: Original offers OriginalAPI through an input port Original-
InputPort.

Refactoring steps.

1. Introduce an interface extender APIKeyExtender that:
(a) Extends the request message with a field apiKey holding an API Key.
(b) Adds a faulty response message NotAuthorised.

2. Introduce a new service OriginalWithAPIKey:
(a) Introduce a new output port original.
(b) Choose between:

Choice 1 (External): Configure output port original (at Original-
WithAPIKey) and input port OriginalInputPort (at Original) so that
they communicate via the network.

Choice 2 (Adjacent): Configure output port original (at Original-
WithAPIKey) and input port OriginalInputPort (at Original) so that
they communicate via local memory.

(c) Introduce an input port ip that aggregates the output port original and
extends it with APIKeyExtender.

(d) Introduce a courier for ip that intercepts all operations of OriginalAPI
and:
i. Checks the validity of the API Key.
ii. If the key is valid, forwards the request to original.
iii. Otherwise, if the key is invalid, replies with the NotAuthorised re-

sponse.

Postconditions.

14 F. Montesi et al.

1. Invoking any operation op at OriginalWithAPIKey with a valid API Key results
into the same response message as the invocation to op at Original without
an API Key.

2. Invoking any operation op at service OriginalWithAPIKey with an invalid API
Key results into an NotAuthorised message.

3. Service OriginalWithAPIKey becomes the only client of service Original.

Discussion and EMI scoring. This recipe yields a parametric implementation, giv-
ing maintainability score M . Choice 1 introduces network overhead, giving
E and I , while Choice 2 does not, yielding E and I . We
get the following possible EMI scores:

Choice 1 (External): E M I .
Choice 2 (Adjacent): E M I .

We now present a recipe for the Pagination pattern. Pagination allows
clients to retrieve smaller portions (‘pages’) of large data sets. The aim is to
improve network and memory utilisation; this also addresses the stability an-
tipattern of providing responses of unbounded size [21]. There are four variants
of this pattern, corresponding to four different ways of identifying the page that
the client wants [30,31]. Here, we implement the offset-based version.

Refactoring recipe: Introduce Pagination (Ad-hoc/Internal)

Intent. Introduce the offset-based Pagination pattern for an operation.

Participants and Preconditions.

1. Participant: A Jolie service, say Original, exposing the operation subject to
refactoring, say op, as part of an interface, say OriginalAPI.

2. Precondition: op is a retrieval operation whose response type contains an
ordered collection of items to be paginated.

Refactoring steps.

1. Change the definition of op in OriginalAPI to:
(a) Extend the request type with metadata fields specifying the offset of the

requested page, the limit of items per page, and the sort-criterion, if
more than one order exists for items in the collection;

(b) Extend the response type with fields describing the response page such
as the page number offset, items per page limit, sort-criterion, and
total number of pages.

(c) Add a faulty response message InvalidPageRequest in case of invalid
page metadata.

2. Change the implementation of op to:
(a) Validate the page metadata fields (and reply immediately with Invalid-

PageRequest in case of failure).

A Conceptual Framework for API Refactoring 15

(b) Paginate the requested data, possibly by leveraging features of the data-
base query language (like OFFSET and LIMIT for SQL).

(c) Reply with the requested page and its metadata.

Postconditions.

1. Calling op to request page with a given offset and size limit results into
the items of the collection returned by the original op from position offset
* limit to position offset * limit + limit.

Discussion. Delegating the pagination to the query language of the database
in use achieves efficiency score E . However, since it also modifies the im-
plementation of the specific operation, we obtain maintainability M and
isolation I . The overall EMI score is therefore E M I .

Considerations on alternative implementations. The design smells that moti-
vate the introduction of the Pagination pattern are about poor efficiency and
thus the Ad-hoc/Internal strategy is a natural choice. If Ad-hoc/Internal is un-
desirable, other strategies can still be adopted at the cost of high decreases in
efficiency. The key problem is distribution. Choosing an Adjacent strategy would
still imply that the original API provider fetches all data from its database, but
at least this would be ‘cut’ by the refactored API provider before it is sent back
to clients. The same holds for an External strategy, but in this case we would
pay also the cost of network communication (of the whole data set) between the
refactored and original API providers.

6 Conclusion

We have introduced the EMI framework, the first conceptual framework for
navigating the implementation aspects of API refactorings. While broad and
technology-agnostic, our scores are informative when it comes to key design de-
cisions on the implementation of API patterns.

Our study opens up at least two interesting lines of future work.
First, in line with previous work [25], we have focused on presenting API

refactorings that add a pattern. However, our Adjacent and External strategies
make it immediate to remove a pattern later on. We think that enabling the
modular activation and deactivation of patterns is an interesting direction.

The second line of future work deals with exploring additional aspects on
top of efficiency, maintainability, and isolation. These aspects are in line with a
previous survey on what qualities are important in practice, but there are also
others that merit consideration, like scalability and usability [3, 24]. We think
that scalability would be a first natural extension of our framework, as it is
closely related to efficiency and isolation but not completely captured by them.

Acknowledgements We thank Sandra Greiner for the useful discussions and
feedback on a draft of this paper.

16 F. Montesi et al.

References

1. Bandura, A., Kurilenko, N., Mazzara, M., Rivera, V., Safina, L., Tchitchigin, A.:
Jolie community on the rise. In: Procs. SOCA. pp. 40–43. IEEE Computer Society,
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331. (2016). https:
//doi.org/10.1109/SOCA.2016.16

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional, 3rd edn. (2012)

3. Bogner, J., Wójcik, P., Zimmermann, O.: How do microservice api patterns im-
pact understandability? a controlled experiment (2024), https://arxiv.org/abs/
2402.13696

4. Chandramouli, R.: Security Strategies for Microservices-based Application Sys-
tems. National Institute of Standards and Technology (2019). https://doi.org/
https://doi.org/10.6028/NIST.SP.800-204, available at https://doi.org/10.6028/
NIST.SP.800-204

5. Cruz-Filipe, L., Kostopoulou, S., Montesi, F., Vistrup, J.: µxl: Explainable lead
generation with microservices and hypothetical answers. In: Papadopoulos, G.A.,
Rademacher, F., Soldani, J. (eds.) Service-Oriented and Cloud Computing -
10th IFIP WG 6.12 European Conference, ESOCC 2023, Larnaca, Cyprus, Oc-
tober 24-25, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14183,
pp. 3–18. Springer (2023). https://doi.org/10.1007/978-3-031-46235-1_1, https:
//doi.org/10.1007/978-3-031-46235-1_1

6. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L.: Microservices: Yesterday, today, and tomorrow. In: Maz-
zara, M., Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216.
Springer (2017). https://doi.org/10.1007/978-3-319-67425-4_12, https://doi.org/
10.1007/978-3-319-67425-4_12

7. Erder, M., Pureur, P.: Continuous Architecture: Sustainable Architecture in an
Agile and Cloud-Centric World. Elsevier Science (2015), https://books.google.dk/
books?id=xxYoCgAAQBAJ

8. Erder, M., Pureur, P., Woods, E., Safari, a.O.M.C.: Continuous Architecture in
Practice: Software Architecture in the Age of Agility and DevOps. Addison-Wesley
Professional (2021), https://books.google.dk/books?id=nRZwzgEACAAJ

9. Ford, N., Parsons, R., Kua, P.: Building Evolutionary Architectures: Support
Constant Change. O’Reilly Media (2017), https://books.google.dk/books?id=
qYI2DwAAQBAJ

10. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley (2012)
11. Gabbrielli, M., Giallorenzo, S., Lanese, I., Zingaro, S.P.: A language-based ap-

proach for interoperability of IoT platforms. In: Bui, T. (ed.) Procs. HICSS. pp.
1–10. ScholarSpace / AIS Electronic Library (AISeL), 2404 Maile Way, D307, Hon-
olulu, HI 96822 (2018)

12. Gabbrielli, M., Martini, S., Giallorenzo, S.: Programming Languages: Principles
and Paradigms, Second Edition. Springer, Gewerbestrasse 11, 6330 Cham, Switzer-
land (2023)

13. Giaretta, A., Dragoni, N., Mazzara, M.: Joining Jolie to docker - orchestration
of microservices on a containers-as-a-service layer. In: Ciancarini, P., Litvinov, S.,
Messina, A., Sillitti, A., Succi, G. (eds.) Procs. SEDA. Advances in Intelligent
Systems and Computing, vol. 717, pp. 167–175. Springer, Gewerbestrasse 11, 6330
Cham, Switzerland (2016). https://doi.org/10.1007/978-3-319-70578-1_16

https://doi.org/10.1109/SOCA.2016.16
https://doi.org/10.1109/SOCA.2016.16
https://doi.org/10.1109/SOCA.2016.16
https://doi.org/10.1109/SOCA.2016.16
https://arxiv.org/abs/2402.13696
https://arxiv.org/abs/2402.13696
https://doi.org/https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.1007/978-3-031-46235-1_1
https://doi.org/10.1007/978-3-031-46235-1_1
https://doi.org/10.1007/978-3-031-46235-1_1
https://doi.org/10.1007/978-3-031-46235-1_1
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://books.google.dk/books?id =xxYoCgAAQBAJ
https://books.google.dk/books?id =xxYoCgAAQBAJ
https://books.google.dk/books?id =nRZwzgEACAAJ
https://books.google.dk/books?id =qYI2DwAAQBAJ
https://books.google.dk/books?id =qYI2DwAAQBAJ
https://doi.org/10.1007/978-3-319-70578-1_16
https://doi.org/10.1007/978-3-319-70578-1_16

A Conceptual Framework for API Refactoring 17

14. Guidi, C., Anedda, P., Vardanega, T.: Paassoa: An open paas architecture for
service oriented applications. In: Paoli, F.D., Pimentel, E., Zavattaro, G. (eds.)
Service-Oriented and Cloud Computing - First European Conference, ESOCC
2012, Bertinoro, Italy, September 19-21, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7592, pp. 208–209. Springer (2012). https://doi.org/10.1007/
978-3-642-33427-6_16, https://doi.org/10.1007/978-3-642-33427-6_16

15. Guidi, C., Maschio, B.: A Jolie based platform for speeding-up the digitalization
of system integration processes. In: Microservices (2019), https://www.conf-micro.
services/2019/papers/Microservices_2019_paper_6.pdf

16. Gusmanov, K., Khanda, K., Salikhov, D., Mazzara, M., Mavridis, N.: Jolie good
buildings: Internet of things for smart building infrastructure supporting concur-
rent apps utilizing distributed microservices. CoRR abs/1611.08995 (2016)

17. Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., Stocker, M.: Interface evo-
lution patterns: balancing compatibility and extensibility across service life cycles.
In: Sousa, T.B. (ed.) Procs. EuroPloP. ACM, 2 Penn Plaza, Suite 701 New York
New York 10121-0701 (2019). https://doi.org/10.1145/3361149.3361164

18. Montesi, F.: Process-aware web programming with jolie. Sci. Comput. Program.
130, 69–96 (2016). https://doi.org/10.1016/J.SCICO.2016.05.002, https://doi.org/
10.1016/j.scico.2016.05.002

19. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie.
In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.) Web Services Foundations,
pp. 81–107. Springer, Springer Science+Business Media New York (2014). https:
//doi.org/10.1007/978-1-4614-7518-7_4

20. Montesi, F., Weber, J.: From the decorator pattern to circuit breakers in microser-
vices. In: Haddad, H.M., Wainwright, R.L., Chbeir, R. (eds.) Proceedings of the
33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France,
April 09-13, 2018. pp. 1733–1735. ACM (2018). https://doi.org/10.1145/3167132.
3167427, https://doi.org/10.1145/3167132.3167427

21. Nygard, M.: Release it!: design and deploy production-ready software (2007)
22. OASIS: Web services business process execution language version 2.0. http://docs.

oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (2007)
23. Oram, A.: Ballerina: A Language for Network-Distributed Applications. O’Reilly,

1005 Gravenstein Highway North, Sebastopol, CA 95472 (2019)
24. Stocker, M., Zimmermann, O.: From code refactoring to API refactoring: Agile

service design and evolution. In: Barzen, J. (ed.) Service-Oriented Computing. pp.
174–193. Springer International Publishing, Cham (2021)

25. Stocker, M., Zimmermann, O.: API refactoring to patterns: Catalog, template and
tools for remote interface evolution. In: Proceedings of the 28th European Confer-
ence on Pattern Languages of Programs. EuroPLoP ’23, Association for Computing
Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3628034.3628073

26. Stocker, M., Zimmermann, O., Zdun, U., Lübke, D., Pautasso, C.: Interface quality
patterns: Communicating and improving the quality of microservices APIs. In:
Procs. EuroPLoP. ACM, 2 Penn Plaza, Suite 701 New York New York 10121-0701
(2018). https://doi.org/10.1145/3282308.3282319

27. Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C., Stocker, M.: Interface re-
sponsibility patterns: Processing resources and operation responsibilities. In: Procs.
EuroPLoP. ACM, 1601 Broadway, 10th Floor New York, New York 10019, USA
(2020). https://doi.org/10.1145/3424771.3424822

28. Zimmermann, O., Pautasso, C., Lübke, D., Zdun, U., Stocker, M.: Data-oriented
interface responsibility patterns: Types of information holder resources. In: Procs.

https://doi.org/10.1007/978-3-642-33427-6_16
https://doi.org/10.1007/978-3-642-33427-6_16
https://doi.org/10.1007/978-3-642-33427-6_16
https://doi.org/10.1007/978-3-642-33427-6_16
https://doi.org/10.1007/978-3-642-33427-6_16
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_6.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_6.pdf
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1016/J.SCICO.2016.05.002
https://doi.org/10.1016/J.SCICO.2016.05.002
https://doi.org/10.1016/j.scico.2016.05.002
https://doi.org/10.1016/j.scico.2016.05.002
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1145/3167132.3167427
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1145/3628034.3628073
https://doi.org/10.1145/3628034.3628073
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1145/3424771.3424822
https://doi.org/10.1145/3424771.3424822

18 F. Montesi et al.

EuroPLoP. ACM, 1601 Broadway, 10th Floor New York, New York 10019, USA
(2020). https://doi.org/10.1145/3424771.3424821

29. Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., Zdun, U.: Introduction
to microservice API patterns (MAP). In: Cruz-Filipe, L., Giallorenzo, S., Mon-
tesi, F., Peressotti, M., Rademacher, F., Sachweh, S. (eds.) Joint Procs. Mi-
croservies. OASIcs, vol. 78. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Oktavie-Allee, 66687 Wadern, Germany (2019). https://doi.org/10.4230/OASICS.
MICROSERVICES.2017-2019.4

30. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U.: Interface representation
patterns: Crafting and consuming message-based remote APIs. In: Procs. Euro-
PLoP. ACM, 2 Penn Plaza, Suite 701 New York New York 10121-0701 (2017).
https://doi.org/10.1145/3147704.3147734

31. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for
API Design: Simplifying Integration with Loosely Coupled Message Exchanges.
Addison-Wesley Signature Series (Vernon), Addison-Wesley Professional (2022)

https://doi.org/10.1145/3424771.3424821
https://doi.org/10.1145/3424771.3424821
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4
https://doi.org/10.1145/3147704.3147734
https://doi.org/10.1145/3147704.3147734

	A Conceptual Framework for API Refactoring in Enterprise Application Architectures

