
Dynamic fault handling mechanisms
for service-oriented applications ∗

Fabrizio Montesi, Claudio Guidi, Ivan Lanese and Gianluigi Zavattaro
Department of Computer Science, University of Bologna, Italy
fmontesi,cguidi,lanese,zavattar@cs.unibo.it

Abstract

Dynamic fault handling is a new approach for deal-
ing with fault management in service-oriented applications.
Fault handlers, termination handlers and compensation
handlers are installed at execution time instead of being
statically defined. In this paper we present this program-
ming style and our implementation of dynamic fault han-
dling in JOLIE, providing finally a nontrivial example of its
usage.

1. Introduction

Service-oriented applications are usually distributed, and
they are generally composed of a large number of services
aggregated by means of so-called orchestrators. These ser-
vices usually rely upon a workflow programming approach,
enhanced with specific communication primitives for ex-
changing messages with other peers. This is the case of
WS-BPEL (BPEL for short) [9], which is an XML based
language for building orchestrators. In this context we usu-
ally refer to the term service as a loosely coupled appli-
cation with a standardized interface (à la Web Services);
moreover we use the term service composition as the ability
to design orchestrators in order to manage business activi-
ties which involve different services. In the last years we
have investigated composition by proposing a formal cal-
culus, named SOCK [5], which formalizes its basic mecha-
nisms and an implementation of it called JOLIE [8]. Due to
the distributed nature of service-oriented applications, one
of the most interesting issues raised by service composi-
tion is fault management. Indeed, given a system of ser-
vices, a fault raised by a single service could be propagated
by triggering a fault message chain that can involve sev-
eral services. Mechanisms such as fault handlers, termi-
nation handlers and compensation handlers have been pro-

∗Research partially funded by EU Integrated Project Sensoria, contract
n. 016004.

posed for orchestration languages, as for example in BPEL,
for providing programming constructs which allow for the
management of recovery activities within each orchestra-
tor. Fault handlers are used for directly managing faults,
termination handlers are used for smoothly terminating an
ongoing activity when an external fault occurs and compen-
sation handlers are used for undoing the effect of a com-
pleted activity during error recovery. These constructs are
usually programmed statically [9]. Recently, we have stud-
ied the fault management issues in the service-oriented con-
text from a formal view point and in [4] we have proposed
a new approach for dealing with error recovery: dynamic
handling. According to this new approach handlers are not
statically programmed but they are dynamically installed at
execution time. In this way fault handlers and termination
handlers can be tuned depending on the part of code which
has been already executed. From this perspective, a handler
installation sets a point in the executing code after which
recovery procedures must be changed. Therefore, in order
to avoid that a fault can break the code before installing a
handler, it is fundamental that a handler which is willing to
be installed must be served with priority w.r.t. fault han-
dling procedures. Our formal framework guarantees that
faults cannot be managed before the installation of a han-
dler which is willing to be installed. Furthermore, since be-
sides traditional one-way communication, service-oriented
computing usually supports a bidirectional communication
pattern composed by the solicit-response and the symmetric
request-response operation, we also considered how faults
interact with these two communication patterns.

In this paper, we present the implementation of our for-
mal framework by enhancing the JOLIE language with
all the primitives for dealing with fault management:
scope(q){P} allows for the definition of a scope named q
whose inner process is P , throw(f) allows for raising a fault
f by possibly specifying some extra data (throw(f,data)),
install(H) allows for the installation of a handler where
H is a function from fault and scope names to processes,
comp(q) allows for the execution of a compensation handler
where q is the name of the scope to be compensated, cH al-

Sixth European Conference on Web Services

978-0-7695-3399-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ECOWS.2008.20

225

lows for the retrieving of the previous installed handler for
a given scope or fault, op@loc(i)(o)[H] is an enhanced ver-
sion for the primitive SolicitResponse which allows for han-
dler installation at the response message reception. Finally,
dynamic code generation allows us to freeze data within an
installed process. It is worth noting that our implementa-
tion exactly follows the formal specification defined in our
previous works and it satisfies some basic properties proved
there.

In Sections 2 and 3 we provide a survey on fault manage-
ment key concepts and JOLIE implementation respectively.
In Section 4 we present a nontrivial example and, finally, in
Section 5 conclusions and related works are presented.

2. Key concepts

Fault handling in Service-Oriented Computing generally
involves four basic concepts: scope, fault, termination and
compensation. A scope is a process container denoted by
a unique name and able to manage faults. A fault is a sig-
nal raised by a process towards the enclosing scope when
an error state is reached in order to allow for its recovering.
Termination and compensation are mechanisms exploited
to recover from errors. Termination is automatically trig-
gered when a running scope must be smoothly stopped be-
cause of a fault thrown by a parallel process. Compensa-
tion, instead, is explicitly invoked by the programmer to
undo the effect of a scope whose execution has already
successfully completed. Recovering mechanisms are im-
plemented by exploiting handlers which are processes to
be executed when faults, terminations or compensations oc-
cur. Handlers are defined within a scope which represents
the execution boundary of their execution. There are three
kinds of handlers: fault handlers, termination handlers and
compensation handlers. Fault handlers are executed when
a fault is thrown by the internal process of the scope, ter-
mination handlers are executed when a scope is reached
by a fault raised by an external process and, finally, com-
pensation handlers have to be explicitly invoked by another
handler for recovering the activities of a child scope whose
computation has already successfully finished. At runtime,
when a fault f is raised within a scope q, all its enclosed
running activities are terminated. Note that any of the en-
closed activities could be a scope, and in this case its termi-
nation handler is automatically executed. After that, if q has
a fault handler for f , it executes it. Otherwise, the fault is
propagated upwards to the parent scope. It is worth noting
that handlers can be programmed to compensate any child
scope that has successfully completed its activity before f
was raised. Compensation is achieved by executing the re-
lated compensation handler. Fig. 1 provides an intuitive
representation of handler mechanisms where numbers rep-
resent ordered events and stm1,stm2,...,stmn represent a list

S C O P E A

P

S C O P E B S C O P E C

F H

T H

C H

F H

T H

C H

F H

T H

C H1

2

fau l t

3

4

5

S u c c e s s

s t m 1 ;
s t m 2 ;
s t m 3 ;
.. . .
. . . .
. . . .
s t m n ; C H

Figure 1. Handler mechanisms

of generic statements. A scope A encloses a generic pro-
cess P and two scopes B and C. At 1 scope C terminates
successfully by promoting its compensation handler to be
executable by the enclosing scope A. At 2, process P raises
a fault which is propagated to scope B. We suppose that B
is still executing when reached by the fault so, at 3, it exe-
cutes its termination handler and terminates. At 4 the fault
handler of scope A is executed and, at 5, it compensates
scope C (supposing that the handler specifies so).

2.1. Static approach

Usually, error recovery is managed by statically as-
sociating handlers to scopes, i.e. providing a primitive
like scopeq(P,FH, T H, CH), which defines a scope with
name q, executing process P and fault, termination and
compensation handlers FH1, T H and CH, respectively. In
some cases static declaration of handlers is not enough to
easily model a given scenario. For instance, consider the
following pseudo-code:

R | scopeq(i=0; while(i < 100){
i = i + 1;if i%2 = 0 then P else Q
},FH, T H, CH)

where R is a generic process (running in parallel to scope
q) which can raise a fault f . Scope q contains a loop which
executes 100 cycles. Odd cycles execute process P , even
cycles process Q. Suppose that, at some point of execu-
tion, R raises a fault f , which triggers the termination of the
scope q. Suppose also that the termination handling policy
for scope q requires to compensate the activities executed
so far in the reverse order of completion. Thus, one has
to remember how many P and Q activities have been exe-
cuted, and in which order, for compensating them accord-
ingly. Without any specific support from the language the
programmer has to use some bookkeeping variables, but as
the complexity of the code increases the bookkeeping be-
comes more complex and error-prone. For instance, let us
introduce in the previous example an array named a which
stores a 0 if the process P is executed and 1 otherwise.

1FH may define more than one fault handler for treating different
kinds of faults.

226

R | scopeq(i = 0;while(i < 100){
i = i + 1;
if i%2 = 0 then {P ; a[i] = 0}

else {Q; a[i] = 1}
},FH, T H, CH)

In this case, if a fault f is raised between the execution of P
and the updating of the array a (a[i] = 0), the termination
handler cannot recover correctly scope q because array a
does not record the last execution of P .

2.2. Dynamic approach

In order to address the problem raised by the static ap-
proach, in [4] we have proposed dynamic handling, which
allows for the updating of the handlers while the computa-
tion progresses. Technically, we consider a scope construct
of the form scopeq{P,H} where q is the name of the
scope, P is the process to be executed, and H is a function
associating fault handlers to fault names and termination
and compensation handlers to scope names. No handlers
are specified when the scope is defined but they are installed
dynamically in H during the execution of P . Dynamic han-
dling installation is addressed by two specific primitives:
inst(H′), which updates the current handler function with
H′ and cH which introduces the possibility to refer to the
previous installed handlers. It is worth noting that the prim-
itive inst can associate handlers both to scope names and
fault names. As an example, let us consider the following
process Θ defined as a scope q where a sequence of pro-
cesses Q,Q′, Q′′, Q′′′ and Q′′′′ is interleaved with four dif-
ferent install primitives at lines 1,3,5,7:

0) Θ ::= scopeq{Q;
1) inst([f �→ P]);
2) Q′;
3) inst([q �→ F, f ′ �→ T, f �→ P ′; cH]);
4) Q′′;
5) inst([f ′′ �→ U, f �→ P ′′]);
6) Q′′′;
7) inst([q �→ F ′])}

In the following table, where the different columns repre-
sent the state of the handler function at a particular code
line, we report how the handler function for the scope q is
updated when the install instructions are executed.

0) 2) 4) 6) 8)
f �→ P f �→ P ′;P f �→ P ′′ f �→ P ′′

q �→ F q �→ F q �→ F ′

f ′ �→ T f ′ �→ T f ′ �→ T
f ′′ �→ U f ′′ �→ U

It is worth noting that at the beginning the handler function
is empty. The install primitive defines new handlers for a

specific fault or scope name if no handlers for that name
have already been specified (e.g. fault f at line 1 and fault
f ′ at line 3) whereas it updates the current handler otherwise
(fault f at line 3 and 5). In particular, at line 3, the handler
for the fault f is not replaced by a new process, but the cur-
rent one (represented by cH) is enriched with the process
P ′. The first concept we highlight is:

The install primitive updates the current handler
for the specified fault or scope name

The semantics of fault handlers is different from that of ter-
mination and compensation ones. The fault handler is ex-
ecuted when the scope is reached by an inner fault. In the
example above if we replace the process Q′′′ with the fault
raising primitive throw(f), at line 6 the code is stopped
and the fault handler P ′′ is executed. On the contrary, the
termination handler is executed only when a scope is termi-
nated because an outer scope has raised a fault. In order to
clarify this aspect we consider the process Θ in parallel with
a process R within a parent scope r where a fault handler G
is installed for fault f before starting the parallel:

scoper{inst([f �→ G]); (R | Θ)}

Now, assume that R throws a fault f when Θ is execut-
ing line 4. Since the fault is raised by an outer scope, the
fault handler of Θ for f is not executed, the termination is
executed instead. The termination handler is the process
associated with the scope name q when the termination is
triggered. At line 4, q is joined with process F , which is
executed when scope q is terminated. It is worth noting that
in Θ, at line 3, the programmer has specified that the termi-
nation handler for scope q must be updated because process
Q′ has been executed and it must be recovered by process
F but, if the fault f from R is raised between the execution
of Q′ and inst([q �→ F, f ′ �→ T]), the termination handler
is not consistent with the programmer expectations. Such a
case is avoided by the semantics of the primitive inst which
is executed with priority w.r.t. the fault processing mecha-
nism. Thus, if line 2 is executed, the semantics of the install
primitive guarantees that also line 3 is executed before any
fault is processed. The second concept we highlight is:

The install primitive is executed with priority
w.r.t. fault processing

After Θ has been terminated, the parent scope, which con-
tains both process R and process Θ, can execute its fault
handler for f . It is worth noting that the termination mech-
anism is always propagated to all the children of a given
scope which have to be terminated before their father is. In
our example let us consider that Q′′ at line 4 is a scope k
which executes a process W:

227

0) Θ ::= scopeq{Q;
1) inst([f �→ P]);
2) Q′;
3) inst([q �→ F, f ′ �→ T, f �→ P ′; cH]);
4) scopek{W}; ...}

If a fault is raised by R when Θ is executing W , first the
termination handler for scope k is executed, then the ter-
mination for scope q (i.e. F) is executed and, finally, the
fault handler for the parent scope r is executed. The third
concept we highlight is:

Termination is always propagated to sibling and
child scopes, and it is always completed before
the enclosing scope processes the fault handler

If scope q finishes successfully without having been inter-
rupted by any faults, the current termination handler (q �→
F ′) is promoted to compensation handler for q inside the
parent scope r. A compensation handler can be executed
only if it is explicitly required by means of the primitive
comp(q), where q is the name of the scope to compensate.
The compensation primitive is used within the fault handler
of the parent scope and it can take effect only if the com-
pensation handler has been promoted by the child scope, it
is skipped otherwise. In the following we modify the fault
handler of scope r in order to invoke the compensation for
scope q.

scoper{inst([f �→ G;comp(q)]); (R | Θ)}

The next two concepts we highlight are:

A compensation handler is a termination han-
dler promoted to the parent scope when the child
scope finishes successfully

A compensation handler is activated by means of
a specific primitive which can only be used inside
a handler

Note that there is no ambiguity between termination and
compensation handlers because a termination handler is ex-
ecuted by the scope itself when interrupted by a fault gen-
erated by a parallel activity, whereas a compensation han-
dler can only be executed by the parent scope. This allows
also to trivially simulate the static approach with the dy-
namic one: the construct scopeq(P,FH, T H, CH) can be
simply rephrased as scopeq{inst([f �→ FH]); inst([q �→
T H]);P ; inst([q �→ CH]),H0} in which the fault and ter-
mination handlers are installed before the execution of the
activity, the compensation handler at the end, and H0 de-
fines no handlers. In light of these observations we can
rewrite the while example of the previous section in the fol-
lowing way:

R | scopeq{i = 0;while(i < 100){
i = i + 1;
if i%2 = 0 then{

P ; inst([q �→ P ′; cH])
} else {

Q; inst([q �→ Q′; cH])
}}

In this case, when P completes its execution, the statement
inst([q �→ P ′; cH]) updates the current termination handler
for q, pointed by cH , by adding process P ′ (which specifi-
cally compensates process P) to it, whereas if Q is executed
the termination handler is updated by adding Q′. When
reached by a fault f , scope q executes the last installed ter-
mination handler, compensating the whole sequence of ac-
tivities. Different compensation strategies can easily be pro-
grammed. Note that, thanks to the execution priority of the
installing primitive, in the example above it should never be
the case that an execution of P has been completed and its
compensation has not been installed. The same behaviour
cannot be obtained in the static approach, where we simu-
late handlers updating by using bookkeeping variables, as
we cannot distinguish whether a variable assignment is re-
lated to fault management or not.

2.3. Request-Response communication pat-
tern

The Request-Response communication pattern deals
with the sending of a request message and the reception
of its own response. Due to the strong relationship be-
tween the request and the response messages, such a kind
of pattern raises some interesting issues from the point
of view of the fault handling mechanism. In SOCK and
in JOLIE the Request-Response pattern is modelled by
means of two atomic communication primitives: the Re-
questResponse and the SolicitResponse. The RequestRe-
sponse (op(im, om, P)) primitive specifies the operation op
on which the message exchange is performed, the variable
im on which the request message is stored, the variable om

where the reply message is stored, and the process P to
execute between the reception and the response sending.
The SolicitResponse op@loc(om, im,H) specifies the op-
eration op and the location loc to use for performing the
message exchange, the variable om where the request mes-
sage is stored, the variable im where the reply message will
be stored and the handlers H to install when the response
message is received. In particular, the handlers will be in-
stalled only if the response message does not contain a fault.
It is worth noting that a SolicitResponse is blocked until the
response message is received. In Fig. 2.a) we have repre-
sented the interplay between a SolicitResponse and a Re-
questResponse denoted by SR and RR respectively: in step
1 the request message is sent from the SR to the RR, in step

228

2 the RR process is executed and then, at the end, the re-
sponse message is sent in step 3.

S R R R

P

S R R R

P
f

a) b)

S R R R

P

f

c)

1

3 2

1

2

3

1

2

2

3

Figure 2. SolicitResponse and RequestRe-
sponse behaviours

Between the request and the response messages faults
can be raised both on the SR and in the RR side, depending
on the contexts they are inserted in. The behaviour we have
modelled in SOCK for SR and RR always guarantees that
the response message is sent before handling a fault. In Fig.
2.b) a non catched fault f is raised during the execution of
process P in the RR, in this case a fault response is immedi-
ately sent to the SR which is waiting for the reply message.
In Fig. 2.c) a non catched fault f is raised on the SR side
before the reception of the response message from the RR,
in this case the SR behaviour forces the reception of the re-
sponse message from RR before handling the fault f . It is
worth noting that in the case depicted in Fig. 2.b) a fault f
is propagated between the two services that run the SR and
the RR, whereas in the case depicted in Fig. 2.c) the fault f
is not propagated but it is managed within the service that
runs the SR. The main concepts we highlight are:

In a RequestResponse primitive, if a non catched
fault is raised between the request message and
the response one, a fault response is always sent
to the invoker.

In a SolicitResponse primitive, if a non catched
fault is raised between the request message and
the response one, the SolicitResponse always
waits for the incoming response before the fault
is handled by the service.

In case of fault between the request and the response
message, in order to take into account that the request mes-
sage exchange has been performed, it is important to guar-
antee the possibility to install a termination handler for re-
covering from the request both at the level of SR and RR.
Since the RequestResponse allows for the definition of an
inner process between the request and the response no par-
ticular installation mechanisms have been provided. It is
sufficient to exploit the install primitive like in the follow-
ing example:

scopeq{login(username, result, inst([q → Q]); ...)}

After the reception of the username, the RequestResponse
login installs the termination handler Q for the scope q

which encloses the RequestResponse primitive. In the case
of the SR, the semantics always guarantees that the response
message is received but it is not possible to specify an in-
ner process to be executed between the request and the re-
sponse. Thus, it may seem sufficient to install the termina-
tion handler after the completion of the SR as in the follow-
ing example:

scopeq′{inst([q′ → Q′]);
login@loc(username′, result′);
inst([q′ → Q′′])}

Such a solution is not correct because if a fault is raised
between the request and the response the code execution
is stopped and the termination handler previously installed
(i.e. Q′) is executed after the reception of the response.
The following installation of termination Q′′ is discarded
because the SR is not completed. In order to avoid such a
scenario we have enhanced the SR primitive by introducing
a handler installation which is atomically performed when
the SR receives the response message as in the following
example:

scopeq′{login@loc(username′, result′, [q′ → Q])}

When result′ is received the termination for the scope q′ is
automatically installed2.

3. Dynamic handling in JOLIE

In this section we present JOLIE, a language for service
orchestration, and we analyze how JOLIE can exploit the
key concepts of dynamic handling. First, we offer a brief
introduction to JOLIE and its features; then, we show how
the language implements dynamic handling and the key fea-
tures of this implementation.

3.1. JOLIE: Java Orchestration Language
Interpreter Engine

JOLIE [8], Java Orchestration Language Interpreter En-
gine, is an open-source project [6] released under the LGPL
license [10]. JOLIE is based upon our formal calculus for
service orchestration, SOCK [5]. In SOCK we have for-
malized the basic features of the service-oriented comput-
ing paradigm and we have provided a language syntax with
a few basic constructs which allows for the composition
of services. JOLIE implements the semantics of SOCK,
thus allowing for the formal reasoning on JOLIE programs.
Language extensions and refinements have been made in
order to offer to the programmer a powerful and intuitive

2The handler is installed only if the response message does not contain
a fault.

229

environment, suitable to build both orchestrators and single
services.

In JOLIE one can use the classic while loop instruction
and if-then-else conditional statement. Also, one can
compose statements in a workflow by making sequences,
parallel compositions and non-deterministic choices, with
the possibility to synchronize parallel processes and to
model timeouts. JOLIE can interact with other services
by means of communication primitives inspired by the
four WSDL operation types (One-Way, Request-Response,
Notification and Solicit-Response). Moreover, using its
communication primitives and its composition operators,
JOLIE can compose other services by exploiting their in-
put operations.

One of the most prominent advantages of JOLIE is
the elegant separation between the program behaviour (or
workflow) and the underlying communication technologies.
The same behaviour can be used with different communica-
tion mediums (such as bluetooth, local memory, sockets,
etc.) and protocols (such as HTTP, REST, SOAP, SODEP3,
etc.) without being changed. Moreover, the communica-
tion infrastructure of JOLIE offers the possibility to extend
the JOLIE range of supported communication mediums and
protocols by means of simple Java libraries, called JOLIE
extensions.

The ability to extend its communication capabilities and
the ability to exploit the Java language in its workflows have
proven to be key factors in integrating JOLIE with a wide
range of existing technologies. Thanks to this advantage,
JOLIE can create a service oriented application even by or-
chestrating legacy applications that do not support the Web
Services specifications.

JOLIE provides an intuitive syntax, resembling that of
the C and Java languages. This is in contrast with the
most credited Web Services orchestration languages, such
as XLANG [11] and BPEL, which are based upon XML.
Nevertheless, JOLIE can interoperate with XML-based ap-
plications by using its XML and Web Services extensions.
Moreover, the JOLIE syntax allows the programmer to ma-
nipulate XML data structures easily. Consider the following
XML element:

<person>
<firstname>John</firstname>
<lastname>Smith</lastname>

</person>

In JOLIE, such an XML element would be constructed with
the following code:

person.firstname = "John";
person.lastname = "Smith"

3SODEP (Simple Operation Data Exchange Protocol) is a new, effi-
cient protocol purposely developed for JOLIE. The protocol has been im-
plemented also as C++, Google Web Toolkit and J2ME libraries.

and the variable person would be automatically converted
to XML in case of an outgoing SOAP transmission (and
vice versa in case of an incoming transmission).

For the sake of clarity, in the following we outline the
internal architecture of the interpreter.

Code analysis – JOLIE offers a library for code anal-
ysis, which is the same used by the interpreter itself for
parsing its input files and obtain an optimized abstract syn-
tax tree. The library offers the possibility to exploit the
Visitor object oriented design pattern [12], in order to
analyze and/or manipulate the parsing result. For exam-
ple, the JOLIE internal code optimizer and program well-
formedness checker (which takes its rules by the SOCK
specifications) are implemented by means of this approach.

Object Oriented Interpretation Tree – Responsible for
the execution of the behavioural code, the Object Oriented
Interpretation Tree (OOIT) is a tree composed by small
execution units. Each semantic rule specified by the be-
havioural layer of SOCK is implemented by an OOIT ex-
ecution unit. This approach based on encapsulation makes
very simple to update the interpreter semantics to follow
new developments of SOCK. The OOIT is produced by
JOLIE starting from the optimized abstract syntax tree.

Runtime environment – The runtime environment han-
dles the creation of new sessions, the synchronization of
processes and the service state. It interacts with all the other
components of JOLIE and abstracts the OOIT from session
state handling.

Communication core – The communication core
permits to keep the OOIT separated from communication
related problematics. This component handles incoming
connections and internal message routing to the various
sessions, along with the service input interface deployment.
Moreover, its modularized design permits to easily provide
support for new protocols and communication mediums
(such as files and local memory).

Summarizing, the main advantages of JOLIE are: (1) it
follows rigorously the operational semantics of SOCK, thus
allowing for the formal reasoning on JOLIE programs; (2) it
can be easily extended by introducing external libraries; (3)
it offers a programmer-friendly syntax, that allows for fast
orchestration prototyping and the subsequent step-by-step
incremental refinement; (4) it is able to interoperate with
different technologies and it can be integrated in heteroge-
neous environments; (5) the program workflow is indepen-
dent from the underlying communication technologies.

3.2. Dynamic handling in JOLIE

JOLIE offers the aforementioned fault handling mech-
anisms by means of a new set of instructions, each one

230

resembling the primitives that have been introduced in
SOCK:
1. throw(f), throw(f ,data): raise a fault signal f which can
be equipped with extra data;
2. install(H): installs H in the current scope;
3. comp(q): compensates a successfully finished scope q;
4. cH: refers to the previously installed handler;
5. scope(q){P}: executes P inside the scope q;
6. op@loc(i)(o)[H]: calls the service located at loc on op-
eration op sending the variable i, installs H and then waits
for a response;
where q is a scope name, f is a fault name, and H is a func-
tion describing the handlers to install. Note that JOLIE sup-
ports all the concepts that have been highlighted throughout
the paper. In the following we analyze the main features
offered by the JOLIE implementation.

Automatic fault transmission – As in SOCK, faults
that are thrown from inside a Request-Response operation
are automatically transmitted to the caller.

Dynamic code generation – The cH element implies
that the language must be able to generate behavioural code
dynamically. Consider the following example:

1) scope(s) {
2) install(f => i = i + 2);
3) install(f => i++; cH)}

In (3) the install instruction contains a reference to the cur-
rent handler. In order to execute the instruction correctly,
JOLIE must first replace cH; so, the install instruction that
gets executed at (3) is:

install(f => i++; i = i + 2)

We say that the code (in this case i = i + 2) has been
dynamically generated by the interpreter at the time of in-
stallation.

Actual programming experience showed that dynamic
code generation must take particular care to the evaluation
of expressions. JOLIE offers this feature by means of the ˆ
operator, which can be used to prefix a variable and freeze
its state in a handler that is going to be installed. In order
to understand this concept, consider the following JOLIE
code:

scope(s) {
for(i = 0, i < 3, i++) {
install(f => println@Console(ˆi); cH)

};throw(f)}

where println@Console(x) is the standard JOLIE
operation to print x on the console. The program cycles
over the i variable, and once it completes the for block it
throws fault f, thus causing the installed fault handler to be
executed. At each iteration, the for body updates the fault
handler for f by prefixing a console output of ˆi to the

currently installed handler; at each installation, the ˆ opera-
tor replaces the value of i with its current value. The final
handler for f, just before the throw instruction is reached,
results then as:

println@Console(2);
println@Console(1);
println@Console(0)

Structured fault data – JOLIE supports the association
of structured data to a fault signal. This ability can be used
to attach additional information to a fault, that can be re-
trieved and used later in the fault handler execution. In order
to do this, JOLIE extends the throw instruction to support
an optional parameter: throw(f , x). This new primitive
attaches the data contained in x to the fault signal f and
then raises the latter. In the following we provide a usage
example.

scope(s) {
install(f =>
// This will print "Hello, world!"
println@Console(s.f.message));

data.message = "Hello, world!";
throw(f, data)}

Note that in order to refer to the fault data of f we exploit
the scope name: s.f.message. This is due to the fact
that in SOCK and JOLIE variables are shared, so if two
scopes in parallel receive the same fault by their internal
activities we need to store their respective fault data in two
different variables to avoid a memory race condition. In
order to do so, we exploit the name of the scope receiving
the fault as a prefix. Note also that fault data is transparently
transmitted over the network in case of faults thrown inside
a request-response operation execution.

Basic safety properties – In [4] we point out some basic
properties that SOCK always assures about fault handling.
We describe again those properties here, as JOLIE respects
them and the programmer can make use of them in his or
her reasoning about an orchestrator behaviour: (1) a scope
ends successfully if it does not throw any fault upstream,
i.e. its internal process does not throw any fault or the scope
handles all of the faults thrown by its internal process; (2)
a scope installs its compensations in the parent scope iff it
ends successfully; (3) a scope that is terminated by a sib-
ling parallel process (i) does not end successfully and (ii)
does not throw any fault upstream anymore; (4) if a Solicit-
Response process starts (i.e. it sends a request message) it
always waits for the response; (5) if a Request-Response
process starts (i.e. it receives a request message) it always
supplies a response to the caller, be it a normal message or a
fault. Properties (1), (2) and (3) offer to the programmer the
means to safely predict the behaviour of a scope. Proper-
ties (4) and (5) ensure that the Request-Response pattern is
always respected, even when the program has to deal with
fault handling.

231

Figure 3. OOIT scope representation

Install statement priority – One of the most important
aspects of our dynamic handling approach is that the install
primitive has priority w.r.t. fault processing. This intro-
duces the necessary determinism to assure that fault han-
dling behaviour is predictable by the programmer. JOLIE
implements this mechanism exploiting its internal execu-
tion architecture, the Object-Oriented Interpretation Tree
(OOIT). In the following, we hint to how this is obtained.
Consider the following code

scope(s) {
throw(f)
| install(f => println@Console("Hello, world!"))

}

where the behaviour is composed by two processes in par-
allel: the former throws a fault f, whereas the latter installs
a fault handler for f. This workflow is internally repre-
sented by the OOIT in Figure 3. Basically, every OOIT
node is responsible for implementing a specific SOCK se-
mantic rule. Fault signals are propagated upwards in the
tree. When the fault signal f reaches the | node (i.e. the
node representing the parallel composition), the latter in-
forms every other child node that the parallel composition
is now in a fault handling situation and waits for their con-
firmation. Normally, a node aborts its execution and returns
immediately, but this is not the case for a node that has to
perform a handler installation: an install node returns its
confirmation to the | node only after actually performing
the installation. Thus, the parallel composition is forced to
wait for the handler installation and it propagates the fault
signal to the scope(s) node only afterwards.

4. Example

In this section we discuss the implementation of the auto-
motive scenario [13], which has been chosen as case study
inside the EU Project SENSORIA4. In the scenario, a car
engine failure occurs so that the car is no longer drivable.
The car service system must take care of bookings and pay-
ments for the necessary assistance, calling in particular a car
rental, a garage and a towing truck service. If both garage
and tow truck are available, the rented car has to go to the
garage (the client will be brought there by the tow truck),

4IST-FET Integrated Project Sensoria, contract no. 016004

otherwise the rented car must go to the location of the bro-
ken car. The system is composed by five main services: the
garage booking service, the truck booking service, the car
rental service, the bank service and the car service.

r en ta l

t r u c k

g a r a g e

s ta r t

e n d

P a y m e n t

G R T

Figure 4. Car service workflow
Both the garage booking service and the truck one ex-

hibit two operations: book and revbook. The for-
mer allows for booking the garage (resp. truck) and the
latter allows for revoking the reservation in case of fail-
ure. Besides these operations the car rental service pro-
vides also the redirect operation which allows for the
redirection of the rented car from a destination to an-
other one. The bank service5 offers the following op-
erations: openTransaction, payTransaction and
reverseTransaction where openTransaction allows
for the opening of a transaction to pay, payTransaction al-
lows for the payment of an opened transaction and, finally,
reverseTransaction allows for the revocation of a payment.
The workflow of the car service, which is in charge to rent
a car and book both the garage and the truck, is represented
in Fig. 4. It is composed by two main parts: a first parallel
composition of booking activities where the rental booking
activity is executed in parallel with the sequential composi-
tion of the garage booking and the truck booking activities
and a second payment part where all the expected payments
are performed. For the sake of brevity, in the following we
only discuss the car service workflow which includes all the
basic JOLIE mechanisms discussed so far. We will exploit
variable flags rFlag, gFlag and tFlag for denoting if
the reservation for the car rental service, the garage service
and the truck service respectively, are available (flag value
set to true). Let us now discuss the code of the garage
activity:

1) define bookGarage {
2) scope(garage) {
3) install(BookFault => throw(GarageFault));
4) book@Garage(failure)(g_payData, g_id);
5) install(this => revbook@Garage(g_id))}}

At line 1 the procedure bookGarage is defined whereas
at line 2 we define the scope garage. At line 3 we install
the fault handler which manages a booking fault that can

5For the sake of this example we suppose there is only one bank service.

232

be raised from the garage service: such a fault is re-thrown
to the parent scope as a GarageFault fault. At line 4
we perform the garage booking by invoking the operation
book of the garage service where failure is the car fail-
ure description, g payData contains the payment data for
the garage service and g id is the reservation id. Finally,
at line 5, we install the compensation handler for the scope
garage which revokes the reservation. The truck booking
activity bookTruck is equal to bookGarage with the
exceptions that variables are prefixed by t instead of g
and that the scope name is truck instead of garage.

Differently from bookGarage and bookTruck the car
rental activity rentCar installs a compensation handler
where a redirection is programmed instead of a booking re-
voking. Indeed, the car rental reservation will be revoked
only if the payment will not succeed and it will be managed
by the parent scope that we will show in the following. The
code of rentCar follows:

1) define rentCar {
2) scope(car_rental) {
3) install(BookFault => rFlag = false);
4) coords = g_coords;
5) book@CarRental(coords)(r_payData, r_id);
6) install(this => coords = car_coords;
7) redirect@CarRental(r_id, coords)())}}

At line 1 we define the procedure for the car rental activity
and at line 2 we open the related scope. At line 3 we install
the fault handler related to the booking fault which can be
raised by the car rental service. In case of fault the vari-
able flag for the rental service is set to false. At line 4 we
set the destination coordinates where the car must be sent
and at line 5 we perform the car rental booking by invoking
operation book. At line 6-7 we install the compensation
handler for the car rental activity where the destination co-
ordinates are set to the car ones and the redirection opera-
tion is called. Let us now consider the code of the scope
enclosing the three (garage, truck and car rental) activities:

1) define grtActivity {
2) scope(grt) {
3) gFlag=true; tFlag=true; rFlag=true;
4) install(GarageFault => comp(car_rental);
5) tFlag=false;gFlag=false);
7) install(TruckFault =>
8) tFlag=false;gFlag = false;
9) comp(garage);comp(car_rental));
10) {rentCar | {bookGarage ; bookTruck }};
11) install(this => revbook@RentalPT(r_id);
12) comp(garage);comp(truck))}

At lines 1-2 we define the procedure and the scope for the
composed activity grtActivity. At line 3 we initialize
flag variables values, at lines 4-5 we install the fault han-
dler for the fault raised by the garage activity which com-
pensates the rental one (which performs a redirection) and
then sets the flag variables for garage and truck activities
to false. At lines 7-9 the fault handler for the truck fault

is installed: both garage and rental activities are compen-
sated and flag variables for garage and truck are set to false.
Line 10 defines the parallel composition of the rental activ-
ity and the sequence between the garage and the truck ac-
tivities. Finally, at lines 11-12 the compensation handler for
the scope grt is installed. In this handler the garage and the
truck activities are compensated whereas for the rental one
we programmed the reservation revoking, instead of redi-
recting with a compensation, because something has gone
wrong in the following payment scope. Finally, we present
the code of the main activity, invoking the payment services
and completing:

1) main {
2) install(BankFault => comp(grt));
3) grtActivity;
4) scope(payment) {
5) install(BankFault => throw(BankFault))
6) if (rFlag != false) {
7) payTransanction@Bank(r_payData)(payId)[
8) BankFault =>
9) reverseTransaction@Bank(ˆpayId);
10) cH]};
11) if (gFlag != false) {
12) payTransanction@Bank(g_payData)(payId)[
13) BankFault =>
14) reverseTransaction@Bank(ˆpayId);
15) cH]};
16) if (tFlag != false) {
17) payTransanction@Bank(t_payData)(payId)}
18) }}

At line 2 we install the fault handler for a fault that can be
raised from a bank payment and we programmed the com-
pensation of the grt scope. At line 3) we execute the grt
scope. At line 4 we open the scope payment and at line 5
we install the fault handler for the bank fault by program-
ming a re-throwing towards the enclosing scope. At lines
6-7 we perform the payment for the car rental service which
must be done only if the related flag is true. At lines 8-10 we
update the fault handler for the bank fault which must take
into account the fact that the payment for the car rental ser-
vice has been done. It is worth noting that current handler,
previously installed at line 5, is here updated thanks to the
operator cH, furthermore we exploit operatorˆfor freezing
the transaction identifier payId. At lines 11-15 we per-
form the payment for the garage service and at lines 16-17
we perform the truck service one. In this last payment the
fault handler for the bank fault is not updated because the
payment can only finish with success or failure. In the for-
mer case no fault is raised whereas in the latter a bank fault
is raised but only the previous installed payments must be
revoked.

5. Conclusions

In this paper we have presented our implementation
of the fault mechanisms we have formally introduced

233

in our previous work [4]. The JOLIE language has
been enriched with fault and dynamic handling primi-
tives such as throw(f), throw(f,data), install, scope, cH,
op@loc(i)(o)[H], and dynamic code generation without
altering the formal properties proved in our framework.
Thanks to the preservation of the properties, JOLIE
can be considered as a good candidate for programming
service-oriented applications by following the new dynamic
handling approach. In the future we intend to analyze the
same mechanisms in choreography languages which are
particularly suitable for representing service-oriented
systems from a global viewpoint. Moreover, this work
could be at the basis for reasoning about an enhancement of
WS-BPEL by introducing dynamic handling. In particular
a specific 〈install〉 primitive, which follows the same
semantics presented in [4], could be added within primitive
〈scope〉.

Related Works. At the best of our knowledge JOLIE
provides the first implementation of dynamic fault handling
mechanisms. Other languages deal with fault handling in a
service-oriented environment but they follow the static ap-
proach. The language which can be mainly related with
JOLIE is WS-BPEL [9], whose most credited implemen-
tation is activeBPEL [1]. In BPEL fault handlers, termi-
nation handlers and compensation handlers are statically
defined and the RequestResponse communication instruc-
tion is splitted into a receive instruction and a reply one.
COWS [7] is a formal calculus similar to SOCK, even if it
does not provide Request-Response communication primi-
tives. In COWS handlers are statically defined and the faults
are managed by exploiting three basic mechanisms: kill,
protection and delimitation. An on the fly model checker
and interpreter for COWS exists and can be found at [3].
Another formal language for service-oriented applications
which deals with fault management is CaSPiS whose im-
plementation is JCaSPiS [2]. In CaSPiS handlers are stat-
ically defined, and error recovery is approached by means
of a basic termination mechanism which also includes an
automatic partner notification of the fault as in the JOLIE
RequestResponse primitive.

References

[1] ActiveBPEL Open Source Engine.
[http://www.active-endpoints.com/active-bpel-
engine-overview.htm].

[2] L. Bettini, R. De Nicola, and M. Loreti. Implementing
session centered calculi. In Doug Lea and Gianluigi
Zavattaro, editors, In Proc. of Coordination Models
and Languages, 10th International Conference, CO-
ORDINATION 2008, volume 5052 of Lecture Notes

in Computer Science, pages 17–32. Springer-Verlag,
2008.

[3] F.Mazzanti. On the fly COWS model checker and in-
terpreter. [http://fmt.isti.cnr.it/cmc/].

[4] C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro.
On the interplay between fault handling and request-
response. In Proc. of 8th International Conference on
Application of Concurrency to System Design (ACSD
2008), IEEE Computer Society Press, pages 190–199,
2008.

[5] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Za-
vattaro. SOCK: A calculus for service oriented com-
puting. In Proc. of ICSOC’06, volume 4294 of Lecture
Notes in Computer Science, pages 327–338. Springer-
Verlag, 2006.

[6] JOLIE. JOLIE: a Java Orchestration Language Inter-
preter Engine. [http://jolie.sourceforge.net/], 2006.

[7] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for
orchestration of web services. In Proc. of ESOP’07,
volume 4421 of Lecture Notes in Computer Science,
pages 33–47. Springer-Verlag, 2007.

[8] F. Montesi, C. Guidi, and G. Zavattaro. Composing
services with JOLIE. In In Proc. of 5th IEEE Eu-
ropean Conference on Web Services (ECOWS 2007),
pages 13–22.

[9] OASIS. Web Services Business Process Exe-
cution Language Version 2.0, Working Draft.
[http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
specification-draft.pdf].

[10] GNU Project. GNU Lesser General Public License.
[http://www.gnu.org/copyleft/gpl.html], 2006.

[11] S. Thatte. XLANG: Web Services for Business Pro-
cess Design. Microsoft Corporation, 2001.

[12] Wikipedia. Visitor pattern.
[http://en.wikipedia.org/wiki/Visitor pattern], 2007.

[13] M. Wirsing et al. Semantic-based development of
service-oriented systems. In Proc. of FORTE’06,
volume 4229 of Lecture Notes in Computer Science,
pages 24–45. Springer-Verlag, 2006.

234

