
Programming services with correlation sets

Fabrizio Montesi and Marco Carbone

IT University of Copenhagen, Denmark
{fmontesi,carbonem}@itu.dk

Abstract. Correlation sets define a powerful mechanism for routing in-
coming communications to the correct running session within a server,
by inspecting the content of the received messages. We present a lan-
guage for programming services based on correlation sets taking into ac-
count key aspects of service-oriented systems, such as distribution, loose
coupling, open-endedness and integration. Distinguishing features of our
approach are the notion of correlation aliases and an asynchronous com-
munication model. Our language is equipped with formal syntax, seman-
tics, and a typing system for ensuring desirable properties of programs
with respect to correlation sets. We provide an implementation as an
extension of the JOLIE language and apply it to a nontrivial real-world
example of a fully-functional distributed user authentication system.

1 Introduction

Correlation sets, introduced by WS-BPEL [17] (BPEL for short), are used to
program routing policies for delivering incoming messages to the correct run-
ning session within a server. A message is relayed to an internal session when-
ever a part of its data content matches a part of the session state. These parts
are defined by the correlation sets. Correlation sets are widely used in Service-
Oriented Computing (SOC) and in web technologies, from complex multiparty
interactions to simple client-server protocols between a web browser and a web
server. Their role resembles that of unique keys in relational databases: they
uniquely identify a session from a portion of their data. Considered in isolation
there is little difference between the two concepts. The interesting aspect lies in
the interplay with key aspects of SOC, such as distribution and loose coupling.
The aim of this paper is to investigate this interplay, in order to gain insight on
correlation sets as a programming methodology.

We develop a language for programming correlation-based services. Features
of our approach are the direct manipulation of correlation data in programs and
the notions of correlation aliasing. The former allows the programmer to write
custom policies for instantiating correlation sets from within sessions, whereas
the latter defines where correlation data is retrieved inside message content.

We start by analysing some prominent characteristics of SOC. The analysis
is used as a foundation for reasoning on the basic constructs of our language
and its semantics, whose structure takes inspiration from the π-calculus [14] and
SOCK [7]. We establish a typing discipline that prevents the occurrence of some
run-time errors, for example ensuring that a service does not break the property
that each session is uniquely identifiable through a correlation set. Our results

show how to discipline message routing programming based solely on data for
obtaining a determinism similar to that of π-calculus-like channels. We demon-
strate applicability by providing an implementation of our language – in the
form of an extension of the service-oriented language JOLIE [16] – and a nontriv-
ial real-world example showing a fully-functional distributed user authentication
system, inspired by the OpenID Authentication specifications [18].

1.1 Key concepts in Service-oriented Computing

Distribution. Service-oriented architectures such as Web Services are in most
cases distributed over a wide area network, e.g., the Internet. Distribution often
features two main aspects: locality and communication asynchrony. The former
means that processes run locally at different sites and use the network for com-
municating with each other. The latter means that messages are received at later
points in time wrt when they were sent.
Sessions. Services may engage in multiple, concurrent interactions that may
be complex and long-running, each one maintaining a separate execution state.
Services support these interactions with sessions: stateful instances of workflows.
Interactions between sessions are, in practice, dealt with correlation sets, which
establish the session a message must be delivered to.
Loose Coupling. Services maintain minimal dependencies among each other,
abstracting from internal implementation details. Particular emphasis is put on
the types of the functionalities exposed by a service, each one defined by an
operation and the structure of the data to be exchanged through it. The latter
is usually defined as a tree using, e.g., the XML language.
Integration. SOC promotes reuse since new services are often implemented by
composing already existing ones. Therefore, it is important to offer flexible mech-
anisms for adapting to the interfaces (e.g. APIs) of preexisting, legacy services
and to recent technologies.
Open-Endedness. Service-oriented systems can be open-ended: participants
may join or leave the system at run-time. For this reason, it is important to
design languages and tools that allow safe execution of systems regardless of the
environment they are executed in.

2 Language Overview

In this section, we outline with an example the main ideas of our language against
the key concepts of SOC. Formal syntax and semantics will be given in § 3.

Our example is a common distributed scenario with a chat service supporting
the management of chat rooms. Chat rooms are identified by name, as in IRC
servers [1]. The service allows users to: create new chat rooms, publish a message
in a chat room, retrieve published messages from existing chat rooms, and close
chat rooms. When a client requests the creation of a chat room, the service checks
that no other room with the same name exists. It then sends an administration
token back to the invoker. Any client can publish messages in an open chat room
or retrieve the history of published messages. The initial creator can close the
chat room at any point by using the administration token.

Data Structures. Each chat room has a data structure representing its local
state where its name, description, published messages, and administration token
are stored. In our language, we represent data as trees where nodes are values
of basic data types such as strings and integers. For instance, the state of a chat
room is represented by the tree:

5"hi;hey;" "fun"

descr csets

content

t'

name adminToken

"..."

(1)

The root has three children pointed to by labels descr, content and csets. Subn-
ode csets has two other children, name and adminToken. Data trees are accessed
in programs by means of paths. Paths are sequences of edge names separated
by dots, and can be used for traversing a tree starting from its root. Paths can
be used in assignments and expressions. For example, the tree above could be
initialised in our language with the following assignments:

descr = "..."; content = "hi;hey;";
csets.name = "fun"; csets.adminToken = 5

For brevity, we refer to a path as a variable, and the node it points to as its
value. So in this case variable content would have value "hi;hey;".

Communication Behaviour. In our language, data is exchanged between ser-
vices by means of message passing. As in Web Services, messages are labelled
by operations. Given operations create, publish, read and close, we could
program the chat service behaviour as:

create(name)(csets.adminToken) { csets.adminToken = new };
run = 1; while(run) {

[publish(msg)] { content = content + msg.content + ";" }
[read(req)(content) { 0 }] { 0 }
[close(req)] { run = 0 }

}

The first instruction is an input on operation create. The content of the received
message (a data tree) will be stored as a subtree of name which is a path in the
local state. We call this input instruction a session start since its execution will
start a new chat. Moreover, it is also a Request-Response (as in WSDL [20]): the
client will wait for the server to reply with the content of csets.adminToken that
is sent back once the local code in curly brackets { csets.adminToken = new } is
executed. new is a primitive that returns a locally-fresh token. After invocation,
the service enters a loop containing a choice of three inputs with operations
publish (for publishing in the chat room), read (for reading already published
messages), and close (for closing the chat room). The inputs with operations
publish and close are standard inputs called One-Way while the one with op-
eration read is a Request-Response.

Dually to the server, we can give a sample code for a client:

roomName = "MyRoom"; create@Chat(roomName)(adminToken);
msg1.roomName = roomName; msg1.content = "hi";
msg2.roomName = roomName; msg2.content = "hey";

{ publish@Chat(msg1) | publish@Chat(msg2) };
read@Chat(roomName)(chatContent); close@Chat(adminToken)

This client sample performs a Solicit-Response output (dual of Request-Response)
on operation create. The message is sent at location Chat, the location of the
chat server. Locations (cf. URIs) define where services are deployed, modeling
locality. The instruction is completed when the response from the server is re-
ceived and assigned to adminToken. Thereafter, the client sends messages to the
chat with two Notification outputs (dual to One-Way) executed in parallel by
means of the | operator. Finally, the client reads the content of the chat room
through operation read and closes it by means of operation close.

In our language, messages are delivered asynchronously to sessions. After a
message is sent, it is guaranteed that the receiving service has buffered it, but not
that a session has consumed it. This can lead to bad behaviour. For this reason,
the semantics of our language in § 3 preserves ordering of buffered messages.

Correlation Sets and Aliasing. The chat service may have many running
sessions executing in parallel, each one representing a chat room. How can it
identify the session an incoming message is for, when it receives one from the
network? Correlation sets address this issue. In our language, a correlation set is a
set of paths, called correlation variables, that define which nodes of a session state
identify the session. A correlation set is defined by means of the keyword cset.
Our chat service has two correlation sets: cset {name} and cset {adminToken}.
For example, if the chat server receives a message carrying the tree:

"fun"

namecontent
"bye"

the first correlation set will then associate the message to the session running
with the state shown in (1), since both message and session share the same
value for correlation variable name, and route the message to it. We call this
association correlation, and we say that the message correlates with the session.
The value for correlation variable name is stored in the subtree csets in the
session state. More generally, in our language every correlation value must be
put in that subtree. This makes modifications to data that influences correlation
explicit. We exploit this aspect in the definition of our type system, in § 4.

Correlation sets are specified by the receiver: the client does not need to
be aware of the correlation sets of the invoked service but needs only to send
messages with the expected data structures, enabling loose coupling. Correlation
sets are also prone to integrate with existing technologies. For example, a web
server session can be identified by the correlation set c = {sid}, the session id
usually stored in a browser cookie.

Above, we associated a message to a session by matching the value of the
same path name in the message tree and the session state. Such a mechanism
is limiting, because the fact that the two paths must be the same means that
there is tight coupling between the service implementation and its interface. This
could be even completely unfeasible. Consider, for instance, the case in which
a programmer must write a service that interacts with a legacy application.
The interface of the service will have to be in accordance to what the legacy
application expects. Let us assume now that the legacy application will send
two different kinds of message to our new chat service, on different operations.

The first contains the room name under path roomName and the other in the
root of the message data tree; this is the behaviour of the client that we showed
before. How can we relate both values to the same correlation variable? We
address this issue with a notion of aliasing: a correlation variable may be defined
together with a list of aliases that tell where to retrieve, in a message, the value
to be compared with that of the session, depending on the type of the incoming
message (aliasing can be looked at as a type itself). Hence, the correlation set
definitions for the chat service become:

cset { name:Create Publish.roomName Read } cset { adminToken:Close }

where, for brevity, we assume the input message type of each operation has the
same name with an uppercase initial. Data types will be presented in detail in § 5.
Correlation aliasing is a key feature for meeting the requirements of integration.

3 Data Structures, Syntax and Semantics

In this section, we formalise data, syntax and give the semantics of our language.

Data Trees and Correlation. Let t range over a set of data trees T , with
edges denoted by x,y,z,. . . and nodes denoted by v. v is a value, which can be a
string, an integer, a location or the undefined value v⊥. Values is the set of all
values. In programs, data trees are accessed by paths. A path p is a sequence of
tree edges x1.xn denoting an endofunction on data trees defined as:

p(t) =

 t if p = ε
p′(t′) if p = x.p′ and x is an edge from the root of t to t’s subtree t′

t⊥ if p = x.p′ and there is no edge x from t to a subtree t′

where ε denotes the empty sequence and t⊥ a tree with a single node with value
v⊥. We denote the set of possible paths with Paths. Furthermore, we require
paths written in programs to be nonempty. We extract the value of the root of
a tree by using the function † : T → Values.

A correlation set c is a set of paths corresponding to those values that identify
a running session of a service: c ⊆ Paths. A service may define more than one
correlation set: we denote with C a set of correlation sets, C ⊆ P(Paths).

We model correlation aliasing by means of an aliasing function, αC , that
establishes where to retrieve correlation values in a message received for an
operation. Let O be the set of possible operations, ranged over by o. An aliasing
αC is a function that given an operation o returns a correlation set c ∈ C and a
function from paths contained in c to paths in the incoming message:

αC : O ⇀ C × (Paths⇀ Paths)

The aliasing function αC bases aliases on operations, and not on message types
like in § 2. This is a matter of convenience: in our language implementation,
aliases are defined on message types and are converted exactly to an aliasing
function as described in this section.

We now present our definition of correlation in terms of the relation `αC :

Definition 1 (Correlation `). A data tree t′ received for operation o correlates
with a data tree t with respect to an aliasing αC , written t′, o `αC t, whenever

∃c, f. c 6= ∅ ∧ αC(o) = (c, f) ∧ ∀p ∈ c. f(p)(t′)† = csets.p(t)† 6= v⊥

Syntax. The syntax of programs is structured in three layers. The behavioural
layer models actions performed by a service session, the service layer handles
the definition of correlation sets, state and session instantiation and the network
layer deals with deployment and communication. This layering is reflected in
the language implementation, presented in § 5.

Behavioural layer. Behavioural terms are given as processes, ranged over by
P,Q, . . . and defined by the grammar below where r denotes a channel name,
l, l′, . . . locations and e, e′, . . . unspecified first-order expressions that include lo-
cations and an operator new for generating locally-fresh values:

P,Q, . . . ::=
∑
i

[ηi]{Pi} (choice)

| η (input)
| η (output)
| if(e) {P} else {Q} (cond)
| while(e) {P} (loop)
| p = e (assign)
| P ;Q (seq)
| P | Q (par)
| 0 (inact)

η ::= o(p) (one-way)
| o(p)(p’) {P} (request-response)

η ::= o@p(p’) (notification)
| o@p(p’)(p’’) (solicit-response)

e ::= new (new)
| l (location)
| . . . (first-order expr)

Input-guarded branching is available through (choice). Communications can be
unidirectional (one-way) or bidirectional (request-response). o(p) reads an in-
coming message for operation o and places the received tree in the local state
tree under path p. Dually, o@p(p’) sends a message for operation o to the lo-
cation stored in the state node p points to, carrying the data in the local state
pointed by p’. Alternatively, (request-response) and (solicit-response) allow for
Request-Response communications. All other constructs are standard.

Service layer. Services, denoted by S, consist of a service behaviour definition
(replicated process) and an aliasing αC , defining correlation sets and aliasings:

S ::=
∑
i

[ηi]{Pi} .αC 0 (service) | 0 .αC P · t⊥ · ε (starter)

Normally, services become active only after they are invoked. For this reason, a
system needs at least one service to spontaneously start invoking other services.
We call such a service a starter. A starter specifies a single session, which will
start its execution without the need to be triggered.

Network layer. Services are deployed on locations and composed in parallel to
form networks:

N,M ::= [S]l | νr N | N | N | 0 (network)

We assume that, for any network, it is never the case that two services are
deployed with the same location.

Semantics. We extend the language syntax with run-time terms (as in [8]):

S ::= P .αC I (running service)

I ::= P · t · m̃ | I | I (running sessions)

P ::= . . . | Wait(r, p) | Exec(r, p, P) (running processes)

Services are extended to support multiple locally running sessions (denoted by
I). Each session consists of the currently executing run-time process, a state t
and a FIFO queue m̃ [8], with ε representing the empty queue. m is a message
of the form (r, o, t) where r is a channel, o an operation and t the content. The
terms Wait(r, p) and Exec(r, p, P) model Request-Response communications.

We equip our model with a structural congruence defined as the least con-
gruence relation on P , I and N such that (| ,0) is a commutative monoid, it
supports alpha-conversion, 0;P ≡ P , P ≡ P ′ and I ≡ I ′ imply [P .αC I]l ≡
[P ′ .αC I

′]l, νrνr
′N ≡ νr ′νrN and such that (νrN) | N ′ ≡ νr (N | N ′) if r /∈

cn(N ′), where cn is a function that returns the set of channel names in a term.
We give the semantics in terms of a labeled transition system (lts). The labels,

ranged over by µ, are standard and their domain is omitted. The behavioural
layer defines the semantics of service sessions. A selection of the rules is reported
below (all rules can be found in the online appendix [2]).

(P-Choice) j ∈ J ηj
µ−→ Qj ⇒

∑
i∈J [ηi]{Pi}

µ−→ Qj ;Pj

(P-Solicit) o@p(p’)(p’’)
νr o@p(p’)−−−−−−−→ Wait(r, p’’) (P-Notify) o@p(p’)

νr o@p(p’)−−−−−−−→ 0

(P-Req) o(p)(p’) {P} r:o(p)−−−−→ Exec(r, p’, P) (P-OneWay) o(p)
r:o(p)−−−−→ 0

(P-EndExec) Exec(r, p,0)
r p−−→ 0 (P-Wait) Wait(r, p)

r p−−→ 0

(P-Exec) P
µ−→ P ′ ⇒ Exec(r, p, P)

µ−→ Exec(r, p, P ′) (P-Asgn) p = e
p = e−−−→ 0

Rules P-OneWay and P-Notify allow, respectively, for the receiving and sending
of asynchronous one-way messages. Rules P-Req and P-Solicit do similarly for
Request-Response patterns, handling also the subsequent response computation
and sending. The computation of the response is handled by rule P-Exec; when
the response computation terminates, the caller and the callee communicate
again by means of the private channel that they established in their interaction.
The modeling of Request-Response replies through private channels supports
classic client-server communications, where the client could be unable to expose
inputs of its own due to external restrictions, e.g. firewalls.

The service layer interfaces a session behaviour with the hosting service.
Below, we give a selection of the rules (complete table in the appendix [2]):

(S-Get) P
r:o(p)−−−−→ P ′ ⇒ P · t · (r, o, t′) ::m̃

τ−→ P ′ · t←p t
′ · m̃

(S-Send) P
νr o@p(p’)−−−−−−−→ P ′ ⇒ P · t · m̃ νr o@p(t)†(p’(t))−−−−−−−−−−−→ P ′ · t · m̃

(S-SR) P
r p−−→ P ′ ⇒ P · t · m̃ r p(t)−−−−→ P ′ · t · m̃

(S-RR) P
r p−−→ P ′ ⇒ P · t · m̃ r t′−−→ P ′ · t←p t

′ · m̃
(S-Asgn) P

p = e−−−→ P ′ ⇒ P · t · m̃ τ−→ P ′ · t�p e(t) · m̃

(S-Corr) t′, o `αC t ⇒ P .αC I | P ′ · t · m̃ νr o(t′)−−−−−→ P .αC I | P ′ · t · m̃ :: (r, o, t′)

(S-Start)
t,o 0αC I P

r:o(p)−−−→P ′ t′=init(t,o,αC)

P.αC I
νr o(t)−−−−→P.αC I | P ′·t⊥←pt←csetst′·ε

init(t, o, αC) =

 t⊥ �p1 f(p1)(t) . . .�pn f(pn)(t) if αC(o) = ({p1, . . . , pn}, f)
t⊥ if o /∈ Dom(αC)
undefined otherwise

In all rules but S-Corr and S-Start we have omitted the whole service structure
(it is irrelevant for those rules). Rule S-Start implements the spawning of a new
local session by receiving a message that does not correlate with any running
session (thus giving precedence to existing sessions), initialising its csets sub-
tree if there is an aliasing definition for operation o. Note that the initialisation
function init(t, o, αC) is partial and undefined if the message does not contain all
the correlation data specified in αC for o; in this case, rule S-Start can not be
applied. The relation t′, o 0αC I is defined whenever there is no state t in I such
that t′, o `αC t. Moreover, t←p t

′ is a function that returns a new tree obtained
from t by replacing the subtree pointed by p with t′; the function automatically
creates the missing nodes for traversing t with p, initializing them with v⊥. Func-
tion t �p e(t

′) does the same but replaces only p(t)’s root with the value that
results from the evaluation of e on t′, e(t′). Rule S-Get allows a running process
to fetch the first element from the message queue of its session. Rule S-Send
propagates the label for a sending, which will be used by the network layer for
performing the actual message transmission; the rule substitutes the paths p
and p’ in the original label with, respectively, the location pointed by p and
the data tree pointed by p’ stored in the session state. Rules S-Send-Resp and
S-Recv-Resp close a Request-Response communication by exchanging the final
reply. Rule S-Asgn models variable assignment. Rule S-Corr allows a running
session to receive a correlating message and store it in its local queue (we omit
the condition for handling the special case of an empty queue m̃ = ε).

The outer layer of our semantics, the network layer, deals with inter-service
interactions. The rules are standard and can be found in the appendix [2].

4 Properties and Types

In this section we discuss some desirable properties of services that can be cap-
tured with our language. Some of them are based on conditions that need to be
guaranteed through the use of a typing system.

Properties. Our properties focus on integrity of sessions and communications.

Property 1 (Message delivery atomicity). Let N ≡ ν r̃ ([S1]l1 | M) such that

S1
νr′ o@l2(tM)−−−−−−−−−→ S′1 and N

τ−→ ν r̃ νr′ ([S′1]l1 | M ′). Then, M ≡ [S2]l2 | M ′′,
M ′ ≡ [S′2]l2 |M ′′ and either (i) S2 ≡ P .αC I | P ′ ·t·m̃ ∧ S′2 ≡ P .αC I | P ′ ·t·m̃ ::
(r, o, tM) or (ii) S2 ≡ P .αC I ∧ S′2 ≡ P .αC I | P ′ · t←p tM · ε for some t, p.

Property 1 states that if a service successfully executes a message sending then
there is another service in the network that either (i) put the message in the
queue of a correlating session or (ii) started a new session with a state containing
the message data. This is guaranteed by our semantics since a message sending
is completed only by synchronising with the receiver by means of rule S-Start
or rule S-Corr.

Property 2 (No session ambiguity). For each t′, o and service P .αC I, there is
at most one running session P ′ · t · m̃ in I such that t′, o `αC t.
Our second property states that a service can never have more than one run-
ning session that correlates with the same message. Such a situation would lead
to non-deterministic assignment of incoming messages, which goes against the
principle that a session is uniquely identifiable under correlation.

Property 3 (Possible inputs). Let S ≡ P .αC I | P ′ · t · m̃. If P ′
r:o(p)−−−−→ P ′′ then

m̃ = m̃′ :: (r, o, t′) ::m̃′′ ∨ S
νr o(t′)−−−−−→ P .αC I | P ′ · t · m̃ :: (r, o, t′).

Property 3 says that if a session needs to perform an input, then a message for
that input is in a queue and/or the enclosing service is able to receive a message
for the session by correlation. I.e., whenever a session tries to perform an input
its state has the related correlation set fully instantiated.

Properties 2 and 3 depend on the states of the sessions running in a service.
Bad programming can lead to executions for which the properties do not hold.
For example, for αC = [join 7→ ({x}, [x 7→ ε])], if the service with behaviour
start(a);csets.x = 5;join(b) gets invoked twice on start, it will spawn two
sessions which will both execute csets.x = 5. After that, by αC , both sessions
can correlate with a message for operation join with value 5 as root node. This
situation breaks property 2 and leads to the non-deterministic routing. Also, if
αC = [join 7→ ({x, y}, [x 7→ ε, y 7→ y])], we break property 3: the two sessions
would be stuck forever waiting for a message for join, because rule S-Corr could
never be applied due to the lack of a value for y in the sessions.

Typing System. We present a type system that focuses on the manipulation
of correlation data. Our typing performs an initialisation analysis for correla-
tion variables. Although this is a well-established technique, our setting requires
particular attention to the concurrent execution of multiple sessions, and the
interplay between session behaviour and the aliasing function.

Typing judgments have the form Γ ` P : ∆N |∆P , where ∆N ⊆ Paths and
∆P ⊆ Paths × {◦, •}. ∆N says which correlation paths need to be initialised
before P executes and ∆P contains the correlation paths initialised (provided)
by P . In ∆P each correlation path is flagged telling if it carries a fresh value (◦)
or not (•). The main typing rules follow (all rules and an extended discussion
can be found in the appendix [2]).

(T-CSets-New)
Γ ` csets.p=new : ∅|{p◦} (T-CSets-Expr) e not undefined

Γ ` csets.p=e : ∅|{p•}

(T-Seq)
Γ `P :∆N1

|∆P1
Γ `Q :∆N2

|∆P2
∆′=(∆N2

\∆P1
)∪∆N1

Γ `P ;Q :∆′|∆P1
]∆P2

(T-OneWay) Γ (o)=c 6=∅ p 6=csets.p′

Γ ` o(p) : c|∅ (T-OneWay-Start) (Γ ` o(p) : c|∅ ∨ c=∅) ∧ p6=csets.p′

Γ `s o(p) : c|∅

(T-Service)

∀j∈J.

Γj `s ηj : cj |∆Pj ∧ Γj `Pj :∆′Nj

|∆′Pj ∧ ∆′Nj
⊆cj]∆Pj ∧

∀o∈Dom(Γj).αC(o)=(Γj(o),f) ∧ Dom(f)=Γj(o) ∧ ∆Pj]∆
′
Pj

nC ∧

∀i∈J. i6=j⇒Γi `s ηi : ci|∆Pi ∧ Γi `Pi :∆′Ni
|∆′Pi ∧ (∆Pi∪∆Pj)∩cj=∅

∅ `
∑
i∈J [ηi]{Pi}.αC I : ∅|∅

The first two rules check the freshness of a correlation variable initialisation. In
T-CSets-Expr we require e to be defined, i.e. that its evaluation will not yield v⊥.
This is a simple (but omitted) definite assignments analysis. Rule T-Seq checks
that a same correlation variable is not defined multiple times – ∆P1]∆P2 – and

propagates the set of variables that need initialisation before executing P ;Q.
The disjoint union operator] behaves as the union operator ∪, but is defined
only if the two sets are disjoint. The operator ignores the freshness flag; as such,
it is never the case that a same path p can be in ∆P]∆′P more than once (either
with the same flag or with two different flags). We assume the same behaviour for
the other sets operators (union, intersection and subtraction). Rule T-OneWay
uses the environment Γ to register a requirement for the aliasing function of
the enclosing service, i.e. that a nonempty correlation set c is associated to
operation o. It sets ∆N = c for the input statement, meaning that the latter
requires all the nodes pointed by the paths in c to be initialised in the state
before being executed. These requirement are relaxed if the operation is used
as a guard for starting a new session, in rule T-OneWay-Start, for allowing
starting operations to have an empty associated correlation set. Rule T-Service
checks that a service is well-typed. First, it checks that every branch is well-
typed and that the aliasing function αC complies to the requirements stored in
the environment Γj of each branch. Then, it checks that for each correlation
set c ∈ C that will be completely defined at least one path in c will point to
a fresh value in the session state, ensuring that sessions will be distinguishable
by correlation. This check is performed through ∆P n C; relation n is formally
defined below. Finally, the rule forbids different initialisation methods of a same
correlation set, i.e. when two different session branches use the same correlation
set they must agree if that correlation set is initialised through local assignments
or through the message that started the session.

Relation n captures that, for the sake of being uniquely identifiable by cor-
relation, a session needs at least one correlation variable to be fresh for every
correlation set that is completely initialised.

Definition 2 (Correlation set freshness relation n).

∆P n C iff ∀c ∈ C . (@p ∈ c . p /∈ ∆P) ⇒ (∃p ∈ c . p◦ ∈ ∆P)

We introduce now a notion of error in the semantics adding two rules. Both
use a wrong label that carries the location of the originating service. The first
rule requires that a service has two running sessions that correlate with the same
message tM for the same operation o, the negation of property 2. The second
rule, instead, is active when a running session wishes to input on an operation
for which there is no message in the queue and the correlation mechanism can
route no new message to such a session, the negation of property 3.

(S-Wrong-Corr)

P.αC
I | P ′·t′·m̃′

νr o(tM)−−−−−−→P.αC
I | P ′·t′·m̃′::(r,o,tM)

P.αC I | P ′′·t′′·m̃′′
νr ′o(tM)−−−−−−→P.αC I | P ′′·t′′·m̃′′::(r′,o,tM)

[P.αC I | P ′·t′·m̃′ | P ′′·t′′·m̃′′]l
wrong l−−−−→ [P.αC I | P ′·t′·m̃′ | P ′′·t′′·m̃′′]l

(S-Wrong-Input)
P ′

r:o(p)−−−−→P ′′ m̃ 6=m̃′::(r,o,t′)::m̃′′ P.αC I | P ′·t·m̃ νr o(t′′)9 P.αC I | P ′·t·m̃::(r,o,t′′)

[P.αC I | P ′·t·m̃]l
wrong l−−−−→ [P.αC I | P ′·t·m̃]l

We can finally show the main results of our type system:

Theorem 1 (Subject Reduction).

Γ ` N : ∆N |∆P ∧ N
µ−→ N ′ ⇒ Γ ` N ′ : ∆′N |∆′P .

Theorem 2 (Safety). Let l be a location in N .

1. Γ ` N : ∆N |∆P ⇒ N
wrong l9 N ′

2. Γ ` N : ∆N |∆P ⇒ N |N ′ wrong l9 N ′′

Note that Theorem 2.2 ensures local safety, i.e. that a well-typed network will
respect our properties regardless of its context.

5 Language Implementation in JOLIE

We have implemented the techniques described in the previous sections by ex-
tending the JOLIE programming language. Our solution is now the official mech-
anism for programming correlation with JOLIE.

The JOLIE Language. We give a brief description of JOLIE [16, 11], an open
source [5] fully-fledged service-oriented programming language.

JOLIE programs are composed by a behavioural part and a deployment part.
The syntax of the behavioural part is a superset of the syntax of our behavioural
layer. When it comes to correlation, the only relevant difference is that output
primitives refer to output ports (described below) rather than using paths for
pointing to locations. The deployment part defines communication ports and
interfaces. Output ports are used for invoking external services, whereas input
ports are used to expose locations on which the service can receive messages. A
port specifies a location and the data protocol to use (e.g. SOAP [19]). Some
JOLIE protocol implementations allow for configuring protocol-specific headers.
For example, we can connect cookie values in HTTP to paths in message data
trees. As a consequence, programmers can store correlation values as cookies
in web browsers that invoke a JOLIE service, thus seamlessly integrating our
approach with common web technologies. Interfaces describe the (types of the)
operations used in the behavioural part. Each element in an interface couples an
operation to its message types, which are structured as trees. For example, the
following defines an interface with a Request-Response operation sum that takes
a tree with two subnodes – x and y – and returns an integer:
type SumRequest:void { .x:int .y:int }
interface SumInterface {RequestResponse:sum(SumRequest)(int)}

Correlation Set Definitions. We have implemented the syntax exposed in § 2
for defining correlation sets based on message types. A cset block corresponds
to the definition of a correlation set c in our model and its related aliases in αC :

cset { list of V } V ::= p : list of pT
where p is a path and pT a path that starts with a message type reference. In
our implementation, these definitions are converted to an aliasing function αC
for the interpreter; this is a convenient shortcut: if two operations share a same
message type, then the aliasing function generated for the interpreter will have
an entry for both operations with the same aliasing specified for that type by the
programmer. Furthermore, we implemented a check for verifying that an alias
is compatible with the related message type – i.e. if the message type contains
the node of interest pointed by pT . Thus we can ensure that a correlation set
definition is compatible with the interface provided by the service.

Primitive new has been implemented using the Java standard library for gen-
erating secure Universally Unique Identifiers (UUID).

Implementation. The JOLIE interpreter is developed in the Java language and
is structured in four modules. The Parsing module reads a program, produces
its related AST (Abstract Syntax Tree), analyzes it and generates an OOIT.
An OOIT (Object-Oriented Interpretation Tree) executes a session behaviour.
The Runtime Environment handles the creation of sessions and their execution
states. The Communication Core handles communications.

We updated the Parsing module for handling the syntax for defining cor-
relation sets, applying our type system and converting cset definitions into an
aliasing function αC for the Runtime Environment. The Java class used by the
Runtime Environment for controlling the execution of a session has been aug-
mented with a message queue. When a node from the OOIT asks for a message
input, the Runtime Environment checks the message queue of its session as spec-
ified by rule S-Get. Message queues are filled with incoming messages received
by the Communication Core, looking for correlation as defined in rule S-Corr.
If no correlating session is found, the Runtime Environment is asked to start a
new session with the message, cf. S-Start. If the session can not be started, a
fault CorrelationError is sent to the invoker and the message is discarded1.

Request-Response interactions are supported by means of communication
channel objects. The OOIT nodes implementing rules P-Request and P-Solicit
(and their continuation) are given access to the channel of interest and can use it
for sending or receiving responses as specified by rules P-End-Exec and P-Wait,
abstracting from the underlying details.

6 Example: a decentralised authentication protocol

We present now an example inspired by the OpenID Authentication specifica-
tions [18]. OpenID is a largely adopted Single Sign-On solution based upon a
decentralised authentication protocol that allows a service, called relying party,
to authenticate a user, the client, by relying on another external service that
is responsible for handling identities, the identity provider. When the client re-
quests access to the relying party, the latter opens an authentication session in
the identity provider. The client can then send its authentication credentials to
the session in the identity provider, which will inform the relying party on the
result of the authentication attempt.

We implemented the protocol in the updated version of JOLIE. The example
can be downloaded at [3], where we support web browser clients by means of the
JOLIE integration with HTTP.

The code below is a sketch of the relying party service:

cset { clientToken: ... }
cset { secureToken: AuthMessage.secureToken }
interface RelyingPartyInterface {
OneWay: authSucceeded(AuthMessage), authFailed(AuthMessage)
RequestResponse: login(LoginRequest)(Redirection) }
main {

login(loginRequest)(redirection) {

1 For space reasons, we do not report fault semantics in this paper. The implementa-
tion is in line with the fault handling semantics of JOLIE, reported in [15, 6].

clientToken = new; secureToken = new;
openRequest.relyingPartyIdentifier = MY_IDENTIFIER;
openRequest.clientToken = csets.clientToken;
openRequest.secureToken = csets.secureToken;
openAuth@IdentityProvider(openRequest);
/* ... build redirection message for client ... */

}; [authSucceeded(message)] { /* ... */ }
[authFailed(message)] { /* ... */ }

}

First, the service receives a request on the Request-Response operation login
from the client for initiating the protocol. The body of login generates two fresh
tokens: clientToken, referred by the first correlation set2, and secureToken,
referred by the second one. We will use clientToken for receiving messages from
the client and secureToken for receiving messages from the identity provider.
The client is not informed about secureToken, preventing it to maliciously act as
the identity provider. The body of login performs a call to the identity provider,
opening an authentication session and communicating secureToken. We can
now safely reply to the client that invoked operation login: property 1, from
§ 4, guarantees that the session in identity provider has been opened at this point
and that the client will therefore find it ready. The reply will redirect the client
to the identity provider. The relying party will then wait for a notification about
the result of the authentication attempt, hence the input choice on the operations
authSucceeded and authFailed, which correlate through secureToken.

We now show the identity provider behavioural code sketch omitting the
interface definitions: we assume input types to have their operation name with
an initial uppercase letter.

cset { relyingPartyIdentifier:
OpenAuthentication.relyingPartyIdentifier
Authenticate.relyingPartyIdentifier ,

token: OpenAuthentication.token Authenticate.token }
main {

openAuth(openRequest); authenticate(authRequest);
/* ... verify authentication ... */
message.secureToken = openRequest.secureToken;
if (verified) { authSucceeded@RelyingParty(message) }
else { authFailed@RelyingParty(message) }

}

The service can start a session with an input on openAuth (to be called by the
relying party). The operation receives the values for initialising the correlation
set, which is composed by two variables: relyingPartyIdentifier and token.
We need both variables because there may be multiple active sessions for han-
dling requests from different relying parties: two relying parties may generate a
same value for token. We solve this issue by adding the identifier, e.g. a URL,
of the relying party to the correlation set. After the session has been opened,
we wait for the user credentials on operation authenticate. The credentials are
verified and the result sent to the relying party.

2 Aliasings for clientToken are left unspecified in the relying party implementation
sketch, since it will only be used after establishing whether the user can log in.

7 Related Work and Conclusions

Related Work. Previous versions of JOLIE (including SOCK [7]) feature corre-
lation sets where correlation data is manipulated within sessions. However, they
support no correlation aliasing and no static analysis for identifying bad correla-
tion programming. Even though SOCK features the Request-Response pattern,
its semantics does not meet our requirement of integration since the reply is not
routed through a private channel. Instead, it is correlated again to the session of
the invoker, thus making it similar to an interaction performed by means of two
One-Way operations. Moreover, they do not feature multiple correlation sets. All
correlation variables are, instead, put in one single correlation set, which does
not act as unique session identifier: sessions may be ambiguous under correlation
and the related message routing non-deterministic.

Our approach takes inspiration from BPEL [17], which supports multiple cor-
relation sets for identifying sessions. In BPEL, correlation programming is mixed
with that of behaviours. Correlation sets are scoped in specific code blocks, and
different input activities can use different correlation sets for receiving even if
they use the same operation. This makes BPEL programming more error-prone
than in our approach, where correlation sets are based on the service interface
(its operations) and defined independently from the behaviour. Our language
expressiveness is still high, due to correlation data manipulation inside sessions.
BPEL does not support correlation programming with a typing discipline, but
relies on run-time faults for signaling undesired situations that the programmer
specifies manually. Finally, BPEL does not come with formal specifications, leav-
ing much of the burden in handling the complexity of a distributed system to
the programmer and the interpreter implementations.

Blite [13] is a model for service orchestration, whose programs can be com-
piled to BPEL processes [4]. The model is formal, but the final compilation to
BPEL makes the approach suffer from the unpredictable behaviour of the exe-
cution engine, due to the lack of formality of BPEL specifications. Similarly, the
calculus for web services COWS [12] allows to correlate sessions based on chan-
nel usage. COWS features several tools for static analyses and an interpreter,
however it lacks a fully-fledged language implementation.

[10] provides an implementation of channel-based sessions relying on session
types [9, 8]. In this setting, message routing does not rely on data transmission.
Conclusions. We have presented a language for programming services with
correlation sets, investigating the interplay between some key aspects of SOC and
correlation-based programming. Our approach features a direct manipulation
of correlation data in programs and a notion of correlation aliasing. We have
shown how both aspects can be disciplined by means of a type system. The
applicability of our work has been demonstrated by exposing implementations
of real-world scenarios where correlation sets can be successfully employed. Our
solution has replaced the previous correlation mechanism in the JOLIE language.
The features guaranteed by properties 2 and 3 are similar to those provided by
private channels in the π-calculus. In our approach different sessions use different
instances of correlation sets, much like in the π-calculus replications of a same
process use different private channels.

Our semantics for message queues can lead to deadlocks, because a session
must consume messages in the same order in which they are received. There

are various potential solutions to this problem. For instance, each session could
manage a separate queue for each correlation set, or for each operation. Another
issue in our model is that it does not handle session garbage collection, i.e.
terminated sessions are not removed from their executing service. Handling this
aspect is nontrivial, because a terminated session may have some messages left
in its queue which must be dealt with. We leave the investigation of these issues
to future work, as they are not relevant for the results presented in this paper.

More complex forms of analysis may be developed for correlation. An inter-
esting aspect would be to analyze the behaviour of service networks by introduc-
ing behavioural types for participants such as session types [8]. Another topic
to be explored is that of security. Programs may be checked to establish that
correlation values are not compromised.

References

1. Internet Relay Chat Protocol. http://tools.ietf.org/html/rfc1459.
2. On-line appendix. http://www.itu.dk/people/fabr/icsoc2011.
3. OpenID implementation. http://www.jolie-lang.org/files/icsoc2011/openid.zip.
4. L. Cesari, A. Lapadula, R. Pugliese, and F. Tiezzi. A Tool for Rapid Development

of WS-BPEL applications. In SAC, pages 2438–2442, 2010.
5. Free Software Foundation (FSF). GNU Lesser General Public License.

http://www.gnu.org/licenses/lgpl.html.
6. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. Dynamic Error Handling in

Service Oriented Applications. Fundamenta Informaticae, 95(1):73–102, 2009.
7. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A Calculus

for Service Oriented Computing. In Proc. of ICSOC 2006, pages 327–338, 2006.
8. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.

In Proc. of POPL’08, volume 43(1), pages 273–284. ACM Press, 2008.
9. Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and

type disciplines for structured communication-based programming. In Proc. of
ESOP’98, volume 1381 of LNCS, pages 22–138, 1998.

10. Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed pro-
gramming in java. In ECOOP, pages 516–541, 2008.

11. JOLIE. JOLIE: Java Orchestration Language Interpreter Engine.
http://www.jolie-lang.org/.

12. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web
Services. In Proc. of ESOP’07, volume 4421 of LNCS, pages 33–47, 2007.

13. A. Lapadula, R. Pugliese, and F. Tiezzi. A Formal Account of WS-BPEL. In
Proceedings of COORDINATION 2008, pages 199–215, 2008.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, September 1992.

15. F. Montesi, C. Guidi, I. Lanese, and G. Zavattaro. Dynamic Fault Handling Mech-
anisms for Service-Oriented Applications. In Proceedings of ECOWS 2008, pages
225–234, 2008.

16. F. Montesi, C. Guidi, and G. Zavattaro. Composing Services with JOLIE. In
Proceedings of ECOWS 2007, pages 13–22, 2007.

17. OASIS. Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/.

18. OpenID. OpenID Specifications. http://openid.net/developers/specs/.
19. World Wide Web Consortium (W3C). SOAP Specifications.

http://www.w3.org/TR/soap/.
20. World Wide Web Consortium (W3C). Web Services Description Language.

http://www.w3.org/TR/wsdl.

