
A. Ravara and J. Silva (Eds.): 9th Workshop on
Automated Specification and Verification of Web Systems (WWV’13)
EPTCS 123, 2013, pp. 34–48, doi:10.4204/EPTCS.123.5

c© Lanese, Montesi, Zavattaro
This work is licensed under the
Creative Commons Attribution License.

Amending Choreographies

Ivan Lanese
Focus Team, University of Bologna/INRIA, Italy

lanese@cs.unibo.it

Fabrizio Montesi
IT University of Copenhagen, Denmark

fmontesi@itu.dk

Gianluigi Zavattaro
Focus Team, University of Bologna/INRIA, Italy

zavattar@cs.unibo.it

Choreographies are global descriptions of system behaviors, from which the local behavior of each
endpoint entity can be obtained automatically through projection. To guarantee that its projection is
correct, i.e. it has the same behaviors of the original choreography, a choreography usually has to
respect some coherency conditions. This restricts the set of choreographies that can be projected.

In this paper, we present a transformation for amending choreographies that do not respect com-
mon syntactic conditions for projection correctness. Specifically, our transformation automatically
reduces the amount of concurrency, and it infers and adds hidden communications that make the
resulting choreography respect the desired conditions, while preserving its behavior.

1 Introduction

Choreography-based programming is a powerful paradigm where the programmer defines the commu-
nication behavior of a system from a global viewpoint, instead of separately specifying the behavior of
each endpoint entity. Then, the local behavior of each endpoint can be automatically generated through a
notion ofprojection[3, 6, 7, 1, 4]. A projection procedure is usually a homomorphism from choreogra-
phies to endpoint code. However, projections of some choreographies may lead to undesirable behavior.
To characterize the class of choreographies that can be correctly projected some syntactic conditions
have been put forward. Consider the following choreographyC:

C= a→ b :o1; c→ d :o2

Here,a, b, c andd areparticipantsando1 ando2 areoperations(labels for communications).C specifies
a system wherea sends tob a message on operationo1 (a→ b:o1), and then (; is sequential composition)
c sends tod a message on operationo2 (c→ d:o2). We can naturally projectC onto a systemScomposed
of CCS-like processes annotated with roles [7]:

S= [o1]a ‖ [o1]b ‖ [o2]c ‖ [o2]d

Here, [·]a specifies the behavior of participanta, ‖ is parallel composition,o1 denotes an output on
operationo1, ando1 the corresponding input. Unfortunately, the projected systemSdoes not implement
C correctly. Indeed,c could send its message ono2 to d before the communication ono1 betweena
andb has occurred. This is in contrast with the intuitive meaningof the sequential composition operator
; in the choreography, which explicitly models sequentiality between the two communications. In [7],
we provide syntactic conditions on choreographies for ensuring that projection will behave correctly.
Similar conditions are used in other works (e.g., [3, 6]). Such conditions would reject choreographyC

http://dx.doi.org/10.4204/EPTCS.123.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Lanese, Montesi, Zavattaro 35

above, by recognizing that it is notconnected, i.e., the order of communications specified inC cannot be
enforced by the projected roles.

In this paper, we present a procedure for automatically transforming, oramending, a choreography
that is not connected into a behaviorally equivalent one that is connected. Our transformation acts in two
ways. In most of the cases, it automatically infers and adds some extra hidden communications. In a few
cases instead the problem cannot be solved by adding communications, and the amount of concurrency
in the system has to be decreased. For example, we can transform C in the connected choreographyC′

below:
C′ = a→ b :o1; b→ e :o∗3; e→ c :o∗4; c→ d :o2

Here, we have added an extra rolee that interacts withb andc to ensure the sequentiality of their respec-
tive communications. This is the first kind of transformation discussed above. We refer to Example 2 in
Section 3.4 for an example of the second kind.

Our transformation brings several benefits. First, designers could use choreographies by defining
only the desired behavior, leaving to our transformation the burden of filling in the necessary details on
how the specified orderings should be enforced. Moreover, our solution does not change the standard
definition of projection, since we operate only at the level of choreographies. Hence, we retain sim-
plicity in the definition of projection. Finally, our transformation offers an automatic way of ensuring
correctness when composing different choreographies developed separately into a single one.

Structure of the paper: Section 2 introduces choreographies and their semantics. Section 3 contains
the main contribution of the paper, namely the description and the proof of correctness of the amending
techniques. Section 4 applies the developed theory to a well-known example, the two-buyers protocol.
Finally, Section 5 discusses related work and future directions. Appendix A and Appendix B describe
projected systems and the projection operation, respectively.

2 Choreography Semantics

We introduce here our language for modeling choreographies. The set of participants in a choreography,
calledroles, is ranged over bya, b, c, We also consider two kinds ofoperationsfor communications:
public operations, ranged over byo, which represent observable activities of the system, andprivate
operations, ranged over byo∗, used for internal synchronization. We useo? to range over both public
and private operations.

Choreographies, ranged over byC, C′, . . ., are defined as follows:

C ::= a→ b :o? | 1 | 0 |C;C′ |C ‖C′ |C+C′

An interactiona→ b : o? means that rolea sends a message on operationo? to roleb (we assume that
a 6= b). Besides, there are the empty choreography1, the deadlocked choreography0, sequential and par-
allel composition of choreographies, and nondeterministic choice between choreographies. Deadlocked
choreography0 is only used at runtime, and it is not part of the user syntax.

The semantics of choreographies is the smallest labeled transition system (LTS) closed under the
rules in Figure 1. Symmetric rules for parallel compositionand choice have been omitted. We useσ to
range over labels. We have two kinds of labels: labela→ b :o? denotes the execution of an interaction
a→ b : o? while label

√
represents the termination of the choreography. Rule INTERACTION executes

an interaction. Rule END terminates an empty choreography. Rule SEQUENCE executes a step in the

36 Amending Choreographies

(INTERACTION)

a→ b :o? a→b:o?

−−−−→ 1

(END)

1
√
−→ 0

(SEQUENCE)

C
σ−→C′ σ 6=√

C;C′′ σ−→C′;C′′

(PARALLEL)

C
σ−→C′ σ 6=√

C ‖C′′ σ−→C′ ‖C′′

(CHOICE)

C
σ−→C′

C+C′′ σ−→C′

(SEQ-END)

C1

√
−→C′

1 C2
σ−→C′

2

C1;C2
σ−→C′

2

(PAR-END)

C1

√
−→C′

1 C2

√
−→C′

2

C1 ‖C2

√
−→C′

1 ‖C′
2

Figure 1: Choreographies, semantics (symmetric rules omitted).

first component of a sequential composition. Rule PARALLEL executes an interaction from a component
of a parallel composition, while rule CHOICE starts the execution of an alternative in a nondeterministic
choice. Rule SEQ-END acknowledges the termination of the first component of a sequential composition,
starting the second component. Rule PAR-END synchronizes the termination of two parallel components.

We use the semantics to build some notions of traces for choreographies, which will be used later on
for stating our results.

Definition 1 (Choreography traces). A (strong maximal) trace of a choreography C1 is a sequence of
labelsσ̃ = σ1, . . . ,σn such that there is a sequence of transitions C1

σ1−→ . . .

σn−→Cn+1 and that Cn+1 has
no outgoing transitions.

A weak trace of a choreography C is a sequence of labelsσ̃ obtained by removing all the labels of
the forma→ b :o∗ (corresponding to private interactions) from a strong trace of C.

Two choreographies C and C′ are (weak) trace equivalent iff they have the same set of (weak) traces.

3 Amending Choreographies

In this section we consider three different connectedness properties, and we show how to enforce each
one of them, preserving the set of weak traces of the choreography. We refer to [8] (a technical report
extending [7]) for the description of why these properties guarantee projectability. Actually, in [7],
different notions of projectability are considered according to whether the semantic model is synchronous
or asynchronous, and on which behavioral relation between achoreography and its projection is required.
The conditions presented and enforced below are correct andensure projectability according to all the
notions considered in [7].

All the conditions below are stated at the level of choreographies. Nevertheless, definitions of projec-
tion, projected system and of its semantics may help in understanding why they are needed. We collect
these definitions in the Appendix.

We discuss the connectedness conditions in increasing order of difficulty to help the understanding.
Then, in Section 3.4, we combine them to make a general choreography connected.

3.1 Connecting Sequences

Connectedness for sequenceensures that, in a sequential compositionC;C′, the choreographyC′ starts its
execution only afterC terminates. To formalize this property, we first need to define auxiliary functions

Lanese, Montesi, Zavattaro 37

transI and transF, which compute respectively the sets of initial and final interactions in a choreography:

transI(a→ b :o?) = transF(a→ b :o?) = {a→ b :o?}
transI(1) = transI(0) = transF(1) = transF(0) = /0
transI(C ‖C′) = transI(C+C′) = transI(C)∪ transI(C′)
transF(C ‖C′) = transF(C+C′) = transF(C)∪ transF(C′)

transI(C;C′) = transI(C)∪ transI(C′) if ∃C′′ such thatC
√
−→C′′

, transI(C) otherwise

transF(C;C′) = transF(C)∪ transF(C′) if ∃C′′ such thatC′
√
−→C′′

, transF(C′) otherwise

Intuitively, connectedness for sequence can be ensured by guaranteeing that a role waits for termination
of all the interactions inC and only then starts the execution of the interactions inC′. We can now
formally state this property.

Definition 2 (Connectedness for sequence). A choreography C isconnected for sequenceiff each subterm
of the form C′;C′′ satisfies∀a→ b :o?

1 ∈ transF(C′), ∀c→ d :o?
2 ∈ transI(C′′).b= c.

Our transformation reconfigures the subtermsC′;C′′ failing to meet the condition. Take one such
termC′;C′′. Choose a fresh rolee. Consider all the interactionsa→ b :o? contributing to transF(C′) in
the term. For each of them choose a fresh operationo∗f and replacea→ b :o? with a→ b :o?; b→ e :o∗f .
Similarly, for each interactionc → d : o? contributing to transI(C′′) choose a fresh operationo∗f and
replacec→ d :o? with e→ c :o∗f ; c→ d :o?. The essential idea is that rolee waits for all the threads in
C′ to terminate before starting threads inC′′.

Proposition 1. Given a choreography C we can derive using the pattern above achoreography C′ which
is connected for sequence such that C and C′ are weak trace equivalent.

Proof. We have to apply the pattern to all the subterms failing to satisfy the condition. We start from
smaller subterms, and then move to larger ones. We have to show that at the end all the subterms satisfy
the condition. The new subterms introduced by the transformation have the forma→ b : o?;b→ e : o∗

ande→ c:o∗;c→ d:o?, thus they satisfy the condition by construction. Let us consider a subtermD′;D′′

obtained by transforming a subtermE′;E′′ which already satisfied the condition (but whose subterms may
have been transformed). It is easy to check that transF(D′) = transF(E′) and transI(D′′) = transI(E′′),
thus the term is still connected for sequence. For subterms obtained by transforming subterms that did
not satisfy the condition, the thesis holds by construction.

Weak trace equivalence is ensured since only interactions on private operations, which have no im-
pact on weak trace equivalence, are added by the transformation.

3.2 Connecting Choices

Unique points of choiceensure that in a choice all the participants agree on the chosen branch. Intuitively,
unique points of choice can be guaranteed by ensuring that a single participant performs the choice and
informs all the other involved participants.

Definition 3 (Unique points of choice). A choreography C hasunique points of choiceiff each subterm
of the form C′+C′′ satisfies:

1. ∀a→ b :o?
1 ∈ transI(C′),∀c→ d :o?

2 ∈ transI(C′′).a= c;

2. roles(C′) = roles(C′′);

whereroles(•) computes the set of roles in a choreography.

38 Amending Choreographies

We present below a pattern able to ensure unique points of choice. We apply the pattern to all the
subterms of the formC′+C′′ that do not satisfy one of the conditions. Take one such termC′+C′′. If
condition 1 is not satisfied then choose a fresh rolee. Consider all the interactionsa→ b :o? contributing
to transI(C′) or to transI(C′′). For each of them choose a fresh operationo∗f and replacea→ b :o? with
e→ a :o∗f ; a→ b :o?.

Suppose now that condition 1 is satisfied, while condition 2 is not. Then we can assume a rolee
which is the sender of all the interactions in transI(C′ +C′′). Consider each rolea that occurs inC′

but not inC′′ (the symmetric case is analogous). For each of them add in parallel toC′′ the interaction
e→ a :o∗f whereo∗f is a fresh operation.

Proposition 2. Given a choreography C we can derive using the pattern above achoreography C′ which
has unique points of choice such that C and C′ are weak trace equivalent.

Proof. We have to apply the pattern to all the subterms failing to satisfy the condition. We start from
smaller subterms, and then move to larger ones. We have to show that at the end all the subterms satisfy
the conditions. We consider the transformation ensuring condition 1 first, then the one ensuring condition
2.

For the first transformation, given a subtermD′+D′′ there are two cases: either some initial inter-
actions insideD′ andD′′ have been modified or not. In the second case the thesis follows by inductive
hypothesis. In the first case all the initial interactions have been changed, and the freshly introduced role
is the new sender in all of them. Thus the condition is satisfied.

Let us consider the second transformation. The transformation has no impact on subterms, since it
only adds interactions in parallel. For the whole term the thesis holds by construction. Note that the term
continues to satisfy the other condition.

Weak trace equivalence is ensured since only interactions on private operations, which have no im-
pact on weak trace equivalence, are added by the transformation.

3.3 Connecting Repeated Operations

If different interactions use the same operation, one has toensure that messages do not get mixed, i.e.
that the output of one interaction is not matched with the input of a different interaction on the same
operation. Since in our model outputs do not contain the target participant, and inputs do not contain the
expected sender, the problem is particularly relevant. Thesame problem however may occur also if the
output contains the target participant and the input the expected sender, but only for interactions between
the same participants, as shown by the example below.

Example 1. Consider the choreography C below:

C = (a→ b :o1;b→ c :o;c→ d :o2) ‖ (a→ b :o3;b→ c :o;c→ d :o4)

The two interactionsb→ c :o, both between roleb and rolec, may interfere, since the send from one of
them could be received by the other one.

Clearly, given two interactions on the same operation, the problem does not occur if the output of the
first is never enabled together with the input of the second, and vice versa.

To ensure this, in [7] we required causal dependencies between the input in one interaction and the
outputs of different interactions on the same operation, and vice versa. To formalize this concept we
introduce the notion ofevent. For each interactiona→ b :o? we distinguish two events: a sending event
at rolea and a receiving event at roleb. The sending event and the receiving event in the same interaction

Lanese, Montesi, Zavattaro 39

are called matching events. We usee to range over events,s to range over sending events andr to range
over receiving events. We denote bye the event matching evente. If event e precedes evente′ in the
causal relation thene′ can become enabled only afterehas been executed, thus they cannot be matched.
However, this requirement alone is not suitable for our aims, since this condition is too strong to be
enforced by a transformation preserving weak traces.

Luckily, also events in a suitable relation of conflict cannot be matched. Requiring that events are in
opposite branches of a choice, however, is not enough, sincethey may be both enabled. For instance, in
a→ b :o+c→ d :o the output froma can be captured byd1. However, if the role containing the event
is already aware of the choice, then the events are never enabled together and thus cannot be matched,
since when one of them becomes enabled the other one has already been discarded. We callfull conflict
such a relation. For instance, in

(a→ b :o′;b→ a :o;a→ c :o′)+ (a→ b :o′′;b→ a :o;a→ c :o′′)

the two interactions ono do not interfere. Note that an interference could cause the wrong continuation
to be chosen.

Thus we require here that a send and a receive in different interactions but on the same operation
are either in a causality relation or in a full conflict relation. We call this conditioncausality safety.
Causality safety can be enforced by a transformation preserving weak traces. We refer to [8] for the
proof that causality safety ensures the desired propertiesof choreography projection.

To define causality safety we thus need to define acausality relationand afull conflict relation.

Definition 4 (Causality relation). Let us consider a choreography C. Acausality relation≤C is a partial
order among events of C. We define≤C as the minimum partial order satisfying:

sequentiality: for each subterm of the form C′;C′′ and each rolea, if r ′ is a receive event in C′ at rolea,
e′′ is a generic event in C′′ at rolea then r′ ≤C e′′;

synchronization: for each receive event r and generic event e′, r ≤C e′ impliesr ≤C e′.

Definition 5 (Full conflict relation). Let us consider a choreography C. Afull conflict relation f#C is a
relation among events of C. We definef#C as the smallest symmetric relation satisfying:

choice: for each subterm of the form C′+C′′ and each rolea, if e′ is an event in C′ at role a, e′′ is an
event in C′′ at rolea then e′ f#C e′′;

causality: if e′ f#C e′′ and e′′ ≤C e′′′ then e′ f#C e′′′.

We can now define causality safety.

Definition 6 (Causality safety). A choreography C iscausality safeiff for each pair of interactions
a→ b :o? (with events s1 and r1) andc→ d :o? (with events s2 and r2) on the same operation o? we have
that:

• s1 ≤C r2∨ r2 ≤C s1∨s1
f#C r2;

• s2 ≤C r1∨ r1 ≤C s2∨s2
f#C r1.

As an example, choreographyC = a→ b :o ‖ c→ d :o is not causality safe, since the output ono at
a is enabled together with the input ono at d, thus enabling a communication froma to d which should
not be allowed.

1This choreography however has not unique points of choice.

40 Amending Choreographies

A causality safety issue is immediately solved by renaming one of the operations. However, this
changes the specification. We show how to solve the causalitysafety issue while sticking to the original
(weak) behavior. We have different approaches according tothe top-level operator of the smaller term
including the conflicting interactions. Thus we distinguish parallel causality safety, sequential causality
safetyandchoice causality safety.

To solve parallel causality safety issues we apply a form ofexpansion lawthat transforms the parallel
composition into nondeterminism, thus either removing completely the causality safety issue or trans-
forming it into sequential or choice causality safety, discussed later on. Using the expansion law one can
transform any choreography into anormal formdefined as below.

Definition 7 (Normal form). A choreography C is innormal formif it is written as:

∑
i

ai → bi :o
?
i ;Ci

where∑i is n-ary nondeterministic choice (we can see the empty sum as0), and Ci is in normal form for
each i.

The expansion law is defined below.

Definition 8 (Expansion law).

(∑
i

ai → bi :o
?
i ; Ci) ‖ (∑

j

a j → b j :o
?
j ;Cj) = (∑

i

ai → bi :o
?
i ;(Ci ‖ (∑

j

a j → b j :o
?
j ;Cj)))

+(∑
j

a j → b j :o
?
j ;(Cj ‖ (∑

i

ai → bi :o
?
i ;Ci)))

The expansion law is correct w.r.t. trace equivalence, in the sense that applying the expansion law
does not change the set of traces (neither strong nor weak).

Lemma 1. Let C and C′ be choreographies, with C′ obtained by applying the expansion law to a subterm
of C. Then C and C′ are (strong and weak) trace equivalent.

Proof. Labels not involving the subterm are easily mimicked. Consider the first label involving the
subterm. If no such label exists then the thesis follows. Otherwise, the label corresponds to the execution
of one of the interactionsai → bi :o?

i or a j → b j :o?
j . Executing any of these interactions reduces both the

terms to the same term. The thesis follows.

Using the expansion law we can put any choreographyC in normal form.

Proposition 3 (Normalization). Given a choreography C there is a choreography C′ in normal form such
that C and C′ are weak trace equivalent.

Proof. The proof is by structural induction on the number of interactions occurring inC. The cases of
interactions and0 are trivial. Choreography1 can be replaced by any interaction on a private operation
without changing the set of weak traces. For sequential composition note that(∑i ai → bi :o?

i ;Ci);C′ and
(∑i ai → bi :o?

i ;Ci ;C′) have the same set of traces.Ci;C′ can be transformed in normal form by inductive
hypothesis. For nondeterministic choice the thesis is trivial (it is easy to check that nondeterministic
choice is associative). For parallel composition one can apply the expansion law, and the thesis follows
from Lemma 1 and inductive hypothesis.

Lanese, Montesi, Zavattaro 41

Let us now consider sequential causality safety. The term should have the formC′;C′′, with an
interactiona → b : o? in C′ and an interactionc→ d : o? in C′′. If the term satisfies connectedness for
sequence then the send atc cannot become enabled before the receive atb. We thus have to ensure that
the receive atd becomes enabled after the message from the send ata has been received. Choose fresh
operationso∗f ando∗g and replacea→ b :o? with a→ b :o?;b→ d :o∗f ;d→ b :o∗g.

The pattern for choice causality safety is similar. The termshould have the formC′+C′′, with an
interactiona → b : o? in C′ and an interactionc → d : o? in C′′. Assume that there is an interference
between the send ata and the receive atd (the symmetric case is similar). Choose fresh operationso∗f
ando∗g and replacec→ d :o? with c→ d :o∗f ;d→ c :o∗g;c→ d :o?

To prove the correctness of the transformation we need two auxiliary lemmas.

Lemma 2. Let C be a choreography which is connected for sequence. Thenall sending events in C
depend on sending events in initial interactions in C.

Proof. By structural induction onC. The only difficult case is sequential composition, whenC=C′;C′′.
For events inC′ the thesis follows by inductive hypothesis. For events inC′′, if they are in an initial
interaction, from connectedness for sequence they are in the same role as receiving events in the final
interactions inC′, thus they depend on them. By synchronization they also depend on sending events in
C′. The thesis follows by induction and by transitivity. For events not in initial interactions inC′′, by
inductive hypothesis they depend on events in initial interactions inC′′, thus the thesis follows from what
proved above by transitivity.

Lemma 3. Let C= C′;C′′ be a choreography which is connected for sequence. Then there are no
causality safety issues between receiving events in C′ and sending events in C′′.

Proof. From connectedness for sequence all the receiving events infinal interactions ofC′ and all the
sending events in initial interactions ofC′′ are performed by the same role. Thus, from the sequentiality
condition in the definition of causality relation, they are causally related. Now the more difficult case is
when the sends in C′′ is not initial and the receiver in C′ is not final. Thanks to Lemma 2 the sends
depends on an initial send, and by transitivity on each final receive. Thanks to synchronization it depends
also on each final send. Assumer is not final. Thanks to connectedness for sequence it is in thesame
role of a following sends′, thuss′ depends onr. If s′ is final the thesis follows. Otherwise we iterate the
procedure on a smaller term, and the thesis follows by induction.

We can now prove the correctness of the transformation.

Proposition 4. Let C be a choreography which is connected for sequence, has unique points of choice
and is parallel causality safe. We can derive using the pattern above a choreography C′ which has no
sequential or choice causality safety issue such that C and C′ are weak trace equivalent. Also, C′ is still
connected for sequence, has unique points of choice and is parallel causality safe.

Proof. We prove the thesis for just one causality safety issue, the more general result follows by iteration.
Take a causality safety issue, and consider the smallest subterm including the two conflicting interactions.
We have two cases according to whether the subterm has the form C′;C′′ orC′+C′′.

Let us consider the first case. Thanks to Lemma 3 the issue is between the send ata in an interaction
a→ b :o? in C′ and a receive atd in an interactionc→ d :o? in C′′.

After the transformation, the receive atd in c→ d :o? depends on the receive atd in b→ d :o∗f by
sequentiality. The receive atd in b → d : o∗f depends on the send atb inside the same interaction by

42 Amending Choreographies

synchronization, on the receive atb in a→ b :o? by sequentiality, and on the send ata inside the same
interaction again by synchronization. This proves that theissue is solved.

Let us consider the second case. Assume that the issue is between a send in an interactiona→ b :o?

in C′ and a receive in an interactionc→ d : o? in C′′. The sends ata and atc are causally dependent
on sends in an initial interaction of the term thanks to Lemma2. The transformation adds a dependency
between the send atc and the receive atd inside the same interaction. Thus the send ata and the receive
at d are in full conflict, since they are both causally dependent on sends from initial interactions of the
term, which are all in the same role thanks to unique points ofchoice. Again, this proves that the issue is
solved.

Weak trace equivalence is ensured since only interactions on private operations, which have no im-
pact on weak trace equivalence, are added by the transformation.

We have to show that the other properties are preserved. All of them hold by construction for the
newly introduced terms. Connectedness for sequence is preserved since the transformation preserves
senders of initial interactions and receivers of final interactions. Unique points of choice are preserved
for the same reason, and since the transformation does not add new roles. Parallel causality safety is
preserved since the transformation only introduces interactions on fresh operations.

3.4 Combining the Amending Techniques

Till now we have shown that given a choreography which fails to satisfy one of the connectedness condi-
tions, we can transform it into an equivalent one that satisfies the chosen connectedness condition. Some
care is required to avoid that, while ensuring that one condition is satisfied, violations of other conditions
are introduced. In fact, if such a situation would occur repeatedly, the connecting procedure may not
terminate.

The following theorem proves that we can combine the connecting patterns presented in the previous
sections to define a terminating algorithm transforming anychoreography into a connected choreography.

Theorem 1(Connecting choreographies). There is a terminating procedure that given any choreography
C creates a new choreography D such that:

• D is connected;

• C and D are weak trace equivalent.

Proof. We can apply the normalization procedure to all the subtermsof choreographyC that do not
satisfy parallel causality safety, starting from the smallest subterms to the largest, to get a choreography
C′ which is parallel causality safe (since the undesired parallel compositions have been removed) and
which is weak trace equivalent toC thanks to Proposition 3.

Now, again from the smallest subterms to the largest, we can apply to C′ the procedure for ensur-
ing unique points of choice to those subterms which have a top-level nondeterministic choice operator,
and the procedure for making them connected for sequence to those subterms which have a top-level
sequential composition operator obtaining a choreographyC′′.

For terms of the first kind, thanks to Proposition 2, we obtainterms which have unique points of
choice. They are also parallel causality safe and connectedfor sequence, since the transformation may
not create these issues. The same holds for terms of the second kind thanks to Proposition 1. In both
the cases, the resulting term is weak trace equivalent to thestarting one. By transitivityC′′ is weak trace
equivalent toC.

Finally, to each sequential and choice causality safety issue we can apply the procedure to solve it.
From Proposition 4 we know that the resulting choreographyD has no sequential or choice causality

Lanese, Montesi, Zavattaro 43

safety issue, still satisfies the other properties and is weak trace equivalent toC′′. The thesis follows by
transitivity.

Example 2. We now apply our procedure to the paradigmatic choreographyC = a→ b :o ‖ c→ d :o.
First note that C does not satisfy parallel causality safety. By application of the expansion law we obtain:

C1 = a→ b :o;c→ d :o+c→ d :o;a→ b :o

Proceeding from smaller to larger subterms, we first encounter the subtermsa→ b :o;c→ d :o and
c → d : o;a → b : o which are not connected for sequence (and are not sequential causality safe). By
applying the corresponding pattern to the two subterms, we obtain:

C2 = a→ b :o;b→ e′ :o∗1;e′ → c :o∗2;c→ d :o+c→ d :o;d→ e′′ :o∗3;e′′ → a :o∗4;a→ b :o

Now, the whole term does not have unique points of choice, andis not choice causality safe. By
applying the first of the transformations ensuring unique points of choice, we obtain:

C3 = e→ a :o∗5;a→ b :o;b→ e′ :o∗1;e′ → c :o∗2;c→ d :o+
e→ c :o∗6;c→ d :o;d→ e′′ :o∗3;e′′ → a :o∗4;a→ b :o

By applying the transformation ensuring that both the branches have the same set of roles, we obtain:

C4 =
(

e→ a :o∗5;a→ b :o;b→ e′ :o∗1;e′ → c :o∗2;c→ d :o ‖ e→ e′′ :o∗7
)

+
(

e→ c :o∗6;c→ d :o;d→ e′′ :o∗3;e′′ → a :o∗4;a→ b :o ‖ e→ e′ :o∗8
)

We are now left with sequential and choice causality safety issues. We start by solving the sequential
ones, which are one for each branch. As expected, they are between the sender of the first interaction on
o and the receiver of the second. By applying the pattern we get:

C5 =
(

e→ a :o∗5;a→ b :o;b→ d :o∗9;d→ b :o∗10;b→ e′ :o∗1;e′ → c :o∗2;c→ d :o ‖ e→ e′′ :o∗7
)

+
(

e→ c :o∗6;c→ d :o;d→ b :o∗11;b→ d :o∗12;d→ e′′ :o∗3;e′′ → a :o∗4;a→ b :o ‖ e→ e′ :o∗8
)

We are left with choice causality safety issues between the interactiona→ b : o in the first branch and
the interactionc→ d :o in the second branch. By applying the pattern we get:

C6 =
(

e→ a :o∗5;a→ b :o∗13;b→ a :o∗14;a→ b :o;b→ d :o∗9;d→ b :o∗10;
b→ e′ :o∗1;e′ → c :o∗2;c→ d :o ‖ e→ e′′ :o∗7

)

+
(

e→ c :o∗6;c→ d :o∗15;d→ c :o∗16;c→ d :o;d→ b :o∗11;b→ d :o∗12;
d→ e′′ :o∗3;e′′ → a :o∗4;a→ b :o ‖ e→ e′ :o∗8

)

This example shows that solving a parallel causality safetyissue may require a considerable amount of
auxiliary communications. Thus, it is advised to change thename of the operation if possible. If not
possible, our approach will solve the problem. Other issuesare solved more easily, since they involve no
duplication of terms.

4 Application: Two-Buyers Protocol

We show now how our transformation for connecting choreographies can be used as an effective design
tool for programming multiparty choreographies. We model the example reported in [6], the two-buyers

44 Amending Choreographies

protocol, where two buyers –b1 andb2 – combine their finances for buying a product from a sellers.
The protocol starts withb1 asking the price for the product of interest tos. Then,s communicates the
price to bothb1 andb2. Subsequently,b1 notifiesb2 of how much she is willing to contribute to the
purchase. Finally,b2 chooses whether to confirm the purchase and asks to send a delivery date for the
product; otherwise, the choreography terminates. We do notdeal here with how this choice is performed,
as our choreographies abstract from data.

To create a quick prototype choreographyC for the two-buyers protocol, we focus only on the main
interactions. When writing the choreography we do not worryabout connectedness conditions, since we
will enforce them automatically later on. The code follows naturally:

C= b1 → s :price; (s→ b1 :quote1 ‖ s→ b2 :quote2); b1 → b2 :contrib;
(b2 → s :ok;s→ b2 :delivery + 1)

The code above is just a direct translation of our explanation in natural language into a choreography.
We can immediately observe that the choreography is not connected, since it contains 2 violations of the
connectedness conditions:

• the subterm(s→ b1:quote1 ‖ s→ b2 :quote2); b1 → b2:contrib is not connected for sequence;
thus, e.g.,b1 may send thecontrib message beforeb2 receives the message forquote22;

• the subterm(b2 → s :ok;s→ b2 :delivery + 1) has not unique points of choice.

We can apply our transformation to amend our choreography prototype, transforming it into a connected
choreography which is weak trace equivalent toC, obtaining:

C1 = b1 → s :price; (s→ b1 :quote1; b1 → e1 :o∗1 ‖ s→ b2 :quote2; b2 → e1 :o∗2);
e1 → b1 :o∗3; b1 → b2 :contrib; (b2 → s :ok;s→ b2 :delivery +(1 ‖ b2 → s :o∗4))

The choreographyC1 above is connected, thus it can be projected, and the projection will be trace equiv-
alent toC1 itself (thanks to the results in [7]), and weak trace equivalent to the original choreography
C.

5 Conclusions

In previous work [7] we have defined syntactic conditions that guarantee choreography connectedness,
i.e. that the endpoints obtained by the natural projection of a choreography correctly implement the global
specification given by the choreography itself. In this paper we have presented a procedure for amending
non-connected choreographies by reducing parallelism andadding interactions on private operations in
such a way that all the above conditions are satisfied, while preserving the observational semantics. To the
best of our knowledge, only two other papers consider the possibility to add messages to a choreography
in order to make it correctly projectable [10, 9].

In [10] non-connected sequences are connected by adding a synchronization from every role involved
in a final interaction before the sequential composition to every role involved in an initial interaction
after the sequential composition, while non-connected choices are modified by selecting a dominant role
responsible for taking the choice and communicating it to the other participants. Our approach reduces
the number of added synchronizations in the case of sequential compositions, and allows for a symmetric
projection that treats all the roles in the same way in the case of choices. In [10] there is no discussion

2This may happen only with the asynchronous semantics.

Lanese, Montesi, Zavattaro 45

about repeated operations, and to the best of our understanding of the paper this is problematic. In fact,
the choreographyC in Example 1 (written according to our syntax, which is slightly different w.r.t. the
one adopted in [10]) is well-formed according to the conditions in [10], but it is not projectable.

CollaborationandSequence diagramsare popular visual representations of choreographies [5].In
this area, the work more similar to ours is [9], where the problem of amending collaboration diagrams
is addressed. In collaboration diagrams the interactions are labels of edges in a graph which has one
node for each role, and one edge for each pair of interacting roles. Interactions are organized in threads
representing sub-choreographies. Messages are totally ordered within the same thread, while a partial
order can be defined among interactions belonging to different threads. The problem of amending non-
connected choreographies is simplified in this context: collaboration diagrams do not have a global
choice composition operator among sub-choreographies, and two distinct threads use two disjoint sets of
operations. For this reason, only the problem of non-connected sequences is addressed in [9].

Another paper amending choreographies is [2], however theyconsider a different problem. In fact,
they consider choreographies including annotations on thecommunicated data, and they concentrate on
amending those annotations.

Possible extensions of the present work include its application to existing choreography languages,
such as [4], where however the intended semantics of sequential composition is weaker, since indepen-
dent interactions can be freely swapped. The main difficultyin extending the approach is dealing with
infinite behaviors. Having an iteration construct should not be a problem: roughly one has to make
connected the choice between iterating and exiting the iteration using the techniques for choice, and the
sequential execution of different iterations using the techniques for sequence. General recursion would
be more difficult to deal with, since subterms belonging to different iterations may execute in parallel.
Adding data to our language would not change the issues discussed in the present paper.

References

[1] Laura Bocchi, Kohei Honda, Emilio Tuosto & Nobuko Yoshida (2010): A Theory of Design-by-Contract
for Distributed Multiparty Interactions. In: Proc. of CONCUR 2010, LNCS 6269, Springer, pp. 162–176,
doi:10.1007/978-3-642-15375-4_12.

[2] Laura Bocchi, Julien Lange & Emilio Tuosto (2012):Three Algorithms and a Methodology for Amending
Contracts for Choreographies. Sci. Ann. Comp. Sci.22(1), pp. 61–104, doi:10.7561/SACS.2012.1.61.

[3] Marco Carbone, Kohei Honda & Nobuko Yoshida (2007):Structured Communication-Centred Pro-
gramming for Web Services. In: Proc. of ESOP’07, LNCS 4421, Springer, pp. 2–17, doi:10.1007/

978-3-540-71316-6_2.

[4] Marco Carbone & Fabrizio Montesi (2013):Deadlock-freedom-by-design: multiparty asynchronous global
programming. In: Proc. of POPL 2013, ACM, pp. 263–274, doi:10.1145/2429069.2429101.

[5] Martin Fowler (2003):UML Distilled: A Brief Guide to the Standard Object ModelingLanguage (3rd Edi-
tion). Addison Wesley.

[6] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008):Multiparty asynchronous session types. In: Proc.
of POPL’08, ACM Press, pp. 273–284, doi:10.1145/1328438.1328472.

[7] Ivan Lanese, Claudio Guidi, Fabrizio Montesi & Gianluigi Zavattaro (2008):Bridging the Gap between
Interaction- and Process-Oriented Choreographies. In: Proc. of SEFM’08, IEEE Press, pp. 323–332, doi:10.

1109/SEFM.2008.11.

[8] Ivan Lanese, Fabrizio Montesi & Gianluigi Zavattaro:Classifying Relationships between Interaction- and
Process-Oriented Choreographies. Available athttp://www.cs.unibo.it/~lanese/publications/
fulltext/ioc.pdf.

http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.7561/SACS.2012.1.61
http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1145/2429069.2429101
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1109/SEFM.2008.11
http://dx.doi.org/10.1109/SEFM.2008.11
http://www.cs.unibo.it/~lanese/publications/fulltext/ioc.pdf
http://www.cs.unibo.it/~lanese/publications/fulltext/ioc.pdf

46 Amending Choreographies

(IN)

o? o?

−→ 1

(OUT)

o? o?

−→ 1

(ASYNC-OUT)

〈o?〉 〈o?〉−−→ 1

(ONE)

1
√
−→ 0

(SEQUENCE)

P
γ−→ P′ γ 6=√

P;Q
γ−→ P′;Q

(INNER PARALLEL)

P
γ−→ P′ γ 6=√

P | Q
γ−→ P′ | Q

(CHOICE)

P
γ−→ P′

P+Q
γ−→ P′

(SEQ-END)

P
√
−→ P′ Q

γ−→ Q′

P;Q
γ−→ Q′

(INNER PAR-END)

P
√
−→ P′ Q

√
−→ Q′

P | Q
√
−→ P′ | Q′

(L IFT)

P
γ−→ P′ γ 6= o?

,

√

[P]a
γ :a−→ [P′]a

(L IFT-T ICK)

P
√
−→ P′

[P]a

√
−→ [P′]a

(MSG)

P
o?

−→ P′

[P]a
o?:a−−→ [P′ | 〈o?〉]a

(SYNCH)

S
〈o?〉:a−−−→ S′ S′′

o?:b−−→ S′′′

S‖ S′′
a→b:o?

−−−−→ S′ ‖ S′′′

(EXT-PARALLEL)

S
γ−→ S′ γ 6=√

S‖ S′′
γ−→ S′ ‖ S′′

(EXT-PAR-END)

S
√
−→ S′ S′′

√
−→ S′′′

S‖ S′′
√
−→ S′ ‖ S′′′

Table 1: Projected systems asynchronous semantics (symmetric rules omitted).

[9] Gwen Salaun, Tevfik Bultan & Nima Roohi (2012):Realizability of Choreographies Using Process Algebra
Encodings. IEEE Transactions on Services Computing5(3), pp. 290–304, doi:10.1109/TSC.2011.9.

[10] Qiu Zongyan, Zhao Xiangpeng, Cai Chao & Yang Hongli (2007): Towards the Theoretical Foundation of
Choreography. In: Proc. of WWW’07, ACM Press, pp. 973–982, doi:10.1145/1242572.1242704.

A Projected Systems

We describe here the syntax and the operational semantics ofprojected systems. Projected systems,
ranged over byS, S′, . . ., are composed byprocesses, ranged over byP, P′, . . ., describing the behavior
of participants,

P ::= o? | o? | 1 | P;P′ | P | P′ | P+P′ | 〈o?〉 | 0

S ::= [P]a | S‖ S′

Processes include input actiono? and output actiono? on a specific operationo? (either public or
private), the empty process1, sequential and parallel composition, and nondeterministic choice. The
runtime syntax includes also messages〈o?〉, used in the definition of the asynchronous semantics, and
the deadlocked process0. Projected systems are parallel compositions of roles. Each role has a role
name and executes a process. We require role names to be unique.

We define two LTS semantics for projected systems, onesynchronousand oneasynchronous. In the
synchronous semantics input actions and output actions interact directly, while in the asynchronous one
the sending event creates a message that, later, may interact with the corresponding input, generating a
receiving event.

The asynchronous LTS for projected systems is the smallest LTS closed under the rules in Table 1.
We useγ to range over labels. Symmetric rules for parallel compositions (both internal and external) and
choice have been omitted.

http://dx.doi.org/10.1109/TSC.2011.9
http://dx.doi.org/10.1145/1242572.1242704

Lanese, Montesi, Zavattaro 47

Rules IN and OUT execute input actions and output actions, respectively. Rule ASYNCH-OUT makes
messages available for a corresponding input action. Rule ONE terminates an empty process. Rule
SEQUENCEexecutes a step in the first component of a sequential composition. Rule INNER PARALLEL

executes an action from a component of a parallel composition, while rule CHOICE starts the execution
of an alternative in a nondeterministic choice. Rule SEQ-END acknowledges the termination of the
first component of a sequential composition, starting the second component. Rule INNER PAR-END

synchronizes the termination of two parallel components. Rule LIFT lifts actions to the system level,
tagging them with the name of the role executing them. Action

√
instead is dealt with by rule LIFT-

TICK, which lifts it without adding the role name. Outputs instead are stored as messages by rule MSG.
Rule SYNCH synchronizes a message with the corresponding input action, producing an interaction.
Rule EXT-PARALLEL allows parallel systems to stay idle. Finally, rule EXT-PAR-END synchronizes the
termination of parallel systems.

The synchronous LTS for projected systems is the smallest LTS closed under the rules in Table 1,
where rules OUT, ASYNC-OUT and MSG are deleted and the new rule SYNC-OUT below is added:

(SYNC-OUT)

o? 〈o?〉−−→s 1

This rule allows outputs in the synchronous semantics to send messages that can directly interact with
the corresponding input at the system level.

Synchronous transitions are denoted as
γ−→s instead of

γ−→, to distinguish them from the asynchronous
ones.

As for choreographies, we definetraces. We have different possibilities: in addition to the distinction
between strong and weak traces, we distinguishsynchronousandasynchronoustraces.

Definition 9 (Projected systems traces). A (strong maximal) synchronous trace of a projected system S1

is a sequence of labelsγ1, . . . ,γn, whereγi is of the forma→ b :o?, or
√

for each i∈ {1, . . . ,n}, such that

there is a sequence of synchronous transitions S1
γ1−→s . . .

γn−→s Sn+1 and such that Sn+1 has no outgoing
transitions of the same form.

A (strong maximal) asynchronous trace of a projected systemS1 is a sequence of labelsγ1, . . . ,γn,
whereγi is of the formo? : a, a→ b : o?, or

√
for each i∈ {1, . . . ,n}, such that there is a sequence of

asynchronous transitions S1
γ1−→ . . .

γn−→ Sn+1 and such that Sn+1 has no outgoing transitions of the same
form. A weak (synchronous/asynchronous) trace of a projected system S1 is obtained by removing all
labelso∗ : a anda→ b :o∗ from a strong (synchronous/asynchronous) trace of S1.

In the definition of traces, input actions and messages are never considered, since they represent
interactions with the external world, while we are interested in the behavior of closed systems.

We have shown in [7] that a connected choreography and the corresponding projected system have the
same set of strong traces, if the synchronous semantics is used for the projected system. The correspon-
dence with the asynchronous semantics is more complex, and we refer to [7] for a precise description.

B Projection

In this section we show how to derive from a choreographyC a projected systemS implementing it. The
idea is to project the choreographyC on the different roles, and build the systemSas parallel composition
of the projections on the different roles. We consider here the most natural projection, which is essentially

48 Amending Choreographies

an homomorphism on most operators. As shown in [7], ifC satisfies the connectedness conditions, the
resulting projected system is behaviorally related to the starting choreographyC.

Definition 10 (Projection function). Given a choreography C and a rolea, the projectionproj(C,a) of
choreography C on rolea is defined by structural induction on C:

proj(a→ b :o?
,a) = o?

proj(a→ b :o?
,b) = o?

proj(a→ b :o?
,c) = 1 if c 6= a,b

proj(1,a) = 1
proj(0,a) = 0

proj(C;C′
,a) = proj(C,a);proj(C′

,a)
proj(C ‖C′

,a) = proj(C,a) | proj(C′
,a)

proj(C+C′
,a) = proj(C,a)+proj(C′

,a)

We denote with‖i∈I Si the parallel composition of systemsSi for eachi ∈ I .

Definition 11. Given a choreography C, the projection of C is the system S defined by:

proj(C) =‖a∈roles(C) [proj(C,a)]a

whereroles(C) is the set of roles in C.

	1 Introduction
	2 Choreography Semantics
	3 Amending Choreographies
	3.1 Connecting Sequences
	3.2 Connecting Choices
	3.3 Connecting Repeated Operations
	3.4 Combining the Amending Techniques

	4 Application: Two-Buyers Protocol
	5 Conclusions
	A Projected Systems
	B Projection

