
Error Handling: From Theory to Practice�

Ivan Lanese1 and Fabrizio Montesi2

1 Focus Team, Università di Bologna/INRIA, Bologna, Italy
lanese@cs.unibo.it

2 Focus Team, Università di Bologna/INRIA,
Bologna and italianaSoftware s.r.l., Italy

fmontesi@italianasoftware.com

Abstract. We describe the different issues that a language designer has
to tackle when defining error handling mechanisms for service-oriented
computing. We first discuss the issues that have to be considered when
developing error handling mechanisms inside a process calculus, i.e. an
abstract model. We then analyze how these issues change when moving
from a process calculus to a full-fledged language based on it. We consider
as an example the language Jolie, and the calculus SOCK it is based upon.

1 Introduction

Nowadays computing systems are made of different interacting components, fre-
quently heterogeneous and distributed. Components exploit each other function-
alities to reach their goals, communicating through some network middleware.
Components may belong to different companies, and they are not always reli-
able. Also, the underlying network infrastructure may be unreliable too, thus
connections may break and components may disconnect. Nevertheless, applica-
tions should provide reliable services to their users. For these reasons, it becomes
more and more important to deal with unexpected events, so to be able to man-
age them and get correct results anyway. That is, error (or fault) handling is
today a major concern.

Service-oriented computing is a programming paradigm for developing com-
plex distributed applications by composing simpler, loosely coupled services.
This is implemented as a set of standards allowing to describe service interface
and behavior, to look for services to perform the task at hand, to invoke them
and to compose them so to produce the desired result. What said above about
unexpected events holds, in particular, in the case of services. Thus different
techniques and primitives for fault handling have been proposed in this field.
For instance, WS-BPEL [21], the de-facto standard for web service composition,
provides scopes, fault handlers, compensation handlers and termination handlers
to deal with unexpected events.

However, the problem of finding good programming abstractions and primi-
tives for programming reliable applications out of unreliable services is far from
being solved. Take WS-BPEL for instance. Its specification is informal and un-
clear, and the interactions between the different primitives not clarified. This is
� Research supported by Project FP7-231620 HATS.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 66–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Error Handling: From Theory to Practice 67

witnessed by the fact that different implementations of WS-BPEL behave in dif-
ferent ways on many programs [14]. To avoid ambiguities, to clarify the expected
behavior of programs, and to prove properties of the available mechanisms, for-
mal methods are needed. Thus, there have been many proposals trying to specify
WS-BPEL semantics in a formal way [16,15,22], and more in general proposing
primitives for modeling web services and their fault handling mechanisms (see
the related work paragraph below).

However, most of these proposals are at a very abstract level, and quite far
from real programming languages. Thus the problem of exporting primitives
and techniques from high-level theoretical models to full-fledged programming
languages usable to program service-oriented applications in an industrial con-
text has rarely been tackled, even less solved. This paper aims at describing
Jolie [20,9], a language for programming service-oriented applications built on
top of the calculus SOCK [4], which has been developed and exploited in practice
by company italianaSoftware s.r.l. In particular, we will concentrate on its mech-
anisms for error handling, detailing the reasoning that drove their development,
from the theoretical calculus SOCK to the full language Jolie.

SOCK and Jolie are a good choice to exemplify our ideas. First, they pro-
pose a novel approach to error handling with original features such as dynamic
handler update and automatic fault notification. Also, Jolie has been developed
closely following the semantics of SOCK, in particular as far as its error handling
mechanisms are concerned.

Related works. There are many works in the literature on error handling for
concurrent systems, such as service-oriented computing ones. Many of them
are based on process calculi. The mechanisms they propose range from basic
constructs such as the interrupt of CSP [8] and the try-catch found in most
programming languages, to complex proposals such as the ones of Webπ [13],
StAC [5], SAGAs calculi [3], dcπ [24], SOCK [6], Those models differ on
many respects, ranging from flow composition models, where basic activities are
composed and compensated (e.g., StAC or SAGAs calculi), to calculi taking into
account communication and distribution, aiming at modeling distributed error
handling (e.g., Webπ or SOCK). Another thread of research [2,11,12] tries to
compare the expressive power of different models.

Our work has however a different perspective: we are not proposing new mech-
anisms nor comparing existing ones, but analyzing the requirements that all those
mechanisms have to satisfy. We are not aware of other papers on this topic.

Structure of the paper. Section 2 introduces the basics of SOCK, without consid-
ering error handling. Section 3 discusses the main aims that should be reached
when developing error handling mechanisms, considering both the cases of a
calculus and of a full-fledged language. Section 4 presents the main features of
SOCK for error handling and illustrates how it has tried to fulfill the require-
ments in Section 3. Section 5 does the same analysis for the peculiar mechanisms
of Jolie. Finally, Section 6 concludes the paper.

68 I. Lanese and F. Montesi

Table 1. Service behavior syntax

ε : : = o@z(y) | or@z(y, x) ε : : = o(x) | or(x, y, P)

P, Q, . . . : : = 0 null process
ε output ε input
x := e assignment if χ then P else Q conditional
P ; Q sequential comp. P |Q parallel comp.∑

i∈W εi; Pi non-det. choice while χ do (P) iteration

2 SOCK

In this section we introduce SOCK [4], the calculus underlying Jolie [20,9]. We
leave to next sections the description of its approach to fault handling, concen-
trating here on its standard behavior.

SOCK is a three-layers calculus. The behavior layer describes how single ser-
vices act and communicate. The engine layer describes how the state of services
is stored and how their sessions are instantiated and managed. The network layer
allows to compose different engines in a network.

Error handling is mostly dealt with at the behavior layer, thus we will con-
centrate on it. We refer to [4] for a description of the other layers.

The language for defining behaviors in SOCK is inspired both from concur-
rent calculi, featuring for instance a built-in parallel composition operator, and
imperative languages, providing for instance assignment (SOCK is stateful) and
sequential composition.

A main point in SOCK behaviors concerns communication. SOCK behaviors
communicate with each other using two modalities (inspired by WSDL [25]):
one-way, where one message is sent, and request-response, where a message is
sent and a response is computed and sent back.

To define the syntax of SOCK behaviors we consider the following (disjoint)
sets: V ar, ranged over by x, y, for variables, V al, ranged over by v, for values,
O, ranged over by o, for one-way operations, and OR, ranged over by or for
request-response operations. Also, we use z to range over locations. The syntax
for processes is defined in Table 1. There, 0 is the null process. Outputs can
be notifications (for one-way communication) o@z(y) or solicit-responses (for
request-response communication) or@z(y, x) where o ∈ O, or ∈ OR and z is
a location. Notification o@z(y) sends a one-way communication to operation o
located at location z (locations of behaviors are defined at the network layer),
and variables y contain the data to be sent. Similarly, solicit-response or@z(y, x)
sends a request-response communication to operation or located at location z,
communicating values in variables y, and then waits for an answer. When the
answer is received, received values are assigned to variables in x. Dually, inputs
can be one-ways o(x) or request-responses or(x, y, P) where the notations are
as above. Additionally, P is the process to be executed upon request to pro-
duce the response. Assignment x := e assigns the result of the expression e to

Error Handling: From Theory to Practice 69

the variable x. We do not present the syntax of expressions: we just assume
that they include the arithmetic and boolean operators, values, variables and
arrays. Conditional is written as if χ then P else Q. P ; Q and P |Q are sequen-
tial and parallel composition respectively, whereas

∑
i∈W εi; Pi is input-guarded

non-deterministic choice. Finally, while χ do (P) models iteration.

Example 1. Let us consider a (very simplified) service for performing money
transfers between two accounts. Such a service can be invoked by:

payr@bank(〈src, dest, amount〉, 〈transId〉)
where src is the source account, dest the destination account, amount the
amount of money to be moved and transId a transaction Id to be used for
later referring to the transaction.

A possible implementation for the service (again, very simplified) could be:

payr(〈src, dest, amount〉, 〈transId〉,
acc[src] := acc[src] − amount;
acc[dest] := acc[dest] + amount;
gen − idr@bank(〈src, dest, amount〉, 〈transId〉))

We assume that this behavior is located at location bank and that there is
another service at the same location, gen − id, which takes care of generating
the transaction Id. Also, acc is an array containing accounts’ credit.

3 The Quest for Error Handling Primitives

As described in the Introduction, the problem of finding good programming
primitives for error handling is hard, as witnessed by the huge number and vari-
ety of proposals that have been put forward in the literature. Even considering
a unique kind of model, many variants exist. SAGAs calculi [3,2,10] for instance
may differ on whether parallel flows of computation are interrupted when an
error occurs, on whether the compensation is centralized or distributed, and on
whether the order of compensations depends on the static structure of the term
or on the dynamic execution.

The difficulty in finding the best model for error handling in service-oriented
computing is due to the many concerns such a model has to answer:

full specification: the model should define the behavior of error handling prim-
itives in all the possible cases, including when the management of different
errors interfere;

expressiveness: the available primitives should allow to specify all the error
handling policies that may be necessary to program complex applications;

intuitiveness: the behavior of the provided primitives should match the intuition
of programmers, allowing to understand the behavior of the applications;

70 I. Lanese and F. Montesi

minimality: we look for the simplest possible set of primitives able to model
the required behavior, and, in particular, the different proposed mechanisms
should be as much orthogonal as possible.

We describe in the next section how the error handling mechanisms proposed
for SOCK have tried to satisfy the requirements above.

However, when moving from theoretical models to full-fledged languages,
while most of the concerns above remain (actually, intuitiveness becomes even
more important, while minimality is less critical), new ones emerge. The main
ones are the following:

usability: the proposed primitives should be easy to use for the programmers
when developing complex applications: while this is connected to intuitive-
ness and expressiveness, this goes beyond. For instance, this includes the de-
velopment of suitable macros or additional primitives to simplify the writing
of common patterns. Note that this is in contrast with the concern for mini-
mality, which is more important in theoretical models than in real languages;

robustness: most theoretical models assume perfect communications, and do
not consider low level failures, however these failures may happen in practice,
and should be taken into account;

compatibility: in practice applications do not live alone, but they are immersed
in a world including the network middleware and other applications, possibly
developed using different languages and technologies: thus, in real languages,
mechanisms should be provided to interact with other entities, which may
follow different policies for error handling.

These additional concerns force the error handling approaches used in practice
to be different, and in general more complex, w.r.t. the ones considered in the-
oretical models. This makes difficult to export the results obtained working on
theoretical models (expressiveness results, property guarantees) to full-fledged
languages. We will describe in Section 5 how those practical concerns have in-
fluenced the development of Jolie, discussing whether properties of SOCK are
preserved in Jolie.

4 Error Handling in SOCK

Error handling in SOCK has been inspired by error handling in WS-BPEL, but
explored some new directions, in particular concerning dynamic handler update
and automatic fault notification.

As in WS-BPEL, error handling in SOCK is based on the concepts of fault,
scope, fault handler, termination handler and compensation handler. A fault is
an unexpected event that causes the interruption of the normal flow of compu-
tation. A scope defines the boundaries for error handling activities. In particu-
lar, each scope defines handlers specifying how to manage internal and external
faults. A handler is a piece of code specifying how to react to particular faults.
We consider three kinds of handlers: fault handlers specify how to deal with

Error Handling: From Theory to Practice 71

Table 2. Service behavior syntax

P, Q, . . . : : = . . . standard processes
{P}q scope inst(H) install handler
throw(f) throw comp(q) compensate
cH current handler or@z(y, x,H) solicit-response

internal faults, termination handlers specify how to smoothly terminate a scope
when an external fault reaches it, compensation handlers specify how to undo
the activities performed by a scope that already terminated with success, if this
is needed for error recovery. All these concepts are realized by extending the
syntax of SOCK with the primitives in Table 2. There f denotes a fault name
and q a scope name. Furthermore, H denotes a function from fault and scope
names to processes. We refer to [7] for a detailed description of the behavior of
the primitives, including the formal semantics.

As already said, a scope {P}q is the main mechanism for structuring error
handling. It has name q, and executes process P taking care of its faults. At
the beginning, it defines no policy for error handling: policies are specified dy-
namically by installing handlers using operation inst(H). The intended semantics
is that assigning a process P to a fault name f defines P as fault handler for
f , while assigning P to the name q of the scope defines P as its termination
handler. Handlers may replace or update previously defined handlers with the
same name. This is done using the placeholder cH (for current handler), that
during installation is replaced by the code of the old handler. Thus for instance
inst([f �→ cH |Q]) adds Q in parallel to the old handler for fault f .

Primitive throw(f) throws fault f : the fault propagates by killing the ongoing
activities around itself until it reaches a scope. Then the handler for the fault is
looked for: if it is available then it is executed, and fault propagation is stopped.
Otherwise the scope is killed, and the fault propagates to the outside. During
propagation, the fault may kill sibling scopes: in this case their termination
handler is executed to ensure smooth termination. All error handling activities
are executed in a protected way, thus ensuring that they are completed before
taking care of successive errors. During error handling, it may be necessary to
undo previously completed activities. To this end, compensation handlers are
used. Compensation handlers are defined when a scope successfully terminates,
and they correspond to the last defined termination handler. Thus, they are
available and they can be executed using primitive comp(q).

The last main point concerning error handling is related to the request-
response communication pattern. This communication pattern enforces a strong
relationship between the caller and the callee: for instance, if the callee gives
back no answer then the caller remains stuck. For this reason we want that er-
rors on the callee are notified to the caller. In particular, if there is a local fault
f in the callee, the same fault is sent back to the caller, where it is re-raised
as a local fault, triggering management of the remote fault. In particular, the
caller is guaranteed to receive either a successful answer or a fault notification
and thus do not get stuck (unless the callee diverges).

72 I. Lanese and F. Montesi

Example 2. Consider a slightly more refined version of the bank service in Ex-
ample 1, which checks first whether there is enough money in the source account,
and throws fault f otherwise.

payr(〈src, dest, amount〉, 〈transId〉,
if acc[src] ≥ amount then 0 else throw(f);
acc[src] := acc[src] − amount;
acc[dest] := acc[dest] + amount;
gen − idr@bank(〈src, dest, amount〉, 〈transId〉))

Thus, in case there is not enough money in the source account, the operation
will fail and fault f is thrown both at the callee and at the caller sides.

Faults in the caller may influence the communication pattern too: if there is a
failure which is concurrent to the solicit-response, different cases may occur. If
the fault happens before the solicit-response is started, the solicit-response is not
executed at all, and the remote partner is unaffected. If it is after instead, the
answer for the partner is waited for. If this is successful, meaning that the remote
partner has performed its task, then the local handler is updated according to
the handler update defined in the solicit-response primitive. Thus, this handler
update can take care of undoing the remote computation. If instead the remote
computation has failed, an error notification is received, and the local handler
update is not performed, since the remote computation had no effect. Also, the
remote fault is not propagated locally, since the local computation has already
failed.

Example 3. Consider again the service in Example 2. The client for such a service
has to manage fault f . It can be written for instance as:

{inst([f �→ ErrorMsg := ”Not enough money for the transfer”;
print@user(〈ErrorMsg〉)]);

payr@bank(〈src, dest, amount〉, 〈transId〉, [q �→ undo@bank(〈transId〉)])}q

Now, if everything goes fine, upon receipt of the answer, the handler for q is
installed, thus if later this scope has to be compensated, the undo of the payment
operation is requested. If instead a fault occurs on the remote side, the handler
is not updated and the undo will never be required. Instead, an error message
is sent to the user. Even if there is a local fault, the answer will be waited for,
and the handler update will be performed only if the answer is successful, thus
the termination handler for q will undo the payment iff it has actually been
performed.

4.1 Full Specification

The definition of the semantics of error handling (as well as of normal process-
ing), should cover all the possible cases. Questions such as:

Error Handling: From Theory to Practice 73

1. What happens if, while a fault is being managed, an external fault occurs?
2. What happens if both the caller and the callee of a request-response fail?
3. What happens if a fault handler causes a fault?

should not be left unanswered. Notice however that for informal specifications
such as WS-BPEL one [21], it is very difficult to check whether all the cases have
been specified. Instead, this is not normally a problem for formal specifications:
the only possible transitions are the ones defined by the model, and the model
fully describes what happens in each case (at worst, it specifies that no transition
is possible). This is for instance the case for SOCK semantics [6]. Considering
the questions above, it is easy to deduce the following answers:

1. The internal fault handler is executed in a protected way, thus the manage-
ment of the external fault has to wait for the completion of local recovery.

2. A fault notification is sent back from the callee to the caller, the handler
update specified by the solicit-response is not applied, but the remote fault
is not propagated to the caller.

3. The fault is propagated as usual, and dealt with by existing handlers. Note
that when the handler for fault f is executed, its definition is removed, thus
further faults with the same name should be dealt with by external scopes.

4.2 Expressiveness

The available primitives should be able to express all the policies that may be
necessary for programming applications. As stated, this is a very vague goal,
since it is quite difficult to guess which kinds of policies may be necessary. For
formal models, such a constraint is usually checked by relying on case studies
and on encodings. As for SOCK, it has been applied to the specification of the
Automotive [26] and Financial [1] case studies of the European project Senso-
ria [23], and the derived language Jolie is applied every day for programming
service-oriented applications such as, for instance, a web portal for managing
employer time sheets, VOIP service monitoring, and others. The results of these
tests may trigger refinements of the language for improving its expressive power.

Another way of assessing the expressive power of SOCK is via encodings. By
showing that another calculus can be encoded into SOCK, one shows that SOCK
is at least as expressive as the other calculus. This has been done [12] for instance
in the case of SAGAs. The results therein show that both static SAGAs with
interruption and centralized compensations [2] and dynamic SAGAs [12] can be
modeled into SOCK preserving some notion of behavior. This guarantees that
each policy that can be expressed in these flavors of SAGAs can also be expressed
in SOCK.

Another result concerning expressiveness is related to dynamic handler up-
date: it is easy to show that SOCK dynamic handler update can easily model
WS-BPEL static scopes. In WS-BPEL, each scope has statically associated a
fault handler Fi for each fault fi, a termination handler T and a compensation
handler C. Using dynamic handler installation, this can be simulated as follows:

74 I. Lanese and F. Montesi

{inst([f1 �→ F1, . . . , fn �→ Fn, q �→ T]); P ; inst([q �→ C])}q

In [11] it is shown that dynamic handler update is strictly more expressive than
both static recovery (as in WS-BPEL), and parallel recovery (where additional
pieces of handlers can be added only in parallel). Albeit this result can not
directly be applied to SOCK, since it is proved on a stateless calculus, this is
another hint of the expressive power of dynamic handler update.

4.3 Intuitiveness

This is one of the most important, yet difficult to reach, goals for a programming
language, and, in particular, for error handling mechanisms. Intuitiveness means
that the behavior of the primitives follows the intuition of the programmer (or,
better, of a programmer that has understood the basics of the approach). While
the formal specification of the calculus is normally quite complex to understand
for a programmer without specific background on formal methods, it is required
that such a programmer can learn how to program in the language by reading
some informal description (one has to resort anyway to the formal specification
to work out the behavior in the most complex cases). This becomes much easier
if the specification of the language is built on top of a few clear and orthogonal
concepts. Having a formal specification, one may guarantee that those intuitive
properties are actually valid in all the cases.

Let us consider as an example the case of SOCK scopes. Their behaviors can
be characterized by Property 1 below.

Property 1. A scope may either succeed and thus install its compensation han-
dler, or fail by raising a (unique) fault. Furthermore, if it succeeds, it will never
throw faults, and if it raises a fault it will never install its compensation.

Such a property clearly describes the intuition about scope outcomes, and in [6]
it is proved to hold for each SOCK process.

Other sample interesting properties of this kind valid for SOCK follows.

Property 2. A request-response that terminates its execution always sends back
an answer, either a successful one or an error notification.

Property 3. When a fault is triggered, there is no handler update that is ready
to be installed but has not been installed yet.

4.4 Minimality

When developing a calculus, one has to look for simplicity and minimality, avoid-
ing for instance redundant or overlapping primitives. This makes the calculus
more understandable and simplifies and shortens the proofs. In fact, some of the
most successful calculi in the literature such as CCS [17] and π-calculus [18], are
the most simple and compact way for modeling the desired features, interaction
for CCS and mobility for π-calculus.

Error Handling: From Theory to Practice 75

SOCK is different w.r.t. those calculi, since it is nearer to current technologies
(e.g., it is the only calculus featuring request-response), and thus more com-
plex than other calculi. However, each of its error handling primitives has a
well-defined and non-overlapping role. Take for instance the three kinds of han-
dlers. They take care of orthogonal features: internal faults for fault handlers,
external faults for termination handlers and undoing of complete activities for
compensation handlers.

Also, SOCK provides a unified way to deal with installation of fault and ter-
mination handlers (and, indirectly, of compensation handlers), and this dynamic
installation is (probably, since this has not been proved for SOCK yet) needed
to ensure the expressive power of the language. If SOCK would only allow to
add pieces of code in parallel to existing handlers, as happens in dcπ [24], then
it would not be minimal, since it has been shown in [11] that such a mechanism
can be defined as a macro by exploiting the other constructs.

5 From SOCK to Jolie

As said before, when moving from a theoretical calculus like SOCK to a full-
fledged language such as Jolie, new concerns have to be taken into account.
Before analyzing those new concerns in detail, we give a general description of
Jolie.

Jolie, Java Orchestration Language Interpreter Engine, is an open-source
project released under the LGPL license. Its reference implementation is an
interpreter written in Java. We refer to [9] for a detailed description of its fea-
tures, concentrating here on the ones more useful for our discussion (some of
them are also outlined in [19]). Jolie refines and extends SOCK so to offer to
the programmer a powerful and intuitive environment, suitable to build both
complex applications and single services.

One of the most prominent advantages of Jolie is the elegant separation be-
tween the program behavior and the underlying communication technologies.
The same behavior can be used with different communication mediums (such
as bluetooth, local memory, sockets, etc.) and protocols (such as HTTP, REST,
SOAP, etc.) without being changed. This can be obtained since Jolie basic data
structures are XML-like trees, which are automatically translated from and to
XML files (or other suitable formats) for communication. Thus a Jolie variable is
a tree, with java-style field access used to denote subtrees, and the array notation
used to distinguish different subtrees with the same name. Thus, for instance,
var.subtree[1] denotes the first subtree of variable var named subtree.

Jolie may also perform type checking on communicated data: each operation
may specify types constraining the kind of data that may be sent or received,
and checks are made at runtime to verify that those constraints are satisfied.
Constraints are published in the service interface, so that remote partners may
know the typing constraints to be satisfied for interacting with a service. We
refer to [9] for more details on the type system.

We can now move to the description of how Jolie tries to satisfy the require-
ments in Section 3.

76 I. Lanese and F. Montesi

5.1 Usability

While features such as intuitiveness and expressiveness are fundamental for us-
ability, other needs emerge. In particular, SOCK and its error handling mecha-
nisms have been developed concentrating on issues such as synchronization of
different entities and interaction between different error handling activities, but
there has been scarce emphasis on data management. However, this aspect be-
comes fundamental in a real language, where applications managing possibly
complex data structures are common. The major importance of data handling
in Jolie w.r.t. SOCK has influenced also its mechanisms for error handling, as
detailed below.

First, faults in Jolie include also a datum, which is normally used to carry
information about the error itself (for instance, an error message, or a stack
trace). Thus the throw primitive in Jolie has the syntax throw(f,v) where f is
the fault and v a value. The handler can access the data with the special syntax
scopename.faultname. The prefix scopename is needed to avoid interferences
in case different scopes manage the same kind of fault concurrently (the scope
of variables is the whole behavior). Note that such a modification in the throw
primitive does not change the possible error handling policies (e.g., the proper-
ties described in Section 4.3 are unaffected), but makes the generation of error
messages much easier.

Example 4. Consider the client in Example 3. In Jolie, one can exploit data
attached to fault to simplify error handling. Now the server can specify the
desired error message together with the fault, including for instance how much
money is missing to perform the transfer1:

pay(varIn)(transId){
if (acc[varIn.src] >= amount) {nullProcess} else

{msg = "Missing "+string(amount-acc[varIn.src])+" euros";
throw(f,msg)}

...

The client may use this information to present a more detailed error message to
the user.

scope(q) {
install(f => print@user(q.f));
...

Another important point concerns data management inside handlers. Han-
dlers in SOCK contain variables whose value is looked for when the handler is
executed. However, sometimes one wants to use the values that variables had
when the handler has been installed, to keep track of information concerning the
computation that caused handler installation. This concern has been tackled in
Jolie by adding a freeze prefix ^ to variables: if a variable x in a handler occurs
1 The Jolie syntax should be rather intuitive, but we refer to [9] for details.

Error Handling: From Theory to Practice 77

freezed, i.e. as ^x, then its value is looked for and fetched at handler update time.
Consider for instance Example 3. Assume that many invocations are performed
inside a while loop. In case of later error one wants all the transactions to be
canceled. Thus the correct handler update would be:

this => cH;undo@bank(^transId)

Without the freeze operator for transId, the value of transId in all the calls
would be the last one.

As before, this is a mechanism that does not change the error handling prop-
erties, but that comes in handy when writing actual programs.

5.2 Robustness

Many calculi, and SOCK in particular, do not model network or node failures,
while, in practice, these events may occur. Jolie has faced this problem by adding
system faults. A system fault is a fault that is not generated by the throw prim-
itive, but it is generated by the Jolie runtime system to notify the behavior of
some problem. In particular, Jolie defines the system fault IOException, which
is generated when an error occurs during communication. Such a fault can be
managed in the same way of other faults, by defining and installing suitable
handlers. For instance the Jolie code:

scope(q) {install(IOException => ...);
pay@bank(...)(...)

allows to manage network failures in our payment example.

5.3 Compatibility

SOCK mechanisms have been devised to work in a close world, i.e. a world
composed only by SOCK processes. However, Jolie applications are aimed at
being executed over the net, interacting with other applications developed using
different technologies and adhering to different standards.

In Jolie, this is mainly taken care by the communication module, that allows
for specifying the protocol to be associated with each communication, and au-
tomatically translates messages to and from the desired format. However, a few
aspects influence also error handling.

First, while Jolie guarantees remote error notifications inside the request-
response pattern, most of the other technologies do not. However, even when
interacting with other technologies, communication in Jolie is implemented by
connection-oriented technologies such as tcp/ip, unix sockets or bluetooth con-
nections. Thus the Jolie engine is notified when the connection is broken, and
can react by generating system fault IOException. This is less informative w.r.t.
the usual Jolie error notification, which describes exactly the kind of fault that
happened on the remote client, but it is however enough to preserve Property 2
(or better its dual).

78 I. Lanese and F. Montesi

Another compatibility issue concerns typing. Assuming that each service cor-
rectly exposes its typing information, it would be enough to check types when
messages are sent. However, when interacting with non Jolie applications there
is no guarantee that they check types of communicated messages, thus Jolie
services may receive ill-typed messages. For this reason, type checking is also
performed on incoming messages. Type errors are managed in different ways
according to where they happen. In one-way operations, a type mismatch of an
outgoing message generates locally a system fault TypeMismatch. Instead, in-
coming messages that do not respect typing are discarded. The management is
similar for request-responses, but, in case of type mismatch in receptions, the
sender is also notified with a TypeMismatch fault, thus ensuring the preservation
of the properties of the request-response pattern.

5.4 Property Preservation

As we have seen in the previous sections, Jolie is an extension and a refinement
of SOCK. Also, some of the assumptions that are used to prove SOCK properties
do not always hold for Jolie programs in a real environment. Thus, proving that
a property of SOCK programs, such as one of those in Section 4.3, holds also for
Jolie applications is non trivial.

We discuss now a few of the reasons that make this happen, analyzing their
effect on a few sample properties.

Low level errors: SOCK, and theoretical models in general, rely on some basic
assumptions ensuring the correct behavior of the system itself. Thus global
failures due for instance to end of memory, to system crashes or to program-
ming errors in the Jolie implementation are not considered. It is clear that
these kinds of errors break most of the interesting properties, thus one has
to assume that these events do not occur. One can exploit formal methods
to ensure that these assumptions are satisfied, but this requires dedicated
techniques whose description goes far beyond the aim of this paper. For in-
stance, end of memory can be checked and avoided by a suitable resource
analysis, system crashes superseded via techniques for reliability such as the
use of redundant engines, and errors in the Jolie implementation avoided by
using certified compilers and correctness proofs.

Jolie added features: as discussed above, Jolie includes features that are not
available in SOCK, such as data in faults. Other additional features not
related to error handling are described in [9]. Those features are normally
related to aspects which are abstracted away in models, thus they do not
affect global properties such as the ones in Section 4.3 (this has however to be
checked for each property and each extension). However, because of this, not
all Jolie programs are correct SOCK processes, thus it becomes much more
difficult to prove properties of specific programs. To this end one has to find
a SOCK process which is equivalent to the Jolie one, trying to implement
Jolie additional features as macros. When this is not possible, one has to
extend the theory to match the practice. For instance, a typed theory of

Error Handling: From Theory to Practice 79

SOCK is not yet available, but it is on our research agenda. This will allow
to prove properties of Jolie type system.

Assumptions on the environment: we refer here to the fact that network
failures are not modeled in SOCK, and that interaction with non Jolie pro-
grams may raise new issues, as described in Section 5.3. In these cases, one
may think to extended models taking care of this, but, mainly for interac-
tion with non Jolie programs, it becomes quite difficult because of the huge
variety in their behaviors. Thus, the simplest approach is to analyze their
impact on each property, as outlined in Section 5.3, and introduce in Jolie
mechanisms to deal with these problems in a uniform way w.r.t. similar is-
sues in SOCK programs. An example of this is the introduction of system
faults, which can be managed similarly to normal faults, and can enjoy (most
of) their properties. Clearly, local properties such as Property 1 are largely
unaffected by these issues, while properties concerning communication such
as Property 2 are less robust.

6 Conclusion and Future Works

In this paper we have discussed the main concerns that should be kept into
account when designing error handling mechanisms for service-oriented com-
puting. We have considered both the design of a theoretical calculus and of a
full-fledged language. We have considered the language Jolie and the underlying
calculus SOCK as an example.

Concerning future work, the relations between formal models and practically
relevant languages for service-oriented computing are still largely unexplored.
Even in the case of SOCK/Jolie, which have been developed in a strongly con-
nected way, many mismatches exist. Theory should be developed so to match
interesting aspects of Jolie applications such as the type system, or network
failures. For other differences instead, analysis should be carried out so to bet-
ter understand the effect that they have on formal properties. However, Jolie
is continuously evolving to face new programming challenges, thus making it a
moving target. For instance, timeouts are an important aspect in practice, to
break deadlocks, and work for introducing them in Jolie is ongoing.

Acknowledgments. We thank Gianluigi Zavattaro for his useful comments.

References

1. Banti, F., Lapadula, A., Pugliese, R., Tiezzi, F.: Specification and analysis of SOC
systems using COWS: A finance case study. In: Proc. of WWV 2008. ENTCS,
vol. 235, pp. 71–105. Elsevier, Amsterdam (2009)

2. Bruni, R., et al.: Comparing two approaches to compensable flow composition. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 383–397.
Springer, Heidelberg (2005)

80 I. Lanese and F. Montesi

3. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. of POPL 2005, pp. 209–220. ACM Press,
New York (2005)

4. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: SOCK: a calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

5. Butler, M.J., Ferreira, C.: An operational semantics for StAC, a language for mod-
elling long-running business transactions. In: De Nicola, R., Ferrari, G.-L., Mered-
ith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 87–104. Springer,
Heidelberg (2004)

6. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: Proc. of ACSD 2008, pp.
190–199. IEEE Computer Society Press, Los Alamitos (2008)

7. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundamenta Informaticae 95(1), 73–102 (2009)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

9. Jolie website, http://www.jolie-lang.org/
10. Lanese, I.: Static vs dynamic sagas. In: Proc. of ICE 2010 (to appear, 2010)
11. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-

sation handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386.
Springer, Heidelberg (2010)

12. Lanese, I., Zavattaro, G.: Programming Sagas in SOCK. In: Proc. of SEFM 2009,
pp. 189–198. IEEE Computer Society Press, Los Alamitos (2009)

13. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

14. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215.
Springer, Heidelberg (2008)

15. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

16. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. J. Log.
Algebr. Program. 70(1), 96–118 (2007)

17. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

18. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Infor-
mation and Computation 100(1), 1–40, 41–77 (1992)

19. Montesi, F., Guidi, C., Lanese, I., Zavattaro, G.: Dynamic fault handling mech-
anisms for service-oriented applications. In: Proc. of ECOWS 2008, pp. 225–234.
IEEE Computer Society Press, Los Alamitos (2008)

20. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proc.
of ECOWS 2007, pp. 13–22. IEEE Computer Society Press, Los Alamitos (2007)

21. Oasis: Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

22. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2-3), 162–198 (2007)

http://www.jolie-lang.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Error Handling: From Theory to Practice 81

23. Sensoria Project. Public web site, http://sensoria.fast.de/
24. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.

In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215.
Springer, Heidelberg (2009)

25. W3C: Web services description language (wsdl) version 2.0 part 0: Primer (2007),
http://www.w3.org/TR/wsdl20-primer/

26. Wirsing, M., et al.: Semantic-based development of service-oriented systems. In:
Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,
vol. 4229, pp. 24–45. Springer, Heidelberg (2006)

http://sensoria.fast.de/
http://www.w3.org/TR/wsdl20-primer/

	Error Handling: From Theory to Practice
	Introduction
	SOCK
	The Quest for Error Handling Primitives
	Error Handling in SOCK
	Full Specification
	Expressiveness
	Intuitiveness
	Minimality

	From SOCK to Jolie
	Usability
	Robustness
	Compatibility
	Property Preservation

	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

