
JoT: A Jolie Framework for Testing Microservices

Saverio Giallorenzo a, Fabrizio Montesi b, Marco Peressotti b, Florian
Rademacher c, Narongrit Unwerawattanab

aUniversità di Bologna, Italy and INRIA, France
bUniversity of Southern Denmark, Denmark

cRWTH Aachen University, Germany

Abstract

We present JoT, a testing framework for Microservice Architectures (MSAs)
based on technology agnosticism, a core principle of microservices. The main
advantage of JoT is that it reduces the amount of work for a) testing for
MSAs whose services use different technology stacks, b) writing tests that
involve multiple services, and c) reusing tests of the same MSA under different
deployment configurations or after changing some of its components. In JoT,
tests are orchestrators that can both consume or offer operations from/to the
MSA under test. The language for writing JoT tests is Jolie, which provides
constructs that support technology agnosticism and the definition of terse
test behaviours.
Keywords: Microservice Architectures, Testing Frameworks,
Service-Oriented Programming

1. Motivation and significance

The microservice architectural style has become one of the state-of-the-
art paradigms for building distributed systems. One of its main traits is
consolidating the functionalities found in a distributed system in distinct,
independent software units, called microservices. This consolidation ac-
tion usually follows principles like coherence [DGLMMMS17] and context-
boundedness [Evans2004]; the choice of which of these principles to follow
integrates concerns like scalability (so that one can scale as few microservices

Email addresses: saverio.giallorenzo@gmail.com (Saverio Giallorenzo),
fmontesi@imada.sdu.dk (Fabrizio Montesi), peressotti@imada.sdu.dk (Marco
Peressotti), rademacher@se-rwth.de (Florian Rademacher), nau@sdu.dk (Narongrit
Unwerawattana)

Preprint submitted to Science of Computer Programming 11th December 2024

https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0003-0784-9245
https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0003-0784-9245

Nr. Code metadata description Please fill in this column
C1 Current code version 0.0.27
C2 Permanent link to code/repository

used for this code version
https://github.com/jolie/jot

C3 Permanent link to Reproducible
Capsule

ghcr.io/jolie/jot

C4 Legal Code License GNU Lesser General Public License,
version 2.1

C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Jolie

C7 Compilation requirements, operat-
ing environments and dependencies

Java SDK 11, NPM 10

C8 If available, link to developer docu-
mentation/manual

https://github.com/jolie/jot/b
lob/main/README.md

C9 Support email for questions nau@sdu.dk

Table 1: Code metadata (mandatory)

as possible) and code reusability (so that one can reuse the same microser-
vice in different architectures). Moreover, microservices embrace technology-
agnosticism, i.e., they give programmers the freedom to use the most suitable
technologies to implement the functionalities of any given microservice.

The essential feature to support scalability, reusability, and technology-
agnosticism in microservices is the usage of Application Programming Inter-
faces (APIs), which primarily fix the set of operations offered by a microser-
vice, followed by the interaction patterns and technologies used to interact
with them [G2023].

Unfortunately, a negative aspect of technology agnosticism is that it
makes testing the correct interaction between the microservices in an archi-
tecture difficult to both specify and perform. Within the same microservice,
one can rely on time-tested techniques and technology-specific frameworks
(like JUnit1 for Java and Cucumber [WHT17] for Ruby) for testing its im-
plementation (unit, integration, and end-to-end, as long as the scope of the
testing routine remains within the boundaries of the same microservice).

However, when testing the interaction among different microservices, the
framework cannot rely on technology-specific assumptions and only work
with the APIs a microservice provides. Using languages intended for in-

1https://www.junit.org.

2

https://github.com/jolie/jot
ghcr.io/jolie/jot
https://github.com/jolie/jot/blob/main/README.md
https://github.com/jolie/jot/blob/main/README.md
nau@sdu.dk
https://www.junit.org

ternal development—like Java, Rust, C, etc.—makes the definition of non-
trivial testing scenarios complex. Even taken in isolation, consuming mul-
tiple operations of different microservices entails the definition of dedicated
routines for establishing connections (and handling their state/errors) and
marshalling/unmashalling the data. Moreover, tests written in this way are
difficult to be reused under different deployment settings—imagine repurpos-
ing a test that uses HTTP endpoints to verb-based binary protocols.

JoT [GMPRU23] is a microservice testing framework designed to sup-
port technology agnosticism. In JoT, tests are orchestrators that can both
consume or offer operations from/to an architecture under test. The lan-
guage for writing JoT tests is Jolie [MGZ14], which provides constructs
that support technology agnosticism [M16] and the definition of terse test
behaviours.

While designed to support unit, integration, and end-to-end testing, we
see the last two levels of testing as the distinctive ones for JoT, since these
are the levels where a test necessarily needs to interact with (different) mi-
croservices through their APIs. The need for frameworks like JoT is both
timely and pragmatic, for example, recent surveys and interviews with prac-
titioners [WLMD20, WLSDM21] reported how end-to-end testing is one
of the most used testing strategies, but that developers urge for microservice-
specific testing solutions.

Besides JoT, other proposals tackle the area of testing microservices.
Gremlin [HRJRS16] is a framework focused on testing failure-handling by
manipulating inter-service messages at the network layer. Quenum and Ak-
nine [QA18] conceive an approach for the generation of executable test cases
from requirements specifications, thereby focusing on acceptance tests for
validating a software system’s conformance with stakeholder expectations.
Hillah et al. [HMDKWFBGM17] present an approach to automated func-
tional testing based on formal specifications (of services, relations, etc.).
Jayawardana et al. [JFJWP18] propose a framework to produce test skele-
tons from business process models. All mentioned works concentrate on dif-
ferent aspects of testing for microservices, yet none focuses (like JoT does)
on the specification of tests tailored to technology agnosticism. Furthermore,
JoT offers a terse syntax that supports the definition of complex scenarios
thanks to the usage of the Jolie language.

In Section 2, we present the architecture of JoT — its components, their
relationship, and the logic for running tests — and the functionalities offered
by the tool. Then, we exemplify the definition of JoT tests in Section 3 and
describe the impact of the software and its planned evolution in Section 4.

3

launcher.ol jot.ol

Test Reporter
Implementation

(JoT has a default one)

embed embed

JotUtils.jar

runs

jot.json

reads and pass
parameters

embed

test1.ol test2.ol

...
Tests Folder

specifies the Reporter implementation specifies the Test Folder

1

2

Legend

JoT component

Jolie file

Jolie embedding

Java Jar
artefact

Tests Folder
Storage
folder

embed

S

S External
Services

3

interaction

annotation

Figure 1: Overview of the JoT components interactions. The shaded elements belong to
the default JoT software package; the other parts correspond to a specific set of tests.

2. Software description

We structure the description of JoT by first introducing, in Section 2.1,
its components and presenting their relationships within the JoT software
architecture and the components that characterise tests. Then, we overview
the orchestration logic for running the tests (Section 2.1.1). In Section 2.2,
we present the functionalities offered by JoT and comment on the template
of a JoT test.

2.1. Software architecture
We represent the architecture of JoT and the interaction among its com-

ponents and the tests in Figure 1.
Let us start from the components that make up the architecture of JoT,

which are shaded in Figure 1: launcher.ol, jot.ol, and JoTUtils.jar.

In the figure, we use the Jolie and the Java logos to indicate that the
component is implemented using that language.

The first component, launcher.ol, launches the JoT routine, and it is
the only one exposed to users (see Section 2.2 for a description of the sup-
ported commands). To start the test framework, launcher.ol 1 reads the
parameters of the tests found in a companion file jot.json (see Section 2.2
for a summary of the structure of the file). Mainly, the file indicates i) what

4

implementation of the Reporter service JoT shall use to output the notifi-
cations of the execution and results of the tests (as the shaded text on the
bottom left side of Figure 1 hints, JoT comes with a default Reporter that
forwards the notifications to the standard output); ii) the location of the
tests (the Tests Folder shown in Figure 1); and iii) the parameters needed
for the execution of each test (omitted in the figure), e.g., the parameters to
access external services.

The jot.ol file encloses the orchestration logic over the tests, and it
is run by launcher.ol, which passes to it the parameters read from the
jot.json file 2 . The jot.ol orchestrator uses Jolie’s embedding feature to
integrate the functionalities of both the other components that make up its
architecture and the tests defined by the users. In general, Jolie’s embedding
primitive allows users to run a Jolie program inside the execution context
of another one, called the embedder. The embedder and embedded services
can communicate through ordinary communication ports (e.g., TCP/IP con-
nections), but since they share the same runtime environment, they can also
rely on the use of efficient in-memory channels. Drawing an analogy, we can
see embedding as a mechanism for having a service use other services as li-
braries. For example, we can have a Console service that provides operations
that write on the standard output. Then, a service can embed Console to
privately access its operations for output—which is what happens when we
include in a Jolie program the Console service of the language’s standard
library. Since the embedded services share the same runtime environment
of the embedder, they cannot outlive the latter’s termination. In the case
of JoT, jot.ol uses the embedding primitive to internally execute i) the
Reporter, ii) the JoTUtils.jar services, used to extract information on the
tests (annotations in particular), and iii) the tests found in the Tests Folder.

As shown in Figure 1, the tests 3 can communicate with external ser-
vices, e.g., microservices, databases, etc. (the hexagons at the bottom of the
figure). These services are not controlled by JoT and the user has (if needed)
to manage their execution and provide the parameters for the tests to access
the former in the jot.json file.

2.1.1. Testing orchestration logic
We complete our description of the relationships among the components

of the JoT architecture by briefly presenting the logic of the testing orchestra-
tion, also reported in algorithmic form in Algorithm 1 for a clearer overview.

The orchestration logic for running the tests, as shown in Algorithm 1,
requires three inputs: the tests_path, which defines the location of the
test files (the Tests Folder in Figure 1), the tests_param structure, which
contains the parameters needed by the tests to run, and the reporter, which

5

is the instance of the Reporter (cf. Figure 1) that handles the output of the
notifications.

For a clearer exposition, we proceed by commenting on the steps of the
testing orchestration logic by referring to the lines of Algorithm 1.

The first action we perform (Line 1 of Algorithm 1) is collecting all the
test files, found under the tests_path. For each file, we execute the following
routine.

Each test contains a set of operations that can be associated with JoT
annotations2 which JoT collects (Line 2) (using the functionalities offered
by JoTUtils.jar). Then, JoT embeds the test file and puts it in execution,
passing to it its related parameters found in the jot.json file. After having
notified the Reporter of the starting of the tests on the selected file (Line
4), the JoT orchestrator first invokes all the operations of the test marked as
beforeAll (Line 5). These are operations that shall be executed before all the
tests and are usually intended for general setup (e.g., connecting to a database
to prepare the pool of connections used by the tests). Then, for each test,
we first execute all the operations marked beforeEach (Line 7) — JoT does
not impose an ordering among the annotated operations —, followed by the
execution of the test and the notification of the result to the reporter (Line
8). After the execution of the test, all the operations marked afterEach run
(Line 9). Once all the tests have been run, all operations marked afterAll
execute (Line 11, e.g., to close the connections opened at Line 5) and the
reporter is notified of the closure of the test procedure for that test_file
(Line 12). Then, the procedure either passes to the next file or, if no other
file is available, it closes the testing session.

2.2. Software functionalities
The main functionality of JoT, provided to the users by the launcher.ol

service (cf. Section 2.1), is the execution of the tests, which follows the
logic described in Section 2.1.1. This functionality is invoked by running the
command jolie launcher.ol jot.json, where jot.json is the (path to
the) file containing the parameters to execute the tests.

Listing 1 shows an example of a JoT configuration file while Listing 2
illustrates the interface-level annotations of the operations of a test.

In Listing 1, we configure the execution of the JoT test MyTest, stored in
a Jolie program within the file MyTest.ol. In Listing 1, testsPath specifies
the file path of the test source relative to the configuration file, while under

2This approach is similar to other test frameworks, like JUnit, where programmers
associate Java methods in test files with JUnit annotations to inform the JUnit test engine
on their execution.

6

Algorithm 1 Pseudocode of the JoT testing orchestration logic.
Input

tests_path location of the test files
tests_param set of test-operation parameters
reporter reporter’s instance

1: for test_file in collect(files from tests_path) do
2: test_operations ← collect(test operations from test_file)
3: embed(test_file, tests_param[test_file])
4: notifyStart(reporter, test_file)
5: invokeAllMarked(test_operations, “beforeAll”)
6: for test in selectMarked(test_operations, “test”) do
7: invokeAllMarked(test_operations, “beforeEach”)
8: notifyResult(reporter, invoke(test), test)
9: invokeAllMarked(test_operations, “afterEach”)

10: end for
11: invokeAllMarked(test_operations, “afterAll”)
12: notifyEnd(reporter, test_file)
13: end for

params we find the parameters related to the various tests — in Listing 1,
we pass the parameter "db_address" to the service test main within the
MyTest.ol file.

Listing 1: Example JoT configuration file.

1 {
2 "testsPath": ".",
3 "params": {
4 "MyTest.ol": [{
5 "name": "main",
6 "params": {
7 "db_address": "..."
8 }
9 }] } }

Listing 2: Example JoT test file (annotations).

1 interface TestInterface {
2 RequestResponse:
3 /** @BeforeAll */ setupTest()()
4 /** @BeforeEach */ setupCase()()
5 /// @Test
6 testCase()() throws TestFailed(string)
7 /** @AfterEach */ cleanupCase()()
8 /** @AfterAll */ cleanupTest()() }
9 // binding definitions

10 // implementations of operations

We now look at Listing 2, which shows an example of the annotations
found in a JoT test. These annotations, associated with the element found
on their right, are either in the form /** @annotation */ or ///@annotation (the
notation is equivalent, except the former is in multiline form while the latter
is single-line). In Listing 2, we find all the annotations mentioned when pre-
senting the logic of orchestration of tests (cf. Section 2.1.1); in particular, we
note that the signature for /// @Tests specifies that the operation (in Listing 2,
testCase) can fail, throwing an error labelled TestFailed, which can carry

7

a string explaining the reason of the failure. The comments at the bottom of
Listing 2 refer to the definition of the bindings of the test (so that, e.g., it can
communicate with external services, like the database we mentioned when
describing Listing 1) and the behaviour of the test, where the user specifies
the actions executed at the invocation of the different operations. We omit
to describe the latter here and exemplify them in Section 3.

3. Examples

To demonstrate the main functionalities of JoT, we report two illustrative
and concise examples. The first example is a prototypical scenario where JoT
is used to test an external (run independently of JoT) service. The second
example shows how one can leverage Jolie service orientation for running and
managing the service under test within JoT. Both examples are available in
the repository of JoT3. We refer the reader to [GMPRU23], which is the pa-
per that introduces the methodology behind JoT and details how developers
can write tests with the framework, including more involved test scenarios
taken from a reference microservice architecture.

The examples in this section assume an environment where both Jolie4

and JoT5 are available. A reference environment is available as a Docker
Image at ghcr.io/jolie/jot:latest.

3.1. Testing an external service
The first example illustrates how to use JoT to test a service running

independently of JoT. The service under test is the Greeter service from the
Jolie documentation and can be thought of as the “hello world” example for
Jolie. The service offers a single operation, which takes a name and returns
a greeting message obtained from combining "Hello, " with the provided
name e.g., "Hello, Alice" is the response for an request carrying the value
"Alice". The API of this service is reported in Listing 3.

Listing 3: Interface of Greeter service, greeter.ol.

1 type GreetRequest { name:string }
2 type GreetResponse { greeting:string }
3
4 interface GreeterAPI {
5 RequestResponse: greet(GreetRequest)(GreetResponse)
6 }

3https://github.com/jolie/jot/tree/main/examples
4Installation instructions are available at https://www.jolie-lang.org/
5Installation instructions are available at https://github.com/jolie/jot/

8

ghcr.io/jolie/jot:latest
https://github.com/jolie/jot/tree/main/examples
https://www.jolie-lang.org/
https://github.com/jolie/jot/

To test the service, we consider two simple test cases. In the first case
(test1) we invoke operation greet of service Greeter with a specific param-
eter and compare the actual response with one expected for that parameter.
The comparison is carried out using the service Assertions provided by the
Jolie standard library.

1 test1()() {
2 // Invoke operation greet at service Greeter and store the reply in
3 // the variable response.
4 greet@Greeter({ name = "Alice" })(response)
5 // invoke operation equals at service Assertions to compare the
6 // response received with the expected one.
7 equals@Assertions({
8 actual = response
9 expected = { greeting = "Hello, Alice" }

10 })()
11 }

In the second case (test2) we invoke greet with a specific parameter twice
and compare the two responses. The two invocations are executed concur-
rently using Jolie’s parallel composition operator ‘|’.

1 test2()() {
2 { greet@Greeter({ name = "Bob" })(response1)
3 | greet@Greeter({ name = "Bob" })(response2) }
4 equals@assertions({
5 actual = response1
6 expected = response2
7 })()
8 }

Neither test case requires initialisation or finalisation operations so the in-
terface that the test service offers to JoT is simply as follows.

1 interface TestInterface {
2 RequestResponse:
3 /// @Test
4 test1(void)(void) throws AssertionError(string),
5 /// @Test
6 test2(void)(void) throws AssertionError(string)
7 }

The entire test is specified as the service TestGreeter shown in the listing
below.

Listing 4: TestGreeter.json.

1 service TestGreeter(params) {
2 // Access point for consuming service Greeter
3 outputPort Greeter {

9

4 location: params.location
5 protocol: params.protocol
6 interfaces: GreeterAPI
7 }
8 // Access point offered to JoT
9 inputPort JoT {

10 location: "local"
11 interfaces: TestInterface
12 }
13 // Service behaviour
14 main {
15 [test1()(){ /* . . . */ }]
16 [test2()(){ /* . . . */ }]
17 } }

This definition consists of three main elements:

1. An output port (Greeter) that specifies the location, protocol, and
interface of the service under test. The first two are initialised us-
ing parameters of the service (params.location, params.location, re-
spectively) and the third is set to the interface GreeterAPI from the
beginning of this example.

2. An input port (JoT) that specifies how JoT interacts with this test
service. The location is set to "local" since JoT embeds test services
and interacts with them via in-memory communication.

3. A service behaviour (main) that implements the test cases as operations
(test1 and test2 given above).

By parameterising the test service in the location and protocol to use for
accessing the service to be tested, we can reuse the same test with different
deployments. The values used by JoT to initialise these parameters are speci-
fied in the test configuration file (by convention, jot.json). For instance, the
listing below shows how to configure JoT to run this test against an instance
of Greeter reachable at a specific URI ("socket://localhost:9000") via
JSON-RPC.

Listing 5: jot.json.

1 { "params": {
2 "TestGreeter.ol": [{
3 "name": "TestGreeter",
4 "params": {
5 "location": "socket://localhost:9000",
6 "protocol": "jsonrpc"
7 } }] } }

10

The complete source code for this example (greeter service, test service,
and configurations) is available in Appendix A.1 and in the repository of JoT
at https://github.com/jolie/jot/tree/main/examples/greeter.

Below we show the results of running this test using JoT natively, using
the Docker images for Jolie and JoT, and using NPM. All bash commands
shown for these three cases are run from the following directory — which
is based on the default directory structure for Jolie projects with JoT tests
created by the Jolie Package Manager (JPM).

.
test

TestGreeter.ol
greeter.ol
jot.json

(JPM generates a NPM-compatible configuration file package.json, which
we omit since it is not essential for this example.)

Below we show the result of running this test with JoT after launching
Greeter on the same machine.

1 $ jolie greeter.ol &
2 ...
3 $ jot jot.json
4 TestGreeter.ol -> TestGreeter
5 ✓ pass test2
6 ✓ pass test1
7 passes 2 (106ms) failures 0

Below, we show the same result using the Docker images for Jolie and JoT.
1 $ docker pull jolielang/jolie && docker pull ghcr.io/jolie/jot:latest
2 ...
3 $ docker run -d --rm --network host --mount=type=bind,source="$(pwd)",target=/

app jolielang/jolie jolie /app/greeter.ol
4 ...
5 $ docker run --rm --network host --mount=type=bind,source="$(pwd)",target=/app

ghcr.io/jolie/jot:latest
6 TestGreeter.ol -> TestGreeter
7 ✓ pass test2
8 ✓ pass test1
9 passes 2 (155ms) failures 0

Below we show the result of running this test with NPM after launching
Greeter on the same machine.

1 $ jolie greeter.ol &
2 ...
3 $ npm run test
4

11

https://github.com/jolie/jot/tree/main/examples/greeter

5 > jot-greeter@1.0.0 test
6 > jot jot.json
7
8 TestGreeter.ol -> TestGreeter
9 ✓ pass test2

10 ✓ pass test1
11 passes 2 (150ms) failures 0

3.2. Testing an embedded service
The second example illustrates how to use JoT to test a service run-

ning within JoT and managed from the test itself through Jolie’s embedding
mechanism — used to run a service in a sandbox but within the same run-
time environment of the embedder service. In particular, embedding ties the
lifecycles of the test and embedded/tested services (the second is disposed of
when the first terminates), and it allows tests and services to use in-memory
channels rather than the network stack.

For this example we target a service from the Jolie standard library,
StringUtils6, which collects several common utility operations for handling
strings. For conciseness, we consider the fragment of its API shown below.

Listing 6: Interface of StringUtils.

1 interface StringUtils {
2 RequestResponse:
3 length(string)(int),
4 toLowerCase(string)(string)
5 }

To test this service, we consider a few simple test cases each invoking an
operation with specific parameters and comparing the actual response with
the one expected for that parameter. The snippet below contains a case for
operation length.

1 testLength()() {
2 length@stringUtils("12345678")(result)
3 equals@assertions({
4 actual = result
5 expected = 8
6 })()
7 }
8 /* . . . */

6https://docs.jolie-lang.org/v1.11.x/language-tools-and-standard-library/s
tandard-library-api/string_utils.html.

12

https://docs.jolie-lang.org/v1.11.x/language-tools-and-standard-library/standard-library-api/string_utils.html
https://docs.jolie-lang.org/v1.11.x/language-tools-and-standard-library/standard-library-api/string_utils.html

The test cases are collected in the following interface which is offered to JoT
by the test service.

1 interface TestInterface {
2 RequestResponse:
3 ///@Test
4 testLength(void)(void) throws AssertionError(string),
5 ///@Test
6 testToLowerCase(void)(void) throws AssertionError(string)
7 /* . . . */
8 }

The rest of the test service is defined similarly to TestGreeter above
save for the fact that in this example the target service is not assumed to be
running independently and is instead executed by the test within the same
process using the Jolie embedding mechanism. Instead of defining an output
port, the service below embeds StringUtils.

Listing 7: TestStringUtils.ol.

1 service TestStringUtils() {
2 embed StringUtils
3 inputPort JoT { /* . . . */}
4 main {
5 [testLength()(){ /* . . . */ }]
6 [testToLowerCase()(){ /* . . . */ }]
7 } }

The complete source code for this example (test service and JoT configura-
tion) is available in Appendix A.2 and in the repository of JoT at https:
//github.com/jolie/jot/tree/main/examples/stringUtils.

Differently from the previous case, the service under test is started and
terminated by the testing service using Jolie embedding mechanism. Below
we show the results of running this test using JoT directly and the Docker
image for JoT. In both cases, commands are launched from the following
directory (we omit the package.json).

.
test

TestStringUtils.ol
jot.json

Below we show the result of running this test with JoT.
1 jot jot.json
2 TestStringUtils.ol -> TestStringUtils
3 ✓ pass testToLowerCase
4 ✓ pass testLength
5 passes 2 (33ms) failures 0

13

https://github.com/jolie/jot/tree/main/examples/stringUtils
https://github.com/jolie/jot/tree/main/examples/stringUtils

Below, we show the same result using the Docker image for JoT.
1 $ docker pull ghcr.io/jolie/jot:latest
2 ...
3 $ docker run --rm --network="host" --mount=type=bind,source=$(pwd),target=/app

ghcr.io/jolie/jot:latest
4 TestStringUtils.ol -> TestStringUtils
5 ✓ pass testToLowerCase
6 ✓ pass testLength
7 passes 2 (28ms) failures 0

4. Conclusion: Impact and Future Plans

We present JoT, a testing framework for microservice architectures de-
signed around technology-agnosticism [GMPRU23]. The only technology
dependency of JoT is the Jolie programming language. Jolie’s constructs
for the abstraction of interface-related service technologies allow JoT to har-
monise the interaction among microservices that leverage heterogeneous pro-
tocols and data formats. JoT provides service developers with a set of an-
notations that streamline microservice testing following best practices and
popular testing frameworks like JUnit. For example, the @Test annotation
identifies Jolie functions that implement test logic and the @BeforeAll anno-
tation supports initialization of test environments, e.g., the generation and
insertion of test data into databases. Based on these annotations, service
developers can rely on a unified and declarative approach to the implemen-
tation of tests, while JoT takes care of instrumenting the Jolie interpreter to
execute test functions consistently and in a replicable way.

JoT’s technology agnosticism provides a foundation for stable microser-
vice tests. More precisely, once written, JoT-based tests are invariant to re-
implementations of microservices in other programming languages or frame-
works — provided that microservices’ interfaces remain stable and Jolie sup-
ports the employed communication protocols and data formats.

The versatility of Jolie also allows for JoT to be used in a variety of
microservice testing approaches such as unit, integration, and end-to-end
testing [WLSDM21]. For instance, unit testing becomes feasible by using
JoT within the microservice under test. For integration and end-to-end test-
ing, a JoT-based test acts as an orchestrator that implements and runs test
routines spanning several microservices [GMPRU23].

We expect JoT to stimulate research concerning the provisioning of scal-
able as well as versatile microservice testing. In particular, we deem JoT
tests scalable thanks to their microservices nature and efficient thanks to the
support for reuse. In addition, we consider JoT a viable starting point for

14

investigating and evaluating new ideas in the area of microservice testing —
possibly by combining technology agnosticism with further microservice prin-
ciples like ad-hoc scalability, which is helpful, e.g., in systematic resilience
testing [HRJRS16].

Concerning how JoT can impact practitioners’ processes, we note that
the framework is already adopted by Jolie developers7 and envision its us-
age in existing Jolie projects [GGLZ18, GMSZ22, GMPR23]—which, in
turn, can provide us with context-specific testing needs to make JoT fur-
ther evolve. Furthermore, since Jolie microservices can easily be wrapped
into virtualized containers8, JoT-based tests implicitly align with established
continuous integration approaches like the reconciliation of local development
with production environments [Elazhary2022].

Looking at the future of JoT, we envision investigating the usage of JoT in
the context of (semi-)automatic test generation, e.g., by identifying microser-
vice interfaces using static analysis and subsequently applying suitable algo-
rithms for test case generation [Arcuri2017]. Moreover, to improve JoT’s
reliability and developer experience, we plan its comprehensive validation
using more complex scenarios (e.g., extending the coverage of realistic archi-
tectures, as done by Giallorenzo et al. [GMPRU23]). These scenarios should
involve synchronous and asynchronous microservice interactions as well as de-
sign and architecture patterns that are popular in microservice architectures,
e.g., Sagas or Circuit Breakers [MW18, Richardson2019]. Additionally,
we intend to conduct empirical evaluations of JoT with practitioners and in
comparison to related tools like JUnit, Zerocode9, Pact10, and mountebank11.
We also expect it to be fruitful to study the integration of JoT with microser-
vice architecture modelling languages like LEMMA [Rademacher22] and
MDSL [Zimmermann2023], and with choreographic testing approaches [GLR18,
CGT20a, CGT20b, GMP23]. Another goal is to eventually apply JoT
for testing new releases of Jolie and its standard libraries, thereby exploit-
ing advantages from compiler bootstrapping like introducing and enforcing
consistency between language development and testing.

7https://npm-stat.com/charts.html?package=%40jolie%2Fjot.
8https://docs.jolie-lang.org/v1.11.x/language-tools-and-standard-library/c

ontainerization.
9https://github.com/authorjapps/zerocode

10https://www.pact.io
11https://www.mbtest.org/

15

https://npm-stat.com/charts.html?package=%40jolie%2Fjot
https://docs.jolie-lang.org/v1.11.x/language-tools-and-standard-library/containerization
https://docs.jolie-lang.org/v1.11.x/language-tools-and-standard-library/containerization
https://github.com/authorjapps/zerocode
https://www.pact.io
https://www.mbtest.org/

Acknowledgements

This work was partially supported by the Independent Research Fund
Denmark, grant no. 0135-00219, Villum Fonden, grant no. 29518, and Inno-
vation Fund Denmark, grant no. 9142-00001B.

Appendix A. Examples, complete sources

Appendix A.1. Testing Greeter
In this section we report the complete source code for the example dis-

cussed in Sect. 3.1. These files are available from the repository of JoT at
https://github.com/jolie/jot/tree/main/examples/greeter.

.
test

TestGreeter.ol
Greeter.ol
jot.json
package.json

Listing 8: Greeter.ol.

1 type GreetRequest { name:string }
2 type GreetResponse { greeting:string }
3
4 interface GreeterAPI {
5 RequestResponse: greet(GreetRequest)(GreetResponse)
6 }
7
8 service Greeter {
9 execution: concurrent

10
11 inputPort GreeterInput {
12 location: "socket://localhost:9000"
13 protocol: jsonrpc
14 interfaces: GreeterAPI
15 }
16
17 main {
18 greet(request)(response) {
19 response.greeting = "Hello, " + request.name
20 }
21 }
22 }

Listing 9: TestGreeter.ol.

16

https://github.com/jolie/jot/tree/main/examples/greeter

1 from assertions import Assertions
2 from ..greeter import GreeterAPI
3
4 interface TestInterface {
5 RequestResponse:
6 /// @Test
7 test1(void)(void) throws AssertionError(string),
8 /// @Test
9 test2(void)(void) throws AssertionError(string)

10 }
11
12 // Test parameters: Greeter access point
13 type TestParams {
14 location: string
15 protocol: string
16 }
17
18 // Test service
19 service TestGreeter(params:TestParams) {
20
21 execution: sequential
22
23 // Access point of Greeter
24 outputPort Greeter {
25 location: params.location
26 protocol: params.protocol
27 interfaces: GreeterAPI
28 }
29
30 // A local instance of Jolie's Assertions service
31 embed Assertions as assertions
32
33 // Access point for JoT
34 inputPort JoT {
35 location: "local"
36 interfaces: TestInterface
37 }
38
39 main {
40 // Test case, a specific input
41 [test1()(){
42 greet@Greeter({ name = "Alice" })(response)
43 equals@assertions({
44 actual = response
45 expected = { greeting = "Hello, Alice" }
46 })()
47 }]
48 // Test case, equal result on equal input
49 [test2()(){

17

50 greet@Greeter({ name = "Bob" })(response1) |
51 greet@Greeter({ name = "Bob" })(response2)
52 equals@assertions({
53 actual = response1
54 expected = response2
55 })()
56 }]
57 } }

Listing 10: jot.json.

1 { "params": {
2 "TestGreeter.ol": [{
3 "name": "TestGreeter",
4 "params": {
5 "location": "socket://localhost:9000",
6 "protocol": "jsonrpc"
7 } }] } }

Listing 11: package.json.

1 {
2 "name": "jot-greeter",
3 "version": "1.0.0",
4 "description": "",
5 "main": "index.js",
6 "directories": {
7 "test": "test"
8 },
9 "scripts": {

10 "test": "jot jot.json"
11 },
12 "keywords": [],
13 "author": "",
14 "license": "ISC",
15 "dependencies": {
16 "@jolie/jot": "^0.0.25"
17 }
18 }

Appendix A.2. Testing StringUtils
In this section we report the complete source code for the example dis-

cussed in Sect. 3.2. These files are available from the repository of JoT at
https://github.com/jolie/jot/tree/main/examples/stringUtils.

.
test

TestStringUtils.ol

18

https://github.com/jolie/jot/tree/main/examples/stringUtils

jot.json
package.json

Listing 12: TestStringUtils.ol.

1 from assertions import Assertions
2 from string_utils import StringUtils
3
4 interface TestInterface {
5 RequestResponse:
6 ///@Test
7 testLength(void)(void) throws AssertionError(string),
8 ///@Test
9 testToLowerCase(void)(void) throws AssertionError(string)

10 }
11
12 service TestStringUtils() {
13 execution: sequential
14
15 embed StringUtils as stringUtils
16 embed Assertions as assertions
17
18 inputPort JoT {
19 location: "local"
20 interfaces: TestInterface
21 }
22
23 main {
24 [testLength()() {
25 length@stringUtils("12345678")(result)
26 equals@assertions({
27 actual = result
28 expected = 8
29 })()
30 }]
31 [testToLowerCase()() {
32 toLowerCase@stringUtils("AbC dEf_GhI")(result)
33 equals@assertions({
34 actual = result
35 expected = "abc def_ghi"
36 })()
37 }]
38 } }

Listing 13: jot.json.

1 { "params": {
2 "testStringUtils.ol": [{
3 "name": "TestStringUtils"

19

4 }] } }

Listing 14: package.json.

1 {
2 "name": "jot-greeter",
3 "version": "1.0.0",
4 "description": "",
5 "main": "index.js",
6 "directories": {
7 "test": "test"
8 },
9 "scripts": {

10 "test": "jot jot.json"
11 },
12 "keywords": [],
13 "author": "",
14 "license": "ISC",
15 "dependencies": {
16 "@jolie/jot": "^0.0.25"
17 }
18 }

20

	Motivation and significance
	Software description
	Software architecture
	Testing orchestration logic

	Software functionalities

	Examples
	Testing an external service
	Testing an embedded service

	Conclusion: Impact and Future Plans
	Examples, complete sources
	Testing Greeter
	Testing StringUtils

