
ar
X

iv
:0

90
6.

39
20

v1
 [

cs
.P

L]
 2

2
Ju

n
20

09

M.H. ter Beek (Ed.): Young Researchers Workshop
on Service-Oriented Computing 2009 (YR-SOC’09).
EPTCS 2, 2009, pp. 67–81, doi:10.4204/EPTCS.2.6

c© C. Guidi & F. Montesi
This work is licensed under the
Creative Commons Attribution License.

Reasoning About a Service-oriented Programming Paradigm

Claudio Guidi1

Department of Computer Science, University of Bologna, Italy

cguidi@cs.unibo.it

Fabrizio Montesi1

italianaSoftware s.r.l., Italy

fmontesi@italianasoftware.com

This paper is about a new way for programming distributed applications: the service-oriented one. It
is a concept paper based upon our experience in developing a theory and a language for programming
services. Both the theoretical formalization and the language interpreter showed us the evidence that
a new programming paradigm exists. In this paper we illustrate the basic features it is characterized
by.

1 Introduction

This paper is about a new way for programming distributed applications: the service-oriented one. It
is a concept paper based upon our experience in developing a theory and a language for programming
services. Our work started some years ago when we began to formalize the basic mechanisms of the
Web Services technology in a process calculus. We chose suchan approach because process calculi
were naturally born for describing concurrent processes, as Web Services are. The need to address Web
Services with a formal approach was motivated by the high level of complexity they are characterized
by: we wanted a simple and precise means for catching their essentials and, at the same time, strong
foundations for developing concrete tools for designing and implementing service systems.

When we started to build our formal model we took inspirationfrom foundational calculi such as CCS
[22] andπ-calculus [23], by enriching those approaches with specificmechanisms which came from the
Web Services technology. We developed SOCK [16, 13], that isa process calculus where those aspects of
service-oriented computing which deal with communicationprimitives, work-flow composition, service
session management and service networks are considered. SOCK is structured on three layers, each
one representing a specific feature of the service-orientedapproach: thebehaviourof a service, the
execution of servicesessionsinto aservice engineand the connection of services within anetwork. Such
a categorization allowed us to handle the complexity of service-oriented computing without loosing the
important details they are characterize by. Differently from our approach, other authors proposed SCC [6]
and COWS [20]. The main difference between SCC and SOCK can befound in the session identification
mechanism. In SOCK we identify sessions by means ofcorrelation setswhereas in SCC sessions are
identified by freshly generated names. In our opinion, correlation set represents a key mechanism for
the service-oriented programming paradigm which is also modelled in COWS and it is provided by the
most credited orchestration language for Web Services: WS-BPEL [26]. The main difference between
SOCK and COWS is the fact that SOCK explicitly supports a state whereas COWS does not. Moroever,
SOCK encoded the RequestResponse communication primitivewhich is not supported by COWS. Both
state and the RequestResponse primitive made SOCK close to the technologies. This fact allowed us
to reason about fault handling issues which led us to proposea new way, the dynamic handling, for
managing faults [14, 24].

1These authors contributed equally to this work.

http://arxiv.org/abs/0906.3920v1
http://dx.doi.org/10.4204/EPTCS.2.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

68 Reasoning About a Service-oriented Programming Paradigm

At the time we created SOCK, we did not imagine that a new way for approaching distributed system
design could be developed starting from it. The evidence of this came some years later, when we started
to develop the JOLIE programming language [17, 25]. JOLIE was born as a strict implementation of
the semantics contained in SOCK. The syntax was inspired by that of the process calculus, blended with
some common constructs which are familiar to those accustomed to languages such as C and Java. The
JOLIE language allowed us to apply the concepts studied in SOCK in real world application develop-
ment, and this raised new issues and in turn made new softwaredesign patterns to emerge. Addressing
these issues brought to the definition of new mechanisms for service system composition such asem-
beddingandredirecting. Embedding increases the granularity level of services into a system, whereas
redirecting allows for grouping services under a unique endpoint. Both the approaches can be freely
mixed together in order to obtain new systems of services. Today, at the best of our knowledge, JOLIE
is the first language which allows for the designing of a distributed system completely composed by
services.

At the present, we can state that SOCK and JOLIE form a framework that offers the possibility
to study service-oriented computing issues from the theoretical, architectural and practical points of
view. The sum of these experiences made us aware of the fact that we were facing a new way for
designing, developing and studying distributed applications: the service-oriented paradigm. It is difficult
and ambitious to highlight the distinctive features of a newprogramming paradigm, but with this paper
we would like to share our strong impressions that the service-oriented paradigm exists.

In the following we describe the basic concepts that we have extracted and we try to show how they
can be considered the foundations of the service-oriented programming paradigm. Our work is strongly
influenced by that made by the industrial and scientific communities on service-oriented computing,
and strives to consider the most relevant results in our definition of the service-oriented approach. In
section 2 we present our definition ofservice, after introducing the main concepts that are behind it.
In section 3 we expose how one can compose services in order toobtain a distributed system in which
they communicate with each other. Section 4 contains some design pattern examples and remarks that
emerged from our experience in using the programming paradigm we propose. Finally, in section 5 we
report our conclusions and future works.

2 Definition of Service

The first thing to address is the definition of the termservice. In order to provide evidence that a service-
oriented paradigm exists we need to define what a service is, as services are the most important compo-
nent of the paradigm. The definition of service for the W3C Working Group [35] follows:

“A service is an abstract resource that represents a capability of performing tasks that form
a coherent functionality from the point of view of providersentities and requesters entities.
To be used, a service must be realized by a concrete provider agent.”

We agree with this definition but we argue that it is too abstract because too many things could be a
service. At the end of this section we present our definition of service, which is based upon the concepts
of behaviour, engineand servicedescription.

2.1 Behaviour

Here we present the definition ofbehaviourof a service, which introduces two basic concepts: service
activitiesand theircompositionin a work-flow. Activities represent the basic functional elements of a

C. Guidi & F. Montesi 69

behaviour, whereas their composition represents the logical order in which they can be executed. Work-
flow composition is a key aspect of the service-oriented programming paradigm, which comes from the
most credited business process language for Web Services, WS-BPEL. In the following we present the
definition of behaviour:

The behaviour of a service is the description of the service activities composed in a work-
flow.

We distinguish three basic kinds of service activities:

• communication activities: they deal with message exchange between services;

• functional activities: they deal with data manipulation;

• fault activities: they deal with faults and error recovery.

2.1.1 Communication activities.

Communication activities are calledoperations. We inherit them from the Web Services Description
Language specifications (WSDL) [32]. Operations can be divided into input operations and output oper-
ations. The former operations provide a means for receivingmessages from an external service whereas
the latter ones are used for message sending.

• Input operations:

– One-Way: it is devoted to receive a request message.
– Request-Response: it is devoted to receive a request message and to send a response mes-

sage back to the invoker.

• Output operations

– Notification: it is devoted to send a request message.
– Solicit-Response: it is devoted to send a request message and to receive a response message

from the invoked service.

Such a categorization is also presented in [5, 4], even if other authors consider only the single message
exchange pattern (represented by One-Way and Notification)as in [20]. Here we consider the Request-
Response and Solicit-Response key interaction patterns for the service-oriented programming paradigm
because they introduce specific issues from an architectural point of view. We will clarify such an aspect
in Section 4.

Output operations require the specification of a target endpoint to which the message has to be sent.
At the level of behaviour such an endpoint abstractly refersto a service. Here, we call itreceiving service.

2.1.2 Functional activities.

They allow for the manipulation of internal data by providing all the basic operators for expressing
computable functions.

2.1.3 Fault activities.

They allow for the management of faults. This is a fundamental aspect of service-oriented programming.
The following list of basic activities for managing faults has been extracted from the experience we have
developed on dynamic handling in SOCK and JOLIE [14, 24] and other models and languages such as
StAC [11], SAGAS [8] and WS-BPEL.

70 Reasoning About a Service-oriented Programming Paradigm

• Fault raising: it deals with the signaling of a fault

• Fault handler: it defines the activities to be performed when a fault must behandled

• Termination handler : it defines the activities to be performed when an executing activity must be
terminated before its ending.

• Compensation handler: it defines the activities to be performed for recovering a successfully
finished activity.

2.2 Engine

Here we present the concept ofenginethat we introduced in SOCK for dealing with those aspects of the
service-oriented programming paradigm related to the actual execution of a service into a network. To
the best of our knowledge there is no clear and precise definition of engine as that which we presented
in SOCK. The motivations of such a lack probably reside in thefact that it is usually considered an
implementation detail that does not add anything relevant to service-oriented models. As far as service-
oriented computing is concerned, engines are generally associated to those which execute WS-BPEL
such as, for example, ActiveVOS [1] or the Oracle one [27], but what about simple Web Services de-
veloped in Java, Python or .NET? Can we consider usual web servers such as IIS [21], Apache [2] or
Zope [36] as service engines? Can we identify some characteristics on these applications and consider
them basic features of the service-oriented programming paradigm? In our perception the answer is yes
and this section is devoted to highlight the main features a service engine is characterized by. In gen-
eral we say that an engine is a machinery able to create, execute and manage service sessions. A more
detailed definition of engine will be provided at the end of this section, but we need to introduce some
concepts first. Let us see the concept of session.

2.2.1 Session.

The definition of session follows:

A service session is an executing instance of a service behaviour equipped with its own local
state.

A key element of the service-oriented programming paradigmis session identification. In general a
session is identified by its own local state or a part of it. Thepart of the local state which identifies a
session can be programmed and it is calledcorrelation set. Correlation sets is a mechanism provided
by WS-BPEL and it has been formalized in SOCK, COWS and in [29]. We chose to allow for the
definition of correlation sets even in JOLIE. In order to explain such a mechanism, let us introduce a
simple notation, where a session is represented by a couple of terms(P,S) whereP represents a behaviour
in a given formalism andSrepresents the local state here modelled as a function from variables to names.
S : Var → ValueswhereVar is the set of variables andValuesthe set of values1. Now, let us consider
two sessions with same behaviour but different local statesS1 andS2:

s1 := (P,S1) s2 := (P,S2)

1For the sake of brevity, here we consider both states and messages as a flat mappings from variables to values. The
introduction of structured and typed values does not alter the correlation set insights presented in this section.

C. Guidi & F. Montesi 71

We say thats1 is not distinguishable froms2 if S1 = S2
2. Now, let us consider bothS1 andS2 as a

composition of states defined on disjoint domains:

S1 = S11⊕S12 S2 = S21⊕S22

where the operator⊕ represents a composition operator over states3. Let us considerS11 andS21 as the
correlation sets fors1 ands2 respectively. We say thats1 is not distinguishable by correlation froms2 if
S11 = S21.

Such a session identification mechanism differs from that ofthe object-oriented paradigm for objects.
Indeed, in the object-oriented approach an object is alwaysidentified by the reference issued at the
moment of the object creation. Such a reference cannot be used in service-oriented computing, because
of its loosely coupled nature. This fact represents a major difference between the two approaches.

2.2.2 Session management.

Session management involves all the actions performed by a service engine in order to create and handle
sessions. In order to achieve this task, a service engine provides the following functionalities:

• Session creation. Sessions can be created in two different ways:

– when an external message is received on a particular operation of the behaviour. Some oper-
ations can be marked as session initiators. When a message isreceived on a session initiator
operation, a session can be started.

– when a user manually starts it. A user can launch a service engine which immediately exe-
cutes a session without waiting for an external message. We denote such a session asfiring
session.

• State support. The service engine also provides the support for accessingdata which are not
resident into session local states: theglobal stateand thestorage state. Summarizing, it is possible
to distinguish three different kind of data resources, which we callstates, that can be accessed and
modified by a session:

– a local state, which is private and not visible to other sessions. This state is deleted when the
session finishes.

– aglobal statewhich is shared among all the running sessions. This state isdeleted when the
engine stops.

– a storage statewhich is shared among all the running sessions and whose persistence is
independent from the execution of a service engine (e.g. a database or a file).

• Message routing. Since a session is identified by its correlation set, the engine must provide
the mechanisms for routing the incoming messages to the right session. The session identifica-
tion issue is raised every time a message is received. For thesake of generality, in the service-
oriented paradigm we cannot assume that some underlying application protocol such as WS-
Addressing [34] or other transport protocol identificationmechanisms such as HTTP cookies [18]
are always used for identifying sessions. We consider correlation sets as the representative mecha-
nism for routing incoming messages. Its functioning can be summarized as it follows. A message
can be seen as a function from variables to values:M ∈ Σ. As we have done for the states we

2Let Σ be the set of states, we define=: (Σ×Σ) whereS1 = S2 if S1(x) = S2(x) andDom(S1) = Dom(S2)
3⊕ : Σ×Σ → Σ whereS1⊕S2(x) = S1(x) i f x ∈ Dom(S1),S2(x) i f x ∈ Dom(S2)∧x /∈ Dom(S1),unde f ined otherwise

72 Reasoning About a Service-oriented Programming Paradigm

can define a correlation set also for a message. Let us consider M = M1⊕M2 whereM1 is the
correlation set for the messageM. We define the correlation functionc : Var →Var which allows
us to map message variables to state variables. We say that a messageM must be routed to the
sessionswhose state isS= S1⊕S2 whereS1 is the correlation set, if:

∀x∈ Dom(M1),c(x) ∈ Dom(S1) ⇒ S(c(x)) = M(x)∨S(c(x)) is unde f ined

Informally, a message can be routed to a session only if its correlated data correspond to those of
the session. The correlation functionc is the concrete means used by the programmers for defining
correlation. For each incoming message it will be possible to define a specific functionc and the
correlation set, which identifies the session, is indirectly defined by the union of the codomains of
all the definedc functions. It is worth noting that, if the correlation set isnot correctly programmed,
more than one running session could be correlated to an incoming message. In this case the session
which has to receive the message is non-deterministically selected.

• Session execution. Session execution deals with the actual running of a created session behaviour
equipped with all the required state supports. Sessions canbe executed sequentially or concur-
rently. The majority of existing technologies share the idea that sessions are to be executed con-
currently, but the sequential case allows for the controlling of some specific hardware resource
which needs to be accessed sequentially. As an example, consider a cash withdrawal machine
which starts sessions sequentially due to its hardware nature. We consider such an aspect fun-
damental from an architectural point of view because it can raise system deadlock issues if not
considered properly, as we have shown in [15] by means of SOCK.

2.2.3 Engine definition.

Now we can provide our definition for service engine:

An engine is a machinery able to manage service sessions by providing session creation,
state support, message routing and session execution capabilities.

2.3 Service Description

A service description provides all the necessary information for interacting with a service. Service de-
scriptions are composed by two parts: interface and deployment.

2.3.1 Interface.

Service interfaces contain abstract information for performing compatibility checks between services,
abstracting from low-level details such as communication data protocols and transports. We identify
three different levels of service interface:

• Functional. It reports all the input operations used by the behaviour forreceiving messages from
other services or applications. An operation description is characterized by a name, and its request
and response message types. If we trace a comparison with theWeb Services technology, such
an interface level is well represented by the WSDL specifications v1.1 [32]. At this level, only
message type checks on the interface are required in order tointeract with the service.

C. Guidi & F. Montesi 73

• Work-flow. It describes the work-flow of the behaviour. In a work-flow, input operations could
not be always available to be invoked but they could be enabled by other message exchanges by
implementing a sort of high level application protocol. Thus, it is fundamental to know how a
service work-flow behaves in order to interact with it correctly. In the Web Services technology
such an interface could be provided by means of an Abstract-BPEL [26] description; WSDL 2.0
specifications [33] provide Message Exchange Patterns (MEP) which allows for the description
of custom service interaction patterns, too. At this level,other approaches such aschoreography
must be considered. Choreography languages, such as WS-CDL[31], allow for the designing of
a service system from a global point of view. In this case, a choreography can be exploited for
describing the work-flow behaviour of a service by highlighting its role into the choreography.
This is a wide area of investigation that involves works on contracts [7] and conformance [10], but
it is out of the focus of this paper. The reader interested in this topic may consult [12, 9, 3, 19].

• Semantics. It offers semantic information about the service and the specific functionalities pro-
vided by it. It is usually provided by using some kind of ontology such as OWL-S [30].

Service interfaces are strictly related to service discovery, which is a key element of the service-
oriented programming paradigm. Discovery issues are strictly related to search and compatibility check
algorithms over interface repositories, also calledregistries. These algorithms differ depending on which
interface type is considered. It is out of the scope of this paper to discuss the different methodologies
used for implementing service discovery. However, here we want to highlight the fact that, at the present,
some information related to service engine do not appear on the current interface standard proposals, such
as the sequential execution modality or the correlation setof a service. These information are relevant
and should be specified into the interface because they couldinfluence other services in the system, as
we have hinted in the previous section.

2.4 Deployment

The deployment phase is in charge of binding the service interface with network locations and protocols.
A service, for example, could receive messages by exploiting the HTTP protocol or the SOAP over
HTTP one, but the choice is potentially unlimited because new protocols may be created. Such a task
is achieved by means of port declarations. There are two kindof ports: input portsandoutput ports.
The former allows for the declaration of all the input endpoints able to receive messages exhibited by
the service engine, whereas the latter bind target locationand transport protocol to thereceiving services
of the behaviour. In other words the output port allows for the concrete connection with the services to
invoke. In general, we define a port as it follows:

A port is an endpoint equipped with a network address and a communication protocol joined
to an interface whose operations will become able to receiveor send requests. Ports which
enables operations to receive requests are called input ports, output ports otherwise.

A service engine needs to be joined with deployment information in order to receive and send messages.

2.5 Service

Now, we are able to provide our definition of service which follows:

A service is a deployed service engine whose sessions animate a given service behaviour.

74 Reasoning About a Service-oriented Programming Paradigm

Figure 1: A firing session starting a system of services.

Such a definition is not enough if we consider the concrete execution of a service in a complex system.
In order to complete our model we introduce the concept ofcontainer. The definition of container is
fundamental in the analysis of the system composition mechanisms described in the next section.

A service container is an application able to execute one or more services.

3 Service Composition

Now that we have a definition of service and service containerwe can discuss the meaning ofservice
composition. The term composition discussed in Section 2.1 concerns only the inner activities of a be-
haviour, which can be composed in a work-flow. Here we extend the usage of the termcompositionat
the level of service system, by showing the different mechanisms we experimented for putting services
together into a system. To the best of our knowledge, this is the first attempt to classify different kinds of
composition at the level of service system. These mechanisms became evident when we tried to imple-
ment the concepts of behaviour and engine, discussed in the previous section, in JOLIE, where we faced
the challenge to offer to the programmer an easy way for building modular applications based solely on
the concept of service. The following kinds of service composition emerged from our experience:

• simple composition

• embedding

• redirecting

• aggregation

These composition techniques can be freely mixed together in order to obtain different architectures. The
different composition techniques do not alter the functionalities of a service system but they allow for
the engineering of the system architecture depending on thedesign needs. It is important to notice that,
regardless of the kinds of composition that are used, one must ensure that at least one service present in
the composition starts with afiring session. This is necessary because the services not containing a firing
session always have to wait for an input from an external process in order to be started. In order to clarify
the concept of firing session let us consider Fig. 1 where we represent the firing session as a ball which
starts a set of domino cards. The spatial placement of the cards represents the dependencies among the
services of the system started by the firing session. In the following we use the termclient for referring
to a service that calls another service.

C. Guidi & F. Montesi 75

S e r v i c e B S e r v i c e A

C o n t a i n e r

S e r v i c e C

Figure 2: Services A and B are embedded and their interactions do not exploit the network but they are
performed within the container. Service C is not embedded and its interaction with service A exploits
the network.

3.1 Simple Composition

Simple composition is the parallel execution of service containers into a network where they
are able to communicate with each other.

In a simple composition the resulting system will behave accordingly to the behaviour of each service
involved in. This is the most obvious way for composing services.

3.2 Embedding

Embedding is the composition of more than one service into the same container.

The main advantage of such a composition is the fact that embedded services could communicate with
each other without using the network but exploiting inner communication mechanisms depending on the
implementing technology (e.g. RAM communications). Embedding is particularly suitable for increas-
ing the level of granularity of a service-oriented system. Sending and receiving messages over a network
indeed can be a strong limitation when we consider auxiliaryservices which provide basic functionalities
(e.g. services which provide mathematical functions, services that manage time and dates, etc.). By com-
posing with embedding it is possible to use auxiliary services without deploying them into the network.
In Fig. 2 is represented the case where a serviceA requires the functionalities of one other serviceB but
it does not make sense to deployB on the network and consequentially expose it to external processes.A
andB are embedded and their interactions are performed within the container. On the other hand,A can
also interact via network with another serviceC which is not embedded.

3.3 Redirecting

Redirecting allows for the creation of amaster serviceacting as a single communication
endpoint to multiple services which are called resources.

In redirecting a master service receives all the messages ofa system and then forward them to system
services. It is obtained by binding an input port of the master service to multiple output ports, each one
identifying a service by means of aresource name. The client will send messages to the master service
specifying the final resource service to invoke. The main advantages of such an approach are:

• the possibility to provide a unique access point to the system clients. In this way the services of
the system could be relocated and/or replaced transparently w.r.t. the clients;

• the possibility to provide transparent communication protocol transformations between the client
and the master and the master and the rest of the system.

76 Reasoning About a Service-oriented Programming Paradigm

A

B

C

/ A

/ B

/ C

M / ?
M

Figure 3: ServiceM redirects messages to servicesA, B andC depending on the target destination of the
message (M/A, M/B or M/C).

A

B

C

o p 1 @ M
M

o p 1 @ A

o p 1
o p 2
o p 3

o p 1

o p 2

o p 3

Figure 4: In aggregation the master publishes the union of all the service interfaces it aggregates. Inter-
faces are here represented with dotted rectangles. The message on operationop1 to serviceM is actually
redirected to serviceA.

In order to understand the second advantage better, consider Fig. 3 and suppose thatA speaks a certain
protocolpa. Now suppose that a client needs to interact withA, but it does know only a different protocol:
pm. The client could then callM with destinationM/A using protocolpm (known byM), and leave toM
the task of transforming the call message into an instance ofpa before sending it toA.

3.4 Aggregation

Aggregation is a redirecting composition of services whoseinterfaces are joined together
and published as unique.

Aggregation deals with the grouping of more services under the same interface. It is similar to redirect-
ing, but the resource services are not visible from the pointof view of the client. The client sees a unique
service, the master one, which exhibits an interface by providing the functionalities of the resource ser-
vices. Differently from redirecting, which maintains the different interfaces of each composed service
separated, in this case the client looses the details of eachsingle service used behind aggregation. The
main advantage of such a composition approach deals with thepossibility to completely hide the system
components to the client.

C. Guidi & F. Montesi 77

3.5 Dynamic System Composition

The aforementioned service composition techniques (simple, embedding, redirection and aggregation)
can be used both statically and at runtime. In the static caseall the services are composed before their
execution and the composition never changes during the execution of all the system. On the contrary,
if the composition of the system changes at runtime, we say that the system is composeddynamically.
Dynamic composition is strictly related to the concept ofservice mobility. Service mobility deals with
the representation of a service in some data format, its transmission from one service to another and then
its execution in the service container of the receiver. It isworth noting that here we do not consider the
case of running service migration but only the case of staticservice behaviour mobility. In the following
we briefly describe some case of dynamic composition:

3.5.1 Dynamic embedding.

Let us consider a service which needs to receive software updates for a certain functionality. One may
encapsulate that functionality in an embedded service. Then, when a software update is issued, the
embedder service may unload the embedded one, receive the updated service to embed and dynamically
embed the received service.

3.5.2 Dynamic redirecting and aggregation.

Let us consider the case that a resource service faults or needs maintenance without affecting the service
availability from the client point of view. It is sufficient to install a spare part resource service and
registering it to the master service in place of the faulty one.

4 Discussion

The definitions of service and service composition shown so far are the key elements of the service-
oriented programming paradigm. Such a paradigm becomes evident when building a system of services
where it is possible to construct distributed system architectures by following new design patterns. In
this section we present and discuss some of them.

Request-Response.

The Request-Response interaction pattern plays a fundamental role when designing a service system
architecture. Such a message exchange between two peers canbe performed in two different ways: by
means of acallbackor a Request-Response. In the former case both services exhibit a port for receiving
the message, whereas in the latter case only the port of the Request-Response receiver is exhibited and
the response message is sent on the same channel4 on which the request message is received. In Fig. 5
we graphically show the differences between a callback configuration and a Request-Response one. The
main difference is that in the callback configuration the service A must be aware of the fact that it has to
receive the response message in a specific port. In other words, serviceA must be aware of the work-
flow behaviour ofB, so it needs to know the work-flow interface ofB in order to interact with it. In the

4It is out of the scope of this paper to provide a precise definition of channel. For the sake of our discussion, it is sufficient
to informally consider a channel as a socket or an abstract channel like the one described in the WS-Addressing specification.

78 Reasoning About a Service-oriented Programming Paradigm

A B A B

C a l l b a c k R e q u e s t - R e s p o n s e

Figure 5: Callback and Request-Response configurations. Black rectangles represent ports.

M

S

S l a v e s e r v i c e m o b i l i t y

o p 1
o p 2
...

S

M

M a s t e r s e r v i c e m o b i l i t y

o p 1
o p 2
...

Figure 6: Slave service mobility and Master service mobility.

Request-Response case, it is sufficient forA to know the functional interface ofB where the RequestRe-
sponse operation is declared in order to interact with it. Such architectural difference motivated us to
consider both the approaches as fundamental for the serviceoriented programming paradigm. Moreover,
the Request-Response pattern raises interesting issues from the fault handling point of view but, for the
sake of brevity, we do not discuss them here and we invite the interested reader to consult [14, 24].

Web client-server pattern.

It is easy to model the web client-server pattern in the service-oriented programming paradigm. A web
server is a service deployed on an HTTP port, where it exhibits some general purpose Request-Response
operations, such asGET and POST. Web servers usually manage session identification by meansof
cookies or query strings, which can be easily modelled with the correlation set mechanism.

Slave service mobility and Master service mobility.

Here, we show two design patterns we experimented: slave service mobility and the master service
mobility. We considerslave the service which provides simple functionalities by meansof Request-
Response operations andmasterthe service which makes use of multiple slave services in itswork-flow
behaviour. In theslave service mobilitypattern the slave services are moved and embedded to the master
service container, whereas in themaster service mobilitythe master service is moved and embedded into
the container of the slave. In the following we explain both the patterns by referring to Fig. 6

• Slave service mobility.Consider the case in which a serviceM (themaster service) defines a work-
flow that is dependent on some functionalities that cannot beprovided statically before execution
time. M, instead, needs to obtain these functionalities at runtimeand to use them. In order for this
to work, M must define an appropriate output port for the functionalities it is looking for. Then,
M asks a service repository for downloading the functionalities it needs. The repository sends a
serviceS to M, andM dynamically embedsS. M has now access to the functionalities offered by
S, theslave service, and exploit them to complete its work-flow.

C. Guidi & F. Montesi 79

• Master service mobility.Consider the case in which a serviceS (the slave service) possesses
the functionalities that are needed for the actualization of a work-flow, but the work-flow cannot
be provided statically before execution time.S needs to obtain the work-flow at runtime and
to execute it, ensuring that the work-flow makes use of the functionalities provided byS. We
exploit such a pattern for implementing the SENSORIA automotive scenario [28] where a car
experiments a failure and starts a recovery work-flow for booking some services such as the garage,
the car rental and the truck one. We implemented it with a slave service on the car and the master
work-flow which is downloaded from the car factory assistance service. In this way we obtain
that the recovery work-flow can be changed and maintained by the assistance car service without
updating all the car softwares periodically and, at the sametime, we guarantee transaction security
by isolating some functionalities such as the bank payment,into the slave service of the car. In this
case the downloaded work-flow is able to search for all the services it needs but it relies upon the
slave service car functionalities for the payment.

SoS: Service of services pattern.

The SoS pattern exploits both dynamic embedding and dynamicredirecting. A service is embedded
at run-time if a client performs a resource request to the master service. In this case the master service
embeds the requested service by downloading it from a repository and make it available to the client with
a private resource name. From now to the end, the client will be able to access to its own resource by
simply addressing its requests to the resource name it has received. The main advantage of this approach
is that we can provide an entire service as a resource to a specific client instead of a single session of a
service. We exploit this pattern for implementing the SENSORIA finance case study [28] which models
a finance institute where several employees works on the samedata. We use the SoS pattern for loading
a service for each employee which maintain its private data and, at the same time, can offer a set of
functionalities. The main advantage in this approach is that each functionality offered to the employee
is able to open a session on its own service thus obtaining a private complex resource made of a set of
service sessions.

5 Conclusions

We have presented the results of our experience in investigating service-oriented applications both from a
theoretical and a practical point of view. It is our opinion that a service-oriented programming paradigm
exists and that it is characterized by the concepts of behaviour, session, session execution, correlation set,
engine, interface, deployment, service, container, embedding, redirecting and aggregation. Upon these
key concepts we experimented some interesting design patterns from an architectural viewpoint, such
as the slave service mobility, the master service mobility and the SoS. They probably are only some of
the possible design patterns which can be built with the service-oriented programming paradigm. In the
future we will continue to investigate the service-oriented programming paradigm by also considering
choreography languages as complementary means for designing service-oriented systems. As far as
JOLIE is concerned, we will continue in its development by studying and implementing all the necessary
mechanisms for obtaining the aggregation service composition pattern and tools for improving usability
and property checking.

80 Reasoning About a Service-oriented Programming Paradigm

Acknowledgments

Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

References

[1] Active Endpoint:ActiveVOS. http://www.activevos.com/.

[2] Apache software foundation:Apache. http://www.apache.org/.

[3] M. Baldoni, C. Baroglio, A. Martelli, V. Patti & C. Schifanella (2005):Verifying the Conformance of Web
Services to Global Interaction Protocols: A First Step.In: EPEW/WS-FM, Lecture Notes in Computer
Science3670. Springer-Verlag, pp. 257–271.

[4] A. Barros & E. Borger (2005):A Compositional Framework for Service Interaction Patterns and Interaction
Flows. In: Proc. of International conference on formal engineering methods (ICFM’05), LNCS. Springer
Verlag, pp. 5–35.

[5] A. Barros, M. Dumas & A.H.M. ter Hofstede (2005):Service Interaction Patterns: Towards a Reference
Framework for Service-Based Business Process Interconnection. Technical Report FIT-TR-2005-02, Faculty
of information Technology, Queensland University of Technology, Brisbane, Australia.

[6] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara,
D. Sangiorgi, V. Vasconcelos & G. Zavattaro (2006):SCC: A Service Centered Calculus. In: Proc. of Web
Services and Formal Methods Workshop (WS-FM’06), LNCS 4184. Springer-Verlag, pp. 38–56.

[7] M. Bravetti & G. Zavattaro (2007):Towards a Unifying Theory for Choreography Conformance andContract
Compliance. In: 6th International Symposium on Software Composition (SC’07), LNCS. pp. 34–50.

[8] R. Bruni, H. Melgratti & U. Montanari (2005):Theoretical foundations for compensations in flow composi-
tion languages.In: Proc. of POPL’05. ACM Press, pp. 209–220.

[9] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi & G. Zavattaro (2005):Towards a formal framework for Choreog-
raphy. In: Proc. of 3rd International Workshop on Distributed and Mobile Collaboration (DMC’05). IEEE
Computer Society Press, pp. 107–112.

[10] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi & G. Zavattaro (2006):Choreography and Orchestration confor-
mance for system design. In: Proc. of 8th International Conference on Coordination Models and Languages
(COORDINATION’06), LNCS 4038. pp. 63–81.

[11] M.J. Butler & C. Ferreira (2004):An Operational Semantics for StAC, a Language for ModellingLong-
Running Business Transactions. In: Proc. of COORDINATION’04, Lecture Notes in Computer Science
2949. springer, pp. 87–104.

[12] M. Carbone, K. Honda & N. Yoshida (2007):Structured Communication-Centred Programming for Web
Services. In: Proc. of ESOP’07, Lecture Notes in Computer Science4421. Springer-Verlag, pp. 2–17.

[13] C. Guidi (2007):Formalizing languages for Service Oriented Computing. PhD. thesis, Department of Com-
puter Science, University of Bologna.http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf.

[14] C. Guidi, I. Lanese, F. Montesi & G. Zavattaro (2008):On the interplay between fault handling and request-
response service invocations. In: Proc. of ACSD’08. IEEE Press, pp. 190–199.

[15] C. Guidi & R. Lucchi (2008):Programming service oriented applications. Technical Report UBLCS-2008-
11, Department of Computer Science, University of Bologna.http://www.cs.unibo.it/pub/TR/UBLCS/

2008/2008-11.pdf.

[16] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi & G. Zavattaro (2006): SOCK: A Calculus for Service Ori-
ented Computing.In: Proceedings of the 4th International Conference on Service-Oriented Computing
(ICSOC’06), Chicago, IL, USA, LNCS 4294. pp. 327–338.

[17] Jolie—Java Orchestration Language Interpreter Engine: http://www.jolie-lang.org.

[18] D. Kristol & L. Montulli: HTTP State Management Mechanism. http://www.w3.org/Protocols/

rfc2109/rfc2109.

http://www.activevos.com/
http://www.apache.org/
http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf
http://www.cs.unibo.it/pub/TR/UBLCS/2008/2008-11.pdf
http://www.cs.unibo.it/pub/TR/UBLCS/2008/2008-11.pdf
http://www.jolie-lang.org
http://www.w3.org/Protocols/rfc2109/rfc2109
http://www.w3.org/Protocols/rfc2109/rfc2109

C. Guidi & F. Montesi 81

[19] I. Lanese, C. Guidi, F. Montesi & G. Zavattaro (2008):Bridging the Gap between Interaction- and Process-
Oriented Choreographies. In: 6th IEEE International Conferences on Software Engineering and Formal
Methods (SEFM’08). IEEE Computer Society. To appear.

[20] A. Lapadula, R. Pugliese & F. Tiezzi (2006):A WSDL-Based Type System for WS-BPEL. In: Springer-
Verlag, editor:Proc. of 8th International Conference on Coordination Models and Languages (COORDINA-
TION’06), LNCS 4038. pp. 145–163.

[21] Microsoft: Internet Information Services. http://www.microsoft.com/windowsserver2008/en/us/

internet-information-services.aspx.

[22] R. Milner (1989):Communication and Concurrency. Prentice Hall.

[23] R. Milner, J. Parrow & J. Walker (1992):A Calculus of Mobile Processes, I and II. Information and Compu-
tation100(1), pp. 1–40, 41–77.

[24] F. Montesi, C. Guidi, I. Lanese & G. Zavattaro:Dynamic fault handling mechanisms for service oriented
applications. In: Proc. of 6th IEEE European Conference on Web Services (ECOWS’08). IEEE Computer
Society.

[25] F. Montesi, C. Guidi, R. Lucchi & G. Zavattaro (2007):JOLIE: a Java Orchestration Language Interpreter
Engine. Electr. Notes Theor. Comput. Sci.181, pp. 19–33.

[26] OASIS:Web Services Business Process Execution Language Version 2.0. http://docs.oasis-open.org/
wsbpel/.

[27] Oracle:Oracle BPEL Process Manager. http://www.oracle.com/technology/products/ias/bpel/
index.html.

[28] Software Engineering for Service-Oriented Overlay Computers.http://www.sensoria-ist.eu/.

[29] M. Viroli (2004): Towards a Formal Foundation to Orchestration Languages. In: M. Bravetti & G. Zavattaro,
editors: Proc. of 1st International Workshop on Web Services and Formal Methods (WS-FM’04), Electr.
Notes Theor. Comput. Sci.105.

[30] W3C: OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/.

[31] W3C: Web Services Choreography Description Language Version 1.0. http://www.w3.org/TR/2004/

WD-ws-cdl-10-20040427/.

[32] W3C: Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[33] W3C: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language. http://www.w3.
org/TR/wsdl20/.

[34] W3C Recommendation 9 May 2006:Web Services Addressing, Core 1.0. http://www.w3.org/TR/

ws-addr-core/.

[35] Web Services Glossary:http://www.w3.org/TR/ws-gloss/.

[36] Zope:http://www.zope.org/.

http://www.microsoft.com/windowsserver2008/en/us/internet-information-services.aspx
http://www.microsoft.com/windowsserver2008/en/us/internet-information-services.aspx
http://docs.oasis-open.org/wsbpel/
http://docs.oasis-open.org/wsbpel/
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.sensoria-ist.eu/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-gloss/
http://www.zope.org/

	Introduction
	Definition of Service
	Behaviour
	Communication activities.
	Functional activities.
	Fault activities.

	Engine
	Session.
	Session management.
	Engine definition.

	Service Description
	Interface.

	Deployment
	Service

	Service Composition
	Simple Composition
	Embedding
	Redirecting
	Aggregation
	Dynamic System Composition
	Dynamic embedding.
	Dynamic redirecting and aggregation.

	Discussion
	Conclusions

