
On the Interplay Between Fault Handling and Request-Response

Service Invocations∗

Claudio Guidi Ivan Lanese Fabrizio Montesi

Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy

{cguidi,lanese,fmontesi,zavattar}@cs.unibo.it

Abstract

Service Oriented Computing (SOC) allows for the

composition of services which communicate using uni-

directional notification or bidirectional request-response

primitives. Most service orchestration languages pro-

posed so far provide also primitives to handle faults and

compensations. The interplay between fault handling

and request-response invocations is nontrivial since,

for instance, faults should be notified to the request-

response communication partners in order to compen-

sate also the remote activities. Our work is motivated

by the difficulties encountered in programming, using

current orchestration languages, some fault handling

strategies. We propose as a solution an orchestration

programming style in which fault and compensation

handlers are dynamically installed. We show the ade-

quacy of our proposal defining its semantics, and prov-

ing that it satisfies some expected high-level properties.

Finally, we also show how to apply dynamic handler

installation in a nontrivial automotive scenario.

1 Introduction

Service Oriented Computing (SOC) provides lan-
guages and mechanisms for describing, publishing, re-
trieving and combining autonomous services. We are
particularly interested in service composition, which
is usually dealt with using orchestration languages
such as the de-facto standard WS-BPEL (BPEL for
short) [17]. Since both services and the network infras-
tructure are unreliable, orchestration languages have
to provide mechanisms to deal with unexpected situ-
ations. BPEL, for instance, permits to specify fault

handlers to manage faults, termination handlers to

∗Research partially funded by EU Integrated Project Senso-

ria, contract n. 016004.

smoothly terminate an ongoing activity when an ex-
ternal fault occurs and compensation handlers to undo
the effect of a completed activity during error recovery.

Besides traditional one-way communication, SOC
usually supports a bidirectional communication pat-
tern composed by the solicit-response operation on the
client-side, which sends a request and waits for the re-
ply, and the symmetric request-response operation on
the server-side.

In this paper we investigate the interplay between
fault handling and the request-response pattern. For
instance, if a fault occurs on the client-side during the
execution of a solicit-response operation, the answer
from the partner, that could be either successful or
unsuccessful, should be taken into account inside the
fault handling activity. In fact, it should be possible
to program on the client-side a fault handler that com-
pensates the activity executed by the server if and only
if the remote activity has been successfully completed.
Interestingly, this rather intuitive behavior is not eas-
ily programmable in current service orchestration lan-
guages such as BPEL. In fact, quoting the BPEL spec-
ifications, “when a synchronous invoke activity (corre-
sponding to a request/reply operation) is interrupted
and terminated prematurely, the response (if received)
for such a terminated activity is silently discarded”. In
this way, since the (either successful or unsuccessful)
response is discarded, it is not possible to take it into
account inside the fault handling activity.

A rigorous analysis of the interplay between fault
handling and request-response invocations requires the
definition of a formal model. The model that we ex-
ploit is achieved by adding mechanisms for fault, termi-
nation and compensation handling to SOCK [12], the
unique (to the best of our knowledge) process calcu-
lus for SOC providing the request-response communi-
cation pattern. In order to prove general results about
the interplay between fault handling and the request-
response pattern, we consider a very general and flex-

1

978 -1-4244-1839-8/08/$25.00 © 2008 IEEE

ible framework for error recovery. In particular, we
assume that fault, termination, and compensation han-
dlers are not statically defined, but that they can be up-
dated at runtime. More precisely, we consider a primi-
tive for dynamic handler installation inst(H) which up-
dates the handlers according to a handlers specification
H. We show in Section 2 that the dynamic approach
is more general than the static one.

Besides being more general, dynamic handler instal-
lation provides an elegant way to program the depen-
dency between fault handling and the request-response
pattern described above: it is sufficient to permit the
update of the fault handlers upon successful comple-
tion of the solicit-response operation.

Another important interplay between fault handling
and request-response communication is the notifica-
tion to the clients of a server failure occurring in be-
tween the execution of the receive and the reply actions.
BPEL, for instance, does not specify a precise policy to
manage this case. In Active-BPEL [1], one of the most
well-known engines for BPEL, when an engine termi-
nates, a missing-reply exception is sent to all those
clients waiting to complete a request-response interac-
tion with that engine. Again, we consider a more gen-
eral approach: we ensure that the response is always
sent to the client and, in case of fault, the specific fault
occurred during the computation is notified so that the
client can adapt its error-recovery procedure.

Technical contribution. As stated above, we pro-
pose a formal model to investigate error-recovery mech-
anisms in the presence of request-response communica-
tion. This is achieved extending SOCK [12] with primi-
tives for the installation of fault, termination and com-
pensation handlers, for throwing faults, and for com-
pensating successfully completed activities. The main
novelties of the proposed framework are dynamic han-

dler installation and automatic failure notification. We
first describe the key concepts of error handling in Sec-
tion 2, then we formalize our approach in Section 3.

In the design of the framework we have been driven
by five correctness properties that formalize the ex-
pected behaviour of fault and compensation handling
and the request-response pattern. These properties are
defined in Section 4 and proved in [11].

As additional contribution, we formalize in Section 5
a nontrivial service based scenario: the automotive case

study of the EU Project Sensoria. Section 6 contains
some conclusions and a comparison with related work.

2 Error handling key concepts

Fault handling in SOC involves four basic concepts:
scope, fault, termination and compensation. A scope is

a process container denoted by a unique name and able
to manage faults. A fault is a signal raised by a pro-
cess towards the enclosing scope when an error state
is reached, in order to allow for its recovering. Termi-
nation and compensation are mechanisms exploited to
recover from errors. Termination is automatically trig-
gered when a running scope must be smoothly stopped
because of a fault thrown by a parallel process. Com-
pensation, instead, is explicitly invoked by the pro-
grammer to undo the effect of a scope whose execu-
tion has already successfully completed. Recovering
mechanisms are implemented by exploiting handlers

which contain processes to be executed when faults,
terminations or compensations occur. Handlers are
defined within a scope which represents the execution
boundaries for their application. There are three kinds
of handlers: fault handlers, termination handlers and
compensation handlers. Fault handlers are executed
when a fault is thrown by the internal process of the
scope, termination handlers are executed when a scope
is reached by a fault raised by an external process and,
finally, compensation handlers have to be explicitly in-
voked by another handler for recovering the activities
of a child scope whose computation has already suc-
cessfully finished. At runtime, when a fault f is raised
within a scope q, all its enclosed running activities are
terminated. Note that any of the enclosed activities
could be a scope, and in this case its termination han-
dler is automatically executed. After that, if q has a
fault handler for f , it executes it. Otherwise, the fault
is propagated upwards to the parent scope. It is worth
noting that handlers can be programmed to compen-
sate any child scope that has successfully completed its
activity before f was raised. Compensation is achieved
by executing the related compensation handler.

Usually, error recovery is managed by statically as-
sociating handlers to scopes, i.e. providing a primi-
tive like scopeq(P,FH, T H, CH), which defines a scope
with name q, executing process P and fault, termina-
tion and compensation handlers FH

1, T H and CH,
respectively.

In some cases static declaration of handlers is not
enough to easily model a given scenario. For instance,
consider the following pseudo-code:
R | scopeq(while(i < 100)

(i = i+1; if i%2 = 0 then P else Q),FH, T H, CH)
where R is a generic process (parallel to scope q) which
can raise a fault f . Scope q contains a loop which ex-
ecutes 100 cycles. Odd cycles execute process P , even
cycles process Q. Suppose that, at some point of exe-
cution, R raises a fault f , which triggers the termina-

1FH may define more than one fault handler, for treating
different kinds of faults.

2

tion of the scope q. Suppose also that the termination
handling policy for scope q requires to compensate the
activities executed so far in the reverse order of com-
pletion. Thus, one has to remember how many P and
Q activities have been executed, and in which order,
for compensating them accordingly. Without any spe-
cific support from the language the programmer has
to use some bookkeeping variables, but as the com-
plexity of the code increases the bookkeeping becomes
more complex and error-prone. In order to address this
problem we propose dynamic handling, which allows
for the updating of the handlers while the computa-
tion progresses.

Technically, we consider a scope construct of the
form scopeq(P,H) where q is the name of the scope,
P is the process to be executed, and H is a function
associating fault handlers to fault names and termina-
tion and compensation handlers to scope names. Dy-
namic handling is addressed by an installing primitive,
inst(H′), which updates the current handler function
with H

′. Thus, the handler code can be updated at
runtime, depending on the current state of the scope.
The example above could be rewritten by exploiting
the dynamic handler mechanism as:
R | scopeq(while(i < 100)

(i = i + 1; if i%2 = 0 then P ; inst([q �→ P ′; cH])
else Q; inst([q �→ Q′; cH])),H)

where cH represents the previously installed termina-
tion handler. In this case, when P completes its exe-
cution, the statement inst([q �→ P ′; cH]) updates the
current termination handler for q, pointed by cH, by
adding process P ′ (which specifically compensates pro-
cess P) to it, whereas if Q is executed the termination
handler is updated by adding Q′. When reached by a
fault f , scope q executes the last installed termination
handler, compensating the whole sequence of activi-
ties. Different compensation strategies can easily be
programmed.

Note that in the example above it should never be
the case that an execution of P has been completed
and its compensation has not been installed, since oth-
erwise the termination handler of the scope would not
be up-to-date. This can be obtained in the dynamic
scenario by disallowing the interruption of the execu-
tion flow whenever an inst statement is to be executed.
The same behaviour cannot be obtained in the static
approach, where we simulate handlers updating by us-
ing bookkeeping variables, as we cannot distinguish
whether a variable assignment is related to fault man-
agement or not.

Fault handlers are installed by means of the same
inst statement, by associating a handler to the fault
name (e.g. in the example above inst([f �→ R]) would

install a fault handler with process R for fault f).
Moreover, when a scope successfully ends, its last
defined termination handler becomes its compensa-
tion handler. Note that there is no ambiguity be-
tween the two handlers: a termination handler is
executed by the scope itself when interrupted by a
fault generated by a parallel activity, whereas a com-
pensation handler can only be executed by the par-
ent scope. This allows also to trivially simulate the
static approach with the dynamic one: the construct
scopeq(P,FH, T H, CH) can be simply rephrased as
scopeq(inst([f �→ FH]); inst([q �→ T H]);P ; inst([q �→

CH]),H0) in which the fault and termination handlers
are installed before the execution of the activity, the
compensation handler at the end, and H0 defines no
handlers.

3 SOCK: the service behavior layer

In order to present a formalization of our approach
we extend the syntax and semantics of SOCK [12] with
the primitives described in the previous section. SOCK

is a calculus for modeling service oriented systems, in-
spired by WSDL and BPEL [17]. Its primitives include
both uni-directional and bi-directional WSDL commu-
nication patterns, control primitives from imperative
languages, and parallel composition from concurrent
languages. SOCK is structured in three different layers:
(i) the service behavior layer to specify the actions per-
formed by a service, (ii) the service engine layer dealing
with state, service instances and correlation sets, and
(iii) the services system layer allowing different engines
to interact. Since faults and compensations are man-
aged in the service behavior layer we refer to [11] for
the detailed description of the other layers. Here in-
stead we present the service behavior layer, starting
from the standard part and adding then the fault and
compensation primitives.

Syntax. We consider the following (disjoint) sets:
V ar, ranged over by x, y, for variables, V al, ranged
over by v, for values, Faults, ranged over by f , for
faults, Scopes, ranged over by q, for scopes, O, ranged
over by o, for one-way operations, and OR, ranged over
by or for request-response operations. Also, Loc is a
subset of V al containing locations, ranged over by l.
We consider a corresponding subset of V ar, V arLoc
containing location variables and ranged over by z. We
use q⊥ to range over Scopes ∪ {⊥}, whereas u ranges
over Faults ∪ Scopes ∪ {⊥}. Finally, we use the nota-
tion �k = 〈k0, k1, ..., ki〉 for vectors.

Let SC be the set of service behavior processes,
ranged over by P,Q, H denotes a function from

3

ε : : = o(�x) | or(�x, �y, P)
ε : : = o@z(�y) | or@z(�y, �x,H)

P,Q, . . . : : = ε input
ε output
x := e assignment
P ;Q sequential composition
P |Q parallel composition∑

i∈W εi;Pi non-det. choice
while χ do (P) iteration
0 null process

{P}q scope (for {P : H0 : ⊥}q)
inst(H) install handler
throw(f) throw
comp(q) compensate
cH current handler

Table 1. Service behavior syntax

P,Q, . . . : : = Exec(P, or, �y, l) Req.-Resp. execution
{P : H : u}q⊥ active scope
or(�x,H) response in Solicit
or〈�x,H〉 dead response in Solicit
〈P 〉 protection
or!f@l sending fault

Table 2. Extended service behavior syntax

Faults and Scopes to processes extended with ⊥, i.e.
H : Faults ∪ Scopes → SC ∪ {⊥}. In particular, we
write the function associating Pi to ui for i ∈ {1, . . . , n}
as [u1 �→ P1, . . . , un �→ Pn]. Also, σ ranges over sub-
stitutions, written as [�v/�x]. The syntax for processes
is defined in Table 1. The first part contains the
standard constructs. Here 0 is the null process. Out-
puts can be notifications o@z(�y) or solicit-responses
or@z(�y, �x,H) where o ∈ O, or ∈ OR and z ∈ V arLoc.
The two tuples �y and �x are respectively the parameters
to be sent in the invocation and the variables where the
received values will be stored (only for solicit-response).
Also, H contains the handlers to be installed to com-
pensate the remote activity. Dually, inputs can be one-
ways o(�x) or request-responses or(�x, �y, P) where the
notations are as above. Additionally, P is the process
to be executed between the request and the response.
Assignment x := e assigns the result of the expres-
sion e to the variable x ∈ V ar (function �e� evaluates
a closed expression e). We do not present the syntax
of expressions: we just assume that they include the
arithmetic and boolean operators, values in V al and
variables. P ;Q and P |Q are sequential and parallel

composition respectively, whereas
∑

i∈W εi;Pi is input-
guarded non-deterministic choice. Also, while χ do (P)
models iteration.

The last five cases concern faults and compensations
and are the main novelty. We consider two kinds of
handlers: fault handlers and termination/compensa-

tion handlers. Handlers are installed by inst(H) where
H is a partial function from fault and scope names to
processes. {P}q defines a scope named q to execute
process P . This is a shortcut for {P : H0 : ⊥}q

where H0 is the function that evaluates to ⊥ for all
fault names and to 0 for all scope names. Commands
throw(f) and comp(q) respectively raises fault f and
asks to compensate scope q. Finally, cH refers to the
previously installed handler during an handler update.

Well-formedness rules: informally, comp(q) and
cH occur only within handlers, and q can only be a
child of the enclosing scope. Also, for each inst(H),
H is undefined on all scope names q but the one of
the nearest enclosing scope, i.e. a process can define
the termination/compensation handler only for its own
scope. Finally, we assume that scope names are unique.

Semantics. In order to define the semantics we ex-
ploit the extended syntax in Table 2. There {P : H :
u}q⊥ is an active scope, i.e. a scope where handlers
may have been installed into H and an handler named
u is waiting to be executed (if u
= ⊥). Also, the scope
name may be ⊥, denoting that the scope has been killed
and is now in a zombie state (i.e., it can no more end
with success nor throw faults but it may e.g. wait for
incoming messages, to be used during the recovery ac-
tivity). Also, or(�x,H) is used to wait for the response
in a solicit-response interaction. H is installed iff a
non faulty response is received, allowing to program
the compensation for the remote activity. or〈�x,H〉 is
the corresponding zombie version, which can not throw
faults. Exec(P, or, �y, l) is a running request-response
interaction. 〈P 〉 executes P in a protected way, i.e.
not influenced by external faults. This is needed to
ensure that recovery from a fault is completed even if
another fault happens. Finally, or!f@l notifies fault f
to a partner.

The service behavior layer does not deal with state,
leaving this issue to the service engine layer, but it
models all the possible execution paths for all the possi-
ble values of variables. The semantics follows this idea:
the labels contain all the possible actions, together with
the necessary requirements on the state. Formally, let
Act be the set of actions, ranged over by a. To sim-
plify the interaction with upper layers (see [11]) we use
mainly structured labels of the form ι(σ : θ) where ι is

4

P | Q ≡ Q | P P | 0 ≡ P
P | (Q | R) ≡ (P | Q) | R 0;P ≡ P 〈0〉 ≡ 0

Table 4. Structural congruence

the kind of action while σ and θ are substitutions con-
taining respectively the assumptions on the state that
should be satisfied for the action to be performed and
the effect on the state. If the second argument is not
meaningful for the action at hand we write instead.
Furthermore we use the following unstructured actions:
{th(f), cm(q, P), inst(H)}.

Definition 1 (Service behavior layer semantics)
We define →⊆ SC × Act × SC as the least relation

which satisfies the rules of Tables 3 and 5, and closed

w.r.t. structural congruence ≡, the least congruence

relation satisfying the axioms in Table 4.

The rules in Table 3 describe the standard execu-
tions of the system. For this reason, label th(f) is
never considered in this table. Rules One-WayOut

and One-WayIn define the one-way operation. Notice
that the output specifies the location of the invoked
service. The two operations are synchronized at the
services system level. Similarly rules Solicit and Re-

quest start a solicit-response operation. Notice that
the input stores the location of the invoker, since it is
necessary for the response. Notice also that the solicit-
response primitive allows for the specification of some
handlers. These are installed just after the answer has
been received, and only in case of success. The ded-
icated syntax is needed to ensure that the handlers
are installed only in case of success of the remote ac-
tivity. The response is dealt with by rules Request-

Response and Solicit-Response. The response is
computed by rule Request-Exec. This is necessary
since in case of failure the ongoing computation should
be treated in a particular way: the failure should be
notified to the partner. Rule Scope allows for stan-
dard execution of a process inside a scope. The other
rules in Table 3 are standard.

The rules in Table 5 define the semantics of scopes,
faults and compensations. We use operator ⊕, defined
as follows, for updating the handlers function:

(H⊕H
′)(f) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(H′(f))[H(f)/cH]
if f ∈ Dom(H′) ∩ Dom(H)

(H′(f))[0/cH]
if f ∈ Dom(H′), f /∈ Dom(H)

H(f) otherwise
where we assume that inst is a binder for cH, i.e. sub-
stitutions are not applied inside the inst primitive.

Intuitively the above definition means that handlers
in H

′ replace the corresponding handlers in H, and oc-

killable({P : H : u}q, f) = 〈{killable(P, f) : H : q}q〉

if P ≡/ 0
killable(P | Q, f) = killable(P, f) | killable(Q, f)
killable(P ;Q, f) = killable(P, f) if P ≡/ 0
killable(Exec(P, or, �y, l), f) = killable(P, f)| 〈or!f@l〉
killable(〈P 〉 , f) = 〈P 〉 if killable(P, f)
killable(or(�y,H), f) = 〈or〈�y,H〉〉

killable(P, f) = 0
if P ∈ {0, ε, ε, x := e, χ?P : Q,

while χ do (P), or!f ′@l, or〈�y,H〉,∑
i∈W εi;Pi, throw(f), comp(q)}

Table 6. Function killable

currences of cH in the new handlers are replaced by the
old handlers. For instance, inst([q �→ P |cH]) adds P in
parallel to the old handler for q. We also use cmp(H)
to denote the part of H dealing with compensations,
i.e. cmp(H) = H|Scopes.

Fault and compensation handlers are installed in the
nearest enclosing scope by rules AskInst and Install.
According to rule Scope-Success, when a scope suc-
cessfully ends, its compensation handlers are propa-
gated. This allows to compensate a terminated activ-
ity. A compensation execution is asked by rule Com-

pensate. Notice that the actual compensation code
is guessed, and the guess is checked by rule Compen-

sation. Faults are raised by rule Throw. A fault
is catched by rule Catch-Fault when a scope defin-
ing the corresponding handler is met. The name of
the handler is stored in the third component of the
scope construct: the handler is executed only after a
few activities have been performed. These are individu-
ated by the rules for fault propagation (Throw-Sync,
Throw-Seq, ReThrow, Throw-RExec) and by the
partial function killable. This function has a double
aim. On one side it guarantees that handlers are in-
stalled before any fault is thrown, i.e. handlers are
always up-to-date (see Proposition 5). Technically this
is obtained by making killable(P, f) undefined (and
thus rule Throw-Sync not applicable) if some han-
dler installation is pending in P . On the other side
killable(P, f) computes the activities that have to be
completed before the handler is executed. In partic-
ular, when a sub-scope is terminated, its termination
handler is marked as next handler to be executed. No-
tice that it may substitute a previously marked fault
handler, following the intuition that a request of ter-
mination has priority w.r.t. an internal activity such
as a fault processing. Also, if an Exec (i.e., an ongoing
request-response computation) is terminated the fault
is notified to the partner (this is where the parameter f
is needed). Finally, a receive waiting for the answer of

5

(One-WayIn)

o(�x)
o(�v)(∅:�v/�x)
−−−−−−−→ 0

(Request)

or(�x, �y, P)
↑or(�v)@l(∅:�v/�x)
−−−−−−−−−−→ Exec(P, or, �y, l)

(Request-Response)

Exec(0, or, �y, l)
↓or(�v)@l(�v/�y:)
−−−−−−−−−−→ 0

(One-WayOut)

o@z(�x)
o(�v)@l(l/z,�v/�x:)
−−−−−−−−−−−→ 0

(Solicit)

or@z(�x, �y,H)
↑or(�v)@l(l/z,�v/�x:)
−−−−−−−−−−−−→ or(�y,H)

(Solicit-Response)

or(�x,H)
↓or(�v)(∅:�v/�x)
−−−−−−−−→ inst(H)

(Assign)

Dom(σ) = Var(e) �eσ� = v

x := e
τ(σ:v/x)
−−−−−→ 0

(Request-Exec)

P
a
−→ P ′

Exec(P, or, �y, l) a
−→ Exec(P ′, or, �y, l)

(Iteration)

Dom(σ) = Var(χ) �χσ� = true

while χ do (P)
τ(σ:)
−−−−→ P ;while χ do (P)

(No-Iteration)

Dom(σ) = Var(χ) �χσ� = false

while χ do (P)
τ(σ:)
−−−−→ 0

(Scope)

P
a
−→ P ′ a
= inst(H), cm(q′,H′)

{P : H : u}q⊥

a
−→ {P ′ : H : u}q⊥

(Sequence)

P
a
−→ P ′

P ;Q a
−→ P ′;Q

(Parallel)

P
a
→ P ′

P | Q
a
→ P ′

| Q

(Choice)

εi
a
−→ Qi i ∈ I

∑
i∈I εi;Pi

a
−→ Qi;Pi

Table 3. Rules for service behavior layer, a
= th(f)
(Throw)

throw(f)
th(f)
−−−→ 0

(Compensate)

comp(q)
cm(q,P)
−−−−−→ P

(AskInst)

inst(H)
inst(H)
−−−−−→ 0

(Scope-Handle-Fault)

{0 : H : f}q⊥

τ(∅:)
−−−−→ {H(f) : H⊕[f �→ ⊥] : ⊥}q⊥

(Scope-Success)

{0 : H : ⊥}q

inst(cmp(H))
−−−−−−−−−→ 0

(Scope-Handle-Term)

{0 : H : q}q
τ(∅:)
−−−−→ {H(q) : H⊕[q �→ 0] : ⊥}⊥

(Scope-Fail)

{0 : H : ⊥}⊥
τ(∅:)
−−−−→ 0

(Install)

P
inst(H)
−−−−−→ P ′

{P : H′ : u}q⊥

τ(∅:)
−−−−→ {P ′ : H′

⊕H : u}q⊥

(Compensation)

P
cm(q,Q)
−−−−−→ P ′,H(q) = Q

{P : H : u}q′
⊥

τ(∅:)
−−−−→ {P ′ : H⊕[q �→ 0] : u}q′

⊥

(Protection)

P
a
−→ P ′

〈P 〉

a
−→ 〈P ′

〉

(Throw-Sync)

P
th(f)
−−−→ P ′, killable(Q, f) = Q′

P |Q
th(f)
−−−→ P ′

|Q′

(Throw-Seq)

P
th(f)
−−−→ P ′

P ;Q
th(f)
−−−→ P ′

(Catch-fault)

P
th(f)
−−−→ P ′,H(f)
= ⊥

{P : H : u}q⊥

τ(∅:)
−−−−→ {P ′ : H : f}q⊥

(Ignore-fault)

P
th(f)
−−−→ P ′,H(f) = ⊥

{P : H : u}⊥
τ(∅:)
−−−−→ {P ′ : H : u}⊥

(ReThrow)

P
th(f)
−−−→ P ′,H(f) = ⊥

{P : H : u}q

th(f)
−−−→ 〈{P ′ : H : ⊥}⊥〉

(Throw-RExec)

P
th(f)
−−−→ P ′

Exec(P, or, �y, l)
th(f)
−−−→ P ′

| 〈or!f@l〉
(Send-Fault)

or!f@l
or(f)@l(∅:)
−−−−−−−−→ 0

(Receive-Fault)

or(�x,H)
or(f)(∅:)
−−−−−−→ throw(f)

(Dead-Solicit-Response)

or〈�x,H〉

↓or(�v)(∅:�v/�x)
−−−−−−−−→ inst(H)

(Dead-Receive-Fault)

or〈�x,H〉

or(f)(∅:)
−−−−−−→ 0

Table 5. Rules for service behavior layer: faults and compensation rules

a solicit-response is preserved, thus preserving the pat-
tern of communication. The 〈P 〉 operator (described
by rule Protection) guarantees that the enclosed ac-
tivity will not be disturbed by external faults. Rule

Scope-Handle-Fault executes an handler for a fault.
The fault is removed from the function H in order to
allow throw primitives for the same fault in the han-
dler to propagate the fault to the outer scope. Notice

6

that a scope that has handled an internal fault can still
end with success. Instead a scope that has been termi-
nated (rule Scope-Handle-Term) or has been unable
to handle an internal fault (rule ReThrow) reaches
a zombie state: it can no more end with success, nor
throw faults. This is denoted by the ⊥ that substitutes
the scope name and obtained by rules Scope-Fail and
Ignore-Fault. This last rule is necessary only for
faults thrown by handlers, since no other fault can be
generated by a zombie scope. Rules Send-Fault and
Receive-Fault allow to send a fault notification to
a partner, where it is treated as a fault. Rules Dead-

Solicit-Response and Dead-Receive-Fault define
the behavior of operator or〈�x,H〉, which behaves like
or(�x,H) but can not raise any fault.

4 Properties and examples

In this section we present five properties which show
that the semantics presented in the previous section
precisely models the most important error recovery
mechanisms. Each of them states that a specific lin-
guisitic primitive of SOCK always has a determined
behaviour. The first two properties deal with scope
behaviours, the third and fourth properties deal with
solicit-response and request-response communication
patterns whereas the fifth property deals with handler
installation.

The first property states that an isolated scope can
end only with success, i.e. by successfully completing
its inner activities, or with failure, i.e. by raising a
fault. For instance {throw(f)}q will end unsuccess-
fully. Note that a scope able to internally recover a
fault will end with success. As an example, let us con-
sider the following case

{inst([q �→ COMP, f �→ HANDLE]); throw(f)}q

where scope q will manage its internal fault by exe-
cuting HANDLE, and then end with success. In this
way compensation COMP will be available for outer
scopes.

Proposition 1 Let P
a1
−→ P1

a2
−→ P2 . . .

an

−−→ Pn be a

computation. Suppose that P = {Q}q. Then there are

three possible cases:

1. the scope ends successfully2: Pi

inst(H)
−−−−−→ 0 for

some i, furthermore no fault is raised before: aj
=
th(f ′) for each j < i and each fault f ′;

2We identify successful termination for P from the label
inst(H): the same label is also generated by the primitive inst,
but this case never occurs if P is a scope.

2. the scope raises a fault: Pi

th(f)
−−−→ Pi+1, further-

more:

(a) Pi+1 will never end with success: aj
=
inst(H) for each j > i and each H;

(b) no other fault will be raised, i.e. aj
= th(f ′)
for each j > i and each f ′.

3. the scope is still executing: Pn = {P ′ : H : u}q.

The second property takes into account the fact
that, in general, in a complex application, a scope can
also be terminated because of an external fault. This
is the case for example of the following process

{payr@z(�x, �y, [q �→ UNDO])}q| throw(f)

where scope q could be terminated by the external fault
f . In this case, the scope will never end successfully.

Proposition 2 Let P
a1
−→ P1

a2
−→ P2 . . .

an

−−→ Pn be a

computation. Suppose that P is a scope that has been

terminated, i.e. P = killable({P ′ : H : u}q, f). Then:

1. P will never end with success: ai
= inst(H) for

each i and each H;

2. no other fault will be raised, i.e. ai
= th(f ′) for

each i and each f ′.

Note that the two propositions above cover all the pos-
sible cases, since the request of termination is the only
effect that a context can have on a process which is not
acknowledged by transitions of the process itself.

The third and fourth properties guarantee that the
request-response pattern is always preserved, even if
a fault occurs in the middle of the message exchange
(i.e., the request has been sent, but the response has
not been received). In particular, the third property
ensures that the requester always waits for the response
of the callee. The response can then be used during er-
ror recovery. Dually, the fourth property ensures that
the callee always sends an answer, either a normal mes-
sage or a fault notification.

As an example, let us consider the scenario above
where a remote activity payr, within scope q, must be
compensated iff it has been successfully executed. The
external fault f may occur at three different points:
(i) before the solicit-response is started: the solicit-
response will never start and the executed termination
handler will be empty as required; (ii) between the so-
licit and the response: the termination handler for q
will be scheduled for execution, but the response is
waited for, thus when the handler for q is executed
its value is empty if a fault has been received by the

7

payment service (i.e. payr has failed), UNDO other-
wise; (iii) after scope q has completed: the compensa-
tion handler for q has been propagated upstream (to a
scope not represented), so that the handler for f can
use it to compensate the remote activity; instead, if the
response was a fault notification then no compensation
handler has been propagated, as no compensation is
needed.

Proposition 3 Let P
a1
−→ P1

a2
−→ P2 . . .

an

−−→ Pn be a

computation. Let a1 be ↑ or(�v)@l(l/z, �v/�x :), i.e. the

start action in a solicit-response. Then there are two

possible cases:

1. the response has been received: ai =↓ or(�v′)(∅ :
�v′/�x′) or ai = or(f)(∅ :) for some i;

2. the process is waiting for the response:

Pn

↓or(�v′)(∅:�v′/�x′)
−−−−−−−−−−→ P ′.

To show the fourth property, we need to define when
a part of a process is being executed.

Definition 2 (Enabling contexts) We define en-

abling contexts by structural induction as follows:
C[•] = • C[•];Q

C[•]|Q Q|C[•]
{C[•] : H : u}q⊥ Exec(C[•], or, �y, l)
〈C[•]〉 Q;C[•] if Q ≡ 0

Proposition 4 Let P
a1
−→ P1

a2
−→ P2 . . .

an

−−→ Pn be

a computation. Let a1 be ↑ or(�v)@l(∅ : �v/�x), i.e. the

start action in a request-response. Then there are three

possible cases:

1. the response is sent: ai =↓ or(�v′)@l(�v′/�y :) or

ai = or(f)@l(∅ :) for some i;

2. the request-response is still executing: Pn =
C[Exec(P, or, �y, l)] for some enabling context C[•];

3. a fault is ready to be notified to the partner: Pn =
C[or!f@l] for some enabling context C[•].

Finally, the fifth property guarantees that handlers
are installed as soon as they are available, i.e. avail-
able handlers are always installed before any fault is
triggered. This is an important feature in dynamic
handler installation, since one has to ensure that error
recovery is always done according to the most recent
handlers.

Proposition 5 If P
th(f)
−−−→ P ′ then it never occurs that

P ≡ C[inst(H)] for any enabling context C[•], i.e. no

handler is waiting to be installed.

5 Automotive scenario

This section discusses the automotive scenario [19],
which has been chosen as case study inside the EU
Project Sensoria.

In the scenario, a car engine failure occurs so that
the car is no longer drivable. The car service system
must take care of bookings and payments for the nec-
essary assistance, calling in particular a car rental, a
garage and a towing truck service. If both garage and
tow truck are available, the rented car has to go to
the garage (the client will be brought there by the tow
truck), otherwise the rented car must go to the location
of the broken car. While the whole system can be mod-
eled in SOCK, we present here only the most significant
part of the car service system behavior. The car orches-
trator CARP contains three modules: RP , GP and TP ,
interacting with the car rental service, the garage ser-
vice and the towing truck service respectively. GP and
TP are sequentially composed, as the tow truck requires
the garage to be available, whereas RP is executed in
parallel. Each module handles both the booking of the
corresponding service and the invocation of the bank
service for the payment. We assume that CARP knows
the following pieces of information: the locations of
the garage service (G), of the towing truck service (T),
of the car rental service (R) and of the bank service
(B), their prices and bank accounts (represented, re-
spectively, by the variables subscripted by price and
acc), the faults throwable by them (fG, fT , fR and
fB respectively), and the garage and car coordinates
(Gcoords and CARcoords). The SOCK implementation
is in Table 7. Module GP is a scope containing the
solicit-response invocations needed for the booking and
payment of the garage. The booking invocation (book)
may receive and raise fault fG, which is handled at the
higher level by CARP . The fault from the bank service
(fB), instead, is managed by the local fault handler,
which compensates the garage booking and re-throws
the fault upstream as a garage fault fG. Finally, when
the last solicit-response invocation receives a success-
ful response, the specified compensation handler for the
scope is installed. Module TP is analogous, but it does
not install a compensation handler as its compensation
is never required. Module RP is more complex since
it has to deal with possible faults from GP or TP . In
this case the rented car, if not already booked, has to
be requested directly at the broken car location (this is
achieved by executing RHandlerP); otherwise it has to
be redirected to the broken car location (by executing
RredirectP). The termination handler for RP should
behave differently according to when it is invoked: be-
fore the invocation of the booking, between the invo-

8

CARP ::= { inst([fG �→ comp(r), fT �→ comp(g) | comp(r)]); ((GP ;TP) | RP) }main

GP ::= { book@G(failure, 〈Gacc, Gid〉 , [fB �→ revbook@G(Gid); throw(fG)]);
pay@B(〈CARacc, Gacc, Gid〉 , Gpayid, [g �→ revbook@G(Gid) | revpay@B(Gpayid)]) }g

TP ::= { book@T (〈CARcoords, G〉 , 〈Tacc, Tid〉 , [fB �→ revbook@T (Tid); throw(fT)]);
pay@B(〈CARacc, Tacc, Tid〉 , Tpayid, ∅) }t

RHandlerP ::= book@R(CARcoords, 〈Racc, Rid〉 , ∅);RpayP

RredirectP ::= redirect@R(〈Rid, CARcoords〉 , Rid, ∅)
RpayP ::= pay@B(〈CARacc, Racc, Rid〉 , Rpayid, ∅)

RrevbookP ::= revbook@R(Rid)
RrevpayP ::= revpay@B(Rpayid)

RP ::= { inst([fR �→ 0, fB �→ RrevbookP ; inst([r �→ 0]), r �→ RHandlerP]);
book@R(Gcoords, 〈Racc, Rid〉 , [r �→ RredirectP ;RpayP]);
pay@B(〈CARacc, Racc, Rid〉 , Rpayid, [r �→ RredirectP , fR �→ RrevpayP]);
inst([r �→ {inst([fR �→ RrevpayP]); cH]}rc) }r

Table 7. The automotive case study

cation of the booking and of the payment service, or
after the invocation of the payment service. This cor-
responds to the different termination handlers installed
during the execution. We exploit the solicit-response
primitive semantics to ensure that, in case the solicit
has already been sent, the response from the partner is
waited for and the corresponding handlers are installed
if and only if the response is not a fault, i.e. the oper-
ation has been performed successfully. As in the case
of GP both the booking and the payment can fail, but
RP provides local fault handlers for each possible fail-
ure, guaranteeing that the faults are not propagated
to the environment. Notice that the handler for fR
(the fault thrown by a booking or redirection failure)
is updated in order to reverse the payment only if it
has already been performed (third line of RP). When
the activity terminates successfully, its compensation
handler is defined. It retrieves via cH the last defined
termination handler (which is Rredirect), and makes
it executable inside an auxiliary scope. This is neces-
sary since Rredirect may raise fault fG, and the old
handler specified in scope r will not be available any
more. Finally, CARP handles faults fG and fT , com-
pensating the other successfully terminated sub-scopes.
Notice in fact that if a sub-scope has not terminated its
execution, calling the comp primitive for its compen-
sation does nothing; however, its termination handler
has been executed during fault propagation.

6 Conclusions

We have investigated the interplay between the
request-response pattern and the mechanisms for fault

and compensation handling usually provided by service
orchestration languages. The most relevant language
which combines both aspects is BPEL. BPEL is not
equipped with a formal semantics, thus the compari-
son with our formally defined language is done on the
basis of the informal specifications and some experi-
mentations done with the ActiveBPEL engine. Some
basic differences between BPEL and our calculus have
been already discussed in the Introduction, where we
have also justified the choice to adopt dynamic handler
installations. Note that this permits to avoid a syntac-
tic distinction between termination and compensation
handlers: the compensation handler is the last termi-
nation handler installed before successful completion of
a scope. Moreover, we do not need any rethrow prim-
itive, used in BPEL to pass a fault to the enclosing
scope, since throw(f), when used inside an handler for
f , has the same behavior. In BPEL this is not possi-
ble, as the language allows the activities enclosed in a
scope to throw more than one fault. Dynamic handler
installation distinguishes our calculus w.r.t. other cal-
culi in the literature, such as πt-calculus [2], webπ [14]
and cJoin [5], all featuring static compensations. Also,
since the underlying languages, π-calculus and Join, do
not provide bidirectional interactions, the problem of
failure notification never occurs. Actually, cJoin trans-
actions can model bidirectional interactions, and the
fact that two interacting transactions are merged can
be seen as a strong form of failure propagation. We de-
cided to just notify the failure to the partner to model
loosely coupled services. Other approaches for compen-
sation handling are StAC [9], cCSP [8] and Sagas [6],
but they are built on top of models not supporting in-
terprocess communication. Among these only StAC

9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

