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Abstract. Choreographic Programming is a correct-by-construction paradigm where a
compilation procedure synthesises deadlock-free, concurrent, and distributed communicat-
ing processes from global, declarative descriptions of communications, called choreographies.
Previous work used choreographies for the synthesis of programs. Alas, there is no formalisa-
tion that provides a chain of correctness from choreographies to their implementations. This
problem originates from the gap between existing theoretical models, which abstract com-
munications using channel names (à la CCS/π-calculus), and their implementations, which
use low-level mechanisms for message routing. As a solution, we propose the theoretical
framework of Applied Choreographies. In the framework, developers write choreographies
in a language that follows the standard syntax and name-based communication semantics
of previous works. Then, they use a compilation procedure to transform a choreography
into a low-level, implementation-adherent calculus of Service-Oriented Computing (SOC).
To manage the complexity of the compilation, we divide its formalisation and proof in three
stages, respectively dealing with: a) the translation of name-based communications into
their SOC equivalents (namely, using correlation mechanisms based on message data); b) the
projection of a choreography into a composition of partial, single-participant choreographies
(towards their translation into SOC processes); c) the translation of partial choreographies
and the distribution of choreography-level state into SOC processes. We provide results of
behavioural correspondence for each stage. Thus, given a choreography specification, we
guarantee to synthesise its faithful and deadlock-free service-oriented implementation.

1. Introduction

Background. Concurrent, distributed software applications have become a crucial asset
of our society: messaging, governance, healthcare, and transportation are just some of the
contexts recently revolutionised by distributed applications. A hallmark of those applications
is that their global behaviour, usually referred to as protocol, emerges from the interaction
of programs, also called endpoints, that run in parallel and rely on message passing to
communicate and coordinate their actions [CD88]. Developers strive to correctly implement
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separate endpoints that, when put together, will enact the expected protocols. If endpoints
fail to follow their protocols, the distributed system can block or misbehave — e.g., due
to deadlocks [CES71] or race conditions [NM92]. Ensuring that all endpoints play their
respective parts correctly—i.e., that they follow their intended protocols—is difficult due to
the inherent non-determinism of distributed programs running in parallel [O’H18].

Since the early days of distributed computing, designers and developers introduced
and used tools to describe the order of interactions among the endpoints of a system,
like security protocol notation [NS78], Message Sequence Charts [Int96] and UML Sequence
Diagrams [OMG04]. The common denominator of these tools is to present a global description
of the sequence of messages in the system, an information difficult to infer (due to the
complexity of interleaved communications) from the specified behaviours of the endpoints.
Even for simple systems with a fixed number of participants, algorithms for extracting this
information have exponential complexity [CLM17].

Recognising the usefulness of these approaches, in the early 2000s the W3C assembled a
Working Group tasked with the definition of a standard for describing interactions among
Web Services. This resulted in the Web Services Choreography Description Language (WS-
CDL) [W3C04]. A WS-CDL artefact is a “choreography”, which specifies the observable
behaviours of all the endpoints involved in the system of interest, formalising from a global
viewpoint the ordering conditions and constraints that regulate the exchange of messages.

Example 1. We illustrate the choreographic approach with a representative example. We
use the example to also introduce the syntax of choreographies used in the remainder of
the paper. The example describes a simple business scenario among a client process c, a
seller service located at lS and a bank service located at lB. Locations (l) are abstractions of
network addresses, or URIs, which identify where services can be contacted to interact with
them.

1 start k : c[C] ] lS.s[S], lB.b[B];

2 k : c[C].product_ s[S].buy( x );

3 k : s[S].mk_order( x ) _ b[B].reqPay( order );

4 k : c[C].cc_ b[B].sendCC( cc );

5 if b.confirm_pay( cc, order ){

6 k : b[B] _ c[C].ok(); k : b[B] _ s[S].ok()

7 } else {

8 k : b[B] _ c[C].ko(); k : b[B] _ s[S].ko()

9 }

At Line 1, the client c asks the seller and the bank services to create two new processes,
respectively s and b. The three processes c, s, and b can communicate over a private
multiparty session k, intended as in Multiparty Session Types [CDCYP15]: each process
owns a statically-defined role in the session, which identifies a message queue that the
process uses to receive messages asynchronously. For simplicity, at Line 1, we assign role C to
process c, S to s, and B to b. As usual, processes have local states and run concurrently. All
communications in the rest of the choreography now take place over session k, as indicated
by the prefix “k :” in the other lines. At Line 2, the client c invokes operation buy of the
seller s with the name of a product it wishes to buy, which the seller stores in its local
variable x. At Line 3, the seller uses its internal function mk_order to prepare an order
(e.g., compute the price of the product) and sends it to the bank on operation openTx, for
opening a payment transaction. At Line 4, the client sends its credit card information cc to
the bank on operation pay. Then, at Line 5, the bank makes an internal choice on whether
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the payment can be performed (with the internal function close_tx, which takes the local
variables cc and order as parameters). The bank then notifies the client and the seller of the
final outcome, by invoking them both either on operation ok or ko.

The advantage of choreographies is their clarity: they specify the intended global
behaviour of a communicating system unambiguously. For this reason, since the inception
of WS-CDL, choreographies have been adopted also in other practical applications, like
the Business Process Model and Notation by the Object Management Group [OMG11] and
Testable Architecture [JBo13]. In general, choreographies come with the promise of enhancing
the correctness of systems, since they equip programmers with precise specifications of the
communications that a system should enact. This promise motivated a fruitful line of
research in the areas of process calculi and programming languages, which rotates around
the question: “Can we use choreographies to prove that a concurrent program will execute the
right communications? ”

Inspired by this question, two development methodologies have emerged based on
choreographies. In the first, called Choreographic Programming [Mon13], programs are
choreographies as that in our Example 1. The idea is that the choreography defines both the
internal computation performed by processes and the communications among them. Then, a
correct-by-construction implementation (typically given in terms of a process calculus) can
be automatically synthesised [CHY12, CM13]. In the second methodology, choreographies
are used to describe protocols, which abstract away from internal computation. The aim of
this second methodology is to verify that each process, written manually (in contrast to being
automatically synthesised, as in choreographic programming), implements correctly its role
in the protocols that it participates in. Multiparty Session Types [HYC16] is representative
of this methodology.

Both methodologies are based on the same general idea: for each endpoint described
in a choreography, we can project a definition of its local behaviour using a procedure
known as EndPoint Projection (EPP). In choreographic programming, this yields the local
implementation of each endpoint. For multiparty session types, this yields a type, e.g., used
to check that a process implements its role in a protocol correctly. The key technical result
that one needs to prove then is that the projection yields a set of endpoint terms (programs
or types) that, when executed in parallel, implement exactly the communications described
in the original choreography. This is typically called the EndPoint Projection Theorem (or
EPP Theorem, for short).

The model of Compositional Choreographies [MY13] unifies the two methodologies, with
the aim of combining their advantages. In that model, programmers can describe parts of
a system as in choreographic programming and other parts as independent process terms.
The model uses multiparty session types to check that the composition of the independent
process terms with the projections of choreographic programs will behave correctly. What
made the unification of the two approaches possible is the strong operational correspondence
guaranteed by the EPP.

Motivation. The main application area for choreographies so far is that of Service-
Oriented Computing (SOC), as in web services [W3C04] or microservices [DGL+17, New15].
Implementing communications in this setting is non-trivial, since services must be loosely cou-
pled and thus we cannot assume the presence of any particular common middleware. However,
in all previous definitions of EPP, both the choreography language and the target language
abstract from how real-world frameworks support communications [QZCY07, LGMZ08,
CHY12, CM13, CMS17], by modelling message exchange through synchronisations on names
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(as in CCS and the π-calculus [Mil80, MPW92]). As a consequence, the implementations of
choreographic frameworks [Cho16, AIO16, NY14] significantly depart from their respective
formalisations [CM13, DGG+15, HYC16] (a common aspect of implementing process calculi,
cf. [CLM05, HYH08]). In particular, implementations realise the creation of new channels and
message routing with additional data structures and message exchanges [Mon13, DGL+14]
that are absent in their formalisations. The specific communication mechanism used in
these implementations is message correlation; correlation is the reference communication
support in SOC, and is supported by mainstream technologies (e.g., WS-BPEL [OAS07],
Java/JMS, C#/.NET). The gap between formalisations and implementations can compromise
the correctness guarantee of choreographies. Thus we ask:

How can we formalise the implementation of communications in choreographies?
A satisfactory answer should preserve the correctness guarantees down to the level of how

communications are concretely implemented. Defining such a model is challenging: we wish to
retain the typical clarity of choreography languages, yet we need enough details to (formally)
reason on how communications are realised at the lower level. Ideally, the complexity of
implementing communications should not leak into the choreographic programming model
exposed to programmers, and should just be a “detail” that we can forget about with
confidence. Building this confidence is the main aim of this article.

Contributions and Outline. We tackle our question by developing the framework of
Applied Choreographies. Our framework consists of three calculi, which enjoy a tight series
of correspondences.

The first calculus, called Frontend Choreographies (FC), is meant to be the programming
model exposed to programmers and is presented in § 2. FC is a straightforward reformulation
of the standard calculus of Compositional Choreographies [MY13], which we adopt to show
that our approach applies to both the methodology of choreographic programming and that of
multiparty session types. In particular, communications are based on name synchronisation,
as in standard process calculi.

The second calculus, called Backend Choreographies (BC), has the same syntax of FC but
a different semantics: instead of using abstract name synchronisation, BC models and keeps
track of the data structures needed to implement concrete correlation-based communications
(§ 4.1). While more involved than FC, BC is agnostic wrt the specific technology used for
correlation.

The third is a process calculus of distributed executable code, based on a standard formal
model for Service-Oriented Computing [MC11], called Dynamic Correlation Calculus (DCC)
(§ 5). DCC models both data distribution and how concrete communications are implemented.
Given its low-level scope, DCC does not capture all the abstraction of choreographies.

Our main contribution is the definition of a behaviour-preserving compiler from Frontend
Choreographies to DCC distributed services. The compiler uses Backend Choreographies as
intermediate representation. This is the first correctness result of an end-to-end translation
from standard choreographies to programs based on a real-world communication mechanism.

More concretely, our compiler includes two transitional stages (FC-to-BC and EPP)
toward the Compilation:
FC-to-BC: generates the data structures needed to support the execution of a source FC

program using message correlation (§ 4.3). Essentially, we obtain a Backend choreography
which is operationally correspondent to its source Frontend;



APPLIED CHOREOGRAPHIES 5

EPP: transforms a choreography that describes the behaviours of many participants into a
set of modules, called endpoint choreographies, each describing the behaviour of a single
participant. More precisely, the procedure is an endomorphism (§ 6.1) that transforms
a source choreography—whether FC or BC does not matter, since they share the same
syntax—into a set of (endpoint) choreographies whose syntax is restricted to only partial
actions (i.e., belonging to one of the two ends of a communication);

Compilation: takes in the BC data structures obtained from the FC-to-BC conversion and
the endpoint choreographies obtained from the EPP transformation and synthesises a
correct implementation of the source FC program as a distributed system of DCC services.
Starting from FC proves that our development is adequate. Programmers can use high-

level programming primitives and semantics as found in previous works on choreographies—
with state-of-the-art features like asynchronous communications [CM13] and modular de-
velopment [MY13]—while our compilation procedure tackles the heavy-lifting of producing
correct service-oriented implementations.

We conclude our proposal discussing related and future work in § 7 and report in the
Appendix auxiliary technical material and the proofs of our results.

This paper integrates and extends material from [GMG18], which presented the main
ideas behind the Applied Choreographies framework. The extensions in this work include:
a) full formal definitions (syntax and semantics of all three calculi); b) detailed examples
for each main component of the work (the three calculi, the typing system, the three stages
of compilation) to illustrate their relevant characteristics and features; c) full proofs of the
formal properties guaranteed by the framework (in appendix B, to avoid breaking the flow
of the reader with details of the technical development). Besides the previous points, this
version contains an extended, revised, and refined presentation of all the contents presented
in [GMG18]

2. Frontend Choreographies

We present Frontend Choreographies (FC), the language model intended for programmers.
Before giving the formal syntax of FC, we first describe the intuition behind its key

components. The following table displays the symbols that we are going to use, along with
their names and domains.

Name Symbols Domain

Choreographies C1, C2 −
Processes p, q P
Operations o1, o2 O
Variables x, y Var
Sessions k1, k2 K
Roles A, B A
Locations l1, l2 L

FC programs are choreographies, as in Example 1, denoted by C. A choreography
describes the behaviour of some processes. Processes, denoted p, q ∈ P, are intended as
usual: they are independent execution units running concurrently and equipped with local
variables, denoted x ∈ Var .
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Processes communicate by exchanging messages. A message consists of two elements: i) a
payload, representing the data exchanged between two processes; and ii) an operation, which
is a label used by the receiver to determine what it should do with the message—in object-
oriented programming, these labels are called method names [Pie02]; in service-oriented
computing, labels are typically called operations as in here. Operations are denoted o ∈ O.

Message exchanges happen through a session, denoted k ∈ K, which acts as a communi-
cation channel. Sessions in FC are behaviourally typed [HLV+16]. Intuitively, a session is an
instantiation of a protocol, where each process is responsible for implementing the actions of
a role defined in the protocol. We denote roles with A, B ∈ A.

A process can create new processes and sessions at runtime by invoking service processes
(services for short). Services are always available at fixed locations, denoted l ∈ L, meaning
that they can be used multiple times (in process calculus terms, they act as replicated
processes [SW01]).

FC supports modular development by allowing choreographies, say C and C ′, to be
composed in parallel, written C | C ′. A parallel composition of choreographies is also a
choreography, which can thus be used in further parallel compositions. Composing two
choreographies in parallel allows the processes in the two choreographies to interact over
shared location and session names.

We distinguish between two kinds of statements inside of a choreography: complete and
partial actions. A complete action is internal to the system defined by the choreography,
and thus does not have any external dependency. By contrast, a partial action defines the
behaviour of some processes that need to interact with another choreography in order to be
executed. Therefore, a choreography containing partial actions needs to be composed with
other choreographies that provide compatible partial actions.

To exemplify the distinction between complete and partial actions, we consider the case
of a single communication between two processes.

Complete interaction Composed partial actions

k : c[C].product_ s[S].buy( x )
k : c[C].product_ S.buy
|
k : C _ s[S].buy( x )

Above, on the left we have the communication statement as seen at Line 2 of Example 1.
This is a complete action: it defines exactly all the processes that should interact (c and s).
On the right, we implement the same action as the parallel composition of two choreographies
with partial actions: a send action by process c to role S over session k (left of the parallel)
and a reception by process s from a role C (right of the parallel) over the same session
k. More specifically, we read the send action (top of the parallel) as “process c sends a
message as role C with payload product for operation buy to the process playing role S on
session k”. Dually, we read the receive action (bottom of the parallel) as “process s receives
a message for role S and operation buy over session k and stores the payload in variable
x”. The compatible roles, session, and operation used in the two partial actions make them
compliant. Thus, the choreography on the left is operationally equivalent to the one on
the right. Observe that partial actions do not mention the name of the process on the
other end—for example, the send action by process c does not specify that it wishes to
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C ::= η;C (seq) | if p.e {C1} else {C2} (cond)

| C1 | C2 (par) | k : A _ q[B].{oi(xi);Ci}i∈I (recv)

| 0 (inact) | def X = C ′ in C (rec)

| X (call) | acc k :
︷ ︸
l.q[B];C (accept)

η ::= k : p[A].e_ B.o (send) | start k : p[A] ]
︷ ︸
l.q[B] (start)

| k : p[A].e_ q[B].o(x) (com) | req k : p[A] ] ︷ ︸
l.B (req)

Figure 1: Frontend Choreographies — syntax.

communicate with process s precisely. This mechanism supports some information hiding: a
partial action in a choreography can interact with partial actions in other choreographies
independently of the process names used in the latter. Expressions and variables used by
senders and receivers are also kept local to statements that define local actions.

2.1. Syntax of Frontend Choreographies. We present the formal syntax of FC, displayed
in Figure 1. In the remainder, we use the symbol ∼ over an element to indicate an ordered
set of elements of its kind, e.g., p̃ indicates an ordered set of processes p1, . . . , pn.

Complete Actions. In term (start), process p creates a new session k together with
processes q̃ (q̃ is assumed non-empty). Process p, called active process, is already running,
whereas each process q in

︷ ︸
l.q, called service process, is dynamically created at the respective

service location l. Each process is annotated with the role it plays in the new session k. Term
(com) reads: on session k, process p sends to process q a message for its operation o; the
message carries the evaluation of expression e on the local state of p, whilst x is the variable
where q will store the content of the message. We leave the guest language for writing local
expressions (e) unspecified, and assume that it consists of terms for accessing local variables
(x) and implementing standard computations based on those (e.g., arithmetics).

Partial Actions. A choreography can use partial actions to interact with other chore-
ographies composed in parallel. Therefore, partial actions describe the behaviour of processes
that wish to synchronise with “external” participants. Concretely, these external participants
will be processes and/or services whose behaviours are defined in other choreographies
composed in parallel. In term (req), process p requests some external services, respectively
located at l̃, to create a new session k and some new external processes. Role annotations
follow the same intuition as in term (start): in the new session k, p will play A and each new
external process qi will play the respective role Bi.

Term (acc) is the dual of (req) and defines a choreography module that provides the
implementation of some service processes. We assume that (acc) terms are always at the
top level, to capture that choreography modules are always available. By top level, we mean
that the term is not preceded by another term in a sequential composition (seq).

In term (send), process p sends a message to an external process that plays B in session
k. Dually, in term (recv), process q receives a message for one of the operations oi from
an external process playing role A in session k, and then proceeds with the corresponding
continuation. In the remainder, we omit curly brackets in (recv) terms when they have only
one operation, i.e., k : A _ q[B].o(x);C is an abbreviation of k : A _ q[B].{o(x);C}.
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1 start k : c[C] ] lS.s[S], lB.b[B];

2 k : c[C].buyReq _ s[S].buy( x );

3 req k′ : s[S] ] lD.D;

4 k′ : s[S].mk_shipping( x ) _ D.quoteShipping;

5 k′ : D _ s[S].shippingCosts( y );

6 k : s[S].mk_order( x, y ) _ b[B].reqPay( order );

7 k : c[C].cc_ b[B].sendPay( cc );

8 if b.confirm_pay( cc, order ){

9 k : b[B] _ c[C].ok(); k : b[B] _ q[S].ok();

10 k′ : s[S] _ D.sendShipping

11 } else {

12 k : b[B] _ c[C].ko(); k : b[B] _ q[S].ko();

13 k′ : s[S] _ D.abortShipping

14 }

Figure 2: Choreography C1, extension of Example 1.

1 acc k′ : lD.d[D];

2 k′ : S _ d[D].quoteShipping( pkg );

3 k′ : d[D].quote( pkg ) _ S.shippingCosts;

4 k′ : S _ d[D].{

5 sendShipping(),

6 abortShipping() }

Figure 3: Choreography C2, compliant choreography to Figure 2.

Other Terms. Term (seq) is sequential composition. In a conditional (cond), process p
evaluates a condition e in its local state to choose between the continuations C1 and C2. Term
(par) is standard parallel composition, which allows partial actions in two choreographies
C1 and C2 to interact. Respectively, terms (def ), (call), and (inact) model the definition of
recursive procedures, procedure calls, and inaction.

Some terms bind identifiers in continuations—the choreography that follows them in a
sequential composition. In terms (start) and (acc), the session identifier k and the process
identifiers q̃ are bound (as they are freshly created). In terms (com) and (recv), the variables
used by the receiver to store the message are bound (x and all the xi, respectively). In term
(req), the session identifier k is bound. Finally, in term (def ), the procedure identifier X is
bound. In the remainder, we omit 0 or irrelevant variables (e.g., in communications with
empty messages). Terms (com), (send), and (recv) include role annotations only for clarity
reasons; roles in such terms can be inferred, as shown in [Mon13].

Example 2. In Figure 2, we extend (in blue) the behaviour of the seller of Example 1 to
use an external module. In the updated code, the seller contacts an external service for the
delivery of the product: the seller receives a request buyReq from the buyer. The request
contains the wanted product and the delivery address (Line 2). Next, the seller creates a
new session k′ with an external delivery process (Line 3) and sends to the latter the shipping
information of the product, e.g., the origin and destination addresses (Line 4). At Line 5, the
seller receives the shipping costs, which it adds to the costs of the order at the bank (Line 6).
At Lines 11 and 14, the seller notifies the delivery process if it shall ship the product or not.
Let us call C1 the code above. We report in Figure 3 the module C2 of a compliant delivery
service for C1. We obtain a working system by composing the two choreographies in parallel:
C1 | C2.

2.2. Semantics of Frontend Choreographies. We give an operational semantics for FC
in terms of reductions of the form D,C → D′, C ′, where D is a deployment. Deployments
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keep track of: the local states of processes (the values of their local variables); and the
messages in transit in sessions, which we use to model asynchronous communications. In the
following, we formalise our notion of deployment and we present our reduction semantics.

2.2.1. Frontend Deployments. In the remainder, we adopt as a convention, when indicating a
Frontend Choreographies program, its shortened form “Frontend choreography” (lowercase c)
or simply “choreography” when the context clearly associates it to Frontend Choreographies.
We also use the shortened form “Frontend deployment” to indicate a Frontend Choreographies
deployment.

Each pair of roles in a session has two dedicated asynchronous message queues that they
can use to exchange messages, one for each direction. Formally, let Q = K ×A×A be the
set of all queue identifiers ; we write k[A〉B] ∈ Q to identify the queue from role A to role B in
session k.

A deployment D is an overloaded partial function defined by cases as the sum of two
partial functions, fs : P ⇀ Var ⇀ Val and fq : Q ⇀ Seq(O × Val) (their domains and
co-domains are disjoint):

D(z) =

{
fs(z) if z ∈ P
fq(z) if z ∈ Q

Function fs maps a process p to its state. A state is a partial function from variables
x, y ∈ Var to values v ∈ Val . Function fq stores the queues used in sessions. Each queue is
a sequence of messages m̃ = m1 :: . . . :: mn | ε (ε is the empty queue), where each message
m = (o, v) ∈ O × Val contains the operation o for which the message is intended and the
payload v.

Deployments are a runtime concept: programmers do not need to define them, just as
they normally do not explicitly give an initial state for their programs in other language
models. Formally, we assume that choreographies without free session names start execution
with a default deployment that contains empty process states. Let fp(C) return the set of
free process names in C. Then, we formally define a default deployment as follows.

Definition 1 (Default Deployment). Let C be a choreography without free session names.
Then, the default deployment D for C is defined as the function that maps all free process
names in C to empty states (we write ∅ for the empty partial function from Var to Val):

D =
[
p 7→ ∅ | p ∈ fp(C)

]
Intuitively, D is a default deployment for a choreography without free session names C

if i) D is defined for all and only the processes that appear free in C and ii) the state of
these processes is empty.

2.2.2. Frontend Deployment Transitions. In our semantics, choreographic actions have effects
on the state of a system — deployments change during execution. At the same time, a
deployment also determines which choreographic actions can be performed. For example, a
communication from role A to role B over session k requires a queue k[A〉B] to exist in the
deployment of the system.



10 S. GIALLORENZO, F. MONTESI, AND M. GABBRIELLI

D′ = D
[
q 7→ ∅ | q ∈ q̃

][
k[C〉E] 7→ ε | {C, E} ⊆ {A, B̃}

]
D, start k : p[A] ]

︷ ︸
l.q[B] I D′

bD|Starte

v = eval(e,D(p)) D(k[A〉B]) = m̃

D, k : p[A].e_ B.o I D
[
k[A〉B] 7→ m̃ :: (o, v)

] bD|Sende

D(k[A〉B]) = (o, v) :: m̃

D, k : A _ q[B].o(x) I D
[
k[A〉B] 7→ m̃

][
q 7→ D(q)[x 7→ v]

] bD|Recve

Figure 4: Frontend Choreographies — Deployment transitions.

We formalise the notion of which choreographic actions are allowed by a deployment
and their effects using transitions of the form D, δ I D′, read “the deployment D allows for
the execution of δ and becomes D′ as result”. The following grammar defines δ actions.

δ ::= start k : p[A] ]
︷ ︸
l.q[B] (session start)

| k : p[A].e_ B.o (send in session)
| k : A _ q[B].o(x) (receive in session)

The rules defining D, δ I D′ are given in Figure 4.
Rule bD|Starte states that the creation of a new session k between an existing process p and
new processes q̃ results in updating the deployment with: a new (empty) state for each of
the new processes q in q̃ (

[
q 7→ ∅ | q ∈ q̃

]
); and a new (empty) queue between each pair of

distinct roles in the session (
[
k[C〉E] 7→ ε | {C, E} ⊆ {A, B̃}

]
).

Rule bD|Sende models the effect of a send action. In the first premise, we use the auxiliary
function eval to evaluate the local expression e in the state of process p, obtaining the value
v to use as message payload. Then, in the conclusion, we add a message (o, v) — where o is
the operation used to label the message — to the tail of the queue k[A〉B], i.e., the queue
expected to contain messages sent by A to B in session k. We assume that function eval
always terminates — in practice, this can be obtained by using timeouts.
Rule bD|Recve models the effect of a reception. First, in the premise, we look up the head
of the message queue between sender and receiver, i.e., (o, v). Then, in the conclusion, we
remove the message from the queue (

[
k[A〉B] 7→ m̃

]
) and update the state of the receiver at

the variable used to store the message (
[
q 7→ D(q)[x 7→ v]

]
).

2.2.3. Reductions. Using deployment transitions, we can now define the rules for reductions
D,C → D′, C ′. We call a configuration D,C a running choreography. The reduction relation
→ for FC is the smallest relation closed under the rules given in Figure 5.
Rule bC|Starte creates a new session, by ensuring that both the new session name k′ and new
processes r̃ are fresh wrt D (D#k′, r̃). We use the fresh names in the continuation C, by
using a standard substitution C[k′/k][̃r/q̃].
Rule bC|Sende reduces a send action, if the deployment permits it: D, k : p[A].e_ B.o I D′.
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D#k′, r̃ δ = start k′ : p[A] ]
︷ ︸
l.q[B] D, δ I D′

D, start k : p[A] ]
︷ ︸
l.q[B];C → D′, C[k′/k][̃r/q̃]

bC|Starte

η = k : p[A].e_ B.o D, η I D′

D, η;C → D′, C
bC|Sende

j ∈ I D, k : A _ q[B].oj(xj) I D′

D, k : A _ q[B].{oi(xi);Ci}i∈I → D′, Cj
bC|Recve

i = 1 if eval( e,D(p) ) = true, i = 2 otherwise
D, if p.e {C1} else {C2} → D, Ci

bC|Conde

D,C1 → D′, C ′1
D, def X = C2 in C1 → D′, def X = C2 in C ′1

bC|Ctxe

R ∈ {≡ , 'C } CRC1 D,C1 → D′, C ′1 C ′1RC ′

D,C → D′, C ′
bC|Eqe

D,C1 → D′, C ′1
D,C1 | C2 → D′, C ′1 | C2

bC|Pare

i ∈ {1, . . . , n} D#k′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {r̃} =

⋃
i{r̃i}

δ = start k′ : p[A] ]
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D′

D, req k : p[A] ] ︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
→

D′, C[k′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

Figure 5: Frontend Choreographies—semantics.

def X = C ′ in 0 ≡C 0 C | C ′ ≡C C
′ | C (C1 | C2) | C3 ≡C C1 | (C2 | C3)

def X = C ′ in C[X] ≡C def X = C ′ in C[C ′]

k : p[A].e_ q[B].o(x);C ≡C k : p[A].e_ B.o; k : A _ q[B].{o(x);C}

Figure 6: Frontend Choreographies — structural congruence ≡C

Rule bC|Recve reduces a message reception, if the deployment permits the reception of a message
on one of the branches in the receive term (j ∈ I). Recalling the corresponding rule bD|Recve,
this can happen only if the deployment D has a message for operation oj in the queue k[A〉B].
Rule bC|Eqe closes → under the congruences ≡C and 'C. Structural congruence ≡C, reported
in Figure 6, is the smallest congruence supporting α-conversion, recursion unfolding, and
commutativity and associativity of parallel composition. The swap relation 'C, reported in
Figure 7, is the smallest congruence able to exchange the order of non-interfering concurrent
actions. For example, provided pn returns the set of process names, Rule bCS|EtaEtae swaps two
communications respectively enacted by completely disjoint processes.



12 S. GIALLORENZO, F. MONTESI, AND M. GABBRIELLI

pn(η) ∩ pn(η′) = ∅
η; η′ 'C η′; η

bCS|EtaEtae

p 6∈ pn(η)

if p.e {η;C1} else {η;C2}
'C η; if p.e {C1} else {C2}

bCS|EtaCnde

q 6∈ pn(η)

k : A _ q[B].{oi(xi); η;Ci}i∈I 'C η; k : A _ q[B].{oi(xi);Ci}i∈I
bCS|EtaRcve

p 6= q

k : A _ p[B].{oi(xi); k′ : C _ q[D].{o′ij(x′ij);Cij}j∈J}i∈I
'C k′ : C _ q[D].{o′j(x′j); k : A _ p[B].{oij(xij);Cij}i∈I}j∈J

bCS|RcvRcve

p 6= q

if p.e {if q.e′ {C1} else {C2}} else {if q.e′ {C ′1} else {C ′2}}
'C if q.e′ {if p.e {C1} else {C ′1}} else {if p.e {C2} else {C′2}}

bCS|CndCnde

p 6= q

k : A _ p[B].{oi(xi); if q.e {Ci1} else {Ci2}}i∈I
'C if q.e {k : A _ p[B].{oi(xi);Ci1}i∈I} else {k : A _ p[B].{oi(xi);Ci2}i∈I}

bCS|RcvCnde

Figure 7: Frontend Choreographies — swap relation 'C.

Rule bC|Eqe also enables the reduction of complete communications on (com) terms—see
the last equivalence in Figure 6, which unfolds a complete communication term into the two
corresponding send and receive terms.
Rule bC|PStarte starts a new session by synchronising a partial choreography that requests to
start a session with other choreographies that can accept the request. The premise of the rule
{
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i, where

⊎
indicates the disjoint union of the list of located roles, requires

that in the accepting choreographies the list of locations and their supported roles match
the corresponding list of the request. The rest of the rule is similar to bC|Starte. Here it is
convenient that deployment transitions are specified by a separate set of rules, since the
effect of starting a session using partial actions is equivalent to that of using a complete start
term. The choreographies accepting the request remain available for subsequent reuses.

Finally, rules bC|Conde,bC|Ctxe, and bC|Pare are standard and respectively model guarded condi-
tionals, recursion, and parallel composition.

Example 3. The interplay between 'C and rule bC|Sende yields an elegant formalisation of
asynchronous behaviour for choreographies that, differently from previous work [CM13], does
not require a labelled transition system and ad-hoc reduction rules. Consider Line 10 in
Example 2, reported below.

C
def
= k : b[B] _ c[C].ok(); k : b[B] _ q[S].ok()

We can reduce C as follows (for brevity, we omit deployments):

C → k : B _ c[C].ok(); k : b[B] _ s[S].ok() by bC|Eqe with R = ≡C and bC|Sende

→ k : B _ s[S].ok(); k : B _ c[C].ok() by bC|Eqe with R = 'C and bC|Sende

In this case, process s may receive its message before process c, due to asynchronous
message passing (the sending actions for process b are non-blocking).
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Global Types
G ::= A _ B.{oi(Ui);Gi}i (communication)

| rec t.G | t (recursion)

| end (end)

Local Types

T ::= ⊕A.{oi(Ui);Ti}i (send)

| &A.{oi(Ui);Ti}i (receive)

| rec t.T | t (recursion)

| end (end)

Sort Types U ::= unit | int | bool | str | . . .

Figure 8: Frontend Choreographies — Syntax for Global and Local Types.

3. Typing

In this section, we define our typing discipline for the Frontend Choreographies. Our
typing checks the behaviour of sessions against protocols, given as Multiparty Session
Types [HYC08, CDCYP15]. Interestingly, we retain the same syntax of traditional Multiparty
Session Types yet we ensure that correct initial deployments do not corrupt at runtime due
to inconsistencies on states and message queues.

In § 3.1 we present the types that abstract choreographies, called global types. We define
the syntax of global types and we introduce local types. The latter are abstract descriptions
of the behaviour of single processes, used for type checking. We also formalise how, from a
global type, we obtain a set of related local types by means of a projection procedure. In
§ 3.2 we formalise the environment and the rules of our type discipline. In § 3.3, we consider
the typing of running choreographies. We illustrate why and how a choreography and its
companion deployment can become inconsistent and we present a runtime typing extension
to avoid inconsistencies. Finally, in § 3.4, we present two comprehensive examples to clarify
the relationship between types and running choreographies, and in § 3.5 we formalise the
properties guaranteed by our typing system.

3.1. Types and Type Projection. Global and Local types. As in standard Multiparty
Session Types, we use global types to represent protocols from a global viewpoint and local
types to describe the behaviour of each participant. Our type system checks that a set of
local types, each abstracting the behaviour of a process in a choreography, coherently follows
a global type. We report in Figure 8 the syntax of global types G and local types T .

A global type A _ B.{oi(Ui);Gi}i abstracts a communication, where A can send to B a
message on any of the operations oi and continue with the respective continuation Gi. A
carried type U types the value exchanged in the message. In local types, !A.{oi(Ui);Ti}i
abstracts the sending of a message of type Ui to role A on one of the operations oi, with
continuation Ti. Dually, ?A.{oi(Ui);Ti}i abstracts the offering of an input choice among the
operations oi, with continuation Ti. The other terms for recursion and end of types are
standard. As done for FC, also in types we omit curly brackets when outputs and inputs
comprise only one operation.
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G1 = C _ S.buy(str);

S _ C.reqPay(int);

C _ B.sendPay(str);

B _ C.{
ok(); B _ S.ok(),

ko(); B _ S.ko()

}; end

G2 = S _ D.quoteShipping(str);

D _ S.shippingCost(int);

S _ D.{

sendShipping(),

abortShipping();

}; end

Figure 9: Global types G1 (left) and G2 (right) abstract the respective choreographies
presented in Figures 2 and 3.

JB _ C.{oi(Ui);Gi}iKA =


⊕C.{oi(Ui); JGiKC}i if A = B

&B.{oi(Ui); JGiKC}i if A = C⊔
i JGiKA otherwise

Jrec t.GKA =

{
rec t. JGKA if A ∈ G
end otherwise

JtKA = t

JendKA = end

Figure 10: Frontend Choreographies — Global Type Projection.

As an example, we report in Figure 9 two global types, G1 and G2, that abstract the
choreographies presented in Figures 2 and 3. In particular, G1 types session k, created at
locations (lS, lB) — Line 1 of Figure 2 — and G2 types session k′, created at location (lD) —
request at Line 3 of Figure 2, accept at Line 1 of Figure 3. We also write operations followed
by empty parentheses when the type of their message U is unit.
Type Projection. To relate global types to the behaviour of processes in choreographies, we
project a global type G onto a set of local types, each corresponding to the behaviour of a
single role. We report in Figure 10 the projection of global types, defined following [MY13].
JGKA denotes the projection of G onto the role A. Intuitively, JGKA gives an encoding of the
local actions expected by role A in the global type G. When projecting a communication,
we require the local behaviour of all roles not involved in it to be merged with the merging
operator t. Like in [MY13], T t T ′ is isomorphic to T and T ′ up to branching, where all
branches of T or T ′ with distinct operations are also included, formally

T t T ′ =


T if T = T ′

&A.


{ oh(Uh);Th }h∈I\J ∪
{ oh(Uh);T ′h }h∈J\I ∪
{ oh(Uh);Th t T ′h }h∈J∩I

 if T = &A.{oi(Ui);Ti}i∈I
and T ′ = &A.{oj(Uj);T ′j}j∈J
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Γ ::= ∅ (empty environment)

| Γ, p.x : U (variable)

| Γ, X : Γ (definition)

| Γ, k[A] : T (local session)

| Γ, p : k[A] (ownership)

| Γ, l̃ : G〈A|B̃|C̃〉 (service)

Figure 11: Frontend Choreographies — Typing Environments.

3.2. Type checking. Now that we defined the relation between global and local types, we
can proceed to present our system that guarantees that sessions in choreographies follow
their types.

3.2.1. Environments. We define our typing environments Γ,Γ′, . . . as reported in Figure 11.
The typing of variables denote that a process p has in its state a variable x of type

U . We assume that we can write Γ, p.x : U only if either x has not been typed yet in Γ
or it is already associated with the same type U (formally let {u, u′} ∈ U , if u = u′ then
Γ, p.x : u, p.x : u′ = Γ, p.x : u). We assume a similar convention for all the identifiers in Γ
except for service typings, whose rule for set inclusion is detailed at the end of this section.
The typing of definition of recursive procedures associates a procedure identifier X to a
typing environment Γ. A local session typing k[A] : T states that role A in session k follows
the local type T . An ownership typing p : k[A] states that process p owns the role A in session
k. Hence, each process can participate in multiple sessions, but can play only one role in
each session. A service typing l̃ : G〈A|B̃|C̃〉 types with a global type G all sessions created by
contacting the services at the locations l̃. In the typing,
• A is the role that the active process (the starter) should play;
• B̃ are the roles respectively played by each service process at l in l̃ — we assume that each
l plays a unique role, so the lengths of B̃ and l̃ are the same;
• C̃ are the roles implemented by the choreography that we are typing — we assume C̃ ⊆ B̃,
i.e., that C̃ contain a subset of the roles in B̃, ordered following the order in B̃ (as of
Definition 14).
Regarding set inclusion of service typings, when we write Γ = Γ′, l̃ : G〈A|B̃|C̃〉 we assume

that:
• {A, B̃} = roles(G), where function roles returns the set of roles in G;
• the locations l̃ are ordered lexicographically;
• the locations in l̃ do not appear in any other service typing in Γ;
• that either:
– l̃ does not appear in Γ′ and the resulting Γ includes it, formally l̃ 6∈ dom(Γ′) and

Γ = Γ′, l̃ : G〈A|B̃|C̃〉;
– l̃ appears in Γ′, such that Γ′ = Γ′′, l̃ : G〈A|B̃|D̃〉, and {C̃} ∩ {D̃} = ∅, i.e., the roles in C̃ do

not appear in D̃. The resulting Γ includes in the service typing of l̃ the merged list of
roles in C̃ and D̃, following the lexicographic order in B̃. We write the merge as D̃ ./B̃ C̃
(see Definition 15) and Γ = Γ′′, l̃ : G〈A|B̃|D̃ ./B̃ C̃〉.
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Γ, l̃ : G〈A|B̃|B̃〉, init(
︷ ︸
r[C], k,G ) ` C

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ

Γ, l̃ : G〈A|B̃|B̃〉 ` start k : p[A] ]
︷ ︸
l.q[B];C

bT|Starte

Γ, p : k[A], k[A] : JGKA ` C l̃ : G〈A|B̃|∅〉 ∈ Γ

Γ ` req k : p[A] ] ︷ ︸
l.B;C

bT|Reqe

l̃ ⊆ l̃′ Γ, l̃′ : G〈A|B̃|∅〉, init(
︷ ︸
q[C], k,G ) ` C q̃ 6∈ Γ

Γ, l̃′ : G〈A|B̃|C̃〉 ` acc k :
︷ ︸
l.q[C];C

bT|Acce

Γ ` p : k[A], q : k[B] j ∈ I Γ ` p.e : Uj Γ, q.x : Uj , k[A] : Tj , k[B] : T ′j ` C
Γ, k[A] : ⊕ B.{oi(Ui);Ti}i∈I , k[B] : &A.{oi(Ui);T ′i}i∈I ` k : p[A].e_ q[B].oj(x);C

bT|Come

j ∈ I Γ ` p : k[A] Γ ` p.e : Uj Γ, k[A] : Tj ` C
Γ, k[A] : ⊕ B.{oi(Ui);Ti}i∈I ` k : p[A].e_ B.oj ;C

bT|Sende

Γ ` q : k[B] ∀j ∈ I. Γ, q.xj : Uj , k[B] : Tj ` Cj
Γ, k[B] : &A.{oi(Ui);Ti}i∈I ` k : A _ q[B].{oj(xj);Cj}j∈I∪J

bT|Recve

Γ ` p.e : bool Γ ` C1 Γ ` C2

Γ ` if p.e {C1} else {C2}
bT|Conde

Γ, X : Γ′ ` C Γ′, X : Γ′ ` C ′ Γ′|locs ⊆ Γ

Γ ` def X = C ′ in C
bT|Defe

Γ1 ` C1 Γ2 ` C2

Γ1,Γ2 ` C1 | C2
bT|Pare

end(Γ)

Γ ` 0
bT|Ende

Γ′′ ⊆ Γ′ end(Γ)

Γ,Γ′, X : Γ′′ ` X
bT|Calle

Figure 12: Frontend Choreographies — Typing Rules.

We underline that the annotation C̃ in service typings plays two important parts: it enables
the composition of choreographies and it ensures that only one choreography implements
a specific role. This is mirrored in the composition Γ = Γ′, l̃ : G〈A|B̃|C̃〉 where, if Γ′ already
contains the typing for some roles D̃ in l̃, Γ will contain the additional roles defined in C̃

(provided D̃ and C̃ contain distinct roles).

3.2.2. Typing Judgements and Rules. A judgement Γ ` C states that the choreography C
follows the specifications given in Γ. We comment the typing rules reported in Figure 12.

Rule bT|Starte types a session start. In the first premise, the service typing l̃ : G〈A|B̃|B̃〉
checks that the continuation implements all the roles in protocol G. The function init
assembles the typing environment that correctly types — with the appropriate ownerships
and local typings — the freshly-started session k, given the global type G and the processes
in p̃, each playing its corresponding role in B̃. Formally,

init(
︷ ︸
p[A], k,G ) =

{
q : k[B], k[B] : JGKB | q[B] ∈

{︷ ︸
p[A]

} }
.
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where the type of each process p ∈ p̃ playing role B ∈ B̃ is the local type projection JGKB of
the global type G. In bT|Starte, we abuse the notation q̃ 6∈ Γ to check that all freshly created
processes in q̃ do not appear in Γ (i.e., there is no variable or ownership typings in Γ associated
with any process in q̃).

Rule bT|Reqe types (req) terms and is similar to bT|Starte, although it only performs the checks
for the process p, playing role A, that requests the creation of the new session k. Dually,
bT|Acce mirrors Rule bT|Starte and l̃ ⊆ l̃′ checks that (following Definition 14) the list of locations
of the service typing in Γ includes the locations in the (acc) term. In the premise, we type
the continuation C with l̃′ : G〈A|B̃|∅〉 since (acc) terms can only appear at top level in
choreographies.

Rule bT|Come types a complete communication. From left to right the premises check that:
(1) the sender p and the receiver q own their respective roles in the session;
(2) since j ∈ I:
• operation oj can be effectively selected by the sender, according to its local type;
• similarly, oj is among the operations offered by the receiver, according to its local type;

(3) the expression of the sender (e) has the type1 Uj , expected by the protocol;
(4) the resulting environment Γ, q.x : Uj , k[A] : Tj , k[B] : T ′j correctly types the continuation

C, in particular that:
• the receiver q correctly uses the reception variable x in C;
• processes p and q proceed according to their local types, respectively Tj and T ′j .
Rules bT|Sende and bT|Recve share part of the checks commented for bT|Come and judge the

respective partial terms (send) and (recv). Note that, as in standard multiparty session
types, the local typing of the branching process q is contravariant wrt the branches in the
choreography, i.e., the rule bT|Recve checks that the operations supported by the typing oi, i ∈ I
are at least a subset of the actual operations oj , j ∈ I ∪ J provided in the (recv) term.

Rule bT|Conde checks that the expression of a conditional has a compatible type (bool) and
that both branches C1 and C2 are correctly typed by Γ.

Rule bT|Defe checks procedure definitions. Here, function |locs applied to an environment Γ
returns all service typings in it. In the rule we write Γ′|locs ⊆ Γ to check that the body of
the recursive procedure does not introduce unexpected services, i.e., services that are not
present at top level.

In rule bT|Pare we extend the set inclusion for Γ1,Γ2 point-wise to the identifiers in Γ to
merge typings and to check that choreographies executing in parallel do not implement
overlapping roles at locations.

In rule bT|Ende, the predicate end(Γ) holds if the protocols for all sessions in Γ have
terminated (i.e., all local typings have type end).

bT|Calle checks a procedure call. The premise Γ′′ ⊆ Γ checks that procedure X does
not introduce unexpected typings (and, by extension, behaviours) wrt the active sessions
contained in Γ′. The premise end(Γ) makes sure that the remaining sessions in the typing
environment have all terminated.

3.3. Runtime Typing. To prove that well-typed FC programs never go wrong, we need
to pay attention to how their deployments evolve at runtime. For example, in rule bC|Sende,
the deployment D must contain the proper queue where the sender can deliver its message:
a remarkable difference wrt previous works on choreographies, where such conditions do

1The judgement ` v : U reads as “value v has type U ”.
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not exist and choreographies can always continue execution (see, e.g., [QZCY07, BGG+06,
CHY12, CM13]).

To guarantee that well-typed FC programs never go wrong, we must guarantee that
their companion deployments evolve in a consistent way. We address this issue by extending
our typing discipline to check runtime states.
Wrong Deployments. We want to rule out “wrong” deployments. Intuitively, we say that a
deployment is wrong wrt a choreography if e.g., processes have undefined variables that are
used in the choreography or a message queue does not contain messages as expected by the
protocol of the session in which it is used.

Wrong deployments may cause unpredictable executions or faulty behaviours, e.g.,
deadlocks. We illustrate the consequences of having wrong deployments with this simple
running choreography:

D, k : p[A].y _ q[B].o(x);0

• (uninitialised variables) assume that D is such that the state of process p in D, D(p), does
not contain a value for variable y; then the condition eval( y,D(p) ) given in rule bD|Sende is
undefined and rule bC|Come cannot be applied, causing the choreography to get stuck.
• (protocol violations) assume that D( k[A〉B] ) = (o′, v) where o 6= o′. Namely, that i) in
session k process q (playing role B) has a message in its receiving queue from process
p (playing role A) and ii) the operation of the message is o′, different from operation o
expected in the choreography. If we let the choreography reduce following the previous
point, it ends up deadlocked. After the reduction, the queue used by p contains in its head
the message (o′, v) and we cannot apply rule bC|Recve, as it expects to find a message for o at
that position.

To avoid these outcomes, we extend our type system to prove that, given a well-typed
choreography and a non-wrong companion deployment, our semantics never produces wrong
deployments. Note that this development is transparent to programmers, since default
deployments are trivially never wrong.

Runtime Global Types. To capture asynchrony and partial runtime states, we extend
the syntax of global types with:

G ::= . . .

| ⊕AB.{oi(Ui)};G (global choice)

| &AB.{oi(Ui);Gi}i∈I (global branch)

| A〉B.o(U);G (global buffer)

Global choice and branch are the equivalent of a complete communication A _ B.o(U);G
where: ⊕AB.{oi(Ui)};G means that role A can choose to send a message to role B on operation
oi with type Ui, proceeding with continuation G; while &AB.{oi(Ui);Gi}i∈I means that B can
receive a message from A on any operation oi, i ∈ I, proceeding with the related continuation
Gi.

When the choice performed by A is applied to the branch controlled by B, we obtain
term A〉B.o(U), which marks that A has sent the message but B still has to consume it.

Semantics of Global Types. To express the (abstract) execution of protocols, we give
a semantics for global types. Formally, G → G′ is the smallest relation on the recursion-
unfolding of global types satisfying the rules in Figure 13.
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o ∈
⋃
i{oi} G′ =

A〉B
o↓G

⊕AB.{oi(Ui)};G → G′
bG|Sende

A〉B.o(U);G → G
bG|Recve

R ∈ {≡G,'G} G R G1 G1 → G′1 G′1 R G′

G → G′
bG|Eqe

Reduction Rules.

A _ B.{oi(Ui);Gi} ≡G ⊕AB.{oi(Ui)}; &AB.{oi(Ui);Gi}

G[rec t.G′] ≡G G [ G′[rec t.G′/t] ]

Structural Congruence.

A 6= C ∨ B 6= D

⊕AB.{oi(Ui)};⊕CD.{oj(Uj)} 'G ⊕CD.{oj(Uj)};⊕AB.{oi(Ui)}
bGS|ChoChoe

A 6= C ∨ B 6= D

&AB.{oi(Ui); &CD.{oj(Uj);Gij}} 'G &CD.{oj(Uj); &AB.{oi(Ui);Gij}}
bGS|BrcBrce

A 6= D

⊕AB.{oi(Ui)}; &CD.{oj(Uj);Gj} 'G &CD.{oj(Uj);⊕AB.{oi(Ui)};Gj}
bGS|ChoBrce

A 6= C ∨ B 6= D

A〉B.o(U); &CD.{oj(Uj);Gj} 'G &CD.{oj(Uj); A〉B.o(U);Gj}
bGS|BufBrce

A 6= C ∨ B 6= D

A〉B.o(U); C〉D.o′(U ′) 'G C〉D.o′(U ′); A〉B.o(U)
bGS|BufBufe

A 6= D

⊕AB.{oi(Ui)}; C〉D.o(U) 'G C〉D.o(U);⊕AB.{oi(Ui)}
bGS|ChoBufe

Swap Relation.

A〉B
oj↓&AB.{oi(Ui);Gi}i∈I = A〉B.oj(Uj);Gj if j ∈ I
A〉B
oj↓&CD.{oi(Ui);Gi}i∈I = &CD.{oi(Ui); A〉Boj↓Gi} if A 6= C ∨ B 6= D

A〉B
o↓C〉D.o(U);G = C〉D.o(U);

A〉B
o↓G A〉B

o↓ ⊕ CD.{oi(Ui)};G = ⊕CD.{oi(Ui)}; A〉Bo↓G
A〉B
o↓rec t.G = rec t.G

A〉B
o↓t = t

A〉B
o↓end = end

Application Function.

Figure 13: Global types — Semantics.

Rule bG|Sende allows the sending of a message from a (global choice). The continuation G′
is obtained from the application of the sending to the corresponding (global branch), with
function A〉B

oi↓G that transforms the related branch in G into a (global buffer) on the selected
operation oi, followed by the respective continuation Gi.

The actual reception of the message is executed in rule bG|Recve. In bG|Eqe we model the
splitting of complete communications and recursion unfolding with the structural equivalence
≡G, the smallest congruence defined by the rules in Figure 13. To capture the semantics of
asynchronous message delivery, we define the swap relation 'G as the smallest congruence
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JC _ D.{oi(Ui);Gi}KAB =

{
end if C = A ∧ D = B⊔
i JGiK

A
B otherwise

JC〉D.o(U);GKAB =

{
&A.o(U); JGKAB if C = A ∧ D = B

JGKAB otherwise

JtKAB = JendKAB = Jrec t.GKAB = end

Figure 14: Frontend Choreographies — Buffer Type Projection.

defined by the rules in Figure 13. Both congruences are similar to what presented for
choreographies in § 2.2. Note that rules bGS|ChoBrce and bGS|ChoBufe enable the swapping of choice
terms with receptions, as long as the swap preserves the causal consistency between operations
(i.e., we do not swap a sending that is causally dependent from a reception on the same role).

Runtime Type checking and Typing Rules. We extend the typing rules given in the
previous section to check runtime terms. The extension consists in i) new terms for Γ, and
ii) the introduction of rule bT|DCe to type runtime choreographies. We extend the grammar of
typing environments with

Γ ::= . . .

| Γ, p@l (location)

| Γ, k[A〉B] : T (buffer)

where Γ, p@l states that process p runs at location l and a buffer typing k[A〉B] : T types the
messages in the queue where the process implementing role B in session k receives messages
from role A. We extend to buffer typings the assumption for set inclusion stated for standard
elements in Γ. For location typings, we assume that we can write Γ, p@l only if p@l 6∈ Γ.
This formalises the requirement that a process can appear only in one choreography (e.g.,
given the choreography C = C1 | C2 process p ∈ pn(C) appears either in C1 or in C2) and
that it is associated only to one location.

To relate the typings of queues to the buffer types expected by the protocol of sessions,
we define the buffer type projection JGKAB, which follows the rules in Figure 14 and returns
the expected buffer type of role B from A in G. JGKAB extracts from G the partial receptions
of the form A〉B.o(U), translating them to local types of the form &A.o(U). Below, we report
the rule that extends global type projection for global buffers.

JA〉B.o(U);GKC =

{
&A.o(U); JGKC if C = B

JGKC otherwise

Note that we do not need to extend the projection to (global choice) and (global branch).
Indeed, in our setting we consider only running global types that are evolution of a global type,
hence global choices and branches are always balanced. Given a running global type G, we can
always obtain an equivalent ('G, ≡G) global type G′ which is absent from (global choice) and
(global branch) terms. We call a running global type canonic if it contains no (global choice)
and (global branch) terms. When writing projections of global types we assume G to be in
canonic form.

Finally, we extend our typing discipline with a new rule bT|DCe that checks for coherence
among types, choreographies, and deployments. To define bT|DCe, we formalise a predicate,



APPLIED CHOREOGRAPHIES 21

called partial coherence2 and denoted pco(Γ), that holds if and only if, for all sessions k, the
local and buffer typings of k follow (are projections of) the same global type G.

Definition 2 (Partial Coherence). We write pco(Γ) when, for all sessions k in Γ, there
exists a global type G such that

∀ k[B] : T ∈ Γ, T = JGKB ∧ ∀ A ∈ roles(G) \ {B}, Γ ` k[A〉B] : JGKAB
Rule bT|DCe is defined as:

pco(Γ) Γ ` D Γ ` C
Γ ` D,C

bT|DCe

where a judgement Γ ` D,C states that C and D are coherent according to Γ and all
sessions in Γ are coherent. Γ is an abstraction between D and C and guarantees that D
cannot go wrong. Formally

Definition 3 (Deployment Judgements).

Γ ` D ⇐⇒

{
(1) ∀ p.x : U ∈ Γ, D(p).x : U

(2) ∀ k[A〉B] : T ∈ Γ ∧D(k[A〉B]) = m̃, bte(A, m̃) = T

We comment the checks performed by Γ ` D: (1) checks that, for each typing p.x : U
in Γ, D associates x, in the state of process p, to a value of type U ; (2) uses buffer types
to check that the typing of a message queue in Γ is correct wrt to the actual sequence of
messages stored by that queue in D. We extract the type of a queue m̃, i.e., the sequence of
message receptions from a role A, with function bte(A, m̃). Formally,

Definition 4 (Buffer Type Extraction). Let ` vi : Ui, i ∈ [1, n] and m̃ = (o1, v1) :: · · · ::
(on, vn) then bte( A, m̃ ) = &A.o1(U1); · · · ; &A.on(Un).

3.4. Runtime Examples, Typing and Reductions. In this section, we present two
running examples that illustrate the relationship between global types and choreographies.
First we report a basic case where a session starts and two processes exchange a message.
Then we consider a started session and comment the asynchronous delivery of messages.

Example 4 (Start and Message Delivery). We consider a running choreography C,D and a
global type G such that D is a default deployment (cf. Definition 1) and

C = start k : a[A] ] lB.b[B], lC.c[C];
k : a[A]."ok" _ b[B].pass( x );
k : b[B].x_ c[C].fwd( x )

G = A _ B.pass(str);
B _ C.fwd(str);
end

The global type G is used in the typing environment Γ to check C,D, formally the service
typing lB, lC : G〈 A | B, C | B, C 〉 belongs to Γ and Γ ` C,D.

Now, we let D,C reduce to D′, C ′ following rules bC|Starte and bD|Starte so that D contains the
data and queues needed to support interactions on session k. Finally, we report in Table 1:
• left column, the main elements in the typing environment Γ, i.e., the evolution of the
type G. To show how partial coherence (Definition 2) holds, we report also the local and
buffer types of A, B, and C projected from G following global type projection JGKA for local
types (see Figure 10) and buffer type projection JGKBA (see Figure 14) for buffer types. For
brevity, we omit to report empty buffer types such as k[A〉B] = end;

2Partial because it accounts for missing typings of roles implemented by external partial choreographies.
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Typing Environment Choreography Deployment

1○

G = A _ B.pass(str);
B _ C.fwd(str);
end

k[A] = ⊕B.pass(str); end
k[B] = &A.pass(str);

⊕C.fwd(str); end
k[C] = &B.fwd(str); end

C ′ = k : a[A]."ok" _ b[B].first( x );
k : b[B].x_ c[C].second( x )

D′

G→ G′ by bG|Eqe, bG|Sende C ′ → C ′′ by bC|Eqe, bC|Sende
δ = k : a[A]."ok" _ B.pass

D′, δ I D′′ by bD|Sende

2○

G′ = A〉B.pass(str);
B _ C.fwd(str);
end

k[A] = end
k[B] = &A.pass(str);

⊕C.fwd(str); end
k[C] = &B.fwd(str); end
k[A〉B] = &A.pass(str)

C ′′ = k : A _ b[B].pass( x );
k : b[B].x_ c[C].fwd( x )

D′′(k[A〉B]) = (pass, "ok")

G′ → G′′ by bG|Recve C ′′ → C ′′′ by bC|Recve
δ′ = k : A _ b[B].pass(x)
D′′, δ′ I D′′′ by bD|Recve

3○

G′′ = B _ C.fwd(str);
end

k[A] = end
k[B] = ⊕C.fwd(str); end
k[C] = &B.fwd(str); end

C ′′′ = k : b[B].x_ c[C].fwd( x ) D′′′(b).x = "ok"

Table 1: Example of message delivery on elements of interest of choreography C ′ (second
column), its companion deploymentD′ (third column), and their typing environment
(first column).

• middle column, the reduction of choreography C;
• right column, the main changes in D.
To ease the reading of the example, we highlight in grey the elements that have been
changed by the reduction. To keep our example brief, we only report the reduction (sending
and reception) of the first interaction in C, namely k : a[A]."ok" _ b[B].pass( x ).

In Table 1, row 1○ shows on the left column the original type G and the global type
projection onto the local types of roles A, B, and C; in the next two columns we reported
for completeness the reductions C ′ and D′. Next, we let the running choreography reduce,
applying rules bC|Eqe, bC|Sende, and bD|Sende to let process a deliver its message in the queue k[A〉B]
of process b. We also let G reduce to G′ with rule bG|Sende. In row 2○ we report the result of
the reductions. In the left column, G′ indicates that role A has sent a message to B, which
should consume it in the next step. This is also mirrored by the buffer projection, where the
buffer typing k[A〉B] is &A.pass. The deployment D′′ contains the actual message sent by a
in the queue owned by b. The reduced choreography is still well-typed as, applying function
bte( A, D′′(k[A〉B]) ) on the interested queue, we obtain the same local type of the buffer
typing k[A〉B]. Finally, we let the running choreography and the global type reduce again,
allowing process b to consume the message. We show the result of the reductions in row 3○,



APPLIED CHOREOGRAPHIES 23

Typing Environment Choreography Deployment

1○

G = A _ B.first;
A _ B.second;
end

k[A] = ⊕B.first;
⊕B.second; end

k[B] = &A.first;
&A.second; end

C = k : a[A] _ b[B].first;
k : a[A] _ b[B].second

D

A○

G→ G′ by bG|Eqe, bG|Sendei.e.,
G ≡G G1 = ⊕AB.first;

&AB.first;
A _ B.second;
end

G1 → G′1 and G′1 ≡G G
′

C → C ′ by bC|Eqe, bC|Sende
δ = k : a[A] _ B.first
D, δ I D′ by bD|Sende

2○

G′ = A〉B.first;
⊕AB.second;
&AB.second;
end

k[A] = ⊕B.second; end
k[B] = &A.first;

&A.second; end
k[A〉B] = &A.first(); end

C ′ = k : A _ b[B].first;
k : a[A] _ B.second;
k : A _ b[B].second

D′(k[A〉B]) = (first,_)

B○

G′ → G′′ by bG|Eqe, bG|Sendei.e.,
G′ 'G G2 = ⊕AB.second;

A〉B.first;
&AB.second;
end

G2 → G′2 and G′2 'G G
′′

C ′ → C ′′ by bC|Eqe, bC|Sende
δ′ = k : A _ b[B].second
D′, δ′ I D′′ by bD|Sende

3○

G′′ = A〉B.first;
A〉B.second;
end

k[A] = end
k[B] = &A.first;

&A.second;
end

k[A〉B] = &A.first
&A.second
end

C ′′ = k : A _ b[B].first;
k : A _ b[B].second

D′′(k[A〉B]) = (first,_) ::
(second,_)

Table 2: Example of asynchrony and effects on elements of interest of choreography C (second
column), its companion deployment D (third column), and their typing environment
(first column).

where in deployment D′′′ we can find that the value of the message has been assigned to the
receiving variable x of b.
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Example 5 (Asynchronous Message Delivery). In this example, we consider a well-typed
running choreography Γ ` D,C where C and its correspondent reduced global type G are:

C = k : a[A] _ b[B].first();
k : a[A] _ b[B].second()

G = A _ B.first(unit);
A _ B.second(unit);
end

We keep the same conventions on notation defined in the previous example with the addition
of omitting round parenthesis for void values. We report in Table 2 a possible sequence of
reduction. Following the previous example, we use row 1○ to summarise the status of (from
left to right) the typing environment Γ, the choreography C, and its companion deployment
D.

In row A○ we report the main elements involved in the reduction. In the left-most
cell of the raw, the global type G1 is structurally equivalent (≡G) to G and that ap-
pears in rule bG|Eqe to split the complete communication A _ B.first() into its equivalent
⊕AB.first(); &AB.first(). Then G1 reduces to G′1 with rule bG|Sende and, as of rule bG|Eqe, we take
G′ as structurally equivalent to G′1, as shown in row 2○, G′ splits the complete communication
A _ B.second() into its equivalent ⊕AB.second(); &AB.second(). The reduction of C mirrors
that of G: it splits the complete communication on operation first, consumes the sending,
and finally splits the other complete communication on operation second, resulting in C ′
(row 2○). The sending is applied on D which contains the related message in queue k[A〉B] in
its reductum D′.

Then, in row B○ we allow the delivery of operation second. This illustrates how asyn-
chrony works at both levels of global types and choreographies. As before, we start from the
left-most cell in the row. First we consider G2, which is swap-equivalent to G′, after applying
to it rule bGS|ChoBufe. This brings on top the (global choice) on operation second. Then G2

reduces to G′2 with rule bG|Sende and, as of rule bG|Eqe, we take G′′ = G′1. The reduction on
C ′, D′ is similar to that of G′.

3.5. Properties. We close this section with the main guarantees of our type system.
First, our semantics preserves well-typedness:

Theorem 1 (Subject Reduction). Γ ` D,C and D,C → D′, C ′ imply Γ′ ` D′, C ′ for some
Γ′.

We report in appendix B.1 the proof of Theorem 1.
We now relate Γ and Γ′ to prove that the behaviours of sessions in a well-typed choreog-

raphy follow their respective types. We denote JGKk the projection of a global type G for a
session k and let JGKk be the set of local and buffer typings as obtained by the projection of
G on each of its roles:
Definition 5 (Global Type Projection).

JGKk = { k[A] : JGKA | A ∈ roles(G) }, { k[A〉B] : JGKAB | A ∈ roles(G), B ∈ roles(G) \ {A} }
We say that a reduction is “at session k” if it is obtained by consuming a communication

term for session k (as in [HYC08]), and we write k 6∈ Γ when k does not appear in any local
typing in Γ. Then we have:

Theorem 2 (Session Fidelity). Let Γ,Γk ` D,C, k 6∈ Γ. Then, D,C → D′, C ′ with a
redex at session k implies that, for some G and Γ′, k 6∈ Γ′, (i) Γk ⊆ JGKk, (ii) G→ G′, (iii)
Γ′k ⊆ JG′Kk, and (iv) Γ′,Γ′k ` D′, C ′.
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Figure 15: Depiction of correlation-based message exchange in SOC.

Theorem 2 states that all communications on sessions follow the expected protocols
(Γ′ may differ from Γ for the instantiation of a new variable). The proof of Theorem 2 is
reported in appendix B.1.

Finally, we present the definition of the coherence predicate co:

Definition 6 (Coherence). co(Γ) holds iff ∀ k ∈ Γ , ∃ G s.t.
• l̃ : G〈A|B̃|C̃〉 ∈ Γ ∧ C̃ = B̃ and
• ∀ A ∈ roles(G), k[A] : T ∈ Γ ∧ T = JGKA ∧ ∀ B ∈ roles(G)\{A}, Γ ` k[B〉A] : JGKBA

Coherence extends partial coherence to check that i) all needed services to start new
sessions are present and ii) all the roles in every open session are correctly implemented by
some processes.

Coherent and well-typed systems are deadlock-free, as stated by Theorem 3.

Theorem 3 (Deadlock-freedom). Γ ` D,C and co(Γ) imply that either (i) C ≡C 0 or (ii)
there exist D′ and C ′ such that D,C → D′, C ′.

We report the proof of Theorem 3 in appendix B.2.

4. Backend Choreographies

We now present Backend Choreographies (BC). The syntax of programs in BC is the same
as that of FC. Also the two semantics are close, except that FC models communication over
named channels while BC formalises message exchange based on message correlation, as
found in Service-Oriented Computing (SOC) [OAS07]. Formally, thanks to the separation
between choreographic programs and deployments presented in FC, we can let FC and BC
share a large fragment of semantics rules, while the significant differences between the two
semantics of message exchange—name-based for FC, correlation-based for BC—are isolated
within their specific deployments and deployment transitions.

The structure and semantics of the Backend deployments D is one of our major contri-
butions: it formalises, at the level of choreographies, how to implement sessions using the
communication mechanism of message correlation typical of SOC systems.

In the following, we first informally introduce correlation-based message exchange, then
we formalise data and queues in (the deployment of the) Backend Choreographies, and finally
we formalise correlation-based message exchange in the semantics of deployment transitions
in BC.
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4.1. Correlation-based Communication. Processes in SOC run within services and
communicate asynchronously. To realise asynchronous communication, services provide
an unbound number of first-in-first-out message queues that processes interact with. The
interaction happens from processes that associate a message insertion/retrieval action with
a correlation key, which uniquely identifies the queue subject of the action. Concretely, a
correlation key corresponds to a set of data that the service associates to a specific queue.

Processes retrieve messages from the queues of their enclosing service. This is represented
in (the right side of) Figure 15 by process r1, which wants to consume a message received
on queue Q1, associated to the correlation key k1. The request is satisfied by the service,
which delivers message m1 to r1, also removing the interested message from the head of
queue Q1. The complement of the action above is message insertion. Any process (within
the queue-enclosing service and remote) can insert data into a queue by sending a message to
the service owning the queue. That message must associate the payload to be inserted with
the correlation key that identifies the queue within the service. Concretely, when a service
receives a message from the network, it inspects its content, looking for a valid correlation key,
i.e., one that points to any of its queues. If a queue can be found, the message is enqueued
in its tail. In Figure 15, this is represented by data k1 marked by the attribute key in the
message sent by process pn (of Service1) to Service2. At reception, Service2:
(1) checks for the presence of the attribute key;
(2) extracts the corresponding key k1;
(3) finds the queue Q1, pointed by k1;
(4) enqueues the received payload in Q1 as message mn.
As depicted in Figure 15, messages in SOC contain correlation keys as either part their
payload or in some separate header. As in [MC11], also here we abstract from such details.
To summarise, two processes can communicate over correlation-based messaging if: i) the
sender knows the (location of the) service where the addressee is running and ii) the sender
and the addressee know the key corresponding to a queue in the addressee service. After
having presented the mechanism of correlation for message exchange, we can proceed to
explain how we model SOC systems in BC.
Data and Process state. Data in SOC is structured following a tree-like format, e.g.,
XML [BPSM+98] or JSON [B+14]. In BC, we use trees to represent both the payload of
messages and the state of running processes (as in, e.g., BPEL [OAS07] and Jolie [MGZ14]).

Formally, we consider rooted trees t ∈ T , where T = Val ∪ L ∪ Set(Lab× T ) and

t ::= v | l | { x1 : t1, . . . , xn : tn }
i.e., a tree (node) is either a value v, a location l, or a set of ordered pairs of edge labels
x, y ∈ Lab and tree nodes. We assume tree nodes to be values or locations only in leaves.
Now we can define BC variables as paths on trees (the latter, we remind, represents state
of processes) as sequences of labels x, y ∈ Seq(Lab) such that x ::= x.x | ε, where ε is the
empty sequence, which we often omit for brevity. When writing paths in their extended
form, e.g., x.y.z.ε, we often use the abbreviation x.y.z.

In addition, we define two operators to handle trees: path application and deep copy.
The path-application operator x(t) is used to access the sub-nodes pointed by path x in tree
t. Intuitively, x(t) returns either the value, the location or the sub-tree pointed by path x in
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t. If x is not present in t, x(t) returns an empty set of ordered pairs label-tree. Formally,

x.x(t) =


x( x.ε(t) ) if x 6= ε

t′ if x = ε and t = { x : t′, . . . , xn : tn }
∅ otherwise

The deep-copy operator t / (x, t′ ) is a (total) replacement operator that returns the tree
obtained by replacing in t the sub-tree rooted in x(t) with t′. If x is not present in t, t/ (x, t′ )
adds the smallest chain of empty nodes to t such that it stores t′ under path x. Formally,

t / (x.x, t′ ) =


∅ / (x.x, t′ ) if t ∈ Val ∪ L
( t \ { x : x(t) } ) ∪ { x : t′ } if t 6∈ Val ∪ L and x = ε

( t \ { x : x(t) } ) ∪ { x : x(t) / (x, t′ ) } otherwise

4.2. Backend Deployments, Transition Rules, and BC Semantics. In addition to the
convention of using the terms “Frontend choreography/deployment” to indicate a Frontend
Choreographies program/deployment, in the reminder we adopt the same convention for
“Backend choreographies” and “Backend deployments”. We use the term “choreography” alone,
when the context makes it clear if we refer to Backend or Frontend ones.

We can now define the notion of deployment for BC, denoted D, which includes:
• the locality of processes;
• queues, pointed by a combination of a location and a correlation key;
• the state of processes.

Formally, D is an overloaded partial function defined by cases as the sum of three partial
functions gl : L⇀ Set(P), gm : (L × T ) ⇀ Seq(O × T ), and gs : P ⇀ T . The domains and
co-domains of the functions are disjoint, hence:

D(z) =


gl(z) if z ∈ L,
gm(z) if z ∈ (L × T ),

gs(z) otherwise

Function gl maps a location to the set of processes running in the service at that location.
Given a location l, we read D(l) = {p1, . . . , pn} as “the processes p1, . . . , pn are running at
the location l” (we assume each process p to run at most at one location). Function gm maps
a couple location-tree to a message queue. This reflects message correlation as informally
described above, where a queue resides in a service, i.e., at its location, and is pointed by a
correlation key. Given a couple l : t, we read D(l : t) = m̃ as “the queue m̃ resides in a service
at location l and is pointed by correlation key t”. The queue m̃ is a sequence of messages
m̃ ::= m1 :: · · · :: mn | ε and a message of the queue is m ::= (o, t), where t is the payload of
the message and o is the operation on which the message was received. Pairing operation
labels with message payloads is typical of SOC implementations in general. Indeed, while
not essential for the correct delivery of messages, operation labels are used by processes to
program external choices (for instance, a process expecting to receive a message on either of
two mutually-exclusive operations, e.g., to continue or exit a loop). The case applies also
to BC, where we preserve the association between payload and operations (o, t)—similarly
to FC (o, v). Function gs maps a process to its local state. Given a process p, the notation
D(p) = t means that p has local state t.
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p ∈ D(l) D, sup( { l.p[A],
︷ ︸
l.q.[B] } ) I D′

D, start k : p[A] ]
︷ ︸
l.q[B] I D′

bD|Starte

q1 ∈ D 1○ j ∈ I \ {i} Bi.l(t) = li 2○ Bi.Bj(t) = tij 3○ lj : tij 6∈ D 4○

D′ = D
[
li 7→ D(li) ∪ {qi}

]
5○ D′′ = D′[ li : tij 7→ ε

]
6○ D′′′ = D′′[ q1 7→ D′′(q1) / ( k, t )

]
7○

D, sup( { li.qi[Bi] }i∈I ) I D′′′[ qh 7→ {k : t}
]
h∈{2,...,n} 8○

bD|Supe

l = k.B.l( D(p) ) tc = k.A.B( D(p) ) tm = eval(e,D(p))

D, k : p[A].e_ B.o I D [ l : tc 7→ D(l : tc) :: (o, tm) ]
bD|Sende

tc = k.A.B( D(q) ) q ∈ D(l) D(l : tc) = (o, tm) :: m̃ D′ = D[ l : tc 7→ m̃ ]

D, k : A _ q[B].o(x) I D′ [ q 7→ D′(q) / (x, tm ) ]
bD|Recve

Figure 16: Backend Choreographies — Deployment transitions.

Backend Deployment Transitions. In BC, we replace the deployment transitions of FC
with the rules defining D, δ I D′, reported in Figure 16. We comment them in the following.

Rule bD|Starte simply retrieves the location of process p (the one that requested the creation
of session k) and uses rule bD|Supe to obtain the new deployment D′ that supports interactions
over session k. Namely, D′ is an updated version of D with: i) the newly created processes
for session k and ii) the queues used by the new processes and p to communicate over session
k. In addition, in D′, iii) the new processes and p contain in their states a structure, rooted
in k and called session descriptor, that includes all the information (correlation keys and the
locations of all involved processes) to support correlation-based communication in session k.
Formally, this is done by rule bD|Supe where we 1○ retrieve the starter process, here called q1,
which is the only process already present in D. Then, given a tree t, we ensure it is a proper
session descriptor for session k, i.e., that:

2○ t contains the location li of each process, represented by its role in the session Bi, under
path Bi.l;

3○ t contains a correlation key tij for each ordered couple of roles Bi, Bj under path Bi.Bj ,
such that 4○ there is no queue in D at location lj pointed by correlation key tij ;

Finally, we assemble the update of D in four steps:
5○ first, we obtain D′ by adding in D the processes q2, . . . , qn at their respective locations;
6○ second, we obtain D′′ by adding to D′ an empty queue ε for each couple lj : tij ;
7○ third, we obtain D′′′ from D′′ by storing in the state of (the starter) process q1 the session

descriptor t under path k;
8○ finally, we update D′′′ such that each new created process (q2, . . . , qn) has in its state just

the session descriptor t rooted under path k.
We deliberately define in bD|Supe the session descriptor t with a set of constrains on data,

rather than with a procedure to obtain the data for correlation. In this way, our model is
general enough to capture different methodologies for creating correlation keys (e.g., UUIDs
or API keys).

Rule bD|Sende models the sending of a message. We comment the premises. From left
to right, the first gets the location l of the receiver B from the state of the sender p; the
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second retrieves the correlation key in the state of p (playing role A) to send messages to
role B; the third evaluates the expression e of the sender p using its local state to get a
value tm. Function eval evaluates expressions in a process state, traversing its paths and
performing local computation. We highlight that, since in BC we preserve the syntax of
Fronted Choreographies, we make two assumptions: that expressions (e.g., e in bD|Sende) are
defined on Var iables and that eval in BC automatically maps variables x, y, z into the
respective paths x.ε, y.ε, and z.ε, used to access process states in D. Finally, in the conclusion
of the rule, we add the message (o, tm) in the queue pointed by l : tc that we found via
correlation.

Rule bD|Recve models a reception. From left to right, the first premise finds the correlation
key tc for the queue that q (playing role B) should use to receive from A in session k. The
second premise retrieves the location l of q. The third accesses the queue pointed by l : tc
and retrieves message (o, tm). The last premise updates D to D′ removing (o, tm) from
the interested queue. Dually to rule bD|Sende, where eval maps variables into paths, in the
conclusion of rule bD|Recve we map x, i.e., the intended variable that should store the payload
tm in the state of q, into path x.ε.

4.3. Encoding Frontend Choreographies to Backend Choreographies and Proper-
ties. Now that we presented Backend Choreographies, we can proceed with our main intent
of defining a compilation procedure from high-level FC programs to low-level services. Here,
we tackle the transition from FC programs to their intermediate representation toward SOC
systems as Backend Choreographies. Specifically, we translate FC programs that use the
abstract mechanism of communication over names, into BC programs that use the concrete
mechanism of correlation-based communication. We prove our translation correct, i.e., that
our encoding guarantees an operational correspondence between the semantics of a Frontend
choreography and its Backend encoding.

Formally, since choreographies in BC have the same syntax of FC ones, we can translate
FC runtime terms D,C to BC runtime terms by encoding the FC deployment D to an
appropriate Backend deployment. Notably, BC deployments contain more information wrt
FC deployments. We extract these data from Γ, the typing environment of D,C.

Definition 7 (Encoding FC in BC). Let Γ ` D,C and 〈〈D〉〉Γ be defined by the algorithm in
Figure 17. Then, the Backend encoding of D,C is defined as 〈〈D〉〉Γ, C.

What the algorithm 〈〈D〉〉Γ does is:
(1) include in D all (located) processes present in D (and typed in Γ);
(2) translate the state (i.e., the association Var iable-Value) of each process in D to its

correspondent tree-shaped state in D;
(3) for each ongoing session in D, set the proper correlation keys and queues in D and, for

each queue, import and translate its related messages.
More precisely, in the algorithm defined in Figure 17 at Line 1, we create a new Backend

deployment D and assign to it the totally undefined function (∅); D is an empty Backend
deployment that will be later refined via the updates on D at Lines 3–16. Then,
• Lines 3–5, for each located process p@l in Γ, we update the locations of D to contain p at
location l (Line 4) and we include process p in D, associating to it an empty state, i.e., the
empty tree ∅ (Line 5);
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1 〈〈D〉〉Γ = D := ∅

3 fo r each p@l in Γ

4 D := D [ l 7→ D(l) ∪ {p} ]

5 D := D [ p 7→ ∅ ]

7 fo r each p.x : U in Γ

8 D := D[ p 7→ D(p) / (x,D(p)(x) ) ]

10 fo r each { p : k[A] q : k[B], q@l} in Γ

11 t := fresh(D, l)
12 D := D[ l : t 7→ D(k[A〉B]) ]

13 D := D[ p 7→ D(p) / ( k.A.B, t ) ]

14 D := D[ q 7→ D(q) / ( k.A.B, t ) ]

15 D := D[ p 7→ D(p) / ( k.B.l, l ) ]

16 D := D[ q 7→ D(q) / ( k.B.l, l ) ]

18 return D

Figure 17: Encoding Algorithm from Frontend to Backend Deployments.

• Lines 7–8, for each variable x (typed in Γ) of a process p, we update the state of process p
in D to include the association of x to its value in the state D(p). As done in rules bD|Sende

and bD|Recve, we map FC variables x ∈ Var into BC paths x ∈ Seq(Lab);
• Lines 10–16, follow the same principles to support correlation-based exchanges as formalised
in rule bD|Supe; for each couple of processes p, q, respectively playing distinct roles A and B

in a session k, with q located at l:
– Line 11, we obtain a fresh correlation key t with auxiliary function fresh. The latter

takes deployment D and location l as input and returns a correlation key which is fresh
among the keys associated to location l in D. Formally t is such that l : t 6∈ dom(D);

– Line 12, we associate correlation key t with location l in D and make it point the
corresponding queue of messages from role A to role B in D (accessed with triple k[A〉B]).
Note that we can directly copy message queues from D into D. Indeed, while message
queues in D and D are respectively of type Seq(O×Val) and Seq(O×T ), by definition
T subsumes Val ;

– Line 13–14, we include in the state of processes p (Line 13) and q (Line 14) correlation
key t, storing it under path k.A.B;

– Line 15–16, we include in the state of processes p (Line 15) and q (Line 16) the location
of role B under path k.B.l.
The encoding from FC to BC guarantees a strong operational correspondence.

Theorem 4 (Operational Correspondence (FC ↔ BC)). Let Γ ` D,C. Then:
(1) (Completeness) D,C → D′, C ′ implies 〈〈D〉〉Γ, C → 〈〈D′〉〉Γ′ , C ′ for some Γ′ s.t. Γ′ ` D′, C ′;
(2) (Soundness) 〈〈D〉〉Γ, C → D, C ′ implies D,C → D′, C ′ and D = 〈〈D′〉〉Γ′ for some Γ′ s.t.

Γ′ ` D′, C ′.
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Proof Sketch of Theorem 4. We sketch the proof of Theorem 4, analysing its two
parts: (Completeness) and (Soundness). The proof of Completeness is by induction on the
derivation of D,C. The main observation is that the encoded system 〈〈D〉〉Γ, C mimics D,C
by applying the same semantic rules on C and the corresponding deployment transitions
(e.g., respectively defied by rules bD|Sende and bD|Sende). Let D′ be the Backend environment
obtained from the reduction 〈〈D〉〉Γ, C → D, C ′ on rule bC|Starte. Since Figure 17 and rule bD|Supe
(on which rule bD|Starte relies) implement the same principles of 〈〈D〉〉Γ, we know that k.A.B(D)

and k.A.B( 〈〈D′〉〉Γ′ ) will be the same, except possibly for i) the location of processes and ii)
trees of correlation keys corresponding to the same paths. Concretely, item i) derives from
the fact that Γ and Γ′ can disagree on the location of the same process p, and item ii) is
caused by the random generation of correlation keys, for which, considering a correlation key
rooted in k.A.B of a process p, the trees obtained from k.A.B( D(p) ) and k.A.B( 〈〈D′〉〉Γ′(p) )
may differ. However, these discrepancies do not constitute a problem, since both locations
and correlation keys are used consistently in their respective deployments, which are thus
interchangeable.

We can extend the same observation also for Soundness, which is proved by induction
on the derivation of 〈〈D〉〉Γ, C. �

5. Dynamic Correlation Calculus

In this section, we introduce the Dynamic Correlation Calculus (DCC), the target language
of our compilation.

DCC is a straightforward extension of a previous proposal called Correlation Calcu-
lus [MC11], which is a process calculus that formalises service-oriented, correlation-based
communications. Indeed, while we started this work considering CC as the target language
of our compilation, we found it limited for our purposes: in CC each process receives from
only one message queue, while we need processes to be able to select receptions from multiple
queues (as in our Backend deployments). Hence, we defined DCC as an extension of CC
with the support for the dynamic creation and selection of queues in processes.

We deem DCC a choice that fits the practical motivations of this work thanks to its
closeness to the implementation languages/frameworks listed below, which casts a good
outlook on the affordability of future implementations of our theoretical results. First,
CC formalises the semantics of message exchange of Jolie, a service-oriented programming
language [MGZ14]. Thus CC specifications are directly translatable into Jolie executable
programs. This is not the case for our DCC code, as Jolie lacks the primitives to let processes
create and select queues. Fortunately, the distance between CC and DCC is close enough
so that supporting the extended features in Jolie would entail minimal change, i.e., the
inclusion of the syntactic primitives for queue creation and selection3 and the implementation
of the associated semantics—a direct extension of the one-process-one-queue semantics of
the current implementation. Second, the service-oriented language BPEL [OAS07] lets
processes create and receive from multiple queues, making DCC a useful reference for BPEL-
based implementations. Third, besides service-oriented languages, DCC abstracts real-world
message-exchange models where processes can interact with multiple message queues. This
is the case, e.g., for some versions of the actor model [Agh85] where one actor can be
associated with many queues/mailboxes [HO07] and in some popular message-exchange

3The (newque) and from and to particles in Figure 18.



32 S. GIALLORENZO, F. MONTESI, AND M. GABBRIELLI

Services S ::= 〈B, P,M〉l (srv)
| S | S′ (net)

Start Behaviour B ::= !(x);B (acpt)
| 0 (inact)

Processes P ::= B . t (prcs)
| P | P ′ (par)

Behaviours
B ::= ?@e1(e2);B (reqst)

| o(x) from e;B (input)

| def X = B′ in B (def )

| ν〉x;B (newque)

| x = e;B (assign)

|
∑

i [oi(xi) from e] {Bi} (choice)

| o@e1(e2) to e3;B (output)

| if e {B1} else {B2} (cond)

| 0 (inact)

| X (call)

Figure 18: Dynamic Correlation Calculus — Syntax.

middlewares [Vin06, VW12], which are suitable alternatives to the implementation targets
above.

Syntax. We now introduce the syntax of DCC, which we report in Figure 18 and which
comprises two layers: Services, ranged over by S, and Processes, ranged over by P .

In the syntax of services, term (srv) is a service, located at l, with a Start Behaviour B
and running processes P (both described later on) and a queue map M . The queue map is a
partial function M : T ⇀ Seq(O×T ) that, similarly to function gm in Backend deployments,
associates a correlation key t to a message queue. We model messages like in BC where a
message is a couple (o, t), o being the operation on which the message has been received,
and t the payload of the message. Services are composed in parallel in term (net).

Concerning behaviours, in DCC we distinguish between start behaviours and process
behaviours. Process behaviours define the general behaviour of processes in DCC, as described
later on. Start behaviours use term !(x) to indicate the availability of a service to generate
new local processes on request. At runtime, the start behaviour B of a service is activated
by the reception of a dedicated message that triggers the creation of a new process. The
new process has (process) behaviour B, which is defined in B after the !(x) term, and an
empty state. The content of the request message is stored in the state of the newly created
process, under the bound path x. As in Backend Choreographies, also in DCC paths are
used to access process states.

Finally, processes (prc) in DCC consists of a behaviour B and a state t and can be
composed in parallel (par). Process states t are trees and, in Behaviours, operations (o),
procedures (X), paths (x), and expressions (e, evaluated at runtime on the state of the
enclosing process) are all the same as defined for Backend Choreographies (§ 4.1). Terms
(input) and (output) model communications. In (input), the process stores under x a message
from the head of the queue correlating with e and received on operation o. Dually, term
(output) sends a message on operation o. The three expressions in the term define: e1,
the location of the service where the addressee is running; e2, the content of the message;
e3, the key that correlates with the receiving queue of the addressee. Term (choice) is an
(input)-choice: when one of the inputs can receive a message from the queue correlating with
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t′ = eval(x, t)

x = e ;B . t → B . t / (x, t′ )
bDCC|Assigne B . t→ B′ . t′

def X = B1 in B . t → def X = B1 in B′ . t′ b
DCC|Ctxe

i = 1 if eval(e, t) = true, i = 2 otherwise
if e {B1} else {B2} . t → Bi . t

bDCC|Conde
P ≡D P1 | P2 P1 → P ′1 P ′1 | P2 ≡D P

′

〈B, P, M〉l → 〈B, P ′, M〉l
bDCC|PEqe

B = ν〉x;B tc 6∈ dom(M) M ′ = M [tc 7→ ε]

〈B, B . t | P, M〉l → 〈B, B . t / (x, tc ) | P, M ′〉l
bDCC|Newquee

B ∈ { oj(xj) from e;Bj ,
∑

i∈I [oi(xi) from e] {Bi} }
j ∈ I tc = eval(e, t) M(tc) = (oj , tm) :: m̃

〈B, B . t | P, M〉l → 〈B, Bj . t / (xj , tm ) | P, M [tc 7→ m̃]〉l
bDCC|Recve

B = o@e1(e2) to e3;B′ eval(e1, t) = l

eval(e3, t) = tc eval(e2, t) = tm tc ∈ dom(M)

〈B, B . t | P,M〉l → 〈B, B′ . t | P,M [tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

B =?@e1(e2);B′′ eval(e1, t) = l Q = B′ .∅ / (x, eval(e2, t) )

〈!(x);B′, B . t | P, M〉l → 〈!(x);B′, Q | B′′ . t | P, M〉l
bDCC|InStarte

B = o@e1(e2) to e3;B′′ eval(e1, t) = l′ eval(e3, t) = tc
eval(e2, t) = tm tc ∈ dom(M ′) M ′′ = M ′[tc 7→M ′(tc) :: (o, tm)]

〈B, B . t | P, M〉l | 〈B′, P ′, M ′〉l′ → 〈B, B′′ . t | P, M〉l | 〈B′, P ′,M ′′〉l′
bDCC|Sende

B =?@e1(e2);B′′ B′ =!(x);B′ eval(e1, t) = l′ Q = B′ .∅ / (x, eval(e2, t) )

〈B, B . t | P,M〉l | 〈B′, P ′, M ′〉l′ → 〈B, B′′ . t | P, M〉l | 〈B′, Q | P ′, M ′〉l′
bDCC|Starte

S → S′

S | S1 → S′ | S1

bDCC|SPare
S ≡D S1 S1 → S′1 S′1 ≡D S

′

S → S′
bDCC|SEqe

def X = B in 0 . t ≡D 0 . t P | P ′ ≡D P ′ | P (P1 | P2) | P3 ≡D P1 | (P2 | P3)

P ≡D P | 0 . t def X = B in X . t ≡D def X = B in B/X . t S | S′ ≡D S′ | S
(S1 | S2) | S3 ≡D S1 | (S2 | S3)

Figure 19: Dynamic Correlation Calculus — Semantics.

e on operation oi, it discards all other inputs and executes the continuation Bi. Term (reqst)
is the dual of (acpt) and asks the service located at e1 to spawn a new process, passing to it
the message in e2. Term (newque) models the creation of a new queue that correlates with a
unique correlation key (in the service hosting the running process). The correlation key is
stored under path x in the state of the process, for later access. The remaining terms are
standard.
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Semantics. In Figure 19, we report the rules defining the semantics of DCC, a relation
→ closed under a (standard) structural congruence ≡D that supports commutativity and
associativity of parallel composition. We comment the rules.

Rules bDCC|Assigne, bDCC|Ctxe, and bDCC|Conde are standard for, respectively, assignments, procedure
definition, and condition evaluation. Rule bDCC|PEqe uses equivalence ≡D on DCC processes to
describe parallel execution and recursion. The rules of ≡D are reported in the lower part of
Figure 19.

Rule bDCC|Newquee adds to M an empty queue (ε) correlating with a randomly generated
key tc. The key is stored under path x of the process that requested the creation of the
queue. As in rule bD|Supe of Backend Choreographies (see § 4.1), we do not impose a structure
for correlation keys, yet we require that they are distinct within their service.

Rule bDCC|Recve models message reception. Since both (input) and (choice) define receptions
of messages, we consider both cases in the rule. Indeed, the first premise of the rule captures
the presence of either an (input)—with shape oj(x) from e—or a (choice)—with shape∑

i∈I [oi(xi) from e] {Bi}. In both cases, we obtain the correlation key of the receiving queue
from the evaluation of expression e against the state of the receiving process (t). Then, we
inspect queue map M and check if it has a message in its head received on operation oj . If
this holds, the rule removes the message from the queue and stores the payload (tm) under
path xj in the state of the process.

Regarding message delivery, in DCC, there are two output actions: i) (output) used by
a process to communicate with another one and ii) (reqst) used by a process to require the
creation of a new process in a service. Since in DCC communications can happen within the
same service or between two services, we describe two sets of rules, either for internal and
inter-service message delivery.

We start from the easier case of internal delivery, defined by rules bDCC|InSende and bDCC|InStarte.
In rule bDCC|InSende a process B . t sends a message into a queue of its hosting service. This
is illustrated by the second premise of the rule where the location l, corresponding to the
evaluation of expression e1 against the state of the sender process, is the same of its hosting
service. As expected, correlation key tc must point an actual queue of the service. This is
checked by the last premise, which requires tc to be in the domain of queue map M . In the
conclusion of the rule, we update the content of the queue pointed by tc including message
(o, tm) in its tail. In rule bDCC|InStarte a service accepts the request to create a new process from
one of its local processes. In the conclusion of the rule, we find the newly created process Q.
The behaviour of the new process corresponds to the one associated with the (acpt) term of
the service (B′). The state of the new process is empty (∅) except for the inclusion of the
payload of the request, stored under path x and obtained from the evaluation of e2 against t.

Message delivery between two services is defined by rules bDCC|Sende and bDCC|Starte. The two
rules are similar to their respective internal cases, except for requiring the location defined
by the sender (i.e., the one obtained from the evaluation of expression e1 against the state t
of the sender process) to match that of the receiving service.

The last two rules in Figure 19 are bDCC|SPare and bDCC|SEqe and define the (parallel) execution
of networks of services.

6. Compiling Frontend Choreographies into DCC processes

We now present our main result: the correct compilation of high-level Frontend Choreographies
into low-level DCC networks of services (and processes). We depict in Figure 20 a schematic



APPLIED CHOREOGRAPHIES 35

encoding to Backend deployments

projection to endpoint choreographies

compilation to
Dynamic Correlation Calculus

Figure 20: Scheme of compilation from Frontend Choreographies to Dynamic Correlation
Calculus.

representation of the stages involved in the compilation from FC to DCC programs. Concretely,
given an FC program D,C and its typing environment Γ, our compilation procedure consists
of three stages:
FC-to-BC: the encoding, defined in § 4.3, of the Frontend deployment D to a correspondent
Backend deployment D = 〈〈D〉〉Γ. This stage is depicted in Figure 20 with the relation
D 99K D;

EPP: the projection of the choreography C into a parallel composition of partial choreogra-
phies (i.e., containing only actions concerning one participant), each defining the behaviour
of a single active or service process in C. This stage is called Endpoint Projection, it is
presented in § 6.1, and it is depicted in Figure 20 with the relation C 99K C1| · · · |Ci;

Compilation: the compilation of the composition of the results of the previous stages—
essentially, an endpoint Backend choreography—into a network of corresponding DCC
services and their located processes. We present the compilation in § 6.3. This stage is
depicted in Figure 20 with the relation D, C1| · · · |Ci ⇒ 〈B1, P1,M1〉l1 | · · · |〈Bj , Pj ,Mj〉lj
(the left part highlighted in grey to help readability);
The division in three stages makes the definition of the compilation process, and its

related checks for correctness, simpler. In particular, they ease the extraction of the behaviour
of a single process (EPP) from the source Frontend choreography and of its state (FC-to-
BC) from the source Frontend deployment. In the remainder of this section, we detail the
projection stage (EPP), we define how we pair the outputs of FC-to-BC and EPP and
the properties of that pairing, and we present the Compilation stage and the properties of
our main contribution.

6.1. Endpoint Projection (EPP). Given a choreography4 C, its Endpoint Projection
(EPP), denoted JCK, returns an operationally-equivalent composition of Endpoint chore-
ographies. Intuitively, an Endpoint choreography is a choreography that does not contain
complete actions—i.e., terms (start) and (com)—and that describes the behaviour of a single
process. We remind that a choreography can contain two kinds of processes: active processes
which are already running, and service processes which accept requests to create new active
processes at their respective associated location l. As detailed later on, our EPP procedure
projects Endpoint choreographies on all processes, both active and service ones.

Our definition of EPP is an adaptation of that presented in [MY13] and it is divided
into two components:
• a process projection that derives the Endpoint choreography of a single process p from a
given choreography C, written JCKp;
• the actual EPP of a given choreography C, which results into the parallel composition of:

4Since the EPP acts on the syntax and FC and BC share the same syntax, distinguishing between them
here is irrelevant.
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– the process projections of all active processes in C;
– the process projections of all service processes in C, with the exception that we merge

into the same Endpoint choreography all process projections of service processes that
accept requests at the same location.
In the next paragraphs, first we present the process projection and next the actual

Endpoint Projection.
Process Projection. Let us start the definition of process projection by formalising

Endpoint choreographies.

Definition 8 (Endpoint Choreographies). Given a (Frontend/Backend) choreography C. If
either:
• C = acc k : l.q[B];C ′, and q is the only free process name in C ′;
• C has only one free process name.
then C is an Endpoint choreography.

The process projection of a subject process p in a choreography C, written JCKp, returns
the Endpoint choreography obtained following the rules defined in Figure 21.

Process projection follows the structure of the source choreography. We briefly comment
the rules in Figure 21, from top to bottom.

We start with the complete actions (start) and (com) which, if participated by the
subject process, are projected into proper partial terms. When projecting a (start) action, if
the subject process is the active process p, we project a (req). If otherwise the subject process
is one of the service processes in q̃, we project an (always-available) (accept). Similarly,
when projecting a (com) action, if the subject process is the sender or the receiver in the
interaction, we respectively project a (send) or a (recv). Partial actions (accept), (req), and
(send) are projected verbatim, except for (accept) terms, which define the availability of only
the subject process.

When projecting a (rec) term, we project both the body of the procedure (C ′) and the
choreography C. This is safe even if r does not take part into the body of X, indeed, in that
case, the projection of C ′ is just an (inact) term. As a consequence, we can safely project
(call) terms verbatim.

The projections of conditionals and receptions are peculiar. Indeed, we project a
conditional verbatim if the subject process evaluates the condition; for all other processes, we
merge their behaviours with the merging (partial commutative) operator t, defined by the
rules reported in Appendix (Figure 24). C t C ′ is defined only for Endpoint choreographies
and returns a choreography isomorphic to C and C ′ up to receptions, where all receptions
with distinct operations are also included. We use t also in the projection of (recv) terms,
where we require the behaviour of all processes not receiving the message to be merged.

When projecting two choreographies in parallel we return the parallel composition of
their respective projections, while (inact) is projected verbatim.

Finally, we draw attention on the definition of the rule of process projection for (rec)
terms. Indeed, applying a naïve rule like

q
def X = C ′ in C

y
r

= def X =
q
C ′

y
r
in JCKr

in the EPP would yeld more than one procedure with the same identifier, which could prevent
the obtained projection from being typable as, according to the typing rules defined in § 3, we
cannot have in Γ two definition typings on the same identifier. To tackle the issue, the rule
for (rec) terms in Figure 21 guarantees the coherent definition and usage of process-unique



APPLIED CHOREOGRAPHIES 37

q
start k : p[A] ]

︷ ︸
l.q[B];C

y
r

=


req k : p[A] ] ︷ ︸

l.B; JCKr if r = p

acc k : l.r[C]; JCKr if l.r[C] ∈ {
︷ ︸
l.q[B]}

JCKr otherwise

Jk : p[A].e_ q[B].o(x);CKr =


k : p[A].e_ B.o; JCKr if r = p

k : A _ q[B].o(x); JCKr if r = q

JCKr otherwise

q
acc k :

︷ ︸
l.q[B];C

y
r

=

{
acc k : l.r[C]; JCKr if l.r[C] ∈ {

︷ ︸
l.q[B]}

JCKr otherwise

q
req k : p[A] ] ︷ ︸

l.B;C
y

r
=

{
req k : p[A] ] ︷ ︸

l.B; JCKr if r = p

JCKr otherwise

Jk : p[A].e_ B.o;CKr =

{
k : p[A].e_ B.o; JCKr if r = p

JCKr otherwise

Jdef X = C ′ in CKr = def Xr = J C ′[Xr/X] Kr in J C[Xr/X] Kr

JXKr = X

Jif p.e {C1} else {C2}Kr =

{
if p.e {JC1Kr} else {JC2Kr} if r = p

JC1Kr t JC2Kr otherwise

Jk : A _ q[B].{oi(xi);Ci}i∈IKr =

{
k : A _ q[B].{oi(xi); JCiKr}i∈I if r = q⊔
i∈I JCiKr otherwise

JC1 | C2Kr = JC1Kr | JC2Kr

J0Kr = 0

Figure 21: Frontend Choreographies — process projection.

identifiers through renaming. The renaming is safe as, by assumption, we consider well-sorted
choreographies where definitions always precede recursive calls.

We conclude the paragraph with the formal definition of process projection.

Definition 9 (Process Projection). JCKr is a partial homomorphism from (Frontend/Backend)
choreographies to Endpoint Choreographies, inductively defined by the rules in Figure 21.

Endpoint Projection. We can now proceed to define our Endpoint Projection.
In the definition below, we use the grouping operator bCcl, which returns the set of all

service processes accepting requests at location l. We report in Appendix (Figure 25) the
rules that inductively define bCcl.
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JCKb =

if b.confirm_pay(cc, order) {
k : b[B] _ C.ok; k : b[B] _ S.ok

} else {
k : b[B] _ C.ko; k : b[B] _ S.ko

}

JCKc = k : B _ c[C].{ ok(), ko() }

JCKs = k : B _ s[S].{ ok(), ko() }

C =

if b.confirm_pay( cc, order ){
k : b[B] _ c[C].ok(); k : b[B] _ s[S].ok()
} else {

k : b[B] _ c[C].ko(); k : b[B] _ s[S].ko()
}

Figure 22: Example of Endpoint Projection (top-half) of Lines 5–9 of Example 1 (lower-half).

Definition 10 (Endpoint Projection). Let C be a (Frontend/Backend) choreography. The
endpoint projection of C, denoted by JCK, is defined as:

JCK =
∏

p ∈ fp(C)

JCKp

︸ ︷︷ ︸
(i)

|
∏
l

 ⊔
p ∈ bCcl

JCKp


︸ ︷︷ ︸

(ii)

Commenting Definition 10, the EPP of a choreography is the parallel composition of
two kinds of Endpoint choreographies: (i) Endpoint choreographies that are the process
projection of active processes p ∈ fp(C) and (ii) Endpoint choreographies that are the merge
(t) of the process projections of all service processes available at the same location l, i.e.,
p ∈ bCcl.

Example 6. As an example of Endpoint Projection, let C be the choreography at Lines
5–9 of Example 1 (for convenience, we report the mentioned snippet of code grayed-out
in the lower part of Figure 22). The EPP of C, JCK, is the parallel composition of the
process projections of processes c, s, and b, i.e., respectively JCKc, JCKs, and JCKb. As per
Definition 10, JCK = JCKc | JCKs | JCKb.

We report in the top half of Figure 22 the projections JCKc, JCKs, and JCKb. The example
is useful to illustrate that the projection of the conditional is homomorphic on the process
(b) that evaluates it. The projection of a (com) term results into a partial (send) for the
sender—as in the two branches of the conditional in JCKb—and a partial (recv) for the
receiver—as in JCKc and JCKs. Note that the EPP merges branching behaviours: in JCKc
and JCKs the two complete communications are merged into a partial reception on either
operation ok or ko.

6.2. Properties. We conclude this section presenting the guarantees provided by the End-
point Projection wrt to the source Frontend choreography, as formalised in Theorem 5.
Before presenting Theorem 5, introduce the notion of pruning (as defined in [CHY12]), where
≺ specifies an asymmetric relation between two choreographies C and C ′, written C ≺ C ′,
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in which C prunes some unused accepts and receptions of C ′. To give a formal definition
to our pruning relation, we present the two concepts of subtyping of typing environments
and minimal typing system. Below we just give the intuition on both concepts, which are
formalised in the Appendix:
• given two typing environments Γ and Γ′, Γ is a subtype of Γ′, written Γ ≺ Γ′, if Γ is
identical to Γ′ up to i) some local and global types that are more constrained in Γ than in
Γ′ and ii) some service typings present in Γ′ and not present in Γ. We report the formal
definition of Γ ≺ Γ′ in Definition 18,
• the minimal typing system Γ `min C uses the minimal global and local types to type
sessions and services in C. We report in appendix B.3.1 the formal definition of minimal
typing.
We can finally formalise the pruning relation.

Definition 11 (Pruning). Let Γ `min C and Γ′ `min C ′ , if Γ ≺ Γ′ then C prunes C ′ under
Γ, written Γ `min C ≺ C ′, or C ≺ C ′ for short.

The shortened form C ≺ C ′ is similar to [CHY12], where, as here, it does not lose
precision since it is always possible to reconstruct appropriate typings. The pruning of C ′ by
C means that C omits unused inputs and service processes present in C ′. The ≺ relation is
thus a strong bisimulation since C ≺ C ′ means that the two choreographies have precisely
the same observable behaviours, except for the receive actions at pruned receptions and
unused available service processes.

We can now write the statement of our EPP Theorem.

Theorem 5 (EPP Theorem). Let D,C be a well-typed Frontend choreography. Then,
(1) (Well-typedness) D, JCK is well-typed.
(2) (Completeness) D,C → D′, C ′ implies D, JCK → D′, C ′′ and JC ′K ≺ C ′′.
(3) (Soundness) D, JCK → D′, C ′′ implies D,C → D′, C ′ and JC ′K ≺ C ′′.

We report in appendix B.3 the proof of Theorem 5.

6.3. From Backend Endpoint Choreographies to DCC (Compilation). This is the
last stage of our compilation process, where, given a parallel composition of Backend Endpoint
choreographies, we obtain a network of DCC services that faithfully follow the semantics of
the source choreography.

Given a Backend deployment D, a parallel composition of endpoint choreographies C,
and a typing environment Γ, we write D, C Γ to indicate the compilation of D, C under Γ
into DCC.

To formally define D, C Γ, we use some auxiliary functions:
• C|l returns the endpoint choreography in C correspondent to the service process accepting
requests at location l (e.g., C|l = acc k : l.p[A];C ′′);
• C|p returns the endpoint choreography in C correspondent to process p;
• C Γ, given a single endpoint choreography C and a typing environment Γ, compiles C to
DCC, using the rules in Figure 23;
• l ∈ Γ, a predicate satisfied if, according to Γ, location l contains or can spawn processes;
• D|l returns the partial function of type T ⇀ Seq(O×T ) that corresponds to the projection
of function gm in D with location l fixed. Formally, for each t such that D(l : t) = m̃,
D|l (t) = m̃.
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Let p@l′ ∈ Γ, req k : p[A] ] ︷ ︸
l.B;C Γ = start(k, l′.A,

︷ ︸
l.B); C Γ

start(k, lA.A,
︷ ︸
lB.B) = �

I∈{A,B̃}

k.I.l = lI ;

︸ ︷︷ ︸
s1

�
I∈{B̃}

 ν〉k.I.A ;
?@k.I.l(k) ;
sync(k) from k.I.A

 ;

︸ ︷︷ ︸
s2

�
I∈{B̃}

start@k.I.l(k) to k.A.I

︸ ︷︷ ︸
s3

Let l ∈ l̃, l̃ ∈ Γ, acc k : l.q[B];C Γ = accept( k, B,Γ(l̃) ); C Γ ,

accept(k, B, G〈A|C̃|D̃〉) = !(k) ;

︸ ︷︷ ︸
a1

�
I∈{A,C̃}\{B}

(
ν〉k.I.B

)
;

︸ ︷︷ ︸
a2

sync@k.A.l(k) to k.B.A;

︸ ︷︷ ︸
a3

start(k) from k.A.B

︸ ︷︷ ︸
a4

k : p[A].e_ B.o;C Γ = o@k.B.l(e) to k.A.B; C Γ

k : A _ q[B].{oi(xi);Ci}i∈I Γ =
∑
i∈I

[oi(xi) from k.A.B]
{
Ci Γ

}
if p.e {C1} else {C2} Γ = if e {C1

Γ} else {C2
Γ}

def X = C ′ in C Γ = def X = C ′ Γin C Γ

X Γ = X

0 Γ = 0

Figure 23: Compiler from Endpoint Choreographies to DCC.

Definition 12 (Compilation). Let D be a Backend deployment, C a parallel composition of
endpoint choreographies, and given the typing environment Γ

D, C Γ =
∏
l ∈ Γ

〈
C|l Γ,

∏
p ∈ D(l)

C|p Γ.D(p) , D|l

〉
l

Intuitively, for each service 〈B, P,M〉l in the compiled network: i) the start behaviour B
is the compilation of the endpoint choreography in C accepting the creation of processes at
location l; ii) P is the parallel composition of the compilation of all active processes located
at l, equipped with their respective states according to D; iii) M is the set of queues in D
corresponding to location l.

We comment the rules in Figure 23, where the notation � is the sequence of behaviours
�i∈[1,n](Bi) = B1; . . . ;Bn.

Requests. Function start defines the compilation of (req) terms. Function start
compiles (req) terms to create the queues and a part of the session descriptor for the starter
(this is similar to what rule bD|Supe does in Backend deployment transitions, § 4.1). Given a
session identifier k, the located role of the starter (lA.A), and the other located roles in the
session (

︷ ︸
lB.B), start returns the DCC code that:

s1 includes in the session descriptor all the locations of the processes involved in the session;
s2 for each role, except for the starter,

– creates the key and the correlated queue that the current role will use in the session to
communicate with the starter;
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– requests the creation of the service process that will play the current role in the session;
– waits on the reserved operation sync to receive the correlation data for the session

defined by the newly created process.
s3 sends to the newly created processes the complete session descriptor obtained after the

reception (in the sync step) of all correlation keys.
Accepts. (acc) terms define the start behaviour of a spawned process at a location.

Given a session identifier k, the role B of the service process, and the service typing G〈A|C̃|D̃〉
of the location, function accept compiles the code that: (a1) accepts the request to spawn a
process, (a2) creates its queues and keys, updates the session descriptor received from the
starter, and sends it back to the latter (a3). Finally with (a4) the new process waits to start
the session.

Other terms. A (send) term compiles to a DCC (output) term. Notably, the compiled
code contains the same elements used by the semantics of BC to implement correlation,
i.e., the location of the receiver (k.B.l) and the key that correlates with its queue (k.A.B).
Similarly, (recv) compiles to (choice), which defines the path (k.A.B) of the key correlating
with the receiving queue.

Example 7. As an example of compilation, we compile the first two lines of the choreography
C in Example 1, considering a deployment D and a typing environment Γ such that Γ ` D, C.

D, JCK Γ= 〈0, Pc〉lC | 〈BS,0〉lS | 〈BB,0〉lB
where

Pc =


k.S.l = lS; k.B.l = lB; ν〉k.S.C; ?@k.S.l(k); sync(k) from k.S.C;

ν〉k.B.C; ?@k.B.l(k); sync(k) from k.B.C; start@k.S.l(k) to k.C.S;

start@k.B.l(k) to k.C.B; /* end of start-request */
buy@k.S.l(product) to k.C.S; . . .

and

BS =

{
!(k); ν〉k.C.S; ν〉k.B.S; sync@k.C.l(k) to k.S.C;

start(k) from k.C.S; /* end of accept */ buy(x) from k.C.S; . . .

We omit to report BB, which is similar to BS.

6.4. Properties of Applied Choreographies. We conclude this section by presenting
our main result, i.e., a compiler from Frontend choreographies to DCC networks and its
properties.

In our definition, we use the term projectable to indicate that, given a choreography C,
we can obtain its projection JCK. Formally

Definition 13 (Projectable Choreography). Let C be a choreography, we call C projectable
if there is a choreography C such that C ′ = JCK.

Theorem 6 defines our result, for which, given a well-typed, projectable Frontend
choreography, we can obtain its correct implementation as a DCC network. Such result
is obtained by merging the properties of the stages FC-to-BC(§ 4.3), EPP(§ 6.1), and
Compilation(§ 6.3).
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Theorem 6 (Applied Choreographies). Let D,C be a Frontend choreography where C is
projectable and Γ ` D,C for some Γ. Then:
(1) (Completeness) D,C → D′, C ′ implies

〈〈D〉〉Γ, JCK Γ→+ 〈〈D′〉〉Γ′ , C ′′
Γ′

and JC ′K ≺ C ′′ and for some Γ′, Γ′ ` D′, C ′

(2) (Soundness) 〈〈D〉〉Γ, JCK Γ→∗ S implies

D,C →∗ D′, C ′ and S →∗ 〈〈D′〉〉Γ′ , C ′′
Γ′

and JC ′K ≺ C ′′ and for some Γ′, Γ′ ` D′, C ′

We report in appendix B.7 the proof of Theorem 6.
By Theorem 3 and Theorem 6, deadlock-freedom is preserved from well-typed choreogra-

phies to their final translation in DCC. We say that a network S in DCC is deadlock-free if
it is either a composition of services with terminated running processes or it can reduce.

Corollary 1. Γ ` D,C and co(Γ) imply that D, JCK Γ is deadlock-free.

7. Related Work and Discussion

This is the first work that formalises how we can use choreographies in the setting of a
practical communication mechanism used in Service-Oriented Computing (SOC), i.e., message
correlation. Previous formal choreography languages specify only an EPP procedure towards
a calculus based on name synchronisation, leaving the design of its concrete support to
implementors. Chor [Cho16] and AIOCJ [AIO16] are the respective implementations of the
models found in [CM13] and [DGG+15]. However, the implementations of their EPP depart
significantly from their respective formalisations, since they are based on message correlation
instead of name synchronisation. This means that there is no proof that the implementation
strategies followed in these languages correctly supports synchronisation on names. Implemen-
tations of other frameworks based on sessions share similar issues [HYH08, HNY+13, NY14].
Our work gives the first correctness result for the compilation of choreographies to a language
close to real-world implementations. More in general, our results are a useful reference to
formalise the implementation of session-based languages. In the future, this line of work may
pave the way to establishing certified choreography compilation.

We believe that our approach can be easily applied to many models that use chore-
ographies and sessions (or channel-based communications), including those designed around
(variants of) the π-calculus [CHY12, CM13, MY13, HYC16] and those based on linear
logic [CMS17, CMSY17].

Our development shows that it is possible to keep a simple language model as frontend,
allowing developers to abstract from how sessions are concretely implemented. Nevertheless,
our Frontend Choreographies are expressive, as illustrated by our examples, and recent studies
have shown that choreography languages such as this are Turing complete [CM16]. There are
many works that investigate how to introduce different features to choreographies, which we
have not studied here and leave to future work. Examples include nested protocols [DH12],
asynchronous two-way exchanges [CMS17], and general recursion [CM17]. These features
are orthogonal to our development, so their inclusion should be straightforward. A more
interesting feature to add may be session delegation for choreographies [CM13, HYC16].
Delegation allows to transfer the responsibility to continue a session from a process to
another. Introducing delegation in FC is straightforward, since we can just import the
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development from [CM13, MY13]. Implementing it in BC and DCC would be more involved,
but not difficult: delegating a role in a session translates to moving the content of a
queue from a process to another, and ensuring that future messages reach the new process.
The mechanisms to achieve the latter part have been investigated in [HYH08], which use
retransmission protocols. Formalising these “middleware” protocols and proving that they
preserve the intended semantics of FC could be an interesting future work.

In the semantics of BC, we abstract from how correlation keys are generated. With this
loose definition we capture several implementations, provided they satisfy the requirement
of uniqueness of keys (wrt to locations). As future work, we plan to implement a language,
based on our framework, able to support custom procedures for the generation of correlation
keys (e.g., from database queries, cookies, etc.).

8. Conclusion

In this paper, we presented our framework of Applied Choreographies, which includes
three calculi: a high-level choreographic language intended for developers, an intermediate-
representation choreographic language, and a low-level, close-to-implementation distributed
calculus. We equip our framework with a tight series of behavioural correspondences, so that
we guarantee that low-level distributed programs compiled from high-level sources faithfully
follow their source specifications. By pairing our compilation with a type system and static
checks that guarantee the absence of deadlocks in high-level choreographies, we obtain that
the compiled distributed systems are deadlock-free. Specifically, we target Service-Oriented
distributed systems that communicate over correlation mechanisms.

Besides the contribution above, Applied Choreographies introduce a novel semantics for
choreographies that abstracts the features of choreographies (message passing, creation of new
sessions and processes) from their implementation (and the related complexity). To this end
we i) equip choreographies with a global deployment and ii) define a separate semantics of
effects on deployments. This separation allows us to compose our semantics of choreographies
with other definitions of deployment and effects so that we have a straightforward way to
capture different communication semantics (e.g., synchronous, asynchronous with buffers)
and implementations (e.g., distributed objects [CC91]). The notion of deployments let
us formalise how choreographies can go wrong (see § 3.3) and show that the theory of
session types is useful not only to type communications on choreographies ([CM13, MY13])
but also to check the correctness of deployments. It is worth noting that, except for the
declaration of locations, Applied Choreographies has the same types and syntax from previous
works [CM13, MY13], hence developers have only to specify protocols and choreographies
and do not need to deal with deployment information or correlation data.

We have already mentioned some short-term future work in the previous section. More
long term projects include the investigation of compilation to other target languages/commu-
nication mechanisms besides correlation-based ones-orientation, for instance those found in
Erlang and Scala+Akka. Clearly this would be a major development, since the actor-based
concurrency and message passing of these languages are substantially different from that
based on correlation, considered in this paper. Another ambitious goal is the application
of our research to the Internet of Things (IoT) setting. IoT promotes the communication
among heterogeneous entities—which use a wide range of communication media and data
protocols–whose integration result in a cumbersome low level programming activity. Indeed,
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to achieve a higher degree of interoperability [GGLZ18, GGLZ19] propose the use of high-
level, service-oriented languages for communication technology integration in IoT systems. In
particular, an extension of Jolie is introduced [GGLZ18, GGLZ19] which natively integrates
the two most adopted protocols for IoT communication (CoAP and MQTT). We plan to take
this approach further by developing a suitable version of Applied Choreographies, specifically
designed for IoT applications, which can then be compiled to the Jolie extension mentioned
above. This would allow one to import in the IoT field the correct-by-construction approach
through the formal correctness of compilation that we have developed in this paper.
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Appendix A. Additional Material

A.1. Typing.

Definition 14 (List Subset). Let ε be the empty list and Ñ , M̃ be two lists of elements n of
the kind Ñ ::= ε | n, Ñ ′, the predicate Ñ ⊆ M̃ holds if Ñ = M̃ = ε or, assuming Ñ = n, Ñ ′

and M̃ = m, M̃ ′ either n = m and Ñ ′ ⊆ M̃ ′ or Ñ ⊆ M̃ ′.

Definition 15 (Ordered Join Operator). Let Ñ , L̃, and M̃ be three lists of elements as
defined in Definition 14, the ordered-join operator Ñ ./L̃ Ñ is defined as

Ñ ./ε M̃ = ε

Ñ ./l,L̃ M̃ =


Ñ ./L̃ M̃ if l 6∈ Ñ ∪ M̃
l, Ñ ′ ./L̃ M̃ if Ñ = l, Ñ ′

l, Ñ ./L̃ M̃
′ if M̃ = l, M̃ ′

A.2. Compiling Frontend Choreographies into DCC Processes.



48 S. GIALLORENZO, F. MONTESI, AND M. GABBRIELLI

acc k : l.p[A];C1 t
acc k : l.q[A];C2

= acc k : l.p[A]; (C1 t C2)

req k : p[A] ] ︷ ︸
l.B;C1 t

req k : q[A] ] ︷ ︸
l.B;C2

= req k : p[A] ] ︷ ︸
l.B; (C1 t C2)

k : p[A].e_ B.o;C1 t
k : q[A].e_ B.o;C2

= k : p[A].e_ B.o; (C1 t C2)

k : A _ p[B].{ oi(xi);Ci }i∈I t
k : A _ q[B].{ oj(xj);C ′j }j∈J

= k : A _ p[B].


{ oi(xi);Ci }i∈I\J

∪ { oi(xi);C ′i }i∈J\I
∪ { oi(xi);Ci t C ′i }i∈I∩J


if p.e {C1} else {C ′1} t
if q.e {C2} else {C ′2}

= if p.e {C1 t C2} else {C ′1 t C ′2}

def X = C ′1 in C1 t
def Y = C ′2 in C2

= def X = C ′1 t C ′2 in C1 t C2

X t Y = X

0 t 0 = 0

Figure 24: Merging Function
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⌊
start k : p[D] ]

︷ ︸
l.q[B];C

⌋
l

=
⌊
acc k :

︷ ︸
l.q[B];C

⌋
l

⌊
acc k :

︷ ︸
l.q[B];C

⌋
l

=

{
{r} ∪ bCcl if l.r[A] ∈ {

︷ ︸
l.q[B] }

bCcl otherwise

bη;Ccl = bCcl if η 6= (start)

bif p.e {C1} else {C2}cl = bC1cl ∪ bC2cl

bdef X = C ′ in Ccl = bC ′cl ∪ bCcl

bXcl = ∅

b0cl = ∅

bC1 | C2cl = bC1cl ∪ bC2cl

Figure 25: Service Grouping
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Appendix B. Proofs

B.1. Proofs of Subject Reduction and Session Fidelity. In order to prove Subject
Reduction (Theorem 1), we prove the stronger result of Typing Soundness, defined in
Theorem 7. We use Theorem 7 to also prove Session Fidelity (Theorem 2).

In order to define and prove Theorem 7, we provide additional definitions and lemmas,
in particular:
• we define an annotated semantics for FC (appendix B.1.1) to track reductions on sessions;
• we define subtyping (appendix B.1.2) for local types and for typing environments. On
these definitions we prove lemmas used to relate evolutions of the typing environment wrt
reductions in choreographies;
• we define an annotated semantics for global types (appendix B.1.3) and prove Lemma 4,
guaranteeing that global types and local types in the typing environment evolve accordingly.
Finally, we proceed to prove Typing Soundness (appendix B.1.5) and consequently

Subject Reduction and Session Fidelity.

B.1.1. FC Annotated Semantics. We define the semantics of annotated FCs by marking
transitions with the name of the session whose term has reduced. We annotate other
reductions as τ . We range over annotated labels with

β ::= k : A _ B.o | k : A〉B.o(x) | τ

We report the annotated semantics of FC in Figure 26. Intuitively, we mark reductions
over a session k with k : A _ B.o for message sends (bC|Sende and bC|Come) and k : A〉B.o(x) for
receptions (bC|Recve).
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D#k′, r̃ δ = start k′ : p[A] ]
︷ ︸
l.q[B] D, δ I D′

D, start k : p[A] ]
︷ ︸
l.q[B];C

τ−→ D′, C[k′/k][̃r/q̃]
bC|Starte

η = k : p[A].e_ B.o D, η I D′

D, η;C
k: A_ B.o−−−−−−−→ D′, C

bC|Sende

j ∈ I D, k : A _ q[B].oj(xj) I D′

D, k : A _ q[B].{oi(xi);Ci}i∈I
k:A〉B.oj(xj)−−−−−−−−→ D′, Cj

bC|Recve

i = 1 if eval( e,D(p) ) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ−→ D, Ci

bC|Conde

D,C1
β−→ D′, C ′1

D, def X = C2 in C1
β−→ D′, def X = C2 in C ′1

bC|Ctxe

R ∈ {≡ , 'C } CRC1 D,C1
β−→ D′, C ′1 C1RC ′

D,C
β−→ D′, C ′

bC|Eqe

D,C1
β−→ D′, C ′1

D,C1 | C2
β−→ D′, C ′1 | C2

bC|Pare

i ∈ {1, . . . , n} D#k′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi} {r̃} =

⋃
i{r̃i}

δ = start k′ : p[A] ]
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D′

D, req k : p[A] ] ︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) τ−→
D′, C[k′/k] |

∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

Figure 26: Fronted Choreographies — annotated semantics.
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B.1.2. Local Types and Typing Environment Subtyping. We define a subtyping relation on
local types following [GH05, CHY12, MY13]. We write the subtyping relation as T ′ ≺ T ,
which intuitively indicates that T ′ is more constrained than T in its behaviour. Note that,
like in [CHY12, MY13], the input type is covariant and the output type is contravariant for
this relation.

Definition 16 (Local Subtyping). We define the subtyping relation between local types as
T ′ ≺ T , which is the smallest relation over closed local types, satisfying the rules

T ′′ ≺ T ′ T ≈ T ′′
T ≺ T ′

bSubT|Eqe
J ⊆ I ∀ i ∈ J | Ti ≺ T ′i ∧ Ui ≺ U ′i
!A.{oi(Ui);Ti}i∈I ≺ !A.{oi(U ′i);T ′i}i∈J

bSubT|Sende

I ⊆ J ∀ i ∈ I | Ti ≺ T ′i ∧ Ui ≺ U ′i
?A.{oi(Ui);Ti}i∈I ≺ ?A.{oi(U ′i);T ′i}i∈J

bSubT|Recve
U ≺ U

bSubT|Vale
end ≈ T
end ≺ T

bSubT|Ende

In rule bSubT|Eqe, T ≺ T ′ if there exists a local type T ′′, subtype of T ′, such that T ≈ T ′′,
i.e., T ′′ approximates T , ≈ being the standard tree isomorphism on recursive types.

Although not directly relevant in the current proof, we also define the subtyping for
global types G ≺ G′, which intuitively follows that of local ones. Subtyping for global
types is used in the definition of Environment subtyping. The relation between subtyping of
Environments and of global types (in service typings) will become relevant when proving
properties of our Endpoint Projection (see appendix B.3). Our definition of subtyping for
global types follows [MY13].

Definition 17 (Global Subtyping). G ≺ G′ is the smallest relation over closed global types
satisfying the rules below

I ⊆ J ∀ i ∈ I, Gi ≺ G′i ∧ Ui ≺ U ′i
A _ B.{oi(Ui);Gi}i∈I ≺ A _ B.{oj(U ′j);G′j}j∈J

bSubG|Come

U ≺ U ′ G ≺ G′
A〉B.o(U);G ≺ A〉B.o(U ′);G′

bSubG|Recve

G′′ ≺ G′ (G′′ ≈ G ∨ G′′ 'G G)

G ≺ G′
bSubG|Eqe end ≈ G

end ≺ G
bSubG|Ende

Finally, we define a subtyping relation between Typing Environments. Intuitively Γ ≺ Γ′

means that Γ′ and Γ are identical Typing Environments up to a) some local and global types
that are more constrained in Γ — i.e., subtypes of a correspondent global/local type — than
in Γ′ and b) some service typings not present in Γ.

Definition 18 (Typing Environment Subtyping). Let Γ and Γ′ be two typing environments,
where Γ′ = Γ′′,Γl , for which dom(Γ) = dom(Γ′′) and Γl contains only service typings.
Then, Γ ≺ Γ′ if and only if

(i) ∀ p.x : U ∈ Γ, Γ′ ` p.x : U
(ii) ∀ X : Γx ∈ Γ, Γ′ ` X : Γx
(iii) ∀ p : k[A] ∈ Γ, Γ′ ` p : k[A]
(iv) ∀ p@l ∈ Γ, Γ′ ` p@l
(v) ∀ k[A〉B] : T ∈ Γ, Γ′ ` k[A〉B] : T
(vi) ∀ k[A] : T ∈ Γ, Γ′ ` k[A] : T ′ and T ≺ T ′
(vii) ∀ l̃ : G〈A|B̃|C̃〉 ∈ Γ, Γ′ ` l̃ : G′〈A|B̃|C̃〉 and G ≺ G′
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Commenting the definition, the subtyping relation for typing environments states that
an environment Γ is a subtype of an environment Γ′ if
• they type the same variables (i), procedure definitions (ii), role ownerships (iii), process
locations (iv), and buffers (v) and they agree on their judgements;
• they type the same local sessions (vi) and the local type in Γ is a subtype of the local type
in Γ′;
• if they type the same service (vii) (note that Γ′ is allowed to have additional service typings
wrt Γ) and the global type in Γ is a subtype of the global type in Γ′.
In Lemma 1 we prove that if Γ ≺ Γ′ and Γ types a running choreography D,C also Γ′

types that choreography.

Lemma 1 (Subsumption). Let Γ ≺ Γ′ and Γ ` D,C for some D,C then Γ′ ` D,C.

Proof . The proof is immediate by Definition 16 and rules bT|Recve, bT|Sende, and bT|Come.
Intuitively, the lemma holds since the local typings in Γ′ allow for additional, unused actions
in D,C. �

We also prove Lemma 2 which guarantees that the typing of choreographies (C) is
invariant wrt buffer types.

Lemma 2 (Buffer types invariance). Let Γ = Γ′,Γb where Γb contains only buffer typings.
If Γ′ ` C then Γ ` C.

Proof . Trivial from the definition of rule bT|DCe and Γ ` C for which buffer typings
affect only predicate pco and the typing of deployments. �

B.1.3. Reductions for Global Types. We annotate the reductions of global types with labels

γ ::= A _ B.o | A〉B.o
and report below the correspondent annotated semantics.

o ∈
⋃
i{oi} G′ =

A〉B
o↓G

⊕AB.{oi(Ui)};G
A_ B.o−−−−−−→ G′

bG|Sende

A〉B.o(U);G
A〉B.o−−−→ G

bG|Recve

R ∈ {≡G,'G} G R G1 G1
γ−→ G′1 G′1 R G′

G
γ−→ G′

bG|Eqe

In Lemma 3 we account for the fact that any output reduction at the level of global types
can constrain the projected local types of the roles not involved in the reduction. Indeed,
referring to rule bG|Sende, the output operation chooses one of the available continuations G′
and discards all the others. Therefore the local types of the other roles not involved in the
reduction can be constrained by the removal of the unused branches.

Lemma 3 (Projection Subtyping). Let T = JGKC, T
′ = JG′KC, and {A, B, C} ⊆ roles(G),

C 6∈ {A, B}, then G A_ B.o−−−−−−→ G′ implies T ′ ≺ T .

Proof . By induction on the derivation of G γ−→ G′. �
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B.1.4. Typing Environment Reductions. We define a reduction relation for typing environ-
ments. To do so, we first formalise the writing k 6∈ Γ, which means that Γ has no local typing
and buffer types for session k, formally, for some local types T and T ′

k 6∈ Γ ⇐⇒ @ A, B s.t. k[A] : T ∈ Γ ∨ k[A〉B] : T ′ ∈ Γ

Finally, we formalise the reduction relation for typing environments of the form Γ→ Γ′,
→ being the smallest closed under the rules below. Note that the annotation labels are a
subset of the labels used to annotate the semantics of FC, ranged over by β.

k 6∈ Γ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk j ∈ I G
A_ B.oj−−−−−−−→ G′

Γ,Γk
k: A_ B.oj−−−−−−−−→ Γ, {k[C] : JG′KC | k[C] ∈ Γk}, {k[C〉D] : JG′KDC | k[C〉D] ∈ Γk}

bΓ|Sende

k 6∈ Γ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk Γ ` q : k[B] G
A〉B.oj−−−−→ G′

Γ,Γk
k:A〉B.oj(x)
−−−−−−−→ Γ, {k[C] : JG′KC | k[C] ∈ Γk}, {k[C〉D] : JG′KDC | k[C〉D] ∈ Γk}, q.x : Uj

bΓ|Recve

With slight abuse of notation, we also write βk to mark reductions of Γ on session k, i.e.,
βk ∈ {k : A _ B.o, k : A〉B.o(x)}.

We define the correspondence operator Gact(β) between β and γ labels:

Gact(βk) =

{
A _ B.o if βk = k : A _ B.o

A〉B.o if βk = k : A〉B.o(x).

In Lemma 4 we prove that if a typing environment Γ includes local types that are
projection of a global type G, then if the global type can reduce, also the typing environment
can reduce. The reduction preserves the correspondence between the reduced global type
and the reduced local types in Γ.

Lemma 4 (Type-Environment Fidelity). Let Γ = Γ∗, JGKk for some Γ∗, k 6∈ Γ∗, and

G
Gact(βk)−−−−−−→ G′ then Γ

βk−−→ Γ′ and for some Γ′∗, k 6∈ Γ′∗, Γ′ = Γ′∗, JG′Kk.

Proof . Direct by cases on the derivation of Γ. �

B.1.5. Proof of Typing Soundness. We also report Lemmas 5 and 6 that prove that typing is
invariant wrt structural equivalence and swapping.

Lemma 5 (Subject Congruence). Γ ` D,C and C ≡C C
′ imply Γ ` D,C ′ (up to α-renaming)

Proof . By induction on the rules that define ≡C. �

Lemma 6 (Subject Swap). Γ ` D,C and C 'C C
′ imply Γ ` D,C ′

Proof . By induction on the derivation of C 'C C
′. � Below we restate the

definition of Deployment Judgements enriched with pointers of the kind (DX.Y) for a clearer
referencing in the proofs.

Definition 3 (Deployment Judgements)
Γ ` D ⇐⇒
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(D|3.1) ∀ p.x ∈ Γ, D(p).x : U
(D|3.2) ∀ k[A〉B] : T ∈ Γ ∧D(k[A〉B]) = m̃, bte(A, m̃) = T

Finally, we prove Theorem 1 by proving the stronger result Theorem 7.
In the proof, we use the context over global types G[·], defined as

G[·] ::= A _ B.{oi(Ui);G[·]}i
| ⊕AB.{oi(Ui)};G[·]
| &AB.{oi(Ui);G[·]}i∈I
| A〉B.o(U);G[·]

We can now proceed to define and prove Theorem 7.

Theorem 7 (Typing Soundness). Let D,C be an annotated FC and (T|7.1) Γ ` D,C for
some Γ:
: if (T|7.2) β 6= τ and D,C β−→ D′, C ′ then (T|7.3) Γ

β−→ Γ′ and (T|7.4) Γ′ ` D′, C ′;
: if (T|7.5) D,C τ−→ D′, C ′ then, for some Γ′, (T|7.6) Γ′ ` D′, C ′.

Proof . Proof by induction on the derivation of D,C β−→ D′, C ′.
Case bC|Sende

The case is:
η = k : p[A].e_ B.oj D, η I D′

D, η;C
k: A_ B.oj−−−−−−−−→ D′, C

bC|Sende

Where (T|7.2) has the reductum C ′ = C and, let v = eval(e,D(p)) and m̃ = D(k[A〉B]),
D′ = D

[
k[A〉B] 7→ m̃ :: (oj , v)

]
by rule bD|Sende.

To prove (T|7.3) we must prove rule bΓ|Sende to be applicable.
From (T|7.1) we know that there exists a global type G for session k such that pco(Γ)

holds. We can partition Γ = Γ∗,Γk such that Γ∗ = Γ \ JGKk and Γk = Γ \ Γ∗.
From (T|7.1) we can write the derivation (with Γ = Γ1, k[A] : ⊕ B.{oi(Ui); JGiKA}i∈I )

pco(Γ) Γ ` D
j ∈ I Γ1 ` p : k[A] Γ1 ` p.e : Uj Γ1, k[A] : JGjKA ` C

Γ1, k[A] : ⊕ B.{oi(Ui); JGiKA}i∈I ` k : p[A].e_ B.oj ;C
bT|Sende

Γ ` D, k : p[A].e_ B.oj ;C
bT|DCe

Since Γ ` k[A] : ⊕ B.{oi(Ui);Ti}i∈I , we can write G = G[A _ B.oi(Ui);Gi] where ∀ i ∈ I,
JGiKA = Ti. Let π be the reduction of G with rules bG|Eqe and bG|Sende, we observe the following
derivation:

π =


G ≡G G1

G1 'G G2

oi ∈ Ui{oi} G′ = ∆

G2
γ−→ G′

bG|Sende
G′ 'G G′.... b

G|Eqe

G1
γ−→ G′ G ≡G G′

G
γ−→ G′

bG|Eqe

∆ =
A〉B
oi↓G[&AB.{oi(Ui};Gi]

G2 = ⊕AB.{oi(Ui)};G[&AB.{oi(Ui};Gi]
G1 = G[⊕AB.{oi(Ui}; &AB.{oi(Ui};Gi]

G′ = G[A〉B.oj ;Gj ]
γ = A _ B.oj

In the reductions, since C,D reduces with β = k : A _ B.oj and G types C,D in Γ,
there are no other exchanges from A to B in G that could prevent from obtaining, after
a finite number of derivations on rule bG|Eqe, the swap-equivalence G1 'G G2. Following a
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similar reasoning, the application ∆ targets the global branching in the context, which
reduces the continuation G[&AB.{oi(Ui};Gi] after the global choice ⊕AB.{oi(Ui)} to G′.

Given π, we can use it to write the reduction at the level the typing environment Γ,
applying rule bΓ|Sende. Below, we consider Γ = Γ∗,Γk where Γk contains all and only typings
of session k in Γ.

k 6∈ Γ∗ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk j ∈ I

π....

G
A_ B.oj−−−−−−−→ G′

Γ∗,Γk
k: A_ B.oj−−−−−−−−→ Γ∗, {k[C] : JG′KC | k[C] ∈ Γk}, {k[C〉D] : JG′KDC | k[C〉D] ∈ Γk}

bΓ|Sende

Hence (T|7.3) holds and Γ′ = Γ∗, {k[C] : JG′KC | k[C] ∈ Γk}, {k[C〉D] : JG′KDC | k[C〉D] ∈ Γk}.
We now prove (T|7.4) by proving that rule bT|DCe applies to Γ′ ` D′, C ′.

pco(Γ′) Γ′ ` C ′ Γ′ ` D′

Γ′ ` D′, C ′
bT|DCe

Hence we need to prove 1○ pco(Γ′), 2○ Γ′ ` C ′, and 3○ Γ′ ` D′
Proof of 1○.
For all sessions k′ ∈ Γ∗, pco(Γ′) holds as pco(Γ) holds by (T|7.1). For session k, pco(Γ′)

holds by construction.
�

Proof of 2○.
From the derivation on Γ ` D, k : p[A].e_ B.oj ;C we know that Γ1, k[A] : JGjKA ` C.

Let Γ′′ = Γ1, k[A] : JGjKA and Γ′k = Γ1 \ Γ∗ = Γk \ {k[A] : JGKA}. We can write Γ′′ =
Γ∗,Γ

′
k, k[A] : JGjKA. Note that in the premise of rule bT|Sende that types the continuation C,

the buffer types in Γ (i.e., those in Γ1) are unaffected. Therefore Γ′′(k[A〉B]) 6= Γ′(k[A〉B]),
however from Lemma 2 we know that we can omit to consider buffer types as they are
irrelevant for the typing of choreographies. For all sessions k′ 6= k in Γ′′ their local
typings are the same in Γ′. For session k, the typing Γ′′(k[A]) = Γ′(k[A]) = JGjKA. From
Lemma 3, for all other k[C] ∈ Γ′′, C 6= A it holds that Γ′′(k[C]) = JGKC, Γ′(k[C]) = JG′KC,
and JG′KC ≺ JGKC. Therefore Γ′ ≺ Γ′′ and 2○ holds by Lemma 1.

�
Proof of 3○.
To prove Γ′ ` D′ we need to prove that the conditions of Definition 3 hold. (D|3.1)

holds by the application of rule bD|Sende, by construction of Γ′, and by (T|7.1). (D|3.2) holds
for all sessions k′ 6= k by application of rule bD|Sende and the construction of Γ′. The same
holds true for session k and any process q : k[C] ∈ Γ′ | C 6= B.

Finally, we need to prove that Γ′( k[A〉B] ) = bte( A, D′(k[A〉B]) ). From (T|7.1) we know
that i) Γ(k[A〉B]) = T and ii) let D(k[A〉B]) = m̃, that bte(A, m̃) = T . From Definition 4
we have a direct proof that bte( A, m1 :: · · · :: mn ) = bte(A,m1) ; . . . ; bte(A,mn).

Now, from the reduction on bC|Sende we know that

D′( k[A〉B] ) = m′ = m̃ :: (oj , v)

And therefore, bte(A,m′) = T ; bte(A, (oj , v)). From the reductions on Γ and G, we
observe that the reduction on G do not affect the context G (which contains local type T ),
thus, by the rules of the definition of the Buffer Type Projection (Figure 14), we have
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q
G′

yA
B

= T ; &A.oj(Uj)

Hence, from the reduction on rule bΓ|Sende, we know that Γ′( k[B〉A] ) = Γ′( JG′KAB ) =
T ; &A.oj(Uj). Finally, from the typing rule bT|Sende we know that p.e ` Uj and from reduction
rule bC|Sende that v = eval( e,D(p) ), thus v has type Uj . Hence, bte( A, (oj , v) ) = &A.oj(Uj)
and

Γ′( k[A〉B] ) = T ; &A.oj(Uj) = bte( A, D′(k[A〉B]) )

�
Case bC|Recve

The case is:
j ∈ I D, k : A _ q[B].oj(xj) I D′

D, k : A _ q[B].{oi(xi);Ci}i∈I
k:A〉B.oj(xj)−−−−−−−−→ D′, Cj

bC|Recve

(T|7.2) has reductum C ′ = Cj . Since we could apply bC|Recve, we know that D(k[A〉B]) =
(oj , v) :: m̃. Let D1 = D

[
q 7→ D(q)[x 7→ v]

]
, from the application of rule bD|Recve, we know

that D′ = D1

[
k[A〉B] 7→ m̃

]
. To prove (T|7.3) we must prove that rule bΓ|Recve is applicable.

Since (T|7.1) holds pco(Γ) and Γ ` D hold and therefore we know that, by (D|3.2),
Γ(k[A〉B]) = bte(A, (oj , v) :: m̃).

Let ` v : Uj , then bte(A, (oj , v) :: m̃) = &A.oj(Uj);T where T = bte(A, m̃) by
Definition 4 and Γ(k[A〉B]) = &A.oj(Uj);T . Since pco(Γ) holds, there exists a global type
G for session k such that G = G[A〉B.oj(Uj);Gj ]. Let π be the reduction of G with rules
bG|Eqe and bG|Recve, we observe the following derivation:

π =



G 'G G1 G1
γ−→ G′

bG|Recve
G 'G G′.... b

G|Eqe

G
γ−→ G′

G1 = A〉B.oj(Uj);G[Gj ]

G′ = G[Gj ]
γ = A〉B.oj(Uj)

In the reductions, since C,D reduces with β = k : A〉B.oj(xj) and G types C,D in Γ,
there are no other exchanges from A to B in G that could prevent from obtaining, after a
finite number of derivations on rule bG|Eqe, the swap-equivalence G 'G G1. Then, applying
rule bG|Sende, G1 can reduce to G′.

Given π, we can use it to write the reduction at the level the typing environment Γ,
applying rule bΓ|Recve. Below, we consider Γ = Γ∗,Γk where Γk contains all and only typings
of session k in Γ.

k 6∈ Γ∗ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk Γ∗ ` q : k[B]

π....
G

A〉B.oj−−−−→ G′

Γ∗,Γk
k:A〉B.oj(x)
−−−−−−−→ Γ∗, {k[C] : JG′KC | k[C] ∈ Γk}, {k[C〉D] : JG′KDC | k[C〉D] ∈ Γk}, q.x : Uj

bΓ|Recve

Hence (T|7.3) holds and Γ′ = Γ∗, {JG′KC | k[C] ∈ Γk}, q.x : Uj .
(T|7.4) holds if we can apply rule bT|DCe on Γ′ ` D′, C ′
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pco(Γ′) Γ′ ` C ′ Γ′ ` D′

Γ′ ` D′, C ′
bT|DCe

and we need to prove 1○ pco(Γ′), 2○ Γ′ ` C ′, and 3○ Γ′ ` D′
The proof of 1○ for this case is similar to that of 1○ for case bC|Sende.
Proof of 2○. From (T|7.1), partitioning Γ = Γ1, k[B] : &A.oj(Uj); JGjKB and since j ∈ I

from rule bC|Recve, we can write the derivation

pco(Γ) Γ ` D
j ∈ I Γ1 ` q : k[B] Γ1, q.xj : Uj , k[B] : JGjKB ` Cj

Γ1, k[B] : &A.oj(Uj); JGjKB ` k : A _ q[B].{oi(xi);Ci}i∈I
bT|Recve

Γ ` D, k : A _ q[B].{oi(xi);Ci}i∈I
bT|DCe

hence we know that Γ1, q.xj : Uj , k[B] : JGjKB ` Cj .
Let Γ′′ = Γ1, q.xj : Uj , k[B] : JGjKB ` Cj and Γ′k = Γ1 \ Γ∗ = Γk \ {k[B] : JGKB}. We can

write Γ′′ = Γ∗,Γ
′
k, k[B] : JGjKB. Similarly to 2○ for case bC|Sende, Γ′′(k[A〉B]) 6= Γ′(k[A〉B]), but

we omit to consider buffer types as they are irrelevant for the typing of choreographies by
Lemma 2. For all sessions in Γ′′, their local typings are the same as in Γ′. We consider in
particular k on which we applied the reduction for this case for which it holds

∀ k[C] ∈ Γ′′, Γ′′(k[C]) = Γ′(k[C]) =
q
G′

y
C

�
Proof of 3○. To prove Γ′ ` D′ we prove the conditions in Definition 3. (D|3.1)

holds from the application of rule bD|Recve, (T|7.1), and the construction of Γ′. (D|3.2)
holds for all p.x from the application of rule bD|Recve, (T|7.1), and the construction of Γ′,
except for q.xj which is not defined in Γ. However the condition holds by construction of
Γ′ = Γ1, q.xj : Uj , k[B] : JGjKB. (D|3.2) holds for all sessions k′ 6= k by the application of
rule bD|Recve and the construction of Γ′. The same holds true for session k and any process
p : k[C] ∈ Γ | C 6= B.

For q : k[B] and role A we know from the application of bC|Sende that D′(k[A〉B]) = m̃. Since
we took G such that JGKAB = &A.oj(Uj);T , where T = bte(A, m̃), then JG′KAB = T .

�
Case bC|Starte

The case is:
D#k′, r̃ δ = start k′ : l.p[A],

︷ ︸
l.r[B] D, δ I D′

D, start k : p[A] ]
︷ ︸
l.q[B];C

τ−→ D′, C[k′/k][̃r/q̃]
bC|Starte

Where (T|7.5) has C ′ = C[k′/k][̃r/q̃]. D′ is defined non-deterministically but abides the
requirements defined in rule bD|Starte. Let

︷ ︸
s[C] = p[A],

︷ ︸
r[B]. Since (T|7.1) holds, we can apply

rule bT|Starte. We partition Γ = Γ1, l̃ : G〈A|B̃|B̃〉

Γ1, l̃ : G〈A|B̃|B̃〉, init(
︷ ︸
s′[C] , k, G ) ` C

︷ ︸
s′[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ1

Γ1, l̃ : G〈A|B̃|B̃〉 ` start k : p[A] ]
︷ ︸
l.q[B];C

bT|Starte

Coherently with the semantics of rule bC|Starte, we take Γ′ = Γ, init(
︷ ︸
s[C], k′, G ) —

obtainable from the typing environment in the left-most premise of rule bT|Starte, α-renaming:
i) typings on session k to session k′ and ii) process identifies q̃ to r̃ in

︷ ︸
s′[C] (i.e., such that
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︷ ︸
s[C] = [

︷ ︸
r[C] /

︷ ︸
q[C] ]

︷ ︸
s′[C]) — and we prove the case by proving that we can apply rule bT|DCe

on Γ′ ` D′, C ′, i.e, that the following hold: 1○ pco(Γ′), 2○ Γ′ ` C ′, and 3○ Γ′ ` D′.
Proof of 1○. 1○ holds for all session k′′ ∈ Γ′, k′′ 6= k′ by (T|7.1). For session k′ 1○

holds by construction. �
Proof of 2○. By (T|7.1) we could apply bT|Starte where Γ, init(

︷ ︸
s[C], k, G ) ` C. Since

Γ′ is obtained by α-renaming of the left-most premise of Rule bT|Starte, which types the
continuation C, Γ′ types C[k′/k][̃r/q̃] and 2○ holds by construction. �

Proof of 3○. To prove 3○ we prove the conditions in Definition 3. (D|3.1–D|3.2) hold
by the application of rule bD|Starte and the construction of Γ′. �
Case bC|PStarte

The case is:
i ∈ {1, . . . , n} D#k′, r̃ {

︷ ︸
l.B } =

⊎
i{

︷ ︸
li.Bi } {r̃} =

⋃
i{r̃i}

p ∈ D(l) δ = start k′ : l.p[A],
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D′

D, req k : p[A] ] ︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) τ−→
D′, C[k′/k] |

∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

Where (T|7.5) has C ′ = C[k′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
. D′

is defined non-deterministically but abides the requirements defined in rule bD|Starte.
We partition Γ such that:

– Γ = Γr,Γa
– Γr ` l̃ : G〈A|B̃|∅〉
– Γa ` l̃ : G〈A|B̃|B̃〉
– Γa = Γ1, l̃ : G〈A|B̃|

︷ ︸
B1〉, · · · ,Γn, l̃ : G〈A|B̃|

︷ ︸
Bn〉

– Γia = Γi, l̃ : G〈A|B̃|
︷ ︸
Bi〉, · · · ,Γn, l̃ : G〈A|B̃|

︷ ︸
Bn〉

and we can write the derivation

pco(Γ) Γ ` D

Γr, p : k[A], k[A] : JGKA ` C Γr ` l̃ : G〈A|B̃|∅〉
Γr ` req k : p[A] ] ︷ ︸

l.B;C
bT|Reqe

∆1

Γ ` req k : p[A] ] ︷ ︸
l.B;C |

∏
i∈I
(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|Pare

Γ ` D, req k : p[A] ] ︷ ︸
l.B;C |

∏
i∈I
(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|DCe

∆i =


l̃i ⊆ l̃ Γi, l̃ : G〈A|B̃|∅〉, init(

︷ ︸
qi[Bi], k, G ) ` Ci q̃i 6∈ Γ

Γi, l̃ : G〈A|B̃|
︷ ︸
Bi〉 ` acc k :

︷ ︸
li.qi[Bi];Ci

bT|Acce
∆i+1

Γia ` acc k :
︷ ︸
li.qi[Bi];Ci |

∏
j∈I\{1,··· ,i}

(
acc k :

︷ ︸
lj .qj [Bj ];Cj

) bT|Pare

Let
︷ ︸
s[C] = p[A],

︷ ︸
r1[B1], · · · ,

︷ ︸
rn[Bn].

To prove (T|7.6) we take

Γ′ = Γ, init(
︷ ︸
s[C], k′, G ) = Γr,Γa, init(

︷ ︸
s[C], k′, G )

and we partition init(
︷ ︸
s[C], k′, G ) such that

Γ′ = Γ′r,Γ
′
a,Γa

Where
– Γ′r = Γr, init( p[A], k′, G )
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– Γ′a = Γ′1, · · · ,Γ′n
– Γ′i = Γi, l̃ : G〈A|B̃|∅〉, init(

︷ ︸
ri[Bi], k

′, G ) where i ∈ {1, . . . , n}
To prove (T|7.6) we must prove we can apply rule bT|DCe on Γ′ ` D′, C ′.

1○ pco(Γ′) 3○ Γ′ ` D′ 2○

 2a○ Γ′r ` C[k′/k]

2b○ Γ′a `
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)

2c○ Γa `
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
Γ′a,Γa `

∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|Pare

Γ′ ` C[k′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|Pare

Γ′ ` D′, C′
bT|DCe

Proof of 1○. 1○ holds by construction. �
Proof of 2○. 2○ holds as

– 2a○ holds by α-renaming (Γr, p : k[A], k[A] : JGKA)[k
′/k] ` C[k′/k] and by omitting to

consider buffer types as of Lemma 2;
– similarly to 2a○, 2b○ holds by α-renaming on the derivation of

( Γi, l̃ : G〈A|B̃|∅〉, init(
︷ ︸
qi[Bi], k, G ) )[k′/k][̃ri/q̃i] ` Ci[k′/k][̃ri/q̃i]

and by Lemma 2;
– 2c○ holds by (T|7.1).

�
Proof of 3○. The proof of 3○ of this case is similar to the of 3○ for Case bC|Starte. �

Case bC|Conde

The case is:

i = 1 if eval( e,D(p) ) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ−→ D, Ci

bC|Conde

In (T|7.5) D′ = D and we have two cases for C ′ = C1 or C ′ = C2.
From (T|7.1) we can write

Γ ` p.e : bool Γ ` C1 Γ ` C2

Γ ` if p.e {C1} else {C2}
bT|Conde

The proof of (T|7.6) follows directly from the premises of the typing derivation as
Γ ` D = D′ and in both cases that C ′ = C1 or C ′ = C2 it holds that Γ ` C ′ from the
premises of bT|Conde.
Case bC|Ctxe

The case is:

D,C1
β−→ D′, C ′1

D, def X = C2 in C1
β−→ D′, def X = C2 in C ′1

bC|Ctxe

From (T|7.1) we know that, Γ = Γ1, X : Γx

pco(Γ)

Γ1, X : Γx ` C1 Γx, X : Γx ` C2 Γx|locs ⊆ Γ

Γ ` def X = C2 in C1
bT|Defe

Γ ` D
Γ ` D, def X = C2 in C1

bT|DCe

The proof is divided in two cases on the type of β.
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Case β 6= τ
D,C1 reduces on some session k. By the induction hypothesis since Γ ` D,C1 we can find
Γ′ such that (T|7.3) holds. We prove (T|7.4) by proving that we can apply bT|DCe on Γ′ `
D′, def X = C2 in C ′1 and therefore that 1○ pco(Γ′) holds, 2○ Γ′ ` def X = C2 in C1

and 3○ Γ′ ` D′.
1○ holds by the construction of Γ′ and 3○ holds by the induction hypothesis.
To prove 2○ we have to prove that Γ′ ` X : C2 and Γx|locs ⊆ Γ′.

From the induction hypothesis we have that Γ
β−→ Γ′ and Γ′ ` D′, C ′1. By construction

of Γ′ it holds that Γ′ = Γ′∗,Γ
′
k where Γ′ ∩ Γ = Γ∗ such that k 6∈ Γ∗ and Γ = Γ∗,Γk where

Γk ⊆ JGKk for some G. Therefore it holds that Γ∗ ` X : Γx and thus that Γ′ ` X : Γx.
The same applies to Γx|locs ⊆ Γ∗ which proves Γx|locs ⊆ Γ′.
Case β = τ
from the induction hypothesis, for any considered derivation we have Γ ⊆ Γ′. We prove
(T|7.6) by proving that we can apply bT|DCe on Γ′ ` D′, def X = C2 in C ′1. 1○, 2○, and

3○ hold by construction of Γ′.
Case bC|Pare

The case is:
D,C1

β−→ D′, C ′1

D,C1 | C2
β−→ D′, C ′1 | C2

bC|Pare

From (T|7.1) we have the derivation below, with Γ partitioned as Γ = Γ1,Γ2

pco(Γ)

Γ1 ` C1 Γ2 ` C2

Γ ` C1 | C2
bT|Pare

Γ ` D
Γ ` D,C1 | C2

bT|DCe

The proof is divided in two cases on the type of β.
Case β 6= τ
D,C1 reduces on some session k. By the induction hypothesis and since Γ1 ` D,C1 we
can find Γ′1 such that Γ1

β−→ Γ′1 and Γ′1 ` D′, C ′1. Then we take Γ′ = Γ′1,Γ2 which proves
(T|7.3) to hold. We prove (T|7.4) by proving that we can apply bT|DCe on Γ′ ` D′, C ′1 | C2

and therefore that 1○ pco(Γ′), 2○ Γ′ ` C ′1 | C2 and 3○ Γ′ ` D′ hold. 1○, 2○, and 3○
hold by construction and the induction hypothesis.
Case β = τ
from the induction hypothesis, for any derivation we have that Γ′1 ` D′, C ′1 and Γ1 ⊆ Γ′1.
Also in this case we take Γ′ = Γ′1,Γ2 and prove (T|7.6) by proving that we can apply
bT|DCe on Γ′ ` D′, C ′1 | C2. 1○, 2○, and 3○ hold by construction of Γ′ and the induction
hypothesis.

Case bC|Eqe
The case is:

R ∈ {≡C , 'C } CRC1 D,C1
β−→ D′, C ′1 C ′1RC ′

D,C
β−→ D′, C ′

bC|Eqe

The proof is divided into two subcases on the type of R.
Case R = ≡C
The case is proved by induction hypothesis and Lemma 5.
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Case R = 'C
The case is proved by induction hypothesis and Lemma 6.

�
The proof of Theorem 2 follows directly from the proof of Theorem 7 and Lemma 4.

B.2. Proof of Deadlock Freedom. We report below the statement of Theorem 3 enriched
with pointers for clearer referencing in the proof.
Theorem 3 (Deadlock-freedom)
(D3.1) Γ ` D,C and (D3.2) co(Γ) imply that either (D3.3) C ≡C 0 or (D3.4) there exist D′
and C ′ such that D,C → D′, C ′.

Like in [CM13, MY13], frontend choreographies enjoy deadlock freedom, provided that
they i) do not contain free variable names and ii) are well-sorted, i.e., have no undefined
procedure calls. Notably, well-sortedness is guaranteed by the type system.

Proof . Proof by induction on the structure of C.
Case C ≡C 0
trivial.
Case C = k : p[A].e_ B.o;C1

from (D3.1) and (D3.2) we know that the requirements of bD|Sende hold and we can find D′
such that D, k : p[A].e_ B.o I D′. We can apply Rule bC|Sende for which C ′ = C1.
Case C = k : p[A].e_ q[B].o(x);C1

since (D3.1) holds both receiver and sender are typed by Γ. We apply rule bC|Eqe to split
the complete term into respectively a send and a receive partial terms, and similarly to
the previous case, we apply rule bC|Sende, for which C ′ = k : A _ q[B].o(x);C1.
Case C = k : A _ q[B].{oi(xi);Ci}i∈I
from (D3.1) and (D3.2) we know that the requirements of Rule bD|Recve hold and D(k[A〉B]) =
(oj , tm) :: m̃ for some j ∈ I. We can find D′ such that D, k : A _ q[B].oj(xj) I D′ and
apply Rule bC|Recve for which C ′ = Cj .
Case C = start k : p[A] ]

︷ ︸
l.q[B];C1

from (D3.1) and (D3.2) bD|Starte applies and we can find D′ such that D, start k′ :
l.p[A],

︷ ︸
l.r[B] I D′ for some k′, r̃ fresh. We can apply Rule bC|Starte for which C ′ = C1[k′/k][̃r/q̃].

Case C = req k : p[A] ] ︷ ︸
l.B;C |

∏n
i=1

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
similarly to the previous case, the requirements of bD|Starte hold and we can find D′ such that
D, start k′ : l.p[A],

︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] I D′ for some k′ and r̃1, · · · , r̃n fresh. We can

apply Rule bC|PStarte for which
C ′ = C[k′/k] |

∏n
i=1Ci[k

′/k][̃r1/q̃1] |
∏n
i=1

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
.

Case C = C1 | C2

we can apply the induction hypothesis and Rule bC|Pare such that D,C1 → D1, C
′
1 and in

(D3.4) D′ = D1 and C ′ = C ′1 | C2.
Case C = def X = C2 in C1

applies the induction hypothesis and Rule bC|Ctxe for which D,C1 → D′, C ′1, where C ′ =
def X = C2 in C ′1.
Case def X = C2 in X;C1

applies Rule bC|Eqe for def X = C2 in X;C1 ≡C def X = C2 in C2;C1 and by the induction
hypothesis D,C2 → D′, C ′2 and C ′ = def X = C2 in C ′2;C1.
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Case C = if p.e {C1} else {C2}
from (D3.1) we know that Γ ` p.e : bool and therefore we can apply Rule bC|Conde and,
according to the evaluation of e, we have C ′ = C1 or C ′ = C2.

�
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B.3. Proof of Endpoint Projection. To prove our result on the Endpoint Projection we
first define the minimal typing system `min for FC.

B.3.1. Minimal Typing. We recall the definition of subtyping for local and global types (see
Definitions 16 and 17), which we extend to set inclusion and point-wise to i) the typing
of services (i.e., of kind l̃ : G〈A|B̃|C̃〉) and ii) the typing of sessions, respectively. Given two
types G and G′, we denote their least upper bound wrt ≺ with GOG′ (the same for local
types and typing environments).

We define the minimal typing system `min on this notion of subtyping. The minimal
typing uses the minimal global and local types for typing sessions and services such that the
projection of the choreography is still typable. We report the rules for minimal typing in
Figure 27.

Proposition 1 (Existence of Minimal Typing). Let Γ ` D,C, then there exists Γ0 such
that Γ0 ` D,C and for each Γ′ ` D,C we have that Γ0 ≺ Γ′. The environment Γ0 can be
algorithmically calculated from C and is called the minimal typing of C.

Proof of Existence of Minimal Typing. The proof is standard and proceeds by induction
on the rules in Figure 27, defining the minimal typing system Γ `min D,C .

As in [CM13, MY13], our focus is on the reconstruction of global/local types, thus we
leave the reconstruction of variable types undefined (which it is entirely standard, e.g., see
[Pie02]).

We give the intuition behind each case corresponding to the derivation on the rules.
bMin|Start1e and bMin|Start2e type the starting of sessions. The difference between bMin|Start1e and bMin|Start2e

is that, when bMin|Start1e applies, the service typing of l̃ is not used any more in C, and thus its
typing is dropped to guarantee minimality. Contrarily, in bMin|Start2e the service typing of l̃ is
used in the continuation C. In the rule, we consider the minimal global type GOG′ where G′
is minimal in session k and G is minimal in the typing of the continuation C.

Rules bMin|Req1e and bMin|Req2e mirror a similar relationship, where in the first rule we drop
the typing of l̃, not used in the continuation C, while in the second we consider GOG′. Note
that Rule bMin|Acce directly drops the typing of l̃ in the typing of the continuation. We do this
because we assumed (see § 2.1) that i) (acc) terms can only be at the top level (not guarded
by other actions) and ii) by rule bT|Acce no subsequent term (start) on the same locations l̃
is typable (and hence cannot be present in C, well-typed). The same holds for subsequent
(req) terms on l̃, which could not be paired with a complementary (acc).

In bMin|Conde we consider Γ1OΓ2 to determine the least upper bound of receive types. Rules
bMin|Come, bMin|Sende, and bMin|Recve type receptions with a singleton branching local type. Rule bMin|Pare

is standard.
Also in rule bMin|Defe we consider the least upper bound of Γ and Γ′ respectively typing the

continuation C and the body of procedure X. In addition, we also consider the least upper
bound of the local typings T and T ′, on which we apply function solve. Function solve is
standard (cf. [CHY12, CM13]) and solves the equations tX = T for each T in

︷ ︸
k[A] : T where,

if tX appears in T , the corresponding component is rec t.TX , or T otherwise. Rule bMin|Defe

uses rules bMin|D1e and bMin|D2e to determine the content of Γx and Γ′x to respectively minimally
type the continuation C and the body of procedure X. Indeed, when rule bMin|D1e applies, the
choreography C uses the typing X : Γx, otherwise bMin|D2e applies and the minimal type does
not contain the typing for X. Finally, in case both the typing of C and of C ′ type X (i.e.,
X in dom(Γx) ∩ dom(Γ′x)), their judgements coincide.
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Γ, init(
︷ ︸
r[C], k,G ) `min C

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ l̃ 6∈ Γ

Γ, l̃ : G〈A|B̃|B̃〉 `min start k : p[A] ]
︷ ︸
l.q[B];C

bMin|Start1e

Γ, l̃ : G〈A|B̃|B̃〉, init(
︷ ︸
r[C], k,G′ ) `min C

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ

Γ, l̃ : GOG′〈A|B̃|B̃〉 `min start k : p[A] ]
︷ ︸
l.q[B];C

bMin|Start2e

Γ, p : k[A], k[A] : JGKA `min C l̃ 6∈ Γ

Γ, l̃ : G〈A|B̃|∅〉 `min req k : p[A] ] ︷ ︸
l.B;C

bMin|Req1e
Γ, l̃ : G〈A|B̃|∅〉, p : k[A], k[A] : JG′KA `min C

Γ, l̃ : GOG′〈A|B̃|∅〉 `min req k : p[A] ] ︷ ︸
l.B;C

bMin|Req2e

l̃ ⊆ l̃′ Γ, init(
︷ ︸
q[C], k,G ) `min C q̃ 6∈ Γ l̃ 6∈ Γ

Γ, l̃′ : G〈A|B̃|C̃〉 `min acc k :
︷ ︸
l.q[C];C

bMin|Acce

Γ1OΓ2 ` p.e : bool Γ1 `min C1 Γ2 `min C2

Γ1OΓ2 `min if p.e {C1} else {C2}
bMin|Conde

Γ ` p : k[A], q : k[B] Γ ` p.e : U Γ, q.x : U, k[A] : T, k[B] : T ′ `min C
Γ, k[A] : ⊕ B.{o(U);T}, k[B] : &A.{o(U);T ′} `min k : p[A].e_ q[B].o(x);C

bMin|Come

Γ ` p : k[A] q : k[B] 6∈ Γ Γ ` p.e : U Γ, k[A] : T `min C
Γ, k[A] : ⊕ B.{o(U);T} `min k : p[A].e_ B.o;C

bMin|Sende

Γ ` q : k[B] p : k[A] 6∈ Γ Γ, q.x : U, k[B] : T `min C
Γ, k[B] : &A.{o(U);T} `min k : A _ q[B].o(x);C

bMin|Recve

Γx(X) = Γ′
x(X) if X ∈ dom(Γx) ∩ dom(Γ′

x) @ k′′[A′′] ∈ dom(ΓOΓ′)

X 6∈ dom(ΓOΓ′) Γ′
x BX (Γ′,

︷ ︸
k′[A′] : T ′), C ′ Γx BX (Γ,

︷ ︸
k[A] : T ), C Γ′|locs ⊆ Γ

(ΓOΓ′), solve(
︷ ︸
k[A] : T O

︷ ︸
k′[A′] : T ′, tX) `min def X = C ′ in C

bMin|Defe

Γ1 `min C1 Γ2 `min C2

Γ1,Γ2 `min C1 | C2

bMin|Pare
Γ,Γx, X : Γx `min C
Γx, X : Γx BX Γ, C

bMin|D1e
X 6∈ dom(Γx) Γ,Γx `min C

Γx BX Γ, C
bMin|D2e

Γ = ownerships ∪ sessions ∪ vars k[A] ∈ sessions k[A] : end
Γ `min 0

bMin|Ende

Γ = vars ∪ ownerships
︷ ︸
k′[A′] = sessions \ {

︷ ︸
k[A]}

Γ′ = vars(X) ∪ ownerships(X)
︷ ︸
k[A] = sessions(X) Γ′ ⊆ Γ

Γ,
︷ ︸
k[A] : tX ,

︷ ︸
k′[A′] : end, X : (Γ′,

︷ ︸
k[A] : tX) `min X

bMin|Calle

pco(Γ,Γ′) Γ ` D Γ′ `min C
Γ,Γ′ `min D,C

bMin|DCe

Figure 27: Frontend Choreographies — Minimal typing rules
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Rules bMin|Ende and bMin|Calle use some auxiliary information, obtainable by a preliminary
top-down visit of the choreography syntax tree (cf. [CHY12, CM13]). Specifically, vars,
ownerships, and sessions are respectively the variable, the ownership, and the session typings
of the choreography whose type is being inferred. Similarly, vars(X), ownerships(X), and
sessions(X) yield respectively the same kind of information regarding the body of procedure
X (i.e., obtained inspecting the body of the inner-most recursive procedure X). In the rules,
in bMin|Ende we check that in Γ reside only those ownership, variable, and session typings present
in the typed choreography and that all sessions (i.e., their local types) are terminated. In
rule bMin|Calle, i) all sessions outside X must be terminated and those inside X agree on tX
and ii) Γ and Γ′ contain only appropriate variable and ownership typings and agree on their
judgement (Γ′ ⊆ Γ).

Rule bMin|DCe defines minimal typing for running choreographies.
�

B.3.2. Typing Projection. Here we define the projection of typing environments, which is
used to prove that, given the minimal typing environment Γ of a choreography C, from Γ we
can build the minimal typing environment for the EPP of C.

To do that, we have to account for two peculiarities (as defined in § 6.2) of our EPP:
• it merges in the output choreography the behaviours of many service processes into one
process. Hence, to guarantee typing and minimality we have to merge typings related to
service processes on the same location into the same (and only) service process present in
JCK;
• it projects recursive definitions of the same procedure on different processes, e.g., if in
C there are processes p1, . . . , pn and procedure X, in the EPP we will find procedures
Xp1 , . . . , Xpn . Thus, we replace the definition typing of any procedure X in dom(Γ) with
the typings of its projections Xp1 , . . . , Xpn .
To indicate the projection of a typing environment Γ wrt to its typed choreography C,

we write JΓKC . To define JΓKC (and also later in this proof) we use the typing environment
filtering operator Γ|p defined as

Γ|p =


{ p.x : U | p.x : U ∈ Γ } ∪
{ p : k[A], k[A] : T} | { p : k[A], k[A] : T } ⊆ Γ } ∪
{ l̃ : G〈A|B̃|C̃〉 | l̃ : G〈A|B̃|C̃〉 ∈ Γ } ∪
{ Xp : Γx | Xp : Γx ∈ Γ }

Definition 19 (Typing Projection). Let Γ ` C, the projection of Γ wrt to C, written JΓKC ,
is defined as:

JΓKC =


⋃

q∈bCcl

JΓKq [p/q]︸ ︷︷ ︸
i.i)

| p ∈ bCcl ∩ pn(JCK)︸ ︷︷ ︸
i.ii)

∧ l ∈ {l̃} ∧ l̃ ∈ dom(Γ)

︸ ︷︷ ︸
i)

,
{

JΓKr | r ∈ fp(JCK)
}︸ ︷︷ ︸

ii)

JΓKp =
(

Γ|p \ {X : Γx | Γ ` X : Γx}
)

︸ ︷︷ ︸
iii)

,
{
Xp : JΓxKp | Γ ` X : Γx

}
︸ ︷︷ ︸

iv)

As mentioned above, in the definition of JΓKC we distinguish two kinds of projections:
the one on service processes i) and the one on active processes ii). In the first case, we unify
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the projection on service processes at the same location in C (i.e., in bCcl). To do that in a
consistent way, wrt to the EPP of C we:
• obtain the identifier of process p i.i), the only service process at location l that is present
in JCK (and hence the one that merges the behaviours of all service processes in C at l);
• get the projection of Γ on a service process q (JGKq) in bCcl;
• we rename all process-related typings in JΓKq to correspond to process p (by abusing the
notation JΓKq [p/q]) i.ii);
• we merge all the resulting, renamed typing environments into a single typing environment
for process p.
Finally, the projection of typing environment Γ on process p, written JΓKp corresponds

to the union of iii) the typing in Γ related to process p, from which we remove the typings
of definitions, and iv) the projection of the typings of definitions, renamed for process p.

Note the definition of JΓKC is coherent with the definition of process projection (see
Definition 9) in which the rule for projecting (rec) terms is defined as:

q
def X = C ′ in C

y
r

= def Xr =
q
C ′[Xr/X]

y
r
in J C[Xr/X] Kr

Similarly, JΓKC generates definition typings for each procedure corresponding to each process
in the choreography (assumed to be C). The typings of definitions are guaranteed minimal
(as required in Theorem 8).

The only remark regards service typings, which are present in all projected environments,
although they might not be used. While having additional, unused service typings does not
compromise type checking, we must consider a weakened form of minimality of typing where
some unused service typings are allowed. This fact is clearly stated in the definition of the
Theorem 8.

B.4. Proof of the Well-Typedness property of Theorem 5. To prove the property of
well-typedness of Theorem 5 we prove the stronger result of Theorem 8.

Theorem 8 (EPP Typing Preservation). Let D,C be a well-typed running choreography
such that Γ `min D,C , where Γ = Γd,Γc such that Γd ` D, then JΓcKC ,Γd `min D, JCK up
to service typings.

Intuitively, Theorem 8 subsumes the well-typedness property (1) of Theorem 5, using
the environment projection defined above to provide a minimal typing environment for JCK
up to some unused service typings.

We define some auxiliary lemmas used in the proof of Theorem 8.

Lemma 7 (Composability of Typing Projections). Let Γ ` C and Γ = Γ′,Γ′′ then JΓKC =

JΓ′KC , JΓ′′KC .

Proof . The proof is by contradiction. The projection JΓKC returns exactly Γ except
for the projection of the typings of the procedures, as defined in Definition 19. Hence
the projection JΓKC can differ from JΓ′KC , JΓ′′KC only on definition typings. However, it
is impossible that JΓKC 6= JΓ′KC , JΓ′′KC . Indeed, there could be only two cases for the
partitioning of Γ wrt any definition typing X ∈ dom(Γ), either:
• i) both Γ′ and Γ′′ type X, in which case, since Γ = Γ′,Γ′′, they must agree on their
judgement on X;
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• ii) the judgement on X is contained only in Γ′ or Γ′′.
in both cases the projections obtained from X remain the same wrt the one in Γ. �

We prove Lemma 8 that states that given a well-typed choreography C and a typing
environment Γ for which Γ `min C then the projection of Γ, JΓKC , types minimally the
projection of C, JCK.

Lemma 8 (Choreography EPP Typing Preservation). Let C be a well-typed choreography
and let Γ `min C then JΓKC `min JCK .

Proof . Like for the proof of Theorem 3, we assume our choreographies to be well-sorted.
The proof is by induction on the typing derivation of Γ `min C .
Case bMin|Start1e

From the premises we have C = start k : p[A] ]
︷ ︸
l.q[B];C ′. We can partition Γ =

l̃ : G〈A|B̃|B̃〉,Γ′ and we can write the derivation

Γ′, init(
︷ ︸
r[C], k,G) `min C ′

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ′ l̃ 6∈ Γ′

Γ′, l̃ : G〈A|B̃|B̃〉 `min start k : p[A] ]
︷ ︸
l.q[B];C ′

bMin|Start1e

Let
︷ ︸
l.q[B] = l1.q1[B1], · · · , ln.qn[Bn].

Let Γc = Γ′, init(
︷ ︸
r[C], k,G), from the induction hypothesis we have that Γc `min C ′ and

therefore JΓcKC
′
`min JC ′K .

By its definition JC ′K ≡C C
′
s | C ′′ where

C ′s =
q
C ′

y
p
|

q
C ′

y
q1

| . . . |
q
C ′

y
qn

and

C ′′ =
∏

r ∈ fp(C′)\{p,q̃}

q
C ′

y
r

|
∏
l

 ⊔
s ∈ bC′cl

q
C ′

y
s


We partition JΓcKC

′
(as per Lemma 7) as

JΓcKC
′

= Γ′p , Γ′q̃ , Γ′′

where
Γ′p = Γ′′p, p : k[A], k[A] : JGKp

and
Γ′q̃ = Γ′q1

, . . . , Γ′qn
where

Γ′qi = Γ′′qi , qi : k[A], k[A] : JGKqi

such that we can write the derivation

Γ′′ `min C ′′
Γ′p `min JC′Kp

Γ′q1
`min JC′Kq1

...
Γ′q2

, . . . ,Γ′qn `min JC′Kq2
| . . . | JC′Kqn

bMin|Pare

Γ′q1
,Γ′q2

, . . . ,Γ′qn `min JC′Kq1
| . . . | JC′Kqn

bMin|Pare

Γ′p,Γ
′
q̃ `min JC′Kp | JC′Kq1

| . . . | JC′Kqn

bMin|Pare

Γ′′,Γ′p,Γ
′
q̃ `min C′′ | C′s

bMin|Pare
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Since the ownership and session typings for k in Γc belong to init(
︷ ︸
r[C], k,G) we can write

Γ′p = Γ′′p, p : k[A], k[A] : T where Γ′′p contains those and only typings (services, ownerships,
sessions, etc.) that type minimally the projection of continuation C ′ for process p.

Since the only difference between Γ and Γc are the typings for session k, we have that
Γ′′p ⊆ JΓKC and also Γ′′ ⊆ JΓKC . The same argument holds for typings Γ′qi . Indeed, we can
partition JΓKC = Γ′′,Γ′′p,Γ

′′
q1
, . . . ,Γ′′qn , l̃ : G〈A|B̃|B̃〉 (as of Lemma 7).

Finally, by the definition of inclusion of service typings in Γ (cf § 3.2.1), we can write judge-
ment l̃ : G〈A|B̃|B̃〉 as the sequence of judgements l̃ : G〈A|B̃|∅〉, l̃ : G〈A|B̃|B1〉, . . . , l̃ : G〈A|B̃|Bn〉.

Therefore we write JΓ′KC as
q
Γ′

y
C

= Γ′′,Γ′′p,Γ
′′
q1
, . . . ,Γ′′qn , l̃ : G〈A|B̃|∅〉, l̃ : G〈A|B̃|B1〉, . . . , l̃ : G〈A|B̃|Bn〉

Let
︷ ︸
l.q[B]

∣∣
i

= {li.qi[Bi], . . . , ln.qn[Bn]}, we prove the case by proving the typing derivation
for JΓKC `min JCK .

From the definition of EPP (Definition 10) we can write

JCK ≡ Cs | C ′′

where, given the shape of C, we know that C ′′ is the same as the one generated from JC ′K,
as seen above. Cs is

Cs = req k : p[A] ] ︷ ︸
l.B;

q
C ′

y
p

|
∏

l.r[C] ∈ {
︷ ︸
l.q[B]}

acc k : l.r[C];
q
C ′

y
r

We now prove we can derive the typing of JΓKC `min JCK

Γ′′ `min C′′

Γ′′p , p : k[A], k[A] : JGKA `min JC′Kp l̃ 6∈ Γ′′p

Γ′′p , l̃ : G〈A|B̃|∅〉 `min req k : p[A] ] ︷ ︸
l.B; JC′Kp

bMin|Req1e
∆1

Γ′′p , l̃ : G〈A|B̃|∅〉,Γ′′q1
, l̃ : G〈A|B̃|B1〉, . . . ,Γ′′qn , l̃ : G〈A|B̃|Bn〉 `min Cs

bMin|Pare

Γ′′,Γ′′p , l̃ : G〈A|B̃|∅〉,Γ′′q1
, l̃ : G〈A|B̃|B1〉, . . . ,Γ′′qn , l̃ : G〈A|B̃|Bn〉 `min Cs | C′′

bMin|Pare

where

∆i =

∆i+1

li ⊆ l̃ Γ′′qi , init(qi[Bi], k,G) `min JC′Kqi
qi 6∈ Γ′′qi l̃ 6∈ Γ′′qi

Γ′′qi , l̃ : G〈A|B̃|Bi〉 `min acc k : li.qi[Bi]; JC′Kqi

bMin|Acce

Γ′′qi , l̃ : G〈A|B̃|Bi〉, . . . ,Γ
′′
qn , l̃ : G〈A|B̃|Bn〉

`min acc k : li.qi[Bi]; JC′Kqi
|

∏
l.r[C] ∈

︷ ︸
l.q[B]

∣∣∣∣
i+1

acc k : l.r[C]; JC′Kr

bMin|Pare

Note that we are reporting only the derivation terminating with bMin|Req1e, i.e., the one
that applies when Γ′′p does not contain the typing of l̃. The other case is similar and it
applies rule bMin|Req2e.
– Γ′′ `min C ′′ ;
– Γ′′p, p : k[A], k[A] : JGKA `min JC ′Kp ;
– Γ′′qi , init(qi[Bi], k,G) `min JC ′Kqi

.
hold by the induction hypothesis.

Case bMin|Start2e

Similar to case bMin|Start1e.
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Case bMin|Req1e
and Case. bMin|Req2e follow the proof of case bMin|Start1e, focussing on the request branch.
Case bMin|Acce

Follows the proof of case bMin|Start1e, following the accept branch.
Case bMin|Conde

By induction hypothesis on C1 or C2.
Case bMin|Come

From the premises we have C = k : p[A].e _ q[B].o(x);C ′ on which we can apply the
typing derivation

Γ′ ` p : k[A], q : k[B] Γ′ ` p.e : U Γ′, q.x : U, k[A] : T, k[B] : T ′ `min C ′

Γ′, k[A] : ⊕ B.o(U);T, k[B] : &A.o(U);T ′ `min k : p[A].e_ q[B].o(x);C ′
bMin|Come

Hence we consider Γ = Γ′, k[A] : ⊕ B.o(U);T, k[B] : &A.o(U);T ′. From the definition of
EPP (Definition 10) we have JCK ≡ Cc | C ′′ where

Cc = k : p[A].e_ B.o;
q
C ′

y
p

| k : A _ q[B].o(x);
q
C ′

y
q

C ′′ =
∏

r ∈ {fp(C′)\{p,q}}

q
C ′

y
r

|
∏
l

 ⊔
s ∈ bC′cl

q
C ′

y
s


From the definition of JΓKC we can write

JΓKC =
q
Γ′

yC
, k[A] : ⊕ B.o(U);T, k[A] : &A.o(U);T ′

from the induction hypothesis we have that, let Γc = Γ′, q.x : U, k[A] : T, k[B] : T ′,
Γc `min C ′ and therefore JΓcKC

′
`min JC ′K . We can partition JΓcKC

′
as

JΓcKC
′

= Γ′′,Γp, k[A] : T,Γq, q.x : U, k[B] : T ′

such that

Γ′′ `min C ′′
Γp, k[A] : T `min JC ′Kp Γq, q.x : U, k[B] : T ′ `min JC ′Kq

Γp, k[A] : T,Γq, q.x : U, k[B] : T ′ `min JC ′Kp | JC ′Kq

bMin|Pare

Γ′′,Γp, k[A] : T,Γq, q.x : U, k[B] : T ′ `min JC ′Kp | JC ′Kq | C ′′
bMin|Pare

From the derivation on rule bMin|Come we know that

q
Γ′

yC′
= Γ′′,Γp,Γq

and therefore that

JΓKC = Γ′′,Γp, k[A] : ⊕ B.o(U);T,Γq, k[B] : ⊕ A.o(U);T ′

To prove JΓKC `min JCK we prove that we can apply rule bMin|Pare.
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Γ′′ `min C′′

Γp ` p : k[A] q : k[B] 6∈ Γp

Γp ` p.e : U

Γp, k[A] : T `min JC′Kp

Γp, k[A] : ⊕ B.o(U);T

`min k : p[A].e_ B.o; JC′Kp

bMin|Sende

Γq ` p : k[B] p : k[A] 6∈ Γq

Γq, q.x : U, k[B] : T ′ `min JC′Kq

Γp, k[B] : &A.o(U);T ′

`min k : A _ q[B].o(x); JC′Kp

bMin|Recve

Γp, k[A] : ⊕ B.o(U);T,Γq, k[B] : ⊕ A.o(U);T ′

`min k : p[A].e_ B.o; JC′Kp | k : A _ q[B].o(x); JC′Kq

bMin|Pare

Γ′′,Γp, k[A] : ⊕ B.o(U);T,Γq, k[B] : ⊕ A.o(U);T ′

`min k : p[A].e_ B.o; JC′Kp | k : A _ q[B].o(x); JC′Kq | C′′
bMin|Pare

Case bMin|Sende

Analogous to case bMin|Come

Case bMin|Recve

Analogous to case bMin|Come.
Case bMin|Pare

From the premises we know that C = C1 | C2 on which we can apply the typing derivation

Γ1 `min C1 Γ2 `min C2

Γ1,Γ2 `min C1 | C2

bMin|Pare

the case is proved applying the induction hypothesis.
Case bMin|Defe

From the premises we know that C = def X = C ′′ in C ′ on which we can apply the typing
derivation, with Γ = (Γ′OΓ′′), solve(

︷ ︸
k[A] : T O

︷ ︸
k′[A′] : T ′, tX)

Γx(X) = Γ′x(X) if X ∈ dom(Γx) ∩ dom(Γ′x) @ k′′[A′′] ∈ dom(ΓOΓ′)

X 6∈ dom(ΓOΓ′) Γ′x BX (Γ′′,
︷ ︸
k′[A′] : T ′), C ′′ Γx BX (Γ′,

︷ ︸
k[A] : T ), C ′ Γ′|locs ⊆ Γ′

(Γ′OΓ′′), solve(
︷ ︸
k[A] : T O

︷ ︸
k′[A′] : T ′, tX) `min def X = C ′′ in C ′

bMin|Defe

To prove JΓKC `min JCK , we consider the processes p ∈ p̃ = pn(JCK) with cardinality
[1, n] and we let
– JCK =

∏
p Cp

– Cp = def Xp = JC ′′[Xp/X]Kp in JC ′[Xp/X]Kp

– Γc = JΓKC

–
︷ ︸
kp[A] : T =

{
k[A] : T | {p : k[A], k[A] : T} ⊆ Γc ∧ k[A] : T ∈

︷ ︸
k[A] : T

}
–
︷ ︸
k′p[A′] : T ′ =

{
k′[A′] : T ′ | {p : k′[A′], k′[A′] : T ′} ⊆ Γc ∧ k′[A′] : T ′ ∈

︷ ︸
k′[A′] : T ′

}
The case is proved by the derivation ∆1 where

∆i =
πpi

∆i+1⋃
p ∈ {pi+1,...,pn}

Γc|p `min
∏

p∈{pi+1,...,pn}
Cp

bMin|Pare

Γc|pi ,
⋃

p ∈ {pi+1,...,pn}
Γc|p `min Cpi |

∏
p∈{pi+1,...,pn}

Cp

bMin|Pare
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and

πp =

Γx(Xp) = Γ′x(Xp) if Xp ∈ dom(Γx) ∩ dom(Γ′x)

@k′′[A′′] : ∈ dom

(
JΓ′KC

∣∣∣
p
O JΓ′′KC

∣∣∣
p

)
Γ′x B

(
JΓ′′KC

∣∣∣
p
,
︷ ︸
k′p[A′] : T ′

)
, JC′′[Xp/X]Kp

Γx B

(
JΓ′KC

∣∣∣
p
,
︷ ︸
kp[A] : T

)
, JC′′[Xp/X]Kp JΓ′′KC

∣∣∣
p

∣∣∣∣
locs

⊆ JΓ′KC
∣∣∣

p

JΓ′KC
∣∣∣

p
O JΓ′′KC

∣∣∣
p
, solve

(︷ ︸
kp[A] : T O

︷ ︸
k′p[A′] : T ′, tXp

)
`min def Xp = JC′′[Xp/X]Kp in JC′[Xp/X]Kp

bMin|Defe

Essentially, using the filtrations Γ|p and the partitions
︷ ︸
kp[A] : T and

︷ ︸
k′p[A′] : T ′ in ∆i, we

shape JΓKC in such a way that its partitions contain all and only the typings (variable,
ownership, definitions) that minimally type the endpoint choreography Cp, with the
exception of service typings, which are duplicated in all filtrations (as per its definition).
However, this is not a problem, as we consider a weakened form of minimal typing that
allows for additional, unused service typings.

Such a partitioning of JΓKC is possible by the definitions of JΓKC and O (and ≺ by
extension):

JΓKC =
r

(Γ′OΓ′′), solve(
︷ ︸
k[A] : T O

︷ ︸
k′[A′] : T ′, tX)

zC
=

=
⋃

p∈p̃

((
JΓ′KC O JΓ′′KC

)
,
r
solve(

︷ ︸
k[A] : T O

︷ ︸
k′[A′] : T ′, tX)

zC)∣∣∣∣
p

=

=
⋃

p∈p̃

((
JΓ′KC O JΓ′′KC

)
, solve(

︷ ︸
k[A] : T O

︷ ︸
k′[A′] : T ′, tX)

)∣∣∣
p

Finally, we simply rename tX to tXp (in each filtration p ∈ p̃).
Then in πp we prove the partition Γc|p to minimally type the endpoint choreography Cp.

All preconditions in πp hold as the environments JΓ′KC , JΓ′′KC ,
︷ ︸
kp[A] : T , and

︷ ︸
k′p[A′] : T ′,

contain those and only definition, ownership, variable, and session types related to process p
(with the exception of duplicated service typings) and originally contained in Γ′, Γ′′,

︷ ︸
k[A] : T ,

and
︷ ︸
k′[A′] : T ′. Definition typing identifiers are properly renamed to be unique for p (i.e.,

from X to Xp).
Case bMin|Ende

Trivial.
Case bMin|Calle

From the premises we know that C = X , on which we can apply the typing derivation

Γ′ = vars ∪ ownerships
︷ ︸
k′[A′] = sessions \ {

︷ ︸
k[A]}

Γ′′ = vars(X) ∪ ownerships(X)
︷ ︸
k[A] = sessions(X) Γ′′ ⊆ Γ′

Γ′,
︷ ︸
k[A] : tX ,

︷ ︸
k′[A′] : end, X : (Γ′′,

︷ ︸
k[A] : tX) `min X

bMin|Calle

Thus, in the case, Γ = Γ′,
︷ ︸
k[A] : tX ,

︷ ︸
k′[A′] : end, X : (Γ′′,

︷ ︸
k[A] : tX). Given our assumption

of well sortedness, we can consider as EPP of X the composition

JXK =
∏
p∈p̃

Xp
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Where processes p̃ are a subset of the processes present both in the prefix of procedure
call X in C and in the typing environment Γ (we recall, Γ contains typings that are
coalesced in JΓKC). From the definition of JΓKC , we can write

Γc = JΓKC =
q
Γ′

yC
,
︷ ︸
kp[A] : tX ,

︷ ︸
k′p[A′] : end,

⋃
p∈p̃

Xp : (
q
Γ′′

y
p
,
︷ ︸
kp[A] : tXp)

where
–
︷ ︸
kp[A] : tXp =

{
kp[A] : tXp | {p : k[A], k[A] : tX} ⊆ Γ

}
–
︷ ︸
k′p[A′] : end =

{
k′p[A′] : end | {p : k′[A′], k′[A′] : end} ⊆ Γ

}
Finally, let the cardinality of p̃ be [1, n]. The case is proved by the derivation ∆1 where

∆i =
πpi

∆i+1⋃
p ∈ {pi+1,...,pn}

Γc|p `min
∏

p∈{pi+1,...,pn}
Xp

bMin|Pare

Γc|pi ,
⋃

p ∈ {pi+1,...,pn}
Γc|p `min Xpi |

∏
p∈{pi+1,...,pn}

Xp

bMin|Pare

and

πp =

JΓ′KC
∣∣∣

p
= vars ∪ ownerships

︷ ︸
k′p[A′] = sessions \ {

︷ ︸
kp[A]}

JΓ′KC
∣∣∣

p
= vars(Xp) ∪ ownerships(Xp)

︷ ︸
kp[A] = sessions(Xp) JΓ′′Kp ⊆ JΓ′KC

∣∣∣
p

JΓ′KC
∣∣∣

p
,
︷ ︸
kp[A] : tXp ,

︷ ︸
k′p[A′] : end, Xp : (JΓ′′Kp ,

︷ ︸
kp[A] : tXp ) `min Xp

bMin|Calle

Where in πp we consider the usage of auxiliary functions vars, owenerships, and sessions
on the projection JCKp.

�
We finally prove Theorem 8.

Proof of EPP Typing Preservation. From Theorem 8, we have that Γ = Γd,Γc and we
need to prove that we can apply rule bMin|DCe on Γd, JΓcKC `min D, JCK

pco(Γd, JΓcKC) Γd ` D JΓcKC `min JCK

Γd, JΓcKC `min D, JCK
bMin|DCe

where
• pco(Γd, JΓKC) holds as, regarding session typings, JΓKC just coalesces session typings and
their related ownerships of service processes;
• Γd `min D holds as per premises of Theorem 8;
• JΓK `min JCK holds from Lemma 8 and the assumption of well-sortedness on C (if C is
well-sorted also JCK is well-sorted and typable by JΓKC).

�

B.5. EPP Theorem. Before proving Theorem 5 we define some auxiliary concepts to
establish a correspondence between a choreography and its projection.

Lemma 9 (EPP Swap Invariance). Let C 'C C
′ then JCK 'C JC ′K.
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Proof Sketch. In the proof we show that the projection is invariant under the rules for
the swapping relation 'C defined in Figure 7. bCS|EtaEtae is trivial. For rule bCS|EtaCnde we need
to check that the projections of the processes in the swapped interaction η do not change,
which holds by the definition of EPP for (cond) terms and the merging operator (merging
the same η returns η). The same reasoning on the EPP and the merging operator applies to
all other cases. �

Lemma 10 (EPP under ≡). Let C ≡C C
′ then JCK ≡C JC ′K.

Proof . Easy by cases on the rules of ≡C. �

Lemma 11 (Compositional EPP). Let C be well-typed and C = C1 | C2 then JCK ≡C
JC1K | JC2K.

Proof . By definition of EPP

JCK =
∏

p ∈ fp(C)

JCKp |
∏
l

 ⊔
s∈bCcl

JCKs


Since C is well-typed and C = C1 | C2, rule bT|Pare applies and by definition of Γ1,Γ2

there cannot be a process p such that p ∈ fp(C1) ∩ fp(C2). Therefore we can write

JCK ≡C
∏

p ∈ fp(C1)

JC1Kp |
∏

q ∈ fp(C2)

JC2Kq |
∏
l

 ⊔
s∈bCcl

JCKs


By the definition of service typing we know that i) locations can implement only one

role in a choreography and ii) a location can appear only in one service typing. Therefore
there cannot be two service processes at the same location in C1 and C2. Thus we can write

JCK ≡C
∏

p ∈ fp(C1)

JC1Kp︸ ︷︷ ︸
Ca1

|
∏

q ∈ fp(C2)

JC2Kq︸ ︷︷ ︸
Ca2

|
∏
l

 ⊔
r ∈ bC1cl

JC1Kr


︸ ︷︷ ︸

Cs1

|
∏
l′

 ⊔
s ∈ bC2cl′

JC2Ks


︸ ︷︷ ︸

Cs2

where JC1K = Ca1 | Cs1 and JC2K = Ca2 | Cs2 by definition of EPP. �

B.5.1. Pruning. Following our definition of EPP, the projection of (start) terms on service
processes yield a parallel composition of (acc) terms on the locations subject of the (start).
However, the reduction of a (start) term might remove the availability to start new processes
on the locations subject of the (start) (i.e., if the reductum does not contain another (start)
term on the same locations). Contrarily, (acc) terms remain always available.

A similar observation can be drawn between conditional branches that contain (com)
terms whose projection merges all possible communications into (recv) and (send) terms.
Also in this case, reducing the condition and projecting the result we obtain a subset of all
possible branches for the considered communication.

Similarly to [MY13] and [CHY12], we deal with these asymmetries by introducing the
pruning relation (see Definition 11), which allows us to ignore unused i) endpoint services
and ii) input branches.
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Before continuing with the last auxiliary results and the proof of Theorem 5 we need to
extend the labels of the semantics of annotated Frontend Choreographies (see appendix B.1.1)
with the identifiers of the processes involved in a reduction

β ::= k : p[A] _ B.o | A〉q[B].o(x) | τ@p | τ
and the annotation of the reduction with rule bC|Conde as

i = 1 if eval(e,D(p)) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ@p−−−→ D, Ci

bC|Conde

Let also pn(k : p[A] _ B.o) = {p}, pn(A〉q[B].o(x)) = {q}, pn(τ@p) = {p}, and pn(τ) = ∅

Lemma 12 (Passive Processes Pruning Invariance). D,C β−→ D′, C ′ implies that for all
p ∈ fp(C) \ pn(β), JC ′Kp ≺ JCKp.

Proof Sketch. By cases on the derivation of C. The only interesting case is bC|Conde in
which the projection of the processes receiving selections are merged. The thesis follows
directly from Definition 11 and Lemmas 9 and 10.

�

B.6. Proof of Theorem 5. We restate items (2) and (3) of Theorem 5 to include annotated
reductions.

Theorem 5 (EPP Operational Correspondence)
Let D,C be well-typed and well-annotated. Then,

(1) (Completeness) D,C β−→ D′, C ′ implies D, JCK β−→ D′, C ′′ and JC ′K ≺ C ′′.
(2) (Soundness) D, JCK β−→ D′, C ′′ implies D,C β−→ D′, C ′ and JC ′K ≺ C ′′.

We report below the respective proofs of (Completeness) and (Soundness) separately.
Proof (Completeness).

Proof by induction on the derivation of D,C β−→ D′, C ′.
: Case bC|Sende

we know that C = k : p[A].e_ B.o;Cc and we can write the derivation

η = k : p[A].e_ B.o D, k : p[A].e_ B.o I D′

D, η;C
k: p[A] _ B.o−−−−−−−−−→ D′, Cc

bC|Sende

and C ′ = Cc.
From the definition of EPP we have that JCK = Cact | Cs such that

Cact = k : p[A].e_ B.o; JCcKp |
∏

r ∈ fp(C)\{p}

JCcKr

and

Cs =
∏
l

 ⊔
s ∈ bCcl

JCcKs


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While JC ′K ≡C C
′
act | Cs

C ′act = JCcKp |
∏

r ∈ fp(C′)\{p}

JCcKr

We can apply Rules bC|Pare, bC|Eqe, and bC|Sende on D, JCK such that

η = k : p[A].e_ B.o D, η I D′′.... b
C|Pare

D, JCK
k: p[A] _ B.o−−−−−−−−−→ D′′, C ′′

for which it holds that D′ = D′′ by rule bD|Sende.

C ′′ = JCcKp |
∏

r ∈ fp(C′)\{p}

JCcKr | Cs

for which it holds that JC ′K ≺ C ′′.
: Case bC|Recve

we know that D,C = D, k : A _ q[B].{oi(xi);Ci}i∈I and we can write the derivation

j ∈ I D, k : A _ q[B].oj(xj) I D′

D, k : A _ q[B].{oi(xi);Ci}i∈I
k:A〉q[B].oj(xj)−−−−−−−−−→ D′, Cj

bC|Recve

for β = k : A〉q[B].oj(xj) and C ′ = Cj .
By the definition of EPP we have

JCK ≡C k : A _ q[B].
{
oi(xi); JCiKq

}
i∈I

|
∏

p ∈ fp(C)\{q}

( ⊔
i ∈ I

JCiKp

)
|
∏
l

 ⊔
r ∈ bCcl

JCKr


Then we can apply rules bC|Pare, bC|Eqe, and bC|Recve such that

j ∈ I D, k : A _ q[B].oj(xj) I D′′.... b
C|Pare

D, JCK
k:A〉q[B].oj(xj)
−−−−−−−−−→ D′′, JCjKq |

∏
p ∈ fp(C)\{q}

( ⊔
i ∈ I

JCiKp

)
|
∏
l

( ⊔
r ∈ bCcl

JCKr

)

and

C ′′ = JCjKq |
∏

p ∈ fp(C)\{q}

( ⊔
i ∈ I

JCiKp

)
|
∏
l

 ⊔
r ∈ bCcl

JCKr


From rule bD|Recve we know that D′′ = D′. Finally JC ′K ≺ C ′′ by Definition 11 and

Lemma 12.
: Case bC|Starte

we know that C = start k : p[A] ]
︷ ︸
l.q[B];Cc and we can write the derivation
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D#k′, r̃ δ = start k′ : p[A] ]
︷ ︸
l.q[B] D, δ I D′

D, start k : p[A] ]
︷ ︸
l.q[B];C → D′, C[k′/k][̃r/q̃]

bC|Starte

and C ′ = Cc[k
′/k][̃r/q̃].

From the definition of EPP we have

q
C ′

y
=

∏
q ∈ fp(C′)

q
C ′

y
q
|
∏
l

 ⊔
s ∈ bC′cl

q
C ′

y
s


and

JCK ≡C



req k : p[A] ] ︷ ︸
l.B; JCcKp

|
∏

l.q[B] ∈
︷ ︸
l.q[B]

acc k : l.q[B]; JCcKq

|
∏

r ∈ fp(C)\{p}
JCKr

|
∏
l′ 6∈ l̃

( ∏
s ∈ bCcl′

JCKs

)
we can apply rules bC|Pare, bC|Eqe, bC|PStarte such that

i ∈ {1, . . . , n} D#k′′, r̃′ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {r̃′} =

⋃
i{r̃′i}

δ = start k′′ : p[A] ]
︷ ︸
l1.r
′
1[B1], . . . ,

︷ ︸
ln.r
′
n[Bn] D, δ I D′′

.... b
C|Pare

D, JCK τ−→ D′′, C ′′

where

C ′′ ≡C



JCcKp [k′′/k]

|
∏

(q,r′) ∈
{

(q1,r′1),...,(qn,r′n)
} JCcKq [k′′/k][q/r′]

|
∏

r ∈ fp(Cc)\{p,q̃}
JCcKr

|
∏

l.q[B] ∈
︷ ︸
l.q[B]

acc k : l.q[B]; JCcKq

|
∏
l′ 6∈ l̃

( ∏
s ∈ bCccl′

JCcKs

)
Observe that we can α-rename k′′ to k′ and r̃′ to r̃ as k′′, k′, r̃′, and r̃ are all fresh wrt

D,C.
From the application of rule bD|Starte we can find Γ such that

Γ `min ( D′′, C ′′ )[k′/k′′][̃r/r̃′]

and
Γ `min (D′, C ′′)[k′/k′′][̃r/r̃′]

and by α-renaming we have that
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D, JCK τ−→ D′, C ′′[k′/k′′][̃r/r̃′]

Finally JC ′K ≺ C ′′[k′/k′′][̃r/r̃′] by Lemma 12.
: Case bC|PStarte

Similar to (in particular the second part of) the proof of case bC|Starte.
: Case bC|Conde

we know that C ≡C if p.e {C1} else {C2} and we can write the derivation

i = 1 if eval(e,D(p)) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ@p−−−→ D, Ci

bC|Conde

We only consider the case for eval(e,D(p)) = true as eval(e,D(p)) = false is similar.
C ′ = C1 and by the definition of EPP

JCK ≡C if p.e {JC1Kp} else {JC2Kp} |
∏

q ∈ fp(C′)\{p}

JC1Kq t JC2Kq |
∏
l

 ⊔
r ∈ bCcl

JCKr


and

q
C ′

y
≡C JC1Kp |

∏
q ∈ fp(C′)\{p}

JC1Kq |
∏
l

 ⊔
r ∈ bC1cl

JC1Kr


We can apply rules bC|Pare, bC|Eqe, and bC|Conde such that D, JCK τ@p−−−→ D,C ′′ where

C ′′ = JC1Kp |
∏

q ∈ fp(C′)\{p}

JC1Kq t JC2Kq |
∏
l

 ⊔
r ∈ bCcl

JCKr


and JC ′K ≺ C ′′ by Lemma 12.

: Case bC|Ctxe and Case bC|Pare

proved by the definition of EPP and the induction hypothesis.
: Case bC|Eqe

We can write the derivation

R ∈ {≡C , 'C } C1RC ′1 D,C ′1
β−→ D′, C ′2 C ′2RC2

D,C1
β−→ D′, C2

bC|Eqe

For R = ≡C, proved by the definition of EPP, Lemma 10, and the induction hypothesis.
For R = 'C, proved by the definition of EPP, Lemma 9, and the induction hypothesis.

�
Proof (Soundness). Proof by induction on the structure of C.
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: Case C = k : p[A].e_ q[B].o(x);Cc
From the definition of EPP we have

JCK ≡C k : p[A].e_ B.o; JCcKp | k : A _ q[B].o(x); JCcKq |
∏

r ∈ fp(C)

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs


we proceed by subcases on the last applied rule in the derivation of D, JCK β−→ D′, C ′′.

: Case bC|Sende

Divided into subcases whether β = k : p[A] _ B.o holds or not.
: Case β = k : p[A] _ B.o
D, JCK reduces to D′, C ′′ with rules bC|Pare, bC|Eqe, ending with rule bC|Sende such that

C ′′ = JCcKp | k : A _ q[B].o(x); JCcKq |
∏

r ∈ fp(C)\{p,q}

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs


D,C mimics D, JCK with rules bC|Eqe and bC|Sende for which D,C β−→ D′′, C ′, D′ = D′′

by rule bD|Sende,

q
C ′

y
≡C JCcKp | k : A _ q[B].o(x); JCcKq |

∏
r ∈ fp(C)\{p,q}

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs


and JC ′K ≺ C ′′.

: Case β 6= k : p[A] _ B.o

In this case D,C can mimic D, JCK with the application of rules bC|Eqe, bC|Pare, and bC|Sende

and the thesis follows by the induction hypothesis.
: Case bC|Recve, bC|PStarte, or bC|Conde

In this case D, JCK reduces with rules bC|Eqe, bC|Pare, and respectively ends the derivation
with either bC|Recve, bC|PStarte, or bC|Conde, i.e., some process r ∈ fp(C) (p and q included) either
receives a message, starts a new session with some service processes, or reduces to some
branch. D,C can mimic D, JCK applying rules bC|Eqe, bC|Pare and terminates the derivation
with either rules bC|Recve, bC|PStarte (or bC|Starte, depending on the form of C) or bC|Conde. The
thesis follows by the induction hypothesis.

: Case C = k : p[A].e_ B.o;Cc

Similar to case C = k : p[A].e_ q[B].o(x);Cc.
: Case C = k : A _ q[B].{oi(xi);Ci}i∈I

From the definition of EPP we have

JCK ≡C k : A _ q[B].{oi(xi); JCiKq}i∈I |
∏
i ∈ I

 ⊔
p ∈ fp(Ci)

JCiKp

 |
∏
k

 ⊔
r ∈ bCcl

JCKr


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we proceed by subcases on the last applied rule in the derivation of D, JCK β−→ D′, C ′′.
: Case bC|Recve

Divided into subcases whether β = k : A〉q[B].oj , j ∈ I or not.
: Case β = k : A〉q[B].oj , j ∈ I
D, JCK reduces to D′, C ′′ with rules bC|Pare, bC|Eqe, and terminates with rule bC|Recve such
that

C ′′ = JCjKq |
∏
i ∈ I

 ⊔
p ∈ fp(Ci)\{q}

JCiKp

 |
∏
k

 ⊔
r ∈ bCcl

JCKr


D,C mimics D, JCK with rule bC|Recve for which D,C

β−→ D′′, C ′ where D′′ = D′ by
rule bD|Recve and

q
C ′

y
= JCjKq |

∏
p ∈ fp(Cj)\{q}

JCjKp |
∏
k

 ⊔
r ∈ bCjcl

JCjKr


and JC ′K ≺ C ′′ by Lemma 12.

: Case β 6= k : A〉q[B].oj
For any β of this case D,C can mimic D, JCK with the application of rules bC|Eqe and
bC|Pare, terminating with rule bC|Recve and the thesis follows by the induction hypothesis.

: Case bC|Sende, bC|PStarte, or bC|Conde

is similar to subcase Case bC|Recve, bC|PStarte, or bC|Conde of
Case C = k : p[A].e_ q[B].o(x);Cc.

: Case C = start k : p[A] ]
︷ ︸
l.q[B];Cc

JCK ≡C req k : p[A] ] ︷ ︸
l.B;Cc |

∏
r ∈ fp(Cc)\{p}

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs


we proceed by subcases on the last applied rule in the derivation of D, JCK β−→ D,C ′′.

: Case bC|PStarte

D, JCK can reduce to D′, C ′′ with a process r (including p) that starts a new session
with some service processes. D,C can reduce to D′′, C ′ mimicking D, JCK by applying
rules bC|Eqe, bC|Pare, terminating with either rule bC|PStarte or bC|Starte.

: Case bC|Sende, bC|Recve, and bC|Conde

are similar to the corresponding proof for the previous cases.
: Case C = if p.e {C1} else {C2}

From the definition of EPP we have

JCK ≡C if p.e {JC1Kp} else {JC2Kp} |
∏

q ∈ fp(C1) ∪ fp(C2)\{p}

JC1Kq t JC2Kq | |
∏
l

 ⊔
r ∈ bCcl

JCKr


we proceed by subcases on the derivation of D, JCK β−→ D′, C ′′.
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: Case bC|Conde

D, JCK can reduce to D′, C ′′ with:
: Case β = τ@p
that reduces to a branch. D,C can mimic D, JCK applying rules bC|Eqe, bC|Pare, and
terminating the derivation with rule bC|Conde. The case is proved by Lemma 12.

: Case β = τ@r, r 6= p
where process r reduced to a branch. The case follows the proof of the previous case
and the thesis follows by the induction hypothesis.

: Case bC|Recve, bC|Sende, bC|PStarte

are similar to the corresponding proof for the previous cases.
: Case C = req k : p[A] ] ︷ ︸

l.B;Cc

Case not allowed by the hypothesis that D, JCK β−→ D,C ′′.
: Case C = acc k :

︷ ︸
l.q[B];Cc

Case not allowed by the hypothesis that D, JCK β−→ D,C ′′.
: Case C = def X = C ′′ in C ′

proved by Lemma 10 and the induction hypothesis.
: Case C = X
Case not allowed by the hypothesis that C is well-sorted.

: Case C = C1 | C2

JCK ≡C JC1K | JC2K by Lemma 11.

we proceed by subcases for n equal to the length of the derivation of D, JCK β−→ D′, C ′′

: Case n = 1
In this case the only applicable rule is bC|PStarte where, Since both JC1K and JC2K reduce,
we can infer, let

︷ ︸
l.q[B] = l1.q1[B1], . . . , li.qi[Bi], li+1.qi+1[Bi+1] . . . , ln.qn[Bn]

that

C1 ≡C req k : p[A] ] ︷ ︸
l.B;Cr1 |

i∏
j=1

acc k : lj .qj [Bj ];C
j
1 | C1

c

C2 ≡C

n∏
j=i+1

acc k : lj .qj [Bj ];C
j
2 | C2

c

and by the definition of EPP that

JC1K ≡C req k : p[A] ] ︷ ︸
l.B; JCr1Kp |

i∏
j=1

acc k : lj .qj [Bj ];
r
Cj1

z

qj
|

q
C1
c

y

JC2K ≡C

n∏
j=i+1

acc k : lj .qj [Bj ];
r
Cj2

z

qj
|

q
C2
c

y

Observe that we can proceed without loss of generality as the symmetric case (with
p ∈ fp(C2)) follows the same structure.
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i ∈ {1, . . . , n} D#k′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {r̃} =

⋃
i{r̃i}

δ = start k′ : p[A] ]
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D′′

D, JC1K | JC2K
τ−→ D′′, C ′′

bC|PStarte

where

C ′′ ≡C



JCr1Kp [k′/k] |


∏i
j=1

r
Cj1

z

qj

|
∏n
j=i+1

r
Cj2

z

qj

 [k′/k][̃r/q̃]

|


∏i
j=1 acc k : lj .qj [Bj ];

r
Cj1

z

qj

|
∏n
j=i+1 acc k : lj .qj [Bj ];

r
Cj2

z

qj

 |
q
C1
c

y
|

q
C2
c

y

Then D,C can mimic D, JCK applying rule bC|PStarte with reduction

i ∈ {1, . . . , n} D#k′′, r̃′ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {r̃′} =

⋃
i{r̃′i}

δ = start k′′ : p[A] ]
︷ ︸
l1.r
′
1[B1], . . . ,

︷ ︸
ln.r
′
n[Bn] D, δ I D′′

D,C1 | C2
τ−→ D′′, C ′

bC|PStarte

where

C′ ≡C C
r
1 [k′′/k] |

 ∏i
j=1 C

j
1 |∏n

j=i+1 C
j
2

 [k′′/k][̃r′/q̃] |

 ∏i
j=1 acc k : lj .qj [Bj ];C

j
1

|
∏n
j=i+1 acc k : lj .qj [Bj ];C

j
2

 |
q
C1
c

y
|

q
C2
c

y

Following the structure of the second part of the proof of Case bC|Starte for the proof of
Completeness of Theorem 5, by α-renaming we have D′′ = D′ and JC ′K ≺ C ′′.

: Case n > 1

For n > 1 we have a derivation similar to

R
... n− 1 times, each either

bC|Pare or bC|Eqe

D, JC1K | JC2K
β−→ D′, C ′′1 | JC2K

bC|Pare

where R is the last applied rule, R ∈ {bC|Sende, bC|Recve, bC|PStarte, bC|Conde}. The thesis follows
from the induction hypothesis.
The proof for the mirror case D, JC1K | JC2K

β−→ D′, JC1K | C ′′2 follows the same
structure.

: Case C = 0
trivial.

�
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B.7. Proof of Compilation from Frontend Choreographies to DCC Networks. We
first define some auxiliary results used in the proof of Theorem 6.

We provide some results on DCC variable substitution. We remind that the only bound
names in DCC are the variables in (accept) terms (e.g., x in !(x);B). However, the following
lemmas prove that renaming free variables with fresh names in processes (and, by extension,
in services) preservers bisimilarity.

In the following, we abuse the notation for α-renaming to denote variable renaming in
running processes. We define the variable renaming operator for DCC processes P [x′/x].

Definition 20 (DCC Variable Renaming Operator). Let B . t be a DCC process, then
(B . t)[x′/x] = B[x′/x] . t / (x′, x(t) ) / (x,∅ ) where B[x′/x] substitutes every occurrence of
x with x′.

Lemma 13 (DCC Process Variable Renaming). Let 〈B, P | Pc,M〉l be a DCC service
where P = B . t. Let P ′ = P [x′/x] where x′ is fresh in B. Then 〈B, P | Pc,M〉l →
〈B, P ′′ | Pc,M〉l ⇐⇒ 〈B, P ′ | Pc,M〉l → 〈B, P ′′[x′/x] | Pc,M〉l.

Proof . The proof is by induction on the form of P . We report the most interesting
cases. Below we consider t′ = t / (x′, x(t) ) / (x,∅ ).
Case P = o(y) from e;B′ . t
The only applicable rule is bDCC|Recve, hence we consider the interesting case in which M
contains a message for the queue defined by e. In the other case the Lemma trivially holds
as services cannot reduce on P and P ′. The case unfolds on the combinations of whether i)
y 6= x and ii) expression e contains x. Below we consider the comprehensive case for y = x
and e that contains x. The proof of the other cases is either trivial or a slight modification
of the reported one.

Since we assume we can apply rule bDCC|Recve we take tc = eval(e, t) andM(tc) = (o, t′) :: m̃.
From Definition 20 we have that tc = eval(e[x′/x], t′).

Meaningful reductions on P and P ′ are of the form P → B′ . t / (x, tm ) and P ′ →
B′[x′/x] . t′ / (x′, tm ) and the thesis follow by induction hypothesis.
Case P =

∑
i∈I [oi(xi) from e] {Bi} . t

The only applicable rule on both P and P ′ is bDCC|Recve. The most comprehensive case is for
M that contains a message for operation oj , j ∈ I where xj = x and expression e contains
x. The remainder of the proof follows that of the previous case.
Case P = if e {B1} else {B2} . t
Trivial by Definition 20 for which eval(e, t) = eval(e[x′/x], t′).
Case P = y = e;B . t
The only applicable rule on both P and P ′ is bDCC|Assigne. The most comprehensive case
is for y = x and expression e that contains x. The case is proved considering that, by
Definition 20, it holds that eval(e, t) = eval(e[x′/x], t′).
Case P = def X = B1 in B . t
The thesis follows from the application of rule bDCC|Ctxe and the induction hypothesis.
Case P = ν〉x;B′ . t
Let tc 6∈M . We have the reduction on rule bDCC|Newquee

S →
〈
B, B′ . t / (x, tc ) | Pc,M [tc 7→ ε]

〉
l
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Let service S′ be equal to S with P replaced with P ′. S′ can mimic the behaviour of S by
taking the fresh value t′c = tc, obtaining the reduction

S′ →
〈
B, B′[x′/x] . t′ / (x′, t′c ) | Pc,M [t′c 7→ ε]

〉
l

The same holds if we let S′ reduce and prove that S can mimic it.
Case P = o@e1(e2) to e3;B′ . t
We consider the comprehensive case in which expressions e1, e2 and e3 contain x. From
Definition 20 we know that eval(e1, t) = eval(e1[x′/x], t′). Similarly the couples e2 and
e2[x′/x] and e3 and e3[x′/x] enjoy the same property when evaluated respectively on t and
t′.

We analyse the case in which P moves and P [x′/x] mimics it. The other case, for
P [x′/x] that reduces and P that mimics it, follows the same structure.

B = o@e1(e2) to e3;B′ eval(e1, t) = l

eval(e3, t) = tc eval(e2, t) = tm tc ∈ dom(M)

〈B, B . t | P,M〉l → 〈B, B′ . t | P,M [tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

and

B[x′/x] = o@e1[x′/x](e2[x′/x]) to e3[x′/x];B′[x′/x] eval(e1[x′/x], t′) = l

eval(e3[x′/x], t′) = tc eval(e2[x′/x], t′) = tm tc ∈ dom(M)

〈B, B[x′/x] . t′ | P,M〉l → 〈B, B′[x′/x] . t′ | P,M [tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

Case ?@e1(e2);B′′ . t
We consider the comprehensive case where expressions e1 and e2 contain x. From Defini-
tion 20 we know that eval(e1, t) = eval(e1[x′/x], t′). Similarly e2 and e2[x′/x] enjoy the
same property when evaluated respectively on t and t′.

Below we describe the case in which P moves and P [x′/x] mimics it. The other case,
for P [x′/x] that reduces and P that mimics it, follows the same structure. We assume the
start behaviour B =!(y);B′.

B =?@e1(e2);B′′ Q = B′ .∅ / ( y, eval(e2, t) )

〈!(y);B′, B . t | Pc, M〉l → 〈!(y);B′, Q | B′′ . t | Pc, M〉l
bDCC|InStarte

and

B[x′/x] =?@e1[x′/x](e2[x′/x]);B′′[x′/x] Q = B′ .∅ / ( y, eval(e2[x′/x], t′) )

〈!(y);B′, B[x′/x] . t′ | Pc, M〉l → 〈!(y);B′, Q | B′′[x′/x] . t′ | Pc, M〉l
bDCC|InStarte

�

Lemma 14 (DCC Network Variable Renaming). Let S and S′ be two DCC networks such
that S = 〈B, P | Q,M〉l | S∗ and S′ = 〈B, P [x′/x] | Q,M〉l | S∗ then

S →
〈
B, P ′ | Q′,M ′

〉
l
| S′∗ ⇐⇒ S′ →

〈
B, P ′[x′/x] | Q′,M ′

〉
l
| S′∗

.

Proof Sketch. The proof is by induction on the derivation of S. The main observation
is that the most part of cases are already considered in Lemma 13. The cases not considered
in Lemma 13 regard derivations on rules:
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• bDCC|Sende whose proof follows the same steps of case P = o@e1(e2) to e3;B′ . t in Lemma 13;
• bDCC|Starte proved following the same steps of case P =?@e1(e2);B′′ . t in Lemma 13;
• bDCC|Eqe and bDCC|Pare where the thesis follows from the application of the induction hypothesis.

�
We report below the statement of Theorem 6, enriched with annotation on the transitions

of D,C.
Theorem 6 (Applied Choreographies)
Let D,C be a Frontend choreography where C is projectable and Γ ` D,C for some Γ. Then:

(1) (Completeness) D,C β−→ D′, C ′ implies

(a) 〈〈D〉〉Γ, JCK Γ→+ 〈〈D′〉〉Γ′ , C ′′
Γ′

(b) JC ′K ≺ C ′′

(c) for some Γ′, Γ′ ` D′, C ′

(2) (Soundness) 〈〈D〉〉Γ, JCK Γ→∗ S implies

(a) D,C →∗ D′, C ′

(b) S →∗ 〈〈D′〉〉Γ′ , C ′′
Γ′

(c) JC ′K ≺ C ′′

(d) for some Γ′, Γ′ ` D′, C ′

Proof (Completeness). We proceed by induction on the derivation of D,C β−→ D′, C ′.
The general strategy is to:

• apply Theorem 4 from which, let D = 〈〈D〉〉Γ, we have that D, C β−→ D′, C ′, D′ = 〈〈D〉〉Γ′ ;
• since C is projectable, we can always apply Theorem 5, from which, D, JCK β−→ D′, C ′′ and

JC ′K ≺ C ′′;
• we compile the Backend Endpoint choreography D, JCK into the DCC network D, JCK Γ

and prove that we can reduce it in such a way that its reductum is ≡D-equivalent to the

compilation of the reductum 〈〈D′〉〉Γ′ , C ′′
Γ′

.
Case bC|Sende

We know that
– JCK ≡C Cp | Cc with Cp = k : p[A].e_ B.o;C ′p;

– D, JCK β−→ D′, C ′′ with bC|Sende being the last applied rule, where β = k : p[A].e _ B.o
and C ′′ = C ′p | Cc;

– let m̃ = D(k[A〉B]) and v = eval(e,D(p)) we have, by rule bD|Sende,

D′ = D
[
k[A〉B] 7→ m̃ :: (o, v)

]
which, by Theorem 4, corresponds to D′ = D

[
l∗ : tc 7→ D(l∗ : tc) :: (o, tm)

]
by bD|Sende

where l∗ is the location of the receiving process playing role B and tc is the correlation



86 S. GIALLORENZO, F. MONTESI, AND M. GABBRIELLI

key used by the process playing A to send to the process playing role B. The tree tm
corresponds to value v exchanged in rule bD|Sende.
We have two cases, whether the receiving process q is in the same location of the sender

p or not. Formally, let p ∈ D(l) we consider the exhaustive cases:
Case q ∈ D(l)

From Definition 12 we have that D, JCK Γ≡D S | Sc where, let tp = D(p) and M = D|l
∗ S =

〈
Cc|l Γ, P | Q,M

〉
l

∗ P = o@k.B.l(e) to k.A.B; C ′p
Γ. tp

∗ Q =
∏

q ∈ D(l)\{p}
Cc|q Γ.D(q)

∗ Sc =
∏

l′ ∈ Γ\{l}

〈
Cc|l′ Γ,

∏
r ∈ D(l′)

Cc|r Γ.D(s), D|l′

〉
l′

In this case D, JCK Γcan mimic D,C applying rules bDCC|Eqe, bDCC|SPare, and bDCC|InSende where
S | Sc → S′ | Sc with bDCC|SPare and S → S′ with

P = o@k.B.l(e) to k.A.B; C ′p
Γ. tp eval(k.B.l, tp) = l

eval(k.A.B, tp) = tc eval(e, tp) = tm tc ∈ dom(M)

〈B, P | Q,M〉l → 〈B, P ′ | Q,M [tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

where P ′ = C ′p
Γ. tp. Since by Definition 12 l, tc, and tm result from the evaluation of

the state of process p, D(p), we have that M [tc 7→M(tc) :: (o, tm)] = D′|l.
This corresponds to the compilation of the reduction D′, C ′, i.e,

〈〈D′〉〉Γ
′
, C′′

Γ′

≡D

〈
Cc|l Γ′,

P ′︷ ︸︸ ︷
C′p

Γ′.D′(p) |

Q︷ ︸︸ ︷∏
q ∈ D′(l)\{p}

Cc|q Γ′.D′(q), D′|l

〉
l

S′

| ∏
l′ ∈ Γ′\{l}

〈
Cc|l′ Γ′,

∏
r ∈ D′(l′)

Cc|r Γ′.D′(r), D′|l′
〉
l′

Sc

Where the changes in D′ and Γ′ affect only the compilation of the queue in D′|l identified
by tc, while for all other terms · Γ= · Γ′ and D′|l′ = D|l′ .
Case q 6∈ D(l)

Similar to Case q ∈ D(l) except the last applied rule in the reduction of D, JCK Γ is
bDCC|Sende.

Case bC|Recve

We know that
– JCK ≡C Cq | Cc with Cq = k : A _ q[B].{oi(xi);Ci}i∈I
– D, JCK β−→ D′, C ′′ with rule bC|Recve where β = k : A〉q[B].oj(xj), C ′ ≡C Cj | Cc. Let

D = 〈〈D〉〉Γ and D(k[A〉B]) = (oj , v) :: m̃, we have

D′ = D
[
q 7→ D(q)[xj 7→ v]

][
k[A〉B] 7→ m̃

]
By Theorem 4, let D(tc : l∗) = (oj , tm) :: m̃∗ we have
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D′ = D
[
q 7→ D(q)[xj → tm]

][
l∗ : tc 7→ m̃∗

]
by bD|Recve where l∗ is the location of the receiving process playing role B and tc is the
correlation key used by the process playing A to send to the process playing role B. The
tree tm corresponds to the encoding of value v in the queue.
Let q@l ∈ Γ, tq = D(q), and M = D|l, from Definition 12 we have D, JCK Γ≡D S | Sc

where
– S =

〈
Cc|l Γ, Q | R,M

〉
l

– Q =
∑

i∈I [oi(xi) from k.A.B]
{
Ci Γ

} . tq
– R =

∏
r∈D(l)\{q}

Cc|r Γ.D(p)

– Sc =
∏

l′ ∈ Γ\{l}

〈
Cc|l′ Γ,

∏
s∈D(l′)

Cc|s Γ. ts, D|l′
〉
l′

In this case D, JCK Γcan mimic D,C applying rules bDCC|Eqe, bDCC|SPare, and bDCC|Recve.

Q =
∑
i∈I [oi(xi) from k.A.B]

{
Ci Γ

} . tq j ∈ I tc = eval(e, tq) M(tc) = (oj , tm) :: m̃∗〈
Cc|l Γ, Q | R,M

〉
l
→

〈
Cc|l Γ, Cj Γ. tq / (xj , tm ) | R, M [tc 7→ m̃∗]

〉
l

bDCC|Recve

S | Sc → S′ | Sc
bDCC|SPare

Where S′ =
〈
Cc|l Γ, Cj Γ. tq / (xj , tm ) | R, M [tc 7→ m̃∗]

〉
l
. Let t′q = tq / (xj , tm ),

Q′ = Cj Γ. t′q, and M ′ = M [tc 7→ m̃].
Since by Definition 12 tc and tm respectively result from the evaluation of the state of

process q, D(q) and the encoding of value v, we have that M ′ = D′|l and t′q = D′(q).
This corresponds to the compilation of the reduction D′, C ′′, i.e,

〈〈D′〉〉Γ
′
, C′′

Γ′

≡D

S′︷ ︸︸ ︷〈
Cc|l Γ′,

Q′︷ ︸︸ ︷
Cj |q Γ′. t′q |

R︷ ︸︸ ︷∏
r ∈ D′(l)\{q}

Cc|r Γ′.D′(r),M ′
〉
l

|
∏

l′ ∈ Γ\{l}

〈
Cc|l′ Γ′,

∏
s ∈ D(l′)

Cc|s Γ′. ts, D′∣∣l
〉
l′︸ ︷︷ ︸

Sc

Where the changes in D′ and Γ′ affect only the compilation of the queue in D′|l identified
by tc and the state of q; while for all other terms · Γ= · Γ′ and D′|l′ = D|l′ .
Case bC|PStarte

We know that
– JCK ≡C Cr | Ca | Cc where, let l̃ : G〈A|B̃|B̃〉 ∈ Γ
– Cr = req k : p[A] ] ︷ ︸

l.B;C ′r

– let l1.B1, . . . , ln.Bn =
︷ ︸
l.B, Ca =

n∏
i=1

acc k : li.qi[Bi];Cqi

We can apply rules bC|Pare and bC|Eqe and lastly rule bC|PStarte such that

i ∈ {1, . . . , n} D#k′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {r̃} =

⋃
i{r̃i}

δ = start k′ : p[A] ]
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D′

D,Cr | Ca → D′, C ′r[k
′/k] |

∏
i

(
C ′qi [k

′/k][ri/qi]
)
| Ca

bC|PStarte
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and

D,Cr | Ca | Cc
τ−→ D′, C ′r[k

′/k] |
∏
i

(
Cqi [k

′/k][ri/qi]
)
| Ca | Cc

thus C ′′ = C ′r[k
′/k] |

∏
i

(
Cqi [k

′/k][ri/qi]
)
| Ca | Cc

We can find Γ′ = Γ, init(k′, (p[A],
︷ ︸
q[B]), G) and Γ′ ` D′, C ′.

Remark 1. We have two cases for, let p@l ∈ Γ, whether l ∈ {l̃} or not. For a clearer
treatment of the case we proceed considering that l 6∈ {l̃} (i.e., no service process is created
in the same location — service — of the requester p). The other case follows the same
structure of l 6∈ {l̃} although the service located at l has Ca|l Γ as start behaviour and
D, JCK Γapplies rule bDCC|InStarte in place of the bDCC|Starte for starting the DCC process located
at l.

Henceforth we proceed analysing the case for l 6∈ {l̃}.

From Definition 12 we have, let D∗ = 〈〈D′〉〉Γ′ and M∗ = D∗|l and M∗i = D∗|li

D∗, C ′′ Γ′=
〈
Cc|l Γ′, P ′′ | R′,M∗

〉
l
|

n∏
i=1

〈
Q′′i , Q

∗
i | R′li ,M

∗
i

〉
li

| S′c

In the following, we use the abbreviation t∗s = D∗(s) for process s in D∗.
– P ′′ = C ′r[k

′/k] Γ′. t∗p
– R′ =

∏
p′ ∈ D∗(l)\{p}

Cc|p′ Γ′. t∗p′

– Q′′i = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ′

– Q∗i = Cqi [k
′/k][ri/qi] Γ′. t∗qi

– R′li =
∏

s ∈ D∗(li)
Cc|s Γ′. t∗s

– S′c =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′ Γ′,

∏
s′ ∈ D∗(l′)

Cc|s′ Γ′. t∗s′ , D∗|l′
〉
l′

From Theorem 4 we can apply rule bD|Starte on D, JCK → D∗, C ′′ such that we know that

k′(t∗p) = k′(t∗q1
) = . . . = k′(t∗qn) = tk′

for some tk′ session descriptor of session k′.
We proceed by proving that we can reduce D, JCK Γ→+ S.
From Definition 12 we have, let tp = D(p), M = D|l, and Mi = D|li

D, JCK Γ≡D

〈
Cc|l Γ, P | R,M

〉
l
|

n∏
i=1

〈Qi, Rli ,Mi〉li | Sc

where

–

P = start( k, (l.A,
︷ ︸
l.B) ); C ′r

Γ. tp =

=


�

I∈{A,B̃}
k.I.l = lI ;

�
I∈{B̃}

(
ν〉k.I.A; ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I; C ′r
Γ

 . tp
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– Qi = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ=

!(k); �
I∈{A,B̃}\{Bi}

ν〉k.I.Bi ;

sync@k.A.l(k) to k.Bi.A ;
start(k) from k.A.Bi ; Cqi

Γ

– R =
∏

p′ ∈ D(l)\{p}
Cc|p′ Γ. tp′

– Rli =
∏

s ∈ D(li)

Cc|s Γ. ts

– Sc =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′ Γ,

∏
s′ ∈ D(l′)

Cc|s′ Γ. ts′ , D|l′
〉
l′

D, JCK Γ can mimic D,C with the following sequence of reductions. Note that we
make use of renaming on (accept) terms in Q1, . . . , Qn and variable renaming on P (as of
Definition 20) to align the evolution of D, JCK Γwith the evolution of D,C, in which k has
been renamed with the fresh name k′. Since the renamed DCC network and the original
one are bisimilar, as per Lemma 14, we can proceed to prove our results on the original
DCC network using the DCC renamed network as a proxy.

Therefore we take S∗0 ∼ D, JCK Γ

S∗0 =
〈
Cc|l Γ, P [k′/k] | R,M

〉
l
|

n∏
i=1

〈
Qi[k

′/k], Rli ,Mi

〉
li

| Sc

S∗0 →

bDCC|SEqe bDCC|SPare bDCC|PPare bDCC|Assigne−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
}
n+ 1 times

1○

2.1○
bDCC|SEqe bDCC|SPare bDCC|Newquee−−−−−−−−−−−−−−−−−−−−−−→

2.2○
bDCC|SEqe bDCC|SPare bDCC|Starte−−−−−−−−−−−−−−−−−−−−→

2.3○
bDCC|SEqe bDCC|SPare bDCC|Newquee−−−−−−−−−−−−−−−−−−−−−−→

}
n times

2.4○
bDCC|SEqe bDCC|SPare bDCC|Sende−−−−−−−−−−−−−−−−−−−−→

2.5○
bDCC|SEqe bDCC|SPare bDCC|Recve−−−−−−−−−−−−−−−−−−−−→


2○

n times

3.1○
bDCC|SEqe bDCC|SPare bDCC|Sende−−−−−−−−−−−−−−−−−−−−→

3.2○
bDCC|SEqe bDCC|SPare bDCC|Recve−−−−−−−−−−−−−−−−−−−−→


n times

3○

→ S∗1

We briefly comment the numbered transitions.
– In 1○ P [k′/k] proceeds to store (for n+ 1 times, l plus li, i ∈ {1, . . . , n}) the locations

of all roles under k′.
– In 2○, for each location li, i ∈ {1, . . . , n} (for each service process):
∗ P creates its receiving queue for the service process 2.1○;
∗ in 2.2○ P synchronises with the service at location li starting (bDCC|Starte) a new service
process;
∗ in 2.3○ the service process creates its own queues for all other roles in the session
(hence n times);
∗ in 2.4○ the service process sends the correlation values to P ;



90 S. GIALLORENZO, F. MONTESI, AND M. GABBRIELLI

∗ finally P receives the message in 2.5○.
– In 3○ for each service process (n times) 3.1○ the starter sends a message to the service

process to start the session and 3.2○ the addressee receives it.
Finally we have

S∗1 =
〈
Cc|l Γ | P ′ | R,M ′

〉
l
|

n∏
i=1

〈
Qi[k

′/k], Q′i | Rli ,M
′
i

〉
li

| Sc

where
– P ′ = C ′r

Γ [k′/k] . t′p, and
– Q′i = Cqi

Γ [k′/k] . tk′
From the transitions presented above we know that there exists t′k′ such that t′p =

tp / ( k′, t′k′ ), where t
′
k′ is a session descriptor for session k′ (i.e., it contains all the locations

and correlation keys used by the processes in session k′). In this case, we take t′k = tk′
obtained from the derivation D, C → D∗, C ′.

Similarly, M ′ and M ′1, . . . ,M ′n contain the necessary (empty) queues to support commu-
nication in session k′.

M ′ = M [k′.B1.A(tk′) 7→ ε] . . . [k′.Bn.A(tk′) 7→ ε]

and (∅ being a totally undefined function on Val ⇀M)

Mi = ∅
[k′.A.Bi(tk) 7→ ε][k′.B1.Bi(tk) 7→ ε] . . . [k′.Bi−1.Bi(tk) 7→ ε] . . .

. . . [k′.Bi+1.Bi(tk) 7→ ε] . . . [k′.Bn.Bi(tk) 7→ ε]

We proceed with the proof taking S ∼ S∗1 as S is simply the renaming of k′ to k on
start behaviours Qi, i ∈ {1, . . . , n} (trivially Qi[k′/k][k/k′] = Qi)

S =
〈
Cc|l Γ | P ′ | R,M ′

〉
l
|

n∏
i=1

〈
Qi, Q

′
i | Rli ,M

′
i

〉
li

| Sc

We now proceed to prove that D, JCK Γ→+ D∗, C ′′ Γ
′
, i.e. that D∗, C ′′ Γ

′
= S with

Γ′ ` D′, C ′.
We prove that

D∗, C′′
Γ′︷ ︸︸ ︷〈

Cc|l Γ′, P ′′ | R′,M∗
〉
l
|

n∏
i=1

〈
Q′′i , Q

∗
i | R′li ,M

∗
i

〉
li

| S′c =

S︷ ︸︸ ︷〈
Cc|l Γ | P ′ | R,M ′

〉
l
|

n∏
i=1

〈
Qi, Q

′
i | Rli ,M

′
i

〉
li

| Sc

– M∗ and M ′ are equal and similarly M∗i and Mi are pair-wise equal by construction and
rule bD|Starte;

– Cc|l Γ= Cc|l Γ′ as Γ|locs = Γ′|locs by construction;
– P ′′ = P ′ is proved by

C ′r[k
′/k] Γ′. t∗p = C ′r

Γ [k′/k] . t′p
which holds as

i) C ′r[k
′/k] Γ′= C ′r

Γ [k′/k] since
(a) Γ′ does not contain any new process used in C ′r;
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(b) by renaming, and Lemma 14.
ii) t∗p = t′p by construction and rule bD|Starte.

– Q′∗i = Q′i proved by

Cqi [k
′/k][ri/qi] Γ′. t∗qi = Cqi

Γ [k′/k] . tk′
whose proof of equivalence follows that of P ′′ = P ′, except that Γ′ contains the location
of the process (ri) used in Cqi [k

′/k][ri/qi].
– Q′′i = Qi proved by

accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ′= accept(k, Bi, G〈A|B̃|B̃〉); Cqi

Γ

which holds as Cqi
Γ′= Cqi

Γbecause Γ and Γ′ contain the same service typings.
– R′ = R is proved by ∏

p′ ∈ D∗(l)\{p}

Cc|p′ Γ′. t∗p′ =
∏

p′ ∈ D(l)\{p}

Cc|p′ Γ. tp′

for which
i) Cc|p′ Γ′= Cc|p′ Γas Γ′ does not contain any new process used in Cc.
ii) t∗p′ = tp′ unchanged by the reductions of D, C and D, JCK Γ.

– R′li = Rli whose proof follows that of R′ = R.
– S′c = Sc following the proof of Cc|l Γ= Cc|l Γ′ and R′li = Rli .
Case bC|Starte

While the original FC program reduces applying rule bC|Starte, the endpoint projection D, JCK
will mimic it applying rule bC|PStarte, as per Theorem 5. Hence, to prove this case, we can
follow the same proof of case bC|PStarte.
Case bC|Conde

We have JCK = Cp | Cc where Cp = if p.e {C1} else {C2}. Let p@l ∈ Γ and
– tp = D(p);
– P = if e { C1

Γ} else { C2
Γ} . tp;

– R =
∏

r ∈ D(l)\{p}
Cc|r Γ. tr

– Sc =
∏

l′ ∈ Γ\{l}

〈
Cc|l′ Γ,

∏
r ∈ D(l′)

Cc|r Γ. tr, D|l′
〉
l′

From Definition 12 we have, let M = D|l

D, JCK Γ≡D

〈
Cc|l Γ, P | R,M

〉
l
| Sc

we reduce D, JCK applying rules bC|Pare, bC|Eqe and lastly rule bC|Conde. We analyse only the
case for eval(e, tp) = true as the other case for eval(e, tp) = false follows the same
structure.

D, JCK τ−→ D′, C ′′

and C ′′ = C1 | Cc and D′ = D by the definition of bC|Conde. We can choose Γ = Γ′, for
which it holds that Γ ` D′, C ′.

From Definition 12 we have
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D′, C ′′ Γ′= D, C ′′ Γ=
〈
Cc|l Γ, C1

Γ. tp | R,M
〉
l
| Sc

D, JCK Γcan mimic D,C applying rules bDCC|Eqe, bDCC|SPare, bDCC|PPare, and lastly bDCC|Conde for
which

D, JCK Γ→
〈
Cc|l Γ, C1

Γ. tp | R,M
〉
l
| Sc

Case bC|Ctxe

The thesis follows from the induction hypothesis as D,C applies rule bC|Ctxe and D, JCK Γ

can mimic it with rule bDCC|Ctxe.
Case bC|Pare

The thesis follows from the induction hypothesis.
Case bC|Eqe
The thesis follows from the induction hypothesis. Starting from any configuration of D,C,
D, JCK Γcan always mimic the evolution of D,C when it applies rule bC|Eqe: in both cases
that R = ≡ or R = 'C, D, JCK Γcan apply bDCC|Eqe, bDCC|SPare, and bDCC|PPare to mimic D,C.

�
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t′ = eval(x, t)

x = e ;B . t x−→ B . t / (x, t′ )
bDCC|Assigne

B . t λ−→ B′ . t′
def X = B1 in B . t λ−→ def X = B1 in B′ . t′

bDCC|Ctxe

i = 1 if eval(e, t) = true, i = 2 otherwise

if e {B1} else {B2} . t τ−→ Bi . t
bDCC|Conde

P ≡D P1 | P2 P1
λ−→ P ′1 P ′1 | P2 ≡D P

′

〈B, P, M〉l
λ−→ 〈B, P ′, M〉l

bDCC|PEqe

B = ν〉x;B tc 6∈ dom(M) M ′ = M [tc 7→ ε]

〈B, B . t | P, M〉l
ν〉x−−→ 〈B, B . t / (x, tc ) | P, M ′〉l

bDCC|Newquee

B ∈ { oj(xj) from e;Bj ,
∑

i∈I [oi(xi) from e] {Bi} }
j ∈ I tc = eval(e, t) M(tc) = (oj , tm) :: m̃

〈B, B . t | P, M〉l
oj from e−−−−−−→ 〈B, Bj . t / (xj , tm ) | P, M [tc 7→ m̃]〉l

bDCC|Recve

B = o@e1(e2) to e3;B′ eval(e1, t) = l

eval(e3, t) = tc eval(e2, t) = tm tc ∈ dom(M)

〈B, B . t | P,M〉l
o to e3−−−−→ 〈B, B′ . t | P,M [tc 7→M(tc) :: (o, tm)]〉l

bDCC|InSende

B =?@e1(e2);B′′ Q = B′ .∅ / (x, eval(e2, t) )

〈!(x);B′, B . t | P, M〉l
?(e2)−−−→ 〈!(x);B′, Q | B′′ . t | P, M〉l

bDCC|InStarte

B = o@e1(e2) to e3;B′′ eval(e1, t) = l′ eval(e3, t) = tc
eval(e2, t) = tm tc ∈ dom(M ′) M ′′ = M ′[tc 7→M ′(tc) :: (o, tm)]

〈B, B . t | P, M〉l | 〈B′, P ′, M ′〉l′
o to e3−−−−→ 〈B, B′′ . t | P, M〉l | 〈B′, P ′,M ′′〉l′

bDCC|Sende

B =?@e1(e2);B′′ B′ =!(x);B′ eval(e1, t) = l′ Q = B′ .∅ / (x, eval(e2, t) )

〈B, B . t | P,M〉l | 〈B′, P ′, M ′〉l′
?(e2)−−−→ 〈B, B′′ . t | P, M〉l | 〈B′, Q | P ′, M ′〉l′

bDCC|Starte

S
λ−→ S′

S | S1
λ−→ S′ | S1

bDCC|SPare
S ≡D S1 S1

λ−→ S′1 S′1 ≡D S
′

S
λ−→ S′

bDCC|SEqe

Figure 28: Dynamic Correlation Calculus, annotated semantics.

Before proceeding with the proof of (Soundness) of Theorem 6, we extend the semantics
of DCC by annotating its transitions with the variable paths (of the kind x = x.y.z) on
which DCC operations execute. We range over DCC transition labels with λ.

λ ::= x | ν〉x | ?(x) | o from x | o to x | τ
We report in Figure 28 the annotated semantics of DCC.
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We also introduce two operators on sequences of DCC transition labels. Let λ, λ̃ be a
sequence of DCC labels, the filtering of λ, λ̃ on k , written (λ, λ̃)

∣∣∣
k
is defined as

(λ, λ̃)
∣∣∣
k

=


λ, ( λ̃

∣∣∣
k
) if λ ∈


k.x.y, ν〉k.x.y, ?(k),

sync from k.x.y, sync@k.x.y,

start from k.x.y, start@k.x.y


λ̃
∣∣∣
k

otherwise

Let λ1, λ̃1 and λ2, λ̃2 be two sequences of DCC labels, the complement of λ1, λ̃1 on λ2, λ̃2

, written (λ1, λ̃1) \ (λ2, λ̃2) is defined as

(λ1, ε) \ (λ2, λ̃2) =

{
ε if λ1 = λ2

λ1 otherwise

(λ1, λ̃1) \ (λ2, λ̃2) =

{
λ̃1 \ λ̃2 if λ1 = λ2

λ1, (λ̃1 \ (λ2, λ̃2)) otherwise
Below we state Lemma 15 that proves that, given a DCC system S and a sequence of

reductions λ̃ for which S λ̃−→ S′, if the first action is the initiation of a session k, then we can
reorder the execution of the subsequent actions in λ̃ such that we first execute all transitions
related to the start of k and then all the remaining actions, obtaining the same final system
S′.

Lemma 15 (DCC Start Permutation). Let S be a composition of DCC services such that

S
λ̃−→ S′ where λ̃ = k.C.l, λ̃′, then let λ̃k = λ̃

∣∣∣
k
and λ̃∗ = λ̃ \ λ̃k we have S λ̃k−−→ S1 and

S1
λ̃∗−−→ S′.

Proof Sketch. The proof is by induction on the length of λ̃. The main intuition is that,
since the first action is the start of the new session k, all other actions in λ̃′ either are related
to the initiation of k or do not affect it. Hence, we can reorder the execution of actions in λ̃
such that first we execute all actions regarding the start of the session5 contained in λ̃k and
then all the other actions in λ̃∗. �

Next we state Lemma 16 that proves that, given
• a well-typed FC endpoint choreography D,C
• its DCC compilation S
• the DCC system S′ that results from an arbitrary number of steps of reduction belonging
to the start of a session k in S
we can execute the remaining steps of reduction in S′ to complete the start of session k,

obtaining the final system S′′ and prove that S′′ is the same DCC system as the one obtained
from the compilation of D′, C ′, the reductum of the source FC choreography D,C after the
step of reduction to start session k.

Lemma 16 (DCC Start Completion). Let Γ ` D,C, C a endpoint choreography

C = req k : p[A] ] l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

5Note, this does not imply nor require that λ contains all actions needed to start session k.
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and 〈〈D〉〉Γ, C Γ= S such that S λ̃−→ S′ where λ̃
∣∣∣
k

= λ̃ then i) S′ λ̃′−−→ S′′, ii) D,C → D′, C ′,

and iii) there exists some Γ′ s.t. Γ′ ` D′, C ′ and 〈〈D′〉〉Γ′ , C ′ Γ′= S′′.

Proof . Proof by case analysis on the length of λ̃.
Let p@l ∈ Γ. To proceed, we have two subcases whether l ∈ {l1, . . . , ln}, i.e., whether

one of the service processes is at the same location of p. Since the subcases follow the same
structure, we detail only the proof for l 6∈ {l1, . . . , ln} which allows for a uniform treatment.
In the other case, i) we should account for transitions on the same service of p with rules
bDCC|InStarte and bDCC|InSende and ii) we would have a newly created process in parallel with p in
D,C and in the correspondent DCC system S′′.

Provided n is the number of service processes involved in the start of the session k,
from Definition 12 we can count the number of transitions needed to complete the start of a
session. Indeed, given a D,C with

C = req k : p[A] ] l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

and 〈〈D〉〉Γ, C Γ= S then we can write the sequence of transitions of the compiled DCC
system

S

1○︷ ︸︸ ︷
k.I.l−−−→
2.1○︷ ︸︸ ︷

ν〉k.A.I−−−−−→

2.2○︷ ︸︸ ︷
?(k)−−−→

2.3○︷ ︸︸ ︷
ν〉k.I.I′−−−−−→

2.4○︷ ︸︸ ︷
sync@k.I′.A−−−−−−−−→

2.5○︷ ︸︸ ︷
sync from k.I′.A−−−−−−−−−−→︸ ︷︷ ︸

2○
3.1○︷ ︸︸ ︷

start@k.I′.A−−−−−−−−→

3.2○︷ ︸︸ ︷
start from k.I′.A−−−−−−−−−−−→︸ ︷︷ ︸
3○

S′′

and count the number of all the transitions to complete the start, let it be m, as the
sum of:
1○: n+1 times, for I ∈ {A, B̃}, with last Rule bDCC|Assigne;
2○: n times, for I ∈ B̃:

2.1○: reduces with last applied rule bDCC|Newquee;
2.2○: reduces with last applied rule bDCC|Starte;
2.3○: n times for I ′ ∈ {A, B̃} \ {I}, reduces with last applied rule bDCC|Newquee;
2.4○: reduces with last applied rule bDCC|Sende;
2.5○: reduces with last applied rule bDCC|Recve;

3○: n times, for I ∈ B̃:
3.1○: reduces with last applied rule bDCC|Sende;
3.2○: reduces with last applied rule bDCC|Recve;
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and m = n2 + 7n+ 1. We proceed unfolding the proof on the length of λ̃.
Case |{λ̃}| = 1

Since the cardinality of λ̃ is one and that from the premises we know that λ̃ contains
only transitions belonging to the start of session k, we can infer that λ̃ = k.C.l where
C ∈ {A, B̃}.

To prove the thesis we let S′ do all the remaining transitions to start the session and
show that D,C can mimic it. Let

︷ ︸
l.B = l1.B1, . . . , ln.Bn and l̃ : G〈A|B̃|B̃〉 ∈ Γ.

From Definition 12 and Theorem 4 we have, let D = 〈〈D〉〉Γ, M = D(l), Mi = D(li), and
tp = D(p)

〈〈D〉〉Γ, C Γ≡D

〈
Cc|l Γ, P | R,M

〉
l
|

n∏
i=1

〈Qi, Rli ,Mi〉li | Sc

where

–

P = start( k, (l.A,
︷ ︸
l.B) ); Cr Γ. tp =

=


�

I∈{A,B̃}
k.I.l = lI ;

�
I∈{B̃}

(
ν〉k.I.A; ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I;

 ; Cr Γ. tp

– Qi = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ=

!(k); �
I∈{A,B̃}\{Bi}

ν〉k.I.Bi ;

sync@k.A.l(k) to k.Bi.A ;
start(k) from k.A.Bi ; Cqi

Γ

– R =
∏

p′ ∈ D(l)\{p}
Cc|p′ Γ. tp′

– Rli =
∏

s ∈ D(li)

Cc|s Γ. ts

– Sc =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′ Γ,

∏
s′ ∈ D(l′)

Cc|s′ Γ. ts′ , D|l′
〉
l′

The first transition, λ = k.C.l consumed the first assignment of location and assigned
the location of role C to k.C.l in the state of the starter tp.

Let us suppose, without loss of generality, that C = A, then we have

P ′ =


�
I∈{B̃}

k.I.l = lI ;

�
I∈{B̃}

(
ν〉k.I.A; ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I;

 ; Cr Γ. tp / ( k.A.l, l )

and 〈〈D〉〉Γ, C Γ k.A.l−−−→ S′ where

S′ =
〈
Cc|l Γ, P ′ | R,M

〉
l
|

n∏
i=1

〈Qi, Rli ,Mi〉li | Sc

Since in its reduction D,C renames the new session with a fresh name, we first rename
session k, in P and the service processes Qi, to k′, which is fresh. We take
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P ′′ = P ′[k′/k] =


�
I∈{B̃}

k′.I.l = lI ;

�
I∈{B̃}

(
ν〉k′.I.A; ?@k′.I.l(k′); ?@k′.I.l(k′);

)
;

�
I∈{B̃}

sync(k′) from k′.I.A

 ; Cr Γ [k′/k] . t′′p

where, let t′p = tp / ( k.A.l, l ), t′′p = t′p / ( k′, k(t′p) ) / ( k,∅ ).
We take

S∗0 =
〈
Cc|l Γ, P ′′ | R,M

〉
l
|

n∏
i=1

〈
Qi[k

′/k], Rli ,Mi

〉
li

| Sc

and by Lemma 14 we have S∗0 ∼ S′.
Now we can proceed with the rest of the transitions of the start procedure as defined at

the beginning of the proof, so that S∗0 →+ S∗1 . Finally we have

S∗1 ∼ S′′ =
〈
Cc|l Γ, P ′′′ | R,M ′

〉
l
|

n∏
i=1

〈
Qi[k

′/k], Q′i | Rli ,M
′
i

〉
li

| Sc

where P ′′′ = Cr Γ [k′/k] . t′p and Q′i = Cqi
Γ [k′/k] . tk′

From the transitions presented above we know that there exists t′k′ such that t′p =
tp / ( k′, t′k′ ), where t

′
k′ is a session descriptor for session k′ (i.e., it contains all the locations

and correlations keys used by the processes in session k′).
We proceed by proving that D,C can mimic 〈〈D〉〉Γ, C Γ.
We can apply rules bC|Pare and bC|Eqe and lastly rule bC|PStarte such that

i ∈ {1, . . . , n} D#k′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {r̃} =

⋃
i{r̃i}

δ = start k′ : p[A] ]
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D′

D, req k : p[A] ] ︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
→

D′, C[k′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

and

D,C | Cc → D′, Cr[k
′/k] |

∏
i

(
Cqi [k

′/k][ri/qi]
)
|

n∏
i=1

acc k : li.qi[Bi];Cqi | Cc

thus C ′ = Cr[k
′/k] |

∏n
i=1

(
Cqi [k

′/k][ri/qi]
)
|
∏n
i=1 acc k : li.qi[Bi];Cqi | Cc.

From the hypothesis we know that Γ ` D,C and therefore that Γ = Γ1, l̃ : G〈A|B̃|B̃〉. We
can find Γ′ = Γ, init(k′, (p[A],

︷ ︸
q[B]), G) and Γ′ ` D′, C ′.

Finally, we need to prove that S∗1 = 〈〈D′〉〉Γ′ , C ′ Γ′.
From Definition 12 we have

〈〈D′〉〉Γ′ , C ′ Γ′=
〈
Cc|l Γ′, P ∗ | R′,M∗

〉
l
|

n∏
i=1

〈
Q′′i , Q

∗
i | R′li ,M

∗
i

〉
li

| S′c

Let D∗ = 〈〈D′〉〉Γ′ we use the abbreviations t∗s = D∗(s), for s process in D∗, and M∗ = D|l,
and M∗i = D|li , in D∗, C ′ Γ′we have
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– P ∗ = Cr[k
′/k] Γ′. t∗p

– R′ =
∏

p′ ∈ D∗(l)\{p}
Cc|p′ Γ′. t∗p′

– Q′′i = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ′

– Q∗i = Cqi [k
′/k][ri/qi] Γ′. t∗qi

– R′li =
∏

s ∈ D∗(li)
Cc|s Γ′. t∗s

– S′c =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′ Γ′,

∏
s′ ∈ D∗(l′)

Cc|s′ Γ′. t∗s′ , D∗|l′
〉
l′

From Rule bD|Starte we know that

k′(t∗p) = k′(t∗q1
) = . . . = k′(t∗qn) = tk′

for some tk′ session descriptor of session k′.
We prove the case by taking tk′ = t′k′ , t

′
k′ obtained from the derivation of 〈〈D〉〉Γ, C Γand

M∗ = M ′ and M∗i = M ′i , i ∈ {1, . . . , n}.
Case 1 < |{λ̃}| < m− 1
The case follows the same structure of the previous case. We rename k to k′ on p and all
the newly created service processes. Then we let the system complete all the transitions
and prove that the reductum corresponds to the compilation of D′, C ′.
Case |{λ̃}| = m

Since |{λ̃}| = m then S = S′ where S′ has terminated all the transitions to start the
session. Here we only have to rename k to k′, as per Lemma 14, for all the involved
processes, proving S′ = 〈〈D′〉〉Γ′ , C ′ Γ′.

�
We now proceed to prove the (Soundness) of Theorem 6, restated here below to consider

annotated transitions:

• (Soundness) D,C Γ λ̃−→ S implies i) D,C →∗ D′, C ′ and ii) S →∗ D′, C ′ Γ
′
for some D′,C ′,

and Γ′ such that iii) Γ′ ` D′, C ′

In the following we use the shortcut

Cstart = req k : p[A] ] l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

Proof (Soundness).
We proceed by induction on the cardinality of λ̃. Then we consider sub-cases on the

shape of C and the shape of λ̃.
Case |{λ̃}| = 0

Trivial, D,C Γ= S = D′, C ′ Γ′, D,C = D′, C ′, and Γ ` D′, C ′.
Case |{λ̃}| = 1

Since the cardinality of λ̃ is one, we can directly consider the single annotated transition
λ = λ̃. In the sub-cases of this case we omit to consider impossible cases for λ = ν〉x
and λ = ?(x) since these transitions (corresponding respectively to rules bDCC|Newquee, and
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bDCC|InStarte or bDCC|Starte) can happen only within of a start session sequence (i.e., not at the
first position).

In the following we use the abbreviation follows (#) to indicate that the case unfolds
following the proof of Case # for the same subcase for λ, with the thesis following by
applying the induction hypothesis.

Case C = k : A _ q[B].{oi(xi);Ci}i∈I ;Cq | Cc

Case λ = x follows (C = Cstart | Cc).
Case λ = o to x follows (C = k : p[A].e_ B.o;Cp | Cc).
Case λ = τ follows (C = if p.e {C1} else {C2} | Cc).
Case λ = o from x
Since receptions in compiled DCC systems can only happen on correlating queues
within sessions, without loss of generality we can assume that λ = o from k.A.B
where oj 6∈ {start , sync}, indeed these operation names are reserved for session
initiation and cannot appear as first (in this case, only) reduction of a compiled
system.
Let q@l ∈ Γ, from Definition 12 and Theorem 4 we have

D,C Γ≡D

〈
Cc|l Γ, Q | R,M

〉
l
| Sc

where, let D = 〈〈D〉〉Γ, M = D|l and tq = D(q),
– Q =

∑
i∈I [oi(xi) from k.A.B]

{
Ci Γ
} . tq

– R =
∏

r ∈ D(l)\{q}
Cc|r Γ. tr

– Sc =
∏

l′∈Γ\{l}

〈
Cc|l′ Γ,

∏
s ∈ D(l′)

Cc|s Γ. ts
〉
l′

and we can apply rules bDCC|Eqe, bDCC|SPare and bDCC|Recve such that, let tc = eval(k.A.B, tq),
tm = eval(e, tq), and M(tc) = (oj , tm) :: m̃

D,C Γ
oj from k.A.B−−−−−−−−−→ S

where

S = S′ | Sc
and S′ =

〈
Cc|l Γ, Cj Γ. tq / (xj , tm ) | R,M [tc 7→ m̃]

〉
l
.

D,C can mimic D,C Γwith rules bC|Eqe, bC|Pare, and bC|Recve for which

D,C → D′, Cp | Cc
where, let D(k[A〉B]) = (oj , vm) :: m̃′, we have

D′ = D[q 7→ tq / (xj , vm )][k[A〉B] 7→ m̃′]

Since from the premises Γ ` D,C then
Γ = Γ1, k[A] : &A.{oi(Ui);Ti}i∈I , k[A〉B] : &A.oj(Uj);T

′ and we can find
Γ′ = Γ1, k[A] : Tj , k[A〉B] : T ′ such that Γ′ ` D′, C ′.
At the level of choreographies, since the changes in D′ and Γ′ and the related
D′ = D′

Γ′ affect only the queue related to D′|l and the state of q, for all other
terms · Γ= · Γ′ and D′|l′ = D|l′ .
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Hence we can write D′, C ′ Γ′= S′′ | Sc where S′′ = S′ by Theorem 4.
Case C = k : p[A].e_ B.o;Cp | Cc

Case λ = x follows (C = Cstart | Cc).
Case λ = o from x follows (C = k : A _ q[B].{oi(xi);Ci}i∈I ;Cq | Cc).
Case λ = τ follows (C = if p.e {C1} else {C2} | Cc).
Case λ = o to x

As for Case C = k : A _ q[B].{oi(xi);Ci}i∈I ;Cq | Cc, we know that all send
actions in DCC systems compiled from FC programs happen on a session-related
queues, hence we can assume λ = o@k.A.B. Also, we know that o 6∈ {start , sync}
for the reasons explained in Case C = k : A _ q[B].{oi(xi);Ci}i∈I ;Cq | Cc.
From Theorem 4, let D = 〈〈D〉〉Γ, tp = D(p), and M = D|l. Now we consider two
cases for which, let p@l ∈ Γ, whether the location of the receiving process (stored
under path k.B.l in the state of p) equals l, we either reduce the compiled DCC
system by means of rule bDCC|InSende or rule bDCC|Sende. For brevity we just consider the
case for bDCC|InSende as the other case follows similarly.
Since bDCC|InSende applies, we can infer that

D,C Γ≡D

〈
Cc|l Γ, P | Q | R,M

〉
l
| Sc

where
– P = o@k.B.l to k.A.B; Cp

Γ. tp
– Q = Cc|q Γ. tq
– R =

∏
r ∈ D(l)\{p,q}

Cc|r Γ. tr

– Sc =
∏

l′∈Γ\{l}

〈
Cc|l′ Γ,

∏
s ∈ D(l′)

Cc|s Γ. ts, D|l′
〉
l′

Let tc = eval(k.A.B, tp), tm = eval(e, tp), and M(tc) = m̃

D,C Γ
o@k.A.B−−−−−−→ S

where

S = S′ | Sc
and S′ =

〈
Cc|l Γ, Cp

Γ. tp | Cc|q Γ. tq | R,M [tc 7→ m̃ :: (o, tm)]
〉
l

D,C can mimic D,C Γwith rules bC|Eqe, bC|Pare, and bC|Sende for which

D,C → D′, Cp | Cc
where, let vm = eval(e,D(p)) and m̃′ = D(k[A〉B]), D′ = D[k[A〉B] 7→ m̃′ ::
(o, vm)].
Since from the premises Γ ` D,C then Γ = Γ1, k[A] : ⊕ B.o(U);T, k[A〉B] : T ′ and
we can find Γ′ = Γ1, k[A] : T, k[A〉B] : T ′; &A.o(U) such that Γ′ ` D′, C ′.
At the level of choreographies, since the changes in D′ and Γ′ and the related
D′ = D′

Γ′ affect only the queue related to D′|l, for all other terms · Γ= · Γ′ and
D′|l′ = D|l′ .
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Hence we can write D′, C ′ Γ′= S′′ | Sc where S′′ = S′ by Theorem 4.
Case C = Cstart | Cc

Case λ = o from x follows (C = k : A _ q[B].{oi(xi);Ci}i∈I ;Cq | Cc).
Case λ = o to x follows (C = k : p[A].e_ B.o;Cp | Cc)
Case λ = τ follows (C = if p.e {C1} else {C2} | Cc).
Case λ = x
From Definition 12 we know that assignments in DCC systems that are compiled
from FC programs appear only within the starting of a session. In this case,
since λ̃ contains only one action which corresponds to the first reduction of the
compiled DCC system, it must be the first assignment for the creation of the
session descriptor for some session k′ in C.
Let C ∈ {A, B̃}, we have two subcases whether λ̃ = λ = k.C.l or λ̃ = λ = k′′.C.l,
i.e., whether we are starting session k or we are starting another session k′′.
Case λ = k.C.l
In this case D,C Γ is starting a new session on k. The case is proved applying
Lemma 16.
Case λ 6= k′.C.l
In this case we are starting a session on k′′ 6= k. The case unfolds following the
proof of case C = Cstart |Cc where Cc contains the endpoint choreographies for
the starter process and the service processes for session k′′. The thesis follows
by applying the induction hypothesis.

Case C = if p.e {C1} else {C2} | Cc

Case λ = x follows (C = Cstart | Cc).
Case λ = o from x follows (C = k : A _ q[B].{oi(xi);Ci}i∈I ;Cq | Cc).
Case λ = o to x follows (C = k : p[A].e_ B.o;Cp | Cc).
Case λ = τ

In this case, the label does not allow us to establish a correspondence between
the considered shape of C and the actual reduction annotated by the label.
However, since τ labels only correspond to the reduction of conditionals, without
loss of generality, we can consider here only the case where the reduction acts
on the considered term. The other case follows the unfolding of this case for the
term reduced by the action and the induction hypothesis.
Let p@l ∈ Γ. From Definition 12 we have

D,C Γ≡D

〈
Cc|l Γ, P | R,M

〉
l
| Sc

where, let D = 〈〈D〉〉Γ, tp = D(p), and M = D|l
– P = if p.e {C1

Γ} else {C2
Γ} . tp

– R =
∏

r∈D(l)\{p}
Cc|r Γ. tr

– Sc =
∏

l′∈Γ\{l}

〈
Cc|l′ Γ,

∏
s∈D(l′)

Cc|s Γ. ts, D|l′
〉
l′

The case unfolds into two cases, on whether eval(e,D(p)) = true. Here we
proceed with the positive case. The other case follows the same structure.
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We proceed considering that eval(e,D(p)) = true. D,C Γ reduces with rules
bDCC|Eqe, bDCC|SPare, bDCC|Pare, and bDCC|Conde such that

D,C Γ →
〈
Cc|l Γ, Cc|p Γ. tp | R,M

〉
l
| Sc

where S =
〈
Cc|l Γ, Cc|l Γ. tp | R,M

〉
l
| Sc. D,C can mimic D,C Γwith rules

bC|Eqe, bC|Pare, and bC|Conde such that

D,C → D,C1 | Cc
We choose Γ′ = Γ for which it holds that Γ ` D,C1 | Cc.
Finally, D,C1 | Cc Γ= S by Definition 12.

Finally,Cases C = C1 | C2 , C = def X = C ′ in Cp | Cc , C = X | Cc and C = 0 | Cc
unfold applying the induction hypothesis on the respective sub-cases Case λ = x fol-
lows (C = Cstart | Cc),Case λ = o from x follows (C = k :A _ q[B].{oi(xi);Ci}i∈I ;Cq | Cc),
Case λ = o to x follows (C = k : p[A].e _ B.o;Cp | Cc), Case λ = τ follows
(C = if p.e {C1} else {C2} | Cc).

Case |{λ̃}| > 1

The case unfolds considering λ as the first action in λ̃ = λ, λ̃′. For any shape of C and
label λ 6= x we can i) apply the same steps followed in the related case for the same C
with |{λ̃}| = 1, λ̃ = λ and ii) inductively unfold the case on the remaining part λ̃′.

For λ = x and C of shape Cstart | Cc (the case for other shapes of C can be re-conducted
to this case), let x = k.A.l (other cases for x = k′.B.l are similar) and the thesis follows by
applying Lemma 15, Lemma 16 and the induction hypothesis on the remaining transitions
in λ̃ \ λ̃

∣∣∣
k
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