WeritréN By:
Al Al 3 Lmdscj Kuper

Iw the coming pages, yo'll see these little people:

Alice . Carol

The names came from a 147D paper by
Rivest et al. on encryption, and are often used
to describe communication protocols.

They can easily be shorteved to A, B, and C, respectively,
avd will represent vodes in this zine. Nodes are entities
that send and receive messages in a message-passing

systew.

we thought i+ would be funm +o give thewm life, so you'll
ve seeing thewm interact with each other thronghont
this zive.

we'll be exploring choreographic programming

i this zinel Choreographic programming is a
way of programming message-passing systems
that lets the programmer describe the behavior
of the whole system as a unified, single prograwm.
Let's learn how i+ works!

Table of Contents

AN Tntro 10 0Ur SYSTEMS i, 1
What is Choreographic Programming? ... 4
HOW A0S T VWOIK T oot iiieeiiinneiinesssneesesnsssssnsssssnnns 5
A BT HISTONY i essassens a
Next Steps and Knowledge of Choice ..., 11

- l-
Blb lO@F&IPl/N ... 12

An 'I’lj[ro to our Sustems

Before we dive into choreographic programming,
we should first understand the context i+ exists in.

Iw a message-passing system, independent nodes
communicate by sending and receiving messages over
some kind of network. Message passing is everywhere
i computing, and is especially important +o the study
of concurrent and distributed systems!

Every message has a sending node and a receiving
node. Each node performs a sedquevce of sends and
receives. Think of each vode as rumning a program
that makes send() avd recv() calls, along with its
oww internal actions.

v

However, if the intended recipient of a sent message
does ot call recv(), they won't+ actually receive it.

send (Cuol,ﬁ') Mg_')resent = recv(Alice)

send (Clrol ,ﬁ)

Similarly, if a vode calls recv() for a message that
was vever sent to it, then there will be nothing for
the receiving vode to receivel

mg__Prcsm‘l: = rew(Aliu) "

Iw both of these scenarios, the message passing
between our vodes is unsuccessful. Whew this

happeus, it may cause a delay or a failure v the
systewm.

Consider the following code for Alice and Carol:

Alice Carol
send(Carol, present) my present = recv(Alice)
message = recv(Carol) open(my present)

send(Alice,“Thank you!?”)

Now imagive if the programmer made a mistake
and forgot +he linve send(Carol, present) iv

Alice's program. What would happen to the rest of
the program’s execution?

Let’'s assume that each event ow a vode is
executed sequentially, meaning that an event
must complete before the following one starts.

With send Without send x

no
5¢ﬂdf
AL ed . e
ot ¢ FP r €se "y
€ vfﬁ ﬁ.c =
¢) =
dtﬁﬁ«j
P o, |
E,? ;:_)
i
Seny, I
. #:ﬁf‘"':l' i
[Ak L
\ o i i
ﬂﬁ’:"a Ry L ,
;wlu' 7y : delay J
r
3

Here, things go wrong for Carol, even though i+ was
ovly Alice’'s program that had a bug. It send() and
recv() calls aren't correctly paired up with each other,
nodes could crash, and the systewm could deadlock.

must receive /\ bebore sending [J

: I'H-JS'I‘ receive O bt*fvﬂ: Stndmj A

(deadlock. communicahon er ror

So Jjust match each send() with a recv(), right?
wWhile it might seem pretty straightforward in the
case of Alice and Carol's short exchavnge of messages,
It duickly becomes a challenge v large systems with
mawny interacting nodes and lots of messages.

Thanktully, this i1s where choreographic programming
can come vl

5

(i)h(k{' 15 ChOITDMhiC Prommmin ?

The idea of choreographic programming is to raise
the level of abstraction for writing communicatiov
protocols.

Tustead of writing separate programs for each
node n our system, we can write a choreography
(coordination plan), which, as the name might
sugaest, descrives the behavior of all the wodes v
the systewm.

With a choreography, we can ensure that a
distributed systewm is deadlock-free by construction.
Every send will have a corresponding receive, with
no mismatches that might lead +o deadlock.

choreo

send() recv() INSTEAD... A-C
u u 2 | con
A C)(\//

Choreographies can also make our program’s behavior easier +o understand!
Tnstead of having to follow the flow of control as it jumps from
node to node, we can read a choreography line by live.

4

How does it work ?

Suppose Alice wants to go to Carol's birthday party,
but bouncer Bob stops her +o check her I D first:

C

Tw this protocol, Alice’s credentials must be verified
through Bob betore she can access Carol’s party.

Bob ruvs a check() function on Alice’s communicated
data, and depending on the outcome, Alice either
receives av access tokewn from Carol or does wot.

This example resembles a simple sign-on protocol
through an anthentication service.

Iw a choreography, a single syntactic construct
represents both the sending and the reception of a
messane.

A. X -> B.y

The -> meavs ‘communicate’, so we cav read
A.x -> B.y as A’s local variable x is communicated
to B’s local variable, v.

Now let’s try our example, this time written as
a thoreography!

Alice.credentials -> Bob.authRequest

if Bob.check(authRequest) then
Bob.Success -> Carol.decision
Carol.newToken() -> Alice.result

else
Bob.Failure -> Carol.decision
Carol.noTokenMessage -> Alice.result

We're Just using some made-up syntax here as a stand-in for a real language sywtax.

Iwn this choreography, there are three roles (or
participants) definea:

e Alice (our client)
e Bob (the authentication service)
o Carol’'s Party (the service being accessed)

s +his really A B | dont make
| th

e rales.
necessary v

We can read the choreography as follows:
1. First, Alice’s credentials are sent +o Bob, +o be
received and stored in Bob’s auntliReduest variable.
2. Bob checks antliRedquest, and agaiv, depending
on the outcome, either:
A. a success message is sent from Bob +o Carol,
and a new tokew is seut from Carol to Alice.
B. a failure message is sent from Bob +o Carol, and
aw error message is sent from Carol to Alice.

Tf we were +o rewrite this choreography as a
separate program for each role, i+ might look
something like this:

Not as easy to follow, right~
Avd this is just a very simple example!

ol

T+ would be vice if we could write our communication
protocols as choreographies from the get-go.

However, in order to run choreographies, we would still
need +o turn them into some sort of executable code.
Thankfully, choreographic programming has something
for +his! T+'s called endpoint projection (EPP).

~
e

EPP takes a choreography and compiles i+ +o a collectiov
of several executable programs—a different ove for
each participating role. Then each role can ruv 1+s oww
program. Every choreographic programming langunage
or library provides a mechavnism for EPP -- more about
that later!

/

e > Wb dl'i'.n
=

T

A Br\ef Histor

Where did choreographic
KProsrRMMMJ come .fmn?

Choreographies have a lowg history. The A -> B notation for
expressing communication was first used in a formal publication
by Needham and Schroeder [1475] for describing a security
protocol.

Iw the early 2000s, the W3C Web Services Choreography Working
Garoup, alongside a group of imvited experts from acadewmia,
developed a draft specification for a choreographic language.

T+ was called Web Services Choreography Description Language,
or WS-CDL for short. However, the WS-CDL language was vot
intended to be executable, and ovly formalized choreographic
interactions and roles in a specification language.

}\So we cant even use it...

Not so fast! Ivn 2013, Chor was created by Warco Carbove and
Fabrizio Montesi [Carbone and Montesi 2013]. Chor pioveered
the idea of an executable choreographic programming language.
T+ used endpoint projection to compile choreographies to runnable
node-local programs.

W3E - e
WS-CDL Chor EHORM' Pirovette 2XHasChor

2005 2013 2020 2022 2023

Iwv 2020, Choral was created by Saverio Glallorenzo, WMarco
Peressotti, and Woutesi [Giallorewzo et al. 202.4]. Choral is the
first choreographic programming language that can be used +to
prograwm realistic software. T+ integrates choreographies with
moderv programming abstractions like functions, objects, genericity,
and higher-order programwming. The Choral compiler projects
thoreographies to executable Java code.

f"::?ap_h;l?ir“a:.w mr ;Z.;:n-:r‘uf Time A
EPP
l Choral I 2

Iv 2022, Andrew Hirsch and Deepak Garg introduced Pironette
[Hirsch and Garg 202.2.], which combined choreographies with
higher-order functional programming, leading +to increased interest
n choreographic programming in the functional programming
research community. Pironette is also votable for its
machivne-checked proof of deadlock freedowm.

Thew, in 2023, Gav Shew, Shuv Kashiwa, and Lindsey Kuper
published HasChor [Shew et al. 20237, a library for choreographic
programming in Haskell. In HasChor, a choreography is a Haskell
program, and EPP is carried out at run time. Becaunse HasChor is

a library rather thavw a stavdalone language, programmers have
easy access to the whole Haskell ecosystem. While HasChor
compromises some features compared to standalove lamgfmges,

It demovstrates that we can get some of +the advantages of
choreographic programming without having to implement an entire
new language and related support tools.

HASKELL happms ot run fime

0
“La

10

Next Sfeps

we hope that this zive has gotten you interested in
learning more avout choreographic programming,
What's next?

Tf you're ready to try a real choreographic programming
language or library, check out Choral or HasChor!

I CHORAL 'l https:/[www.choral-lang.ora/

)XHasChor https:/[github.com/gshend 2 [HasChor

Kn0w|eo{ge of Choice

Ove of the key concepts of choreographic programming
that we didv't discuss in this zive is knowledge of choice.
The knowledge of choice problem comes into play when a
choreography involves a conditional, like the “if ... thew
.else” expression n the choreography ow p. @.

All parties affected by the conditional need +o be +old
what bravch to take! The choreography ov p. 6 is handling
knowledage-of-choice propagation properly, becanse Bob is
communicating the outcome of check(anthiRedquest) to
Carol in both branches. Iwn geveral, choreographic
languages weed a strategy for dealing with knowledge of
choice (like giving ou awn error if you write a choreography
that doesn't correctly propagate knowledge of choice, or
by nserting the wecessary communication for you).

/1

Bi b,iograp"\%

| think Alice

needed this more
than | Ja...)

O \ /

belhind choreographic programmivg,
we recommend the book
TIutroduction to Choreographies
by Fabrizio Montesi [2023]!

[Carbone and WMowntesi 20137 Marco Carbone and Fabrizio Montesi. 2013.
Deadlock-freedom-by-design: multiparty asywchrovous global

programming. (POPL 2013) https://doi.org/104145/2429064.24 28101

[Giallorevzo et al. 20247 Saverio Giallorenzo, Fabrizio Montesi, and
WMarco Peressotti. 2024. Choral: Object-oriented Choreographic Programming,.

TOPLAS (Jannary 2024) hitps://doi.org/104145/262229%

[Hirsch and Garg 202.2] Andrew K. Hirsch and Deepak Garg. 202.2..
Pirounette: higher-order typed functional choreographies.

(POPL 2022) https://doi.org/104145/244%6D4

[WMontesi 2023] Fabrizio WMontesi. Tntroduction to Choreographies. 202.2.
Cambridage University Press hitps://dol.org/10A017F/AFD1105991491

[Needham and Schroeder 1475] Roger WM. Needham and Wichael D. Schroeder.
1795. Using encryption for anthentication in large wetworks of computers.
CACM (December 1a73) https://dol.org/10A145/254657.354659

[Shew et al. 20237 Gav Shew, Shun Kashiwa, and Lindsey Kuper. 202.3.

HasChor: Fuuctional Choreographic Programming for All (Functional Pearl).
(LCFP 2023) Witps://doi.org/[104145/3 6070449

/2

This material is based upon work supported by the
National Science Foundation under Grant No. CCF-2145307.

Any opivions, fiudings, and conclusions or recommendations
expressed i this material are those of the author(s) avd do vot
necessarily reflect the views of +he National Science Foundation.

Thanks +o our friends Julia Evans and Fabrizio Montesi for
feedback on a draf+ of +his zinel!

