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Abstract. In Choreographic Programming, a distributed system is pro-
grammed by giving a choreography, a global description of its interac-
tions, instead of separately specifying the behaviour of each of its pro-
cesses. Process implementations in terms of a distributed language can
then be automatically projected from a choreography.
We present Linear Compositional Choreographies (LCC), a proof theory
for reasoning about programs that modularly combine choreographies
with processes. Using LCC, we logically reconstruct a semantics and a
projection procedure for programs. For the first time, we also obtain a
procedure for extracting choreographies from process terms.

1 Introduction

Choreographic Programming is a programming paradigm for distributed systems
inspired by the “Alice and Bob” notation, where programs, called choreographies,
are global descriptions of how endpoint processes interact during execution [14,
21, 1]. The typical set of programs defining the actions performed by each process
is then generated by endpoint projection (EPP) [17, 12, 8, 5, 9, 15].

The key aspect of choreography languages is that process interactions are
treated linearly, i.e., they are executed exactly once. Previous work [8, 9, 15]
developed correct notions of EPP by using session types [11], linear types for
communications inspired by linear logic [10]. Despite the deep connections be-
tween choreographies and linearity, the following question remains unanswered:

Is there a formal connection between choreographies and linear logic?

Finding such a connection would contribute to a more precise understanding of
choreographies, and possibly lead to answering open questions about them.

A good starting point for answering our question is a recent line of work on
a Curry-Howard correspondence between the internal π-calculus [18] and linear
logic [7, 22]. In particular, proofs in Intuitionistic Linear Logic (ILL) correspond
to π-calculus terms (proofs-as-programs) and ILL propositions correspond to
session types [7]. An ILL judgement describes the interface of a process, for
example:

P . x :A, y :B ` z : C

Above, process P needs to be composed with other processes that provide the
behaviours (represented as types) A on channel x and B on channel y, in order
to provide behaviour C on channel z. The focus is on how the process can be
composed with other external processes, abstracting from the internal commu-
nications enacted inside the process itself (which may contain communicating
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sub-processes). On the contrary, choreographies are descriptions of the internal
interactions among the processes inside a system, and therefore type systems
for choreographies focus on checking such internal interactions [8, 9]. It is thus
unclear how the linear typing of ILL can be related to choreographies.

In this paper, we present Linear Compositional Choreographies (LCC), a
proof theory inspired by linear logic for typing programs that modularly combine
choreographies with processes in the internal π-calculus. The key aspect of LCC
is to extend ILL judgements to describe interactions among internal processes
in a system. Thanks to LCC, not only do we obtain a logical understanding of
choreographic programming, but we also provide the foundations for tackling
the open problem of extracting a choreography from a system of processes.
Main Contributions. We summarise our main contributions:
Linear Compositional Choreographies (LCC). We present LCC, a generalisation
of ILL where judgements can also describe the internal interactions of a system
(§ 3). LCC proofs are equipped with unique proof terms, called LCC programs,
following the Curry-Howard interpretation of proofs-as-programs. LCC programs
are in a language where choreographies and processes are modularly combined
by following protocols given in the type language of LCC (à la session types [11]).
Logically-derived semantics. We derive a semantics for LCC programs from our
proof theory (§ 4): (i) some rule applications in LCC proofs can be permuted
(commuting conversions), defining equivalences (structural congruence) on LCC
programs (§ 4.1); (ii) some proofs can be safely reduced to smaller proofs, cor-
responding to executing communications (§ 4.2). By following our semantics,
we prove that all internal communications in a system can be reduced (proof
normalisation), i.e., LCC programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two frag-
ments: the action fragment, which manipulates the external interfaces of pro-
cesses, and the interaction fragment, which handles internal communications.
We derive automatic transformations from proofs in either fragment to proofs in
the other, yielding procedures of endpoint projection and choreography extrac-
tion (§ 5) that preserve the semantics of LCC programs. This is the first work
addressing extraction for a fragment of the π-calculus, providing the foundations
for a new development methodology where programmers can compose chore-
ographies with existing process code (e.g., software libraries) and then obtain a
choreography that describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal π-calculus and ILL [7].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)︸ ︷︷ ︸ x(tea); x(tr); tr(p); b(m)︸ ︷︷ ︸ b(m)︸ ︷︷ ︸
Pclient Pserver Pbank

(1)



The three processes above, given as internal π-calculus terms [18], denote a
system composed by three endpoints (client, server, and bank). Their parallel
execution is such that: client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving
the payment, server deposits some money m by sending it over channel b to bank.

Programming with processes is error-prone, since they do not give an explicit
description of how endpoints interact [14]. By contrast, choreographies specify
how messages flow during execution [21]. For example, the choreography

1. client → server : x(tea); server → client : x(tr);

2. client → server : tr(p); server → bank : b(m)
(2)

defines the communications that occur in (1). We read client → server : x(tea)
as “process client sends tea to process server through channel x”.

ILL and the π-calculus. The processes in (1) can be typed by ILL, using
propositions as session types that describe the usage of channels. For example,
channel x in Pclient has type string ⊗ (string ( end) ( end, meaning: send
a string; then, receive a channel of type string ( end and, finally, stop (end).
Concretely, in Pclient , the channel of type string ( end received through x is
channel tr. The type of tr says that the process sending tr, i.e., Pserver , will use it
to receive a string; therefore, process Pclient must implement the dual operation
of that implemented by Pserver , i.e., the output tr(p). Similarly, channel b has
type int⊗end in Pserver . We can formalise this intuition with the following three
ILL judgements, where A = string⊗ (string ( end) ( end and B = int⊗end:

Pclient . · ` x :A Pserver . x :A ` b :B Pbank . b :B ` z :end

Recall that Pserver .x :A ` b :B reads as “given a context that implements channel
x with type A, process Pserver implements channel b with type B”. Given these
judgements, we compose Pclient , Pserver , and Pbank using channels x and b as:

(νx)
(
Pclient |x (νb) ( Pserver |b Pbank )

)
(3)

The compositions in (3) can be typed using the Cut rule of ILL:

P . ∆1 ` x :A Q . ∆2, x :A ` y :B

(νx) (P | Q) . ∆1,∆2 ` y :B
Cut

(4)

Above, ∆1 and ∆2 are sets of typing assignments, e.g., z :D. We interpret rule
Cut as “If a process provides A on channel x, and another requires A on channel
x to provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal π-calculus [7], and
applications of rule Cut can always be eliminated, a proof normalisation proce-
dure known as cut elimination. This procedure provides a model of computation
for processes. We illustrate a cut reduction, a step of cut elimination, in the
following (we omit process terms for readability):

C1 ` A C2 ` B
C1, C2 ` A⊗B

⊗R
A,B ` D
A⊗B ` D ⊗L

C1, C2 ` D Cut
=⇒ C1 ` A

C2 ` B A,B ` D
C2, A ` D Cut

C1, C2 ` D Cut



The proof on the left-hand side applies a cut to two proofs, one providing A ⊗
B, and the other providing D when provided with A ⊗ B. The cut-reduction
above (⇒) shows how this proof can be simplified to a proof where the cut
on A ⊗ B is reduced to two cuts on the smaller formulas A and B. A cut-
reduction corresponds to executing a communication between two processes, one
outputting on a channel of type A ⊗ B, and another inputting from the same
channel [7]. Executing the communication yields a new system corresponding
to the proof on the right-hand side. Cut-free proofs correspond to systems that
have successfully completed all their internal communications.

Towards LCC. Cut reductions in ILL model the interactions between the inter-
nal processes in a system, which is exactly what choreographies describe syntac-
tically. Therefore, in order to capture choreographies, we wish our proof theory
to reason about transformations such as the cut reduction above.

ILL judgements give us no information on the applications of rule Cut in
a proof. In contrast, standard type systems for choreographies [8, 9, 15] have
different judgements: instead of interfaces for later composition, they contain
information about internal processes and their interactions. Following this ob-
servation, we make two important additions to ILL judgements. First, we extend
them to describe multiple processes by using hypersequents, i.e., collections of
multiple ILL sequents [2]. Second, we represent the connections between sequents
in a hypersequent, since two processes need to share a common connection for
interacting. The following is an LCC judgement:

P . ∆1 ` x :•A | ∆2, x :•A ` y :B

Above, we composed two ILL sequents with the operator |, which captures the
parallel composition of processes. The two sequents are connected through chan-
nel x, denoted by the marking •. We will use hypersequents and marking let us
reason about interactions by handling both ends of a connection.

LCC judgements can express cut elimination as a proof. For example,

Q . z1 :C1, z2 :C2 ` x :•A⊗B | x :•A⊗B ` w :D

represents the left-hand side of the cut reduction seen previously, where a process
requires C1 and C2 to perform an interaction of type A⊗B with another process
that can then provide D. Importantly, the connection of type A ⊗ B between
the two sequents cannot be composed with external systems since it is used for
internal interactions. Using our judgements, we can capture cut reductions:

Q′ . z1 :C1 ` y :•A | z2 :C2 ` x :•B | y :•A, x :•B ` w :D

The new judgement describes a system that still requires C1 and C2 in order to
provide D, but now with three processes: one providing A from C1, one providing
B from C2 and, finally, one using A and B for providing D. Also, the first two
sequents are connected to the third one. This corresponds to the right-hand side
of the cut reduction seen previously, where process Q reduces to process Q′ .

We can now express the different internal states of a system before and after
a cut reduction, by the structure of its connections in our judgements. This
intuition is behind the new rules for typing choreographies presented in § 3.



3 Linear Compositional Choreographies

We present Linear Compositional Choreographies (LCC), a proof theory for
typing programs that can modularly combine choreographies and processes.

Types. LCC propositions, or types, are defined as:

(Propositions) A,B ::= 1 | A⊗B | A( B | A⊕B | A&B

LCC propositions are the same as in ILL: ⊗ and ( are the multiplicative con-
nectives, while ⊕ and & are additives. 1 is the atomic proposition. A ⊗ B is
interpreted as “output a channel of type A and then behave as specified by type
B”. On the other hand, A( B, the linear implication, reads “receive a channel
of type A and then continue as B”. Proposition A⊕B selects a branch of type
A or B, while A&B offers the choice of A or B.

Hypersequents. Elements are types identified by variables, possibly marked by
•. Contexts are sets of elements, while hypersequents are sets of ILL sequents:

(Element) T ::= x :A | x :•A (Contexts) ∆,Θ ::= · | ∆,T
(Hypersequents) Ψ ::= ∆ ` T | Ψ |Ψ

Contexts ∆ and hypersequents Ψ are equivalent modulo associativity and com-
mutativity. A hypersequent Ψ is the parallel composition of sequents. Given a
sequent ∆ ` T , we call ∆ its hypotheses and T its conclusion.

We make the standard assumption that a variable can appear at most once in
any hypersequent, unless it is marked with •. In LCC, bulleted variables appear
exactly twice in a hypersequent, once as a hypothesis and once as a conclusion of
two respective sequents which we say are then “connected”. A provable hyperse-
quent always has exactly one sequent with a non-bulleted conclusion, which we
call the conclusion of the hypersequent. Similarly, we call non-bulleted hypothe-
ses the hypotheses of the hypersequent. Intuitively, a provable hypersequent is a
tree of sequents, whose root is the only sequent with a non-bulleted conclusion,
and whose sequents have exactly one child for each of their bulleted hypotheses.

Processes and Choreographies. We give the syntax of our proof terms, or
LCC programs, in Fig. 1. The syntax is an extension of that of the internal
π-calculus with choreographic primitives. The internal π-calculus allows us to
focus on a simple, yet very expressive fragment of the π-calculus [19], as in [7].
Terms can be processes performing I/O actions or choreographies of interactions.

Processes. An (output) x(y); (P |Q) sends a fresh name y over channel x and then

proceeds with the parallel composition P |Q , whereas an (input) x(y);P receives
y over x and proceeds as P . In a (left sel) x.inl;P , we send over channel x our
choice of the left branch offered by the receiver. The term (right sel) x.inr;P
selects the right branch instead. Selections communicate with the term (case)
x.case(P,Q) , which offers a left branch P and a right branch Q . The term

(par) P |x P models parallel composition; here, differently from the output case,
the two composed processes are not independent, but share the communication
channel x. The term (res) is the standard restriction. Terms (close) and (wait)



P,Q,R ::= x(y); (P |Q) (output) | x(y);P (input)

| x.inl;P (left sel) | x.inr;P (right sel)

| x.case(P,Q) (case) | P |x Q (par)

| close[x] (close) | wait[x];P (wait)

| (νx)P (res)


Processes

Choreographies

 |
−→
x(y);P (global com) |

−→
close[x] ;P (global close)

|
−→
x.l(P,Q) (global left sel) | −→x.r(P,Q) (global right sel)

Fig. 1. LCC programs.

model, respectively, the request and acceptance for closing a channel, following
real-world closing handshakes in communication protocols such as TCP.

Choreographies. The term (res)for name restriction is the same as for processes.

A (global com)
−→
x(y);P describes a system where a fresh name y is communi-

cated over a channel x, and then continues as P , where y is bound in P . The
terms (global left sel) and (global right sel) model systems where, respectively, a
left branch or a right branch is selected on channel x. Unused branches in global

selections, e.g., Q in
−→
x.l(P,Q) , are unnecessary in our setting since they are

never executed; however, their specification will be convenient for our technical
development of endpoint projection, which will follow our concretisation trans-
formation in LCC. Finally, term (global close) models the closure of a channel.

Note that, differently from § 2, we omit process identifiers in choreographies
since our typing will make them redundant (cf. § 6).

Judgements. An LCC judgement has the form P .Ψ where Ψ is a hypersequent
and P is a proof term. If we regard LCC as a type theory for our term language,
we say that the hypersequent Ψ types the term P .

3.1 Rules

The proof theory of LCC consists of the action fragment and the interaction
fragment, which reason respectively about processes and choreographies.

Action Fragment. The action fragment includes ILL-style left and right rules,
reported in Fig. 2, and the structural rules Conn and Scope, described separately.

Unit. The rules for unit are standard. Rule 1R types a process that requests
to close channel x and terminates. Symmetrically, rule 1L types a process that
waits for a request to close x, making sure that x does not occur in P .

Tensor. Rule ⊗R types the output x(y); (P |Q) , combining the conclusions of the
hypersequents of P and Q . The continuations P and Q will handle, respec-
tively, the transmitted channel y and channel x. Ensuring that channels y and x
are handled by different parallel processes avoids potential deadlocks caused by



P . Ψ1|∆1 ` y :A Q . Ψ2|∆2 ` x :B

x(y); (P |Q) . Ψ1|Ψ2|∆1, ∆2 ` x :A⊗ B
⊗R

P . Ψ |∆, y :A, x :B ` T

x(y);P . Ψ |∆, x :A⊗ B ` T
⊗L

P . Ψ |∆, y :A ` x :B

x(y);P . Ψ |∆ ` x :A ( B
( R

P . Ψ1|∆1 ` y :A Q . Ψ2|∆2, x :B ` T

x(y); (P |Q) . Ψ1|Ψ2|∆1, ∆2, x :A ( B ` T
( L

close[x] . · ` x :1
1R

P . Ψ |∆, x :A ` T

x.inl;P . Ψ |∆, x :A&B ` T
&L1

Q . Ψ |∆, x :B ` T

x.inr;Q . Ψ |∆, x :A&B ` T
&L2

P . Ψ |∆ ` T

wait[x];P . Ψ |∆, x :1 ` T
1L

P . Ψ |∆ ` x :A

x.inl;P . Ψ |∆ ` x :A⊕ B
⊕R1

Q . Ψ |∆ ` x :B

x.inr;Q . Ψ |∆ ` x :A⊕ B
⊕R2

P . Ψ |∆ ` x :A Q . Ψ |∆ ` x :B

x.case(P,Q) . Ψ |∆ ` x :A&B
&R

P . Ψ |∆, x :A ` T Q . Ψ |∆, x :B ` T

x.case(P,Q) . Ψ |∆, x :A⊕ B ` T
⊕L

Fig. 2. Left and Right Rules of the Action Fragment.

their interleaving [7, 22]. Dually, rule ⊗L types an input x(y);P , by requiring
the continuation to use channels y and x following their respective types.

Linear Implication. The proof term for rule ( R is an input x(y);P , meaning
that the process needs to receive a name of type A before offering behaviour B
on channel x. Rule ( L types the dual term x(y); (P |Q) . Note that the prefixes
in the proof terms are the same as for the tensor rules. This does not introduce
ambiguity, since continuations are typed differently and thus it is never the case
that both connectives could be used for typing the same term [7].

Additives. The rules for the additive connectives are standard. In a left selection
x.inl;P , we send over x our choice of the left branch offered by the receiver.
The term x.inr;P , is similar, but selects the right branch instead. Selections
communicate with the term x.case(P,Q) , which offers a left branch P and a

right branch Q . In LCC, for example, rule &R states that x.case(P,Q) provides
x with type A&B whenever P and Q provide x with type A and B respectively.

Connection and Scoping. We pull apart the standard Cut rule of ILL, as (4) in
§ 2, and obtain two rules that depend on hypersequents as an interim place to
store information. The first rule, Conn, merges two hypersequents by forming a
connection:

P . Ψ1|∆1 ` x :A Q . Ψ2|∆2, x :A ` T

P |x Q . Ψ1|Ψ2|∆1 ` x :•A|∆2, x :•A ` T
Conn

The proof term for Conn is parallel composition: in the conclusion, the two terms
P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P . Ψ | ∆1 ` x :•A | ∆2, x :•A ` T

(νx)P . Ψ | ∆1, ∆2 ` T
Scope

The proof term for Scope is a restriction of the scoped channel.

Interaction Fragment. Connections are first-class citizens in LCC and are
object of logical reasoning. We give rules for composing connections, one for



each connective, which correspond to choreographies. Such rules form, together
with rule Scope, the interaction fragment of LCC.

Unit. A connection of type 1 between two sequents can always be introduced:

P . Ψ |∆ ` T
−→

close[x];P . Ψ |· ` x :•1|∆, x :•1 ` T
1C

Observe that the choreography term
−→

close[x];P describes the same behaviour as

the process term close[x] |x wait[x];P , and indeed their typing is the same. In
general, in LCC the typing of process terms and choreographic terms describing
equivalent behaviour is the same. We will formalise this intuition in § 5.

Tensor. The connection rule for ⊗ combines two connections between three se-
quents. Technically, when two sequents ∆1 ` y :•A and ∆2 ` x :•B are connected
to a third sequent ∆3, y :•A, x :•B ` T , we can merge the two connections into
a single one, obtaining the sequents ∆1, ∆2 ` x :•A⊗B and ∆3, x :•A⊗B ` T :

P . Ψ |∆1 ` y :•A|∆2 ` x :•B|∆3, y :•A, x :•B ` T
−→
x(y);P . Ψ |∆1, ∆2 ` x :•A⊗ B|∆3, x :•A⊗ B ` T

⊗C

Rule ⊗C corresponds to typing a choreographic communication
−→
x(y);P . This

rule is the formalisation in LCC of the cut reduction discussed in § 2. Term P
will then perform communications on channel y with type A and x with type B.

Linear Implication. The rule for ( manipulates connections with a causal de-
pendency: if ∆1 ` y : •A is connected to ∆2, y : •A ` x : •B, which is connected
to ∆3, x :•B ` T , then ∆2 ` x :•A( B is connected to ∆1, ∆3, x :•A( B ` T .

P . Ψ |∆1 ` y :•A|∆2, y :•A ` x :•B|∆3, x :•B ` T
−→
x(y);P . Ψ |∆2 ` x :•A ( B|∆1, ∆3, x :•A ( B ` T

(C

Rule ( C types a communication
−→
x(y);P . The prefix

−→
x(y) is the same as

that of rule ⊗C, similarly to the action fragment for the connectives ⊗ and (.
Differently from rule ⊗C, the usage of channel x in the continuation P has a
causal dependency on y whereas in ⊗C the two channels proceed separately.

Additives. The rules for the additive connectives follow similar reasoning:

P . Ψ |Ψ ′|∆1 ` x :•A|∆2, x :•A ` T Q . Ψ ′|∆1 ` x :B
−→
x.l (P,Q) . Ψ |Ψ ′|∆1 ` x :•A&B|∆2, x :•A&B ` T

&C1

P . Ψ |∆1 ` x :A Q . Ψ |Ψ ′|∆1 ` x :•B|∆2, x :•B ` T
−→
x.r(P,Q) . Ψ |Ψ ′|∆1 ` x :•A&B|∆2, x :•A&B ` T

&C2

P . Ψ |Ψ ′|∆1 ` x :•A|∆2, x :•A ` T Q . Ψ ′|∆2, x :B ` T
−→
x.l (P,Q) . Ψ |Ψ ′|∆1 ` x :•A⊕ B|∆2, x :•A⊕ B ` T

⊕C1

P . Ψ |∆2, x :A ` T Q . Ψ |Ψ ′|∆1 ` x :•B|∆2, x :•B ` T
−→
x.r(P,Q) . Ψ |Ψ ′|∆1 ` x :•A⊕ B|∆2, x :•A⊕ B ` T

⊕C2



Rule &C1 types a choreography that selects the left branch on x and then pro-
ceeds P , provided that x is not used in Q since the latter is unused.

We call C-rules the interaction rules for manipulating connections. C-rules
represent of cut reductions in ILL, following the intuition presented in § 2.

Example 1. We formalise and extend our example from § 2 as follows:

Pclient′ = x.inr; x(tea);
(

close[tea] | x(tr); tr(p); (close[p]|wait[tr]; close[x] )
)

Pserver′ = x.case

 x(water); b.inl; wait[water]; wait[x]; close[b],

x(tea); x(tr);

(
tr(p); wait[tea]; wait[p]; close[tr] |
b.inr; b(m);

(
close[m] | wait[x]; close[b]

))


Pbank′ = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

P = (νx) (Pclient′ |x (νb) (Pserver′ |b Pbank′ ))

C = (νx) (νb)
−→
x.r


x(water); b.inl; wait[water]; wait[x]; close[b],

−→
x(tea);

−→
x(tr);

−→
tr(p);

−→
b.r

wait[b]; close[z]

−→
b(m);

−→
close[tea, p, tr,m, x, b]




Process Pclient′ implements a new version of the client, which selects the right
choice of a branching on channel x and then asks for some tea; then, it proceeds
as Pclient from § 2. Note that we have enhanced the processes with all expected
closing of channels. The server Pserver′ , instead, now offers to the client a choice
between buying a tea (as in § 2) and getting a free glass of water. Since the
water is free, the payment to the bank is not performed in this case. In either
case, the bank is notified of whether a payment will occur or not, respectively
right and left branch in Pbank . The processes are composed as a system in P .

Term C is the equivalent choreographic representation of P . We can type
channel x as (string ⊗ end) ⊕ (string ⊗ (string ( end) ( end) in both C
and P . The type of channel b is: end⊕ (string⊗ end). For clarity, we have used
concrete data types instead of the abstract basic type 1. ut

4 Semantics

We now derive an operational semantics for LCC programs from our proof the-
ory, by obtaining the standard relations of structural equivalence ≡ and reduc-
tion → as theorems of LCC. For example, the π-calculus rule (νw) (P |x Q) ≡
(νw)P |x Q (for w 6∈ fn(Q)) can be derived as a proof transformation, since:

P . Ψ | ∆1 ` y : •D| ∆, y : •D ` x : A Q . Ψ ′| ∆′, x : A ` T

P |x Q . Ψ | Ψ ′| ∆1 ` y : •D| ∆, y : •D ` x : •A| ∆′, x : •A ` T
Conn

(νy) (P |x Q) . Ψ | Ψ ′| ∆1, ∆ ` x : •A| ∆′, x : •A ` T
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` y : •D| ∆, y : •D ` x : A

(νy)P . Ψ | ∆1, ∆ ` x : A
Scope

Q . Ψ ′| ∆′, x : A ` T

(νy)P |x Q . Ψ | Ψ ′| ∆1, ∆ ` x : •A| ∆′, x : •A ` T
Conn



[Scope/Conn/L] (νy) (P |x Q) ≡ (νy)P |x Q
(
y 6∈ fn(Q )

)
[Scope/Conn/R] (νy) (P |x Q) ≡ P |x (νy)Q

(
y 6∈ fn(P )

)
[Scope/Scope] (νy) (νx)P ≡ (νx) (νy)P

[Scope/1L] (νx)wait[y];P ≡ wait[y]; (νx)P

[Scope/⊗ R/L], [Scope/ ( L/L] (νw) x(y); (P |Q) ≡ x(y); ((νw)P | Q)
(
w 6∈ fn(Q )

)
[Scope/⊗ R/R], [Scope/ ( L/R] (νw) x(y); (P |Q) ≡ x(y); (P | (νw)Q)

(
w 6∈ fn(P )

)
[Scope/⊗ L], [Scope/ ( R] (νw) x(y);P ≡ x(y); (νw)P

[Scope/⊕ R1], [Scope/&L1] (νw) x.inl;P ≡ x.inl; (νw)P

[Scope/⊕ R2], [Scope/&L2] (νw) x.inr;P ≡ x.inr; (νw)P

[Scope/⊕ L], [Scope/&R] (νw) x.case(P,Q) ≡ x.case((νw)P , (νw)Q)

[Scope/1C] (νw)
−→

close[x];P ≡
−→

close[x]; (νw)P

[Scope/⊗ C], [Scope/ ( C] (νw)
−→
x(y);P ≡

−→
x(y); (νw)P

[Scope/⊕ C1/L], [Scope/&C1/L] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw)P,Q)

(
w 6∈ fn(Q )

)
[Scope/⊕ C1/L/R], [Scope/&C1/L/R] (νw)

−→
x.l (P,Q) ≡

−→
x.l ((νw)P, (νw)Q)

(
w ∈ fn(Q )

)
[Scope/⊕ C2/R], [Scope/&C2/R] (νw)

−→
x.r(P,Q) ≡ −→x.r(P, (νw)Q)

(
w 6∈ fn(P )

)
[Scope/⊕ C2/L/R], [Scope/&C2/L/R] (νw)

−→
x.r(P,Q) ≡ −→x.r((νw)P, (νw)Q)

(
w ∈ fn(P )

)
Fig. 3. Commuting Conversions (≡) for Scope (Restriction).

4.1 Commuting Conversions (≡)

The structural equivalence of LCC (≡) is defined in terms of commuting con-
versions, i.e., admissible permutations of rule applications in proofs. In ILL,
commuting conversions concern the cut rule. However, since in LCC the cut rule
has been split into Scope and Conn, we need to introduce two sets of commuting
conversions, one for rule Scope, and one for rule Conn. In the sequel, we report
commuting conversions between proofs by giving the corresponding process and
choreography terms (cf. [14] for the complete LCC proofs).

Commuting Conversions for Scope. Commuting conversions for Scope cor-
respond to permuting restriction with other operators in LCC programs. We
report them in Fig. 3, where we assume variables to be distinct. For example,
[Scope/ ⊗ R/L] says that an application of rule Scope to the conclusion of rule
⊗R can be commuted so that we can apply ⊗R to the conclusion of Scope. Note
that the top-level LCC terms of some cases are identical, e.g., [Scope/⊗R/L] and
[Scope/( L/L], but the subterms are different since they have different typing.

Commuting Conversions for Conn. The commuting conversions for rule
Conn, reported in Fig. 4, correspond to commuting the parallel operator with
other terms. For example, rule [Conn/Conn] is the standard associativity of par-

allel in the π-calculus. Also, [Conn/⊗ C/L] says that
−→
x(y) in

−→
x(y);P |w Q can

always be executed before Q as far as x and y do not occur in Q . This captures
the concurrent behaviour of choreographies in [9]. Note that some of the rules
are not standard for the π-calculus, e.g., [Conn/( R/R], but this does not alter
the intended semantics of parallel (cf. § 6, Semantics).



[Conn/Conn] (P |y Q) |x R ≡ P |y (Q |x R)

[Conn/1L/L] wait[x];P |y Q ≡ wait[x]; (P |y Q)

[Conn/1L/R] P |y wait[x];Q ≡ wait[x]; (P |y Q)

[Conn/⊗R/R/L], [Conn/(L/R/L] P |w x(y); (Q|R) ≡ x(y); ((P |w Q) | R)

[Conn/⊗R/R/R], [Conn/(L/R/R] P |w x(y); (Q|R) ≡ x(y); (Q | (P |w R))

[Conn/⊗ L/L] x(y);P |w Q ≡ x(y); (P |w Q)

[Conn/⊗ L/R], [Conn/ ( R/R] P |w x(y);Q ≡ x(y); (P |w Q)

[Conn/ ( L/L/R] x(y); (P |Q) |w R ≡ x(y); (P | (Q |w R))

[Conn/⊕ R1/R], [Conn/&L1/R] P |w x.inl;Q ≡ x.inl; (P |w Q)

[Conn/⊕ R2/R], [Conn/&L2/R] P |w x.inr;Q ≡ x.inr; (P |w Q)

[Conn/⊕ L/L] x.case(P,Q)|wR ≡ x.case((P |w R), (Q |w R))

[Conn/⊕ L/R], [Conn/&R/R] P |wx.case(Q,R) ≡ x.case((P |w Q), (P |w R))

[Conn/&L1/L] x.inl;P |w Q ≡ x.inl; (P |w Q)

[Conn/&L2/L] x.inr;P |w Q ≡ x.inr; (P |w Q)

[Conn/1C/L]
−→

close[x];P |w Q ≡
−→

close[x]; (P |w Q)

[Conn/1C/R] P |w
−→

close[x];Q ≡
−→

close[x]; (P |w Q)

[Conn/⊗ C/L], [Conn/ (C/L]
−→
x(y);P |w Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(Q )

)
[Conn/⊗C/R], [Conn/ (C/R] P |w

−→
x(y);Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(P )

)
[Conn/⊕ C1/L]

−→
x.l (P,Q) |w R ≡

−→
x.l ((P |w R), (Q |w R))

(
w ∈ fn(P ) ∩ fn(Q )

)
[Conn/⊕ C1/R], [Conn/&C1/R] P |w

−→
x.l (Q,R) ≡

−→
x.l ((P |w Q), (P |w R))

(
w ∈ fn(Q ) ∩ fn(R )

)
[Conn/⊕C1/R/L],[Conn/&C1/R/L] P |w

−→
x.l (Q,R) ≡

−→
x.l ((P |w Q) , R)

(
w ∈ fn(Q ), w 6∈ fn(R )

)
[Conn/⊕ C2/L]

−→
x.r(P,Q) |w R ≡

−→
x.r((P |w R), (Q |w R))

(
w ∈ fn(P ) ∩ fn(Q )

)
[Conn/⊕ C2/R], [Conn/&C2/R] P |w

−→
x.r(Q,R) ≡ −→x.r((P |w Q), (P |w R))

(
w ∈ fn(Q ) ∩ fn(R )

)
[Conn/⊕C2/R/R],[Conn/&C2/R/L] P |w

−→
x.r(Q,R) ≡ −→x.r(Q , (P |w R))

(
w 6∈ fn(Q ), w ∈ fn(R )

)
[Conn/&C1/L]

−→
x.l (P,Q) |w R ≡

−→
x.l ((P |w R), Q)

(
w ∈ fn(P ), w 6∈ fn(Q )

)
[Conn/&C2/L]

−→
x.r(P,Q) |w R ≡ −→x.r(P , (Q |w R))

(
w 6∈ fn(P ), w ∈ fn(Q )

)
Fig. 4. Commuting Conversions (≡) for Conn (Parallel Composition).

Since conversions preserve the concluding judgement of a proof, we have that:

Theorem 1 (Subject Congruence). P . Ψ and P ≡ Q implies that Q . Ψ .

4.2 Reductions (→)

As for structural equivalence, we derive the reduction semantics for LCC pro-
grams from proof transformations. The obtained rules, reported in Fig. 5, are
standard for both processes and choreographies (cf. [19, 9]): processes are reduced
when they are the parallel composition of compatible actions, while choreogra-
phies can always be reduced. With an abuse of notation, we labelled each reduc-
tion with the channel it uses. Choreography reductions are also annotated with
•. We use t to range over labels of the form x or •x, and t̃ to denote a sequence
of such labels. As for commuting conversions, reductions preserve judgements:



[β1] (νx) (close[x] |x wait[x];Q)
x−→ Q

[β⊗] (νx) (x(y); (P |Q) |x x(y);R)
x−→ (νy) (νx)

(
P |y (Q |x R)

)
[β(] (νx) (x(y);P |x x(y); (Q|R))

x−→ (νx) (νy)
(
(Q |y P ) |x R)

[β⊕1 ] (νx) (x.inl;P |x x.case(Q,R))
x−→ (νx) (P |w Q)

[β⊕2 ] (νx) (x.inr;P |x x.case(Q,R))
x−→ (νx) (P |x R)

[β&1
] (νx) (x.case(P,Q) |x x.inl;R)

x−→ (νx) (P |x R)

[β&2
] (νx) (x.case(P,Q) |x x.inr;R)

x−→ (νx) (Q |x R)

[β1C] (νx)
−→

close[x];P
•x−−→ P [β⊗C], [β(C] (νx)

−→
x(y);P

•x−−→ (νy) (νx)P

[β&C1
], [β⊕C1

] (νx)
−→
x.l (P,Q)

•x−−→ (νx)P [β&C2
], [β⊕C2

] (νx)
−→
x.r(P,Q)

•x−−→ (νx)Q

Fig. 5. Reductions.

Theorem 2 (Subject Reduction). P . Ψ and P
t−→ Q implies that Q . Ψ .

4.3 Scope Elimination (Normalisation)

We can use commuting conversions and reductions to permute and reduce all
applications of Scope in a proof until the proof is Scope-free. Since applications of
Scope correspond to restrictions in LCC programs, the latter can always progress
until all communications on restricted channels are executed. We denote the

reflexive and transitive closure of
t−→up to ≡ with

t̃
−→→.

Theorem 3 (Deadlock-freedom). P .Ψ implies there exist Q restriction-free

and t̃ such that P
t̃
−→→ Q and Q . Ψ .

5 Choreography Extraction and Endpoint Projection

In LCC, a judgement containing connections can be derived by either (i) using
the action fragment, corresponding to processes, or (ii) using the interaction
fragment, corresponding to choreographies. Consider the two following proofs:

close[x] . · ` x :1
1R

close[y] . · ` y :1
1R

wait[x]; close[y] . x :1 ` y :1
1L

close[x] |x wait[x]; close[y] . · ` x :•1|x :•1 ` y :1
Conn

(νx) (close[x] |x wait[x]; close[y]) . · ` y :1
Scope

close[y] . · ` y :1
1R

−→
close[x] ; close[y] . · ` x :•1|x :•1 ` y :1

1C

(νx) (
−→

close[x] ; close[y]) . · ` y :1
Scope

The two proofs above reach the same hypersequent following, respectively, method-
ologies (i) and (ii). In this section, we formally relate the two methodologies,
deriving procedures of choreography extraction and endpoint projection from
proof equivalences. As an example, consider the following equivalence, [αγ⊗]:

P . Ψ1|∆1 ` y :A Q . Ψ2|∆2 ` x :B

x(y); (P |Q) . Ψ1|Ψ2|∆1, ∆2 ` x :A⊗ B
⊗R

R . Ψ3|∆3, y :A, x :B ` T

x(y);R . ∆3, x :A⊗ B ` T
⊗L

x(y); (P |Q) |x x(y);R . Ψ1|Ψ2|Ψ3|∆1, ∆2 ` x :•A⊗ B|∆3, x :•A⊗ B ` T
Conn



[αγ1] close[x] |x wait[x];P
x

99K
−→

close[x];P

[αγ⊗] x(y); (P |Q) |x x(y);R
x

99K
−→
x(y);

(
P |y (Q |x R))

[αγ(] x(y);P |x x(y); (Q|R)
x

99K
−→
x(y);

(
(Q |y P ) |x R

)
[αγ&1

] x.case(P,Q) |x x.inl;R
x

99K
−→
x.l ((P |x R), Q)

[αγ&2
] x.case(P,Q) |x x.inr;R

x
99K −→

x.r(P , Q |x R)

[αγ⊕1
] x.inl;P |x x.case(Q,R)

x
99K

−→
x.l ((P |x Q) , R)

[αγ⊕2
] x.inr;P |x x.case(Q,R)

x
99K −→

x.r(Q , (P |x R))

Fig. 6. Extraction and Projection.

can be extracted to (
x

99K), can be projected from (
x

)

P . Ψ1|∆1 ` y :A

Q . Ψ2|∆2 ` x :B R . Ψ3 | ∆3, y :A, x :B ` T

Q |x R . Ψ2|Ψ3|∆2 ` x :•B|∆3, y :A, x :•B ` T
Connx

P |y (Q |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T
Conny

−→
x(y);

(
P |y (Q |x R)) . Ψ1 | Ψ2 | Ψ3 | ∆1, ∆2 ` x :•A⊗ B | ∆3, x :•A⊗ B ` T

⊗Cx

The equivalence [αγ⊗] allows to transform a proof of a connection of type A⊗B
from the action fragment into an equivalent proof in the interaction fragment,
and vice versa. We report the equivalences for extraction and projection in Fig. 6,
presenting their proof terms. We read these equivalences from left to right for
extraction, denoted by 99K, and from right to left for projection, denoted by .
Note how a choreography term corresponds to the parallel composition of two
processes with the same behaviour. It is also clear why the unselected process

Q in
−→
x.l(P,Q) is necessary for projecting the corresponding case process.

Using commuting conversions, extraction can always be applied to proofs
containing instances of Conn, i.e., programs containing subterms of the form
P |x Q . Similarly, projection can always be applied to proofs with instances of
a C-rule, i.e., programs with choreography interactions. We denote the reflexive

and transitive closure of
x

99K up to ≡ with
x̃

99K99K (resp.
x̃

for
x

).

Theorem 4 (Extraction and Projection). Let P . Ψ . Then:

(choreography extraction) P
x̃

99K99K Q for some x̃ and Q such that Q .Ψ and Q
does not contain subterms of the form R |x R′ ;

(endpoint projection) P
x̃

Q for some x̃ and Q such that Q . Ψ and Q
does not contain choreography terms.

Example 2. Using the equivalences in Fig. 6 and ≡, we can transform the pro-
cesses to the choreography in Example 1 and vice versa. ut

We now present the main property guaranteed by LCC: the extraction and
projection procedures preserve the semantics of the transformed programs.



Theorem 5 (Correspondence). Let P . Ψ and P ′ be restriction-free. Then:

(choreography extraction) P
x̃
−→→ P ′ implies P

x̃
99K99K Q such that Q

•x̃
−→→ P ′ .

(endpoint projection) P
•x̃
−→→ P ′ implies P

x̃

Q such that Q
x̃
−→→ P ′ .

6 Related Work and Discussion

Related Work. Our action fragment is inspired by π-DILL [7]. The key difference
is that we split rule Cut into Conn and Scope, which allows us to (i) reason about
choreographies and (ii) type processes where restriction and parallel are used
separately. Extra typable processes are always convertible to those where a Conn
is immediately followed by a Scope, hence equivalent to those in [7]. Wadler [22]
introduces a calculus where processes correspond to proofs in classical linear
logic. We conjecture that LCC can be adapted to the classical setting.

Our commuting conversions can be seen as a logical characterisation of swap-
ping [9], which permutes independent communications in a choreography. Pre-
vious works [12, 8, 9, 15] have formally addressed choreographies and EPP but
without providing choreography extraction. Choreography extraction is a known
hard problem [4], and our work is the first to address it for a language supporting
channel passing. Probably, the work closest to ours wrt extraction is [13], where
global types are extracted from session types; choreographies are more expres-
sive than global types, since they capture the interleaving of different sessions.
In the future, we plan to address standard features supported by [8, 9, 15] such
as multiparty sessions, asynchrony, replicated services and nondeterminism.

Our mixing of choreographies with processes is similar to that found in [3] for
global protocols and [15] for choreographies. The work [3] deals with the simpler
setting of protocols, whereas we handle programs supporting name passing and
session interleaving, both nontrivial problems [6, 9, 15]. The type system in [15]
does not keep information on where the endpoints of connections are actually
located as in our hypersequents, which enables extraction in our setting.

Process identifiers. In standard choreography calculi, the processes involved in
a communication are usually identified explicitly as in the choreography (2) in
§ 2 [12, 8, 9, 15]. In LCC, processes are implicitly identified in judgements by
using separate sequents in a hypersequent. Omitting process identifiers is thus
just a matter of presentational convenience: a way of retaining them would be
to annotate each sequent in a hypersequent with a process identifier (cf. [14]).

Exponentials and Infinite Behaviour. Our work focuses on the multiplicative and
additive fragments of linear logic, but we conjecture that the known cut rule for
exponentials can be split into a connection rule and a scope rule such as the ones
for the linear case. We believe that the results in this paper can be generalised
to exponentials without altering its foundations. A logical characterisation of
infinite behaviour for ICC may similarly be added to our framework, following
the developments in [20]. We leave both extensions as future work.

ILL. LCC is a generalisation of ILL, since we can represent any instance of the
Cut rule in ILL with consecutive applications of rules Conn and Scope.



Semantics. LCC includes more term equivalences than the π-calculus, e.g., [Conn
/( R/R/2] in Fig. 4. We inherit this from linear logic [22]. However, the extra
equivalences do not produce any new reductions in well-typed systems (cf. [16]).
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