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Abstract. Choreographic Programming is a development methodology
for concurrent software that guarantees correctness by construction. The
key to this paradigm is to disallow mismatched I/O operations in pro-
grams, called choreographies, and then mechanically synthesise distributed
implementations in terms of standard process models via a mechanism
known as EndPoint Projection (EPP).
Despite the promise of choreographic programming, there is still a lack
of practical evaluations that illustrate the applicability of choreographies
to concrete computational problems with standard concurrent solutions.
In this work, we explore the potential of choreographies by using Proce-
dural Choreographies (PC), a model that we recently proposed, to write
distributed algorithms for sorting (Quicksort), solving linear equations
(Gaussian elimination), and computing Fast Fourier Transform. We dis-
cuss the lessons learned from this experiment, giving possible directions
for the usage and future improvements of choreography languages.

Keywords: Choreographies, Correctness by Construction, Distributed
Algorithms

1 Introduction

Choreographic Programming is an emerging paradigm for the programming
of concurrent software based on message passing [18]. The key aspect of this
paradigm is that programs are choreographies, i.e., global descriptions of com-
munications based on an “Alice and Bob” notation inherited from security pro-
tocol notation [21]. Since the syntax of such notation disallows the writing of
mismatched I/O actions, choreographies always describe deadlock-free systems
by construction. Given a choreography, a distributed implementation can be
projected automatically (synthesis) in terms of a process model. This trans-
formation is typically called EndPoint Projection (EPP) [2,3]. If EPP is defined
correctly, then the generated code behaves exactly as specified by the originating
choreography, yielding a correctness-by-construction result: since a choreography
cannot describe deadlocks, the generated process implementations must also be
deadlock-free. Previous works have presented formal models for capturing differ-
ent aspects of choreographic programming, e.g., web services [2,11], multiparty
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sessions and asynchrony [3], runtime adaptation [23], modular development [20],
protocol compliance [3,4], and computational expressivity [7]. More in general,
looking also at other applications rather than just programming system imple-
mentations, choreographies have been investigated in the realms of type the-
ory [14], automata theory [10,16], formal logics [5], and service contracts [1,24].

Despite the rising interest in choreographies found in the communities of
programming languages and concurrent computing, there is still a lack of ev-
idence about what kind of nontrivial programs can actually be written with
choreographic programming. This is due to the young age of the paradigm [19].
Indeed, most works on languages for choreographic programming still focus on
showcasing representative toy examples (e.g., [2,3,6,11,18,20]), rather than giv-
ing a comprehensive practical evaluation of how known algorithms can be im-
plemented using choreographies. Here, we aim at contributing to filling this gap
by investigating how choreographies can be used to tackle some common com-
putational problems in the setting of concurrent programming.

Our investigation is based on the language of Procedural Choreographies
(PC), and its corresponding process calculus of Procedural Processes (PP), which
we presented in [8]. PC, introduced in § 2, is a choreography language developed
with the aim of capturing divide-and-conquer concurrent algorithms, by extend-
ing previous choreography models with primitives for parameterised procedures.
Like several other choreography languages (e.g., [3,20]), PC supports implicit
parallelism by means of a flexible semantics that allows non-interfering commu-
nications to take place in any order.

In this work, we provide an empirical evaluation of the expressivity of PC,
by showing how it can be used to program some representative and standard
concurrent algorithms: Quicksort (§ 3), Gaussian elimination (§ 4), and Fast
Fourier Transform (§ 5). As a consequence of using choreographies, all these
implementations are guaranteed to be deadlock-free. We also illustrate how im-
plicit parallelism has the surprising effect of automatically giving concurrent
behaviour to traditional sequential implementations of these algorithms. Our
exploration brings us to the limits of the expressivity of PC, which arise when
trying to tackle distributed graph algorithms (§ 6), due to the lack of primitives
for accessing the structure of process networks, e.g., broadcasting a message to
neighbouring processes.

2 Background

In this section, we recap the definition of Procedural Choreographies (PC), our
choreography language, and its main properties. We refer the reader to the orig-
inal presentation of PC, in [8], for a more comprehensive technical discussion.

2.1 Procedural Choreographies

The syntax of PC is introduced in Figure 1. A procedural choreography is a pair
〈D, C〉, where C is a choreography and D is a set of procedure definitions. Process
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C ::= η;C | I;C | 0 η ::= p.e -> q.f | p -> q[l] | p start q | p : q <-> r

D ::= X(q̃) = C,D | ∅ I ::= if p.e thenC1 elseC2 |X〈p̃〉 | 0

Fig. 1. Procedural Choreographies, Syntax.

names, ranged over by p, q, r, . . ., identify processes that execute concurrently.
Each process p is equipped with a memory cell that stores a single value of a fixed
type. In the remainder, we will omit such types in the language and our examples
since they can always be inferred using the technique given in [8]. Statements in a
choreography can either be communication actions (η) or compound instructions
(I), and both can have continuations. Term 0 is the terminated choreography,
which we sometimes omit. The term 0;A is needed at runtime to capture the
termination of procedure calls with continuations.

Processes communicate via direct references (names) to each other. Commu-
nications are synchronous, as they are simple and suffice for our purposes here,
but can be made asynchronous by adopting the asynchronous extension proposed
in [3]. In a value communication p.e -> q.f , process p sends the result of eval-
uating expression e to q; the expression e can contain the placeholder c, which
is replaced at runtime with the data stored at process p. When q receives the
value from p, it applies to it the (total) function f , of the form λx.e′, replacing
the formal parameter x with the value sent by p. The result of the computa-
tion will be stored in q. The expression e′, the body of f , can also contain the
placeholder c, allowing it to read the contents of q’s memory. We assume that
expressions and functions are written in a pure functional language, which we
leave unspecified.

The selection term p -> q[l] is standard, as in session types [13]: p com-
municates to q its choice of label l. Labels l range over an infinite enumerable
set.

In term p start q, process p spawns the new process q. Process name q is bound
in the continuation C of p start q;C. Also, after executing p start q, process p is
assumed to be the only process who knows the name of process q. (Or, in other
words, process p is the only process connected to q.) In order to propagate
knowledge of q to other processes, PC includes the action p : q <-> r, read “p
introduces q and r”, where p, q and r are distinct.

In a conditional term if p.e thenC1 elseC2, process p evaluates expression e
to choose between the possible continuations C1 and C2.

The set D defines global procedures that can be invoked in choreographies.
Term X(q̃) = C defines a procedure X with body C, which can be used anywhere
in 〈D, C〉 – in particular, inside the definitions of X and other procedures. The
names q̃ are bound to C, and they are assumed to be exactly the free process
names in C. The set D contains at most one definition for each procedure name.
Term X〈p̃〉 then invokes procedure X, instantiating its parameters with the
processes p̃.
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The semantics of PC, which we do not detail, is a reduction semantics that
relies on two extra elements: a total state function that assigns to each process
the value it stores, representing the local memory of processes; and, a connec-
tion graph that keeps track of which processes know (are connected to) which
other processes [8]. In particular, two processes can only communicate if there
is an edge between them in the connection graph. Therefore, it is possible for
choreographies to deadlock (be unable to reduce) because of errors in the pro-
gramming of communications: if two processes are supposed to communicate
but they are not connected according to the connection graph, the choreography
gets stuck. This issue is addressed by a simple typing discipline that we do not
discuss here (see [8]). When a choreography is well-typed in PC, it is guaranteed
to be deadlock-free.

Theorem 1 (Deadlock-freedom [8]). Let 〈D, C〉 be a well-typed procedural
choreography. Then, 〈D, C〉 is deadlock-free.

2.2 Procedural Processes

Choreographies in PC are compiled into a distributed implementation repre-
sented in terms of a process calculus: the calculus of Procedural Processes (PP).

The syntax of PP is reported in Figure 2. A term p .v B is a process, where
p is its name, v is the value stored in its memory cell, and B is its behaviour.
Networks, ranged over by N,M , are parallel compositions of processes, where 0
is the inactive network. Finally, 〈B, N〉 is a procedural network, where B defines
the procedures that the processes in N may invoke. Values, expressions and
functions are as in PC.

We comment on behaviours. A send term q!e;B sends the evaluation of ex-
pression e to process q, and then proceeds as B. Term p?f ;B is the dual receiving
action: it receives a value from process p, combines it with the value in memory
cell of the process executing the behaviour as specified by f , and then proceeds
as B. Term q!!r sends process name r to q and process name q to r, making q and
r “aware” of each other. The dual action is p?r, which receives a process name
from p that replaces the bound variable r in the continuation. Term q⊕l;B sends
the selection of a label l to process q. Selections are received by the branching
term p&{li : Bi}i∈I , which can receive a selection for any of the labels li and
proceed according to Bi. Branching terms must offer at least one branch. Term
start q.B2;B1 starts a new process (with a fresh name) executing B2, proceeding

B ::= q!e;B | p?f ;B | q!!r;B | p?r;B | q⊕ l;B | p&{li : Bi}i∈I ;B | 0
| start q . B2;B1 | if e thenB1 elseB2;B |X〈p̃〉;B | 0;B

N,M ::= p .v B | N |M | 0

B ::= X(q̃) = B,B | ∅

Fig. 2. Procedural Processes, Syntax.
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[[p.e -> q.f ;C]]r =


q!e; [[C]]r if r = p

p?f ; [[C]]r if r = q

[[C]]r else

[[p -> q[l];C]]r =


q⊕ l; [[C]]r if r = p

p&{l : [[C]]r};0 if r = q

[[C]]r else

[[p : q <-> r;C]]s =


q!!r; [[C]]s if s = p

p?r; [[C]]s if s = q

p?q; [[C]]s if s = r

[[C]]s else

[[X〈p̃〉;C]]r =

{
Xi〈p̃〉; [[C]]r if r = pi

[[C]]r else

[[0]]r = 0
[[0;C]]r = [[C]]r

[[if p.e thenC1 elseC2;C]]r =

{
if e then [[C1]]r else [[C2]]r; [[C]]r if r = p

([[C1]]r t [[C2]]r); [[C]]r else

[[p start q;C]]r =

{
start q . [[C]]q; [[C]]r if r = p

[[C]]r else

Fig. 3. Procedural Choreographies, Behaviour Projection.

in parallel as B1. The other terms are standard (conditionals, procedure calls,
and termination), while procedural definitions are stored globally as in PC.

Some terms bind names: start q . B2;B1 binds q in B1, and p?r;B binds r in
B. The semantics of PP is again a reduction semantics, capturing the intuitive
description of the operators given above.

2.3 EndPoint Projection (EPP)

We now exhibit the compilation of procedural choreographies in PC to processes
in PP.

Behaviour Projection. We start by defining how to project the behaviour of
a single process p, a partial function denoted [[C]]p. The rules defining behaviour
projection are given in Figure 3. Each choreography term is projected to the local
action of the process that we are projecting. For example, for a communication
term p.e -> q.f , we project a send action if we are projecting the sender process
p, a receive action if we are projecting the receiver process q, or we just proceed
with the continuation otherwise.

The rule for projecting a conditional uses the standard (and partial) merging
operator t: B t B′ is isomorphic to B and B′ up to branching, where the
branches of B or B′ with distinct labels are also included [2]. Merging allows
the process that decides a conditional to inform the other processes of its choice
later on, using selections [15]. Unlike in previous work, our conditionals have
continuations, which have to be moved inside the different branches if they do
not coincide for all cases (see the example in § 3).

Building on behaviour projection, we define how to project the set D of pro-
cedure definitions. Formally, the projection [[D]] is the component-wise extension
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of the projection of a single procedure, defined below.

[[X(q̃) = C]] = X1(q̃) = [[C]]q1 , . . . , Xn(q̃) = [[C]]qn where q̃ = q1, . . . , qn .

Definition 1 (EPP from PC to PP). Given a procedural choreography 〈D, C〉
and a map of initial process values σ, the endpoint projection [[D, C, σ]] is defined
as the parallel composition of the processes in C with all global definitions derived
from D:

[[D, C, σ]] = 〈[[D]], [[C, σ]]〉 =
〈

[[D]],
∏

p∈pn(C) p .σ(p) [[C]]p

〉
where [[C, σ]], the EPP of C wrt state σ, is independent of D.

Above, σ is a total function mapping process names to their current values. For
our purposes here, we will only consider a default mapping that assigns an initial
undefined value to each process, and omit further discussions on σ since it does
not influence our presentation in any way (see [8] for details).

Properties. EPP guarantees the typical operational correspondence between
PC and PP: the projection of a choreography implements exactly the behaviour
of the originating choreography. This implies, in particular, that the projections
of typable PC terms never deadlock.

3 Quicksort

In this section, we illustrate PC’s capability of supporting the programming
of divide-and-conquer algorithms, by providing a detailed implementation of
(concurrent) Quicksort.

We begin by defining procedure split, which splits the (non-empty) list
stored at p among three processes: q< , q= and q> . Before giving the code for
split, we describe the (standard) auxiliary functions and procedures that we
are going to use. We assume that all processes store objects of type List(T),
where T is some type. We also assume that these lists are implemented such that
the following operations are supported and take constant time: accessing the first
element (fst); accessing the second element (snd); checking that the length of a
list is at most 1 (short); appending an element (add); and, appending another
list (append). This can be readily achieved, for example, by an implementation
of linked lists with pointers to the first, second and last node (and short simply
checks where the pointer to the second node is null). We use the predicates
fst<snd and fst>snd to test whether the first element of the list at a process is,
respectively, smaller or greater than the second element. Finally, the procedure
pop2 (which we omit) removes the second element from the list at its argument
process.

We use the abbreviation p -> q1,...,qn[l] to signify that p sends the label
l to the processes q1,. . . ,qn, i.e., as an abbreviation for the sequence of selections
p -> q1[l]; ...; p -> qn[l]. We can now show the code for split, reported
in the following.

6



split(p, q< , q= , q> ) =
if p.short then p -> q< , q= , q> [stop]; p.fst -> q= .add
else if p.fst <snd then p -> q< [get]; p.snd -> q< .add; p -> q= , q> [skip]

else if p.fst >snd then p -> q> [get]; p.snd -> q> .add; p -> q< , q= [skip]
else p -> q= [get]; p.snd -> q= .add; p -> q< , q> [skip]

;
pop2 <p>; split <p, q< , q= , q> >

Procedure split starts by testing whether the list at process p is short. If
so, its element is stored in process q= and the procedure terminates. Otherwise,
we test whether the second element in the list is smaller, greater, or equal to
the first element in the list, and add it to the respective process q< , q= , or q> ;
then, we pop the second element of the list at p and recursively invoke split.
When split terminates, we know that all elements in q< and q> are respectively
smaller and greater than those in q= .

Sending the label skip to the processes that will not receive messages in
an iteration is required for projectability. (So that they know whether they
will receive a value or not.) Using split we can implement a robust version
of Quicksort (in the sense that it works with lists containing duplicates), the
procedure QS below. We use p start q1, ..., qn as a shortcut for the se-
quence p start q1; ...; p start qn. Observe that split is only called when
p stores a non-empty list.

QS(p) = if p.short then 0
else p.start q< , q= , q> ;

split <p, q< , q= , q> >; QS< q< >; QS< q> >;
q< .c -> p.id; q= .c -> p.append; q> .c -> p.append

Procedure QS implements Quicksort using its standard recursive structure.
However, the recursive calls run completely in parallel here. Indeed, the created
processes q< , q= and q> do not even have references to each other, so they cannot
exchange messages. Therefore, the network of processes becomes tree-like, as
exemplified in Figure 4.

p

q<

q=

q>

q><=

q<<

q<=

q<>

q><<

q><>

q>=

q>>
q><

Fig. 4. Example of a network connection graph after some recursive calls of QS.

Applying EPP, we get the following process procedures, where we simplified
the projections of procedure definitions to include only the arguments that are
actually used inside the procedures (see [8]).
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split_p(p, q< , q= , q> ) =
if short then q<⊕stop; q=⊕stop; q>⊕stop; q= !fst
else if fst <snd then q<⊕get; q< !snd; q=⊕skip; q>⊕skip

else if fst >snd then q>⊕get; q> !snd; q<⊕skip; q=⊕skip
else q=⊕get; q= !snd; q<⊕skip; q>⊕skip

;
pop2 <p>; split_p <p, q< , q= , q> >

split_ q< (p,q) = p&{stop: 0, get: p?add;split_ q< (p,q), skip: split_ q< (p,q)}

split_ q= (p,q) = p&{stop: p?add , get: p?add;split_ q= (p,q), skip: split_ q= (p,q)}

split_ q> (p,q) = p&{stop: 0, get: p?add;split_ q> (p,q), skip: split_ q> (p,q)}

QS_p(p) = if small then 0
else (start q< . split_ q< <p, q< >; QS_p < q< >; p!c);

(start q= . split_ q= <p, q= >; p!c);
(start q> . split_ q> <p, q> >; QS_p < q> >; p!c);
q< ?id; q= ?append; q> ?append

Remark 1. Our implementation of split is suitable in a context where communi-
cation is cheap, e.g., as in object-oriented programming and/or a multi-threaded
application. In architectures where communications are costly, it could be bet-
ter to use a select function at p to compute the lists of elements smaller than,
equal to, or larger than the pivot and send each of these in a single message to
q< , q= or q> , respectively.

4 Gauss Elimination

We now show how we can program the distributed resolution of systems of linear
equations by Gaussian elimination. Let Ax = b be a system of linear equations in
matrix form; our procedure gauss will transform this into an equivalent system
Ux = y, where U is an upper triangular matrix (so this system can be solved
by direct substitution). We use parameter processes aij , with 1 ≤ i ≤ n and
1 ≤ j ≤ n+1. Each aij such that 1 ≤ i, j ≤ n stores one value from the coefficient
matrix and ai,n+1 stores the independent term in one equation. (Including the
independent terms in the coefficient matrix substantially simplifies the notation,
as Gaussian elimination treats the independent vector exactly as the columns in
the coefficient matrix.) After execution, each aij stores the corresponding term
in the new system. For simplicity, we assume that the matrix A is non-singular
and numerically stable.

Implementing this algorithm in PC cannot be done directly, as our procedure
gauss needs to take a variable number of parameters (the aij). However, it is
straightforward to extend PC so that procedures can also take process lists as
parameters, instead of only processes. We succinctly describe how to do this.

Syntax of PC. We extend parametric procedures with arguments that are lists
of process names. In procedure calls, we can use standard list functions (e.g.,
head, tail) to manipulate these lists. These functions must be pure and take
a list as their only argument. The processes in these lists are assumed to
have all the same type, and process lists can only be used in procedure calls.

8



In our examples, we will use uppercase letters to identify process lists and
lowercase letters for normal process identifiers.

Semantics of PC. We assume that a procedure that is called with an empty
list as one of its arguments is equivalent to the terminated process 0.

Connections. We assume that the connections between processes are uniform
wrt argument lists, i.e., if p is a process and A is a list of processes that
are arguments to some procedure X, then X requires/guarantees that p be
connected to none or all of the processes in Q. The type system presented
in [8] can be trivially extended to check for this requirement.

Syntax of PP. We extend it in the same way as PC.
Semantics of PP. We assume that a procedure unfolds to 0 if the process

unfolding it does not occur inside its arguments.
EndPoint Projection. We project procedures as before, with one PP proce-

dure for each argument of each PC procedure – regardless of whether the
argument is a single process or a list of processes. The merge operator t
also needs to be slightly adjusted; we explain how this is done in § 5, as this
change is not required for the example in this section.

This extension preserves the properties of PC, PP, and the EPP from the
former to the latter.

We use hd and tl to compute the head and tail of a list of processes, re-
spectively; fst and rest, which take a list of processes representing a matrix
and return, respectively, the first row of the matrix, or the matrix without its
first row; and minor, which removes both the first row and the first column from
a matrix. (Formally, some of these functions would need the size of the rows
as arguments, but we omit these for simplicity.) Each process uses standard
arithmetic operations to combine its value with the one it receives.

The code of procedure gauss follows.

gauss(A) = solve(fst(A));
eliminate(fst(A),rest(A));
gauss(minor(A))

solve(A) = divide_all(hd(A),tl(A)); set_to_one(hd(A))

divide_all(a,A) = divide(a,hd(A)); divide_all(a,tl(A))

divide(a,b) = a.c -> b.div

eliminate(A,B) = elim_row(A,fst(B)); eliminate(A,rest(B))

elim_row(A,B) = elim_all(tl(A),hd(B),tl(B)); set_to_zero(hd(B))

elim_all(A,m,B) = elim_one(hd(A),m,hd(B)); elim_all(tl(A),m,tl(B))

elim_one(a,m,b) = b start x; b: x <-> a; b: x <-> m;
a.c -> x.id; m.c -> x.mult; x.c -> b.minus

set_to_zero(a) = a start p; p.0 -> a.id
set_to_one(a) = a start p; p.1 -> a.id

Procedure solve divides the first equation by the pivot, obtaining the new first
equation in the reduced system. Then, eliminate uses this row to perform an
elimination step, setting the first column of the coefficient matrix to zeroes.
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The auxiliary procedure elim_row performs this step at the row level, using
elim_all to iterate through a single row and elim_one to perform the actual
computations. The first row and the first column of the matrix are then removed
in the recursive call, as they will not change further.

This implementation follows the standard sequential algorithm for Gaussian
elimination, as described in, e.g., Algorithm 8.4 in [12]. However, the implicit par-
allelism in the semantics of choreographies allows it to run concurrently. We ex-
plain this behaviour by focusing on a concrete example. Assume that A is a 3×3
matrix, so there are 12 processes in total. For legibility, we will write b1 for the in-
dependent term a14 etc.; A=〈a11,a12,a13,b1,a21,a22,a23,b2,a31,a32,a33,b3〉
for the matrix; A1=〈a11,a12,a13,b1〉 for the first row (likewise for A2 and A3);
and, A’2=〈a22,a23,b2〉 and likewise for A’3.

Calling gauss(A) unfolds to

solve(A1); eliminate(A1, 〈A2,A3 〉);
solve(A’2); eliminate(A’2,A’3);
solve( 〈a33 ,b3 〉)

or, unfolding eliminate,

solve(A1); elim_row(A1 ,A2); elim_row(A1 ,A3);
solve(A’2); elim_row(A’2,A’3);
solve( 〈a33 ,b3 〉)

Unfolding solve(A1) is straightforward, leading to

a11.c -> a12.div; a11.c -> a13.div; a11.c -> b1.div;
a11 start x1; x1.1 -> a11.id

and likewise for the remaining calls. In turn, elim_row(A1,A2) becomes

elim_all( 〈a12 ,a13 ,b1 〉,a21 , 〈a22 ,a23 ,b2 〉); set_to_zero(a21)

which can be expanded to

elim_one(a12 ,a21 ,a22); elim_one(a13 ,a21 ,a23); elim_one(b1 ,a21 ,b2);
set_to_zero(a21)

and we note that each of these procedure calls involves only communication
between the processes explicitly given as arguments.

Since all these procedures involve a21, the semantics of choreographies re-
quires them to be executed in this order. Likewise, the call to elim_row(A1,A3)

must be executed afterwards (since it also involves processes a11 through a13),
and unfolds to a sequential composition of procedure calls with a31 as argument.

The interesting observation is that none of the processes intervening in elim_row(A1,A3)

occur in the expansion of solve(A’2). In other words,

elim_row(A1,A3); solve(A’2)

expands to

elim_one(a12 ,a31 ,a32); elim_one(a13 ,a31 ,a33); elim_one(b1 ,a31 ,b3); set_to_zero(a31);
a21.c -> a22.div; a21.c -> a23.div; a21.c -> b2.div; a21 start x2; x2.1 -> a21.id

and the semantics of PC therefore allows the communications in the second
line to be interleaved with those in the first line in any possible way; in the
terminology of [7], the calls to elim_row(A1,A3) and solve(A’2) run in parallel.
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This corresponds to the implementation of Gaussian elimination with pipelined
communication and computation described in § 8.3 of [12]. Indeed, as soon as
any row has been reduced by all rows above it, it can apply solve to itself
and try to begin reducing the rows below it. It is a bit surprising that we get
such parallel behaviour by straightforwardly implementing an imperative algo-
rithm; the explanation is that the EndPoint Projection encapsulates the part
of determining which communications can take place in parallel, thus removing
this burden from the programmer. In the next section, we will include a simple
example of the EPP of a procedure with parameter lists.

5 Fast Fourier Transform

We now present a more complex example: computing the discrete Fourier trans-
form of a vector. We refer the reader to § 13.1 of [12] for details.

Definition 2. Let x = 〈x0, . . . , xn−1〉 be a vector of n complex numbers. The

discrete Fourier transform of x is y = 〈y0, . . . , yn−1〉, where yj =
∑n−1
k=0 xkω

kj

with ω = e2πi/n.

Given x, its discrete Fourier transform can be computed efficiently by the
Fast Fourier Transform (FFT) as follows (Algorithm 13.1 in [12]). We assume
n to be a power of 2; in the first call, ω has the value defined earlier.

procedure R FFT(X,Y ,n,ω)
if n = 1 then y0 = x0

else R FFT(〈x0, x2, . . . , xn−2〉,〈q0, q1, . . . , qn/2〉,n/2,ω2)
R FFT(〈x1, x3, . . . , xn−1〉,〈t0, t1, . . . , tn/2〉,n/2,ω2)
for j = 0 to n− 1 do
yj = q(j%n

2 ) + ωjt(j%n
2 )

To implement this procedure in PC, we need a way to communicate labels in
selections to a group of processes. We do this by means of two auxiliary proce-
dures gsel_then(p,Q) and gsel_else(p,Q), where p is a process broadcasting
a selection of label then or else, respectively, to all the processes in Q. In order
for EPP to work correctly, we also need to extend the merge operator t slightly
so as to recognize these procedures. We give the definition of gsel_then; this
can trivially be adapted to any other label.

gsel_then(p,Q) = gsel1_then(p,hd(Q)); gsel_then(p,tl(Q))
gsel1_then(p,q) = p -> q[then]

The EPP of gsel_then looks as follows.

gsel_then_p(p,Q) = gsel1_then_p(p,hd(Q)); gsel_then_p(p,tl(Q))
gsel_then_Q(p,Q) = gsel1_then_q(p,hd(Q)); gsel_then_Q(p,tl(Q))

gsel_then_p(p,q) = q⊕l
gsel_then_q(p,q) = p&{then: 0}

11



The key aspect is that, during execution, the call to gsel_then_Q(p,Q) will
reduce to either gsel1_then_q(p,hd(Q)) or gsel_then_Q(p,tl(Q)), as each
process can only be on one of hd(Q) or tl(Q)! So, while gsel_then_p(p,Q)

essentially unfolds to a sequence of selections from p to each of the processes in
Q, each local copy of gsel_then_Q(p,Q) at a process q∈Q unfolds exactly to the
reception of one selection from p.

We will use (without specifying them) the following auxiliary procedures.

– intro(n,m,P), where n introduces m to every process in P (defined similarly
to gsel_then above)

– power(n,m,nm), where at the end nm stores the result of exponentiating
the value in m to the power of the value stored in n (see [7] for a possible
implementation in a sublanguage of PC).

Before we present our implementation of FFT, we point out the one major
difference wrt the algorithm R FFT reported above: we are not able to create
a variable number of fresh processes and pass them as arguments to other pro-
cedures (corresponding to the auxiliary vectors q and t). Therefore, we have to
use the result vector y to store the result of the recursive calls, and then create
two auxiliary processes inside each iteration of the final for loop.

fft(X,Y,n,w) = if n.is_one
then gsel_then(n,join(X,Y)); n -> w[then]; base(hd(X),hd(Y))
else gsel_else(n,join(X,Y)); n -> w[else];

n start n’; n.half -> n’; intro(n,n’,Y);
w start w’; w.square -> w’; intro(w,w’,Y);
n: n’ <-> w; w: n’ <-> w’;
fft(even(X),half1(Y),n’,w’);
fft(odd(X),half2(Y),n’,w’);
n’ start wn; n’: w <-> wn; power(n’,w,wn);
w start wj; w.1 -> wj; intro(w,wj,Y);
combine(half1(Y),half2(Y),wn,w,wi)

base(x,y) = x.c -> y

combine(Y1,Y2,wn ,w,wj) = combine1(hd(Y1),hd(Y2),wn ,wj);
w.c -> wj.mult;
combine(tl(Y1),tl(Y2),wn,w,wj)

combine1(y1,y2 ,wn,wj) = y1 start q; y1.c -> q; y1: q <-> y2;
y2 start t; y2.c -> t; y2: t <-> y1; y2: t <-> wj;
q.c -> y1; wj.c -> t.mult; t.c -> y1.add;
q.c -> y2; wn.c -> t.mult; t.c -> y2.add

The level of parallelism in this implementation is suboptimal, as the two re-
cursive calls to fft both use n’ and w’; by duplicating these processes, however,
these calls are able to run in parallel exactly as in the previous example. (We
chose the current formulation for simplicity.) Process n’ is actually the main
orchestrator of the whole execution.

6 Graphs

Another prototypical application of distributed algorithms is graph problems. In
this section, we focus on a simple example (broadcasting a token to all nodes of
a graph) and discuss the limitations of implementing these algorithms in PC.

12



The idea of broadcasting a token in a graph is very simple: each node receiving
the token for the first time should communicate it to all its neighbours. The
catch is that, in PC, there are no primitives for accessing the connection graph
structure from within the language. Nevertheless, we can implement our simple
example of token broadcasting if we assume that the graph structure is statically
encoded in the set of available functions over parameters of procedures. To be
precise, assume that we have a function neighb(p,V), returning the neighbours
of p in the set of vertices V. (The actual graph is encapsulated in this function.)
We also use ++ and \ for appending two lists and computing the set difference of
two lists. We can then write a procedure broadcast(P,V), propagating a token
from every element of P to every element of V, as follows.

broadcast(P,V) = bcast(hd(P),neighb(hd(P),V));
broadcast(tl(P)++ neighb(hd(P),V),V\neighb(hd(P),V))

bcast(p,V) = bcast_one(p,hd(V)); bcast(p,tl(V))

bcast_one(p,v) = p.c -> v.id

Calling broadcast(〈p〉,G), where G is the full set of vertices of the graph and p

is one vertex, will broadcast p’s contents to all the vertices in the connected com-
ponent of G containing p. Furthermore, implicit parallelism again ensures that
each node will start broadcasting as soon as it receives the token, independently
of the remaining ones.

This approach is however not very satisfactory as a graph algorithm, since it
requires encoding the whole graph in the definition of broadcast; furthermore,
it does not generalise easily to more sophisticated graph algorithms. Adding
primitives for accessing the network structure at runtime is not simple, as it
would influence the definitions of EPP and the type system of PC [8] (which
we omitted in this presentation). We leave this as an interesting direction for
future work, which we plan to pursue in order to be able to implement more
sophisticated graph algorithms, e.g., for computing a minimum spanning tree.

7 Related Work

To the best of our knowledge, this is the first experience report on using choreo-
graphic programming for writing real-world, complex computational algorithms.

The work nearest to ours is the evaluation of the Chor language [18], an
implementation of the choreographic programming model in [3]. Chor supports
multiparty sessions (similar to channels in the π-calculus [17]) and their mo-
bility, which recalls introductions in PC. Chor is evaluated by encoding some
representative examples from Service-Oriented Computing, such as distributed
authentication and streaming, but none of the presented examples cover inter-
esting algorithms as in here.

Previous works based on Multiparty Session Types (MPST) [14] have ex-
plored the use of choreographies as protocol specifications for the coordination
of message exchanges in some real-world scenarios [9,22,25]. Differently from our
approach, these works fall back to a standard process calculus model for defining
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implementations. Instead, our programs are choreographies. As a consequence,
programming the composition of separate algorithms in PC is done on the level
of choreographies, whereas in MPST composition requires using the low-level
process calculus. Also, our choreography model is arguably much simpler and
more approachable by newcomers, since much of the expressive power of PC
comes from allowing parameterised procedures, a standard feature of most pro-
gramming languages. The key twist in PC is that parameters are process names.

8 Conclusions

We have reported our experience with the writing of some representative con-
current algorithms in the paradigm of choreographic programming.

What have we learned from this experience?
First, that choreographies make it easy to produce a simple concurrent im-

plementation of a sequential algorithm. This is obtained by choosing process
identifers to maximise the effect of implicit parallelism. Then, EPP takes care
of generating the concrete separate programs and the required I/O actions to
implement the described behaviour. This is a striking difference from how con-
current algorithms usually differ from their sequential counterparts. Although
we do not necessarily get the most efficient possible distributed algorithm, this
automatic concurrency is a pleasant property to observe.

The second interesting realisation is that it is relatively easy to implement
nontrivial algorithms in choreographies. We exemplified this point with our im-
plementations of Gaussian elimination and Fast Fourier Transform. This is an
important deviation from the typical use of toy examples, of limited practical
significance, that characterises previous works in this programming paradigm.

In conclusion, we showed that the current state of choreographic program-
ming can already be used for addressing complex real-world computational prob-
lems. We also identified a future direction for extending the paradigm towards
settings that require accessing the structure of process networks, such as some
algorithms on graphs.
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