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Abstract. Choreographic Programming is a paradigm for developing
concurrent programs that are deadlock-free by construction, by program-
ming communications declaratively and then synthesising process imple-
mentations automatically. Despite strong interest on choreographies, a
foundational model that explains which computations can be performed
with the hallmark constructs of choreographies is still missing.
In this work, we introduce Core Choreographies (CC), a model that
includes only the core primitives of choreographic programming. Every
computable function can be implemented as a choreography in CC, from
which we can synthesise a process implementation where independent
computations run in parallel. We discuss the design of CC and argue
that it constitutes a canonical model for choreographic programming.

1 Introduction

Programming concurrent and distributed systems is hard, because it is challeng-
ing to predict how programs executed at the same time in different computers will
interact. Empirical studies reveal two important lessons: (i) while programmers
have clear intentions about the order in which communication actions should be
performed, tools do not adequately support them in translating these wishes to
code [21]; (ii) combining different communication protocols in a single applica-
tion is a major source of mistakes [20].

The paradigm of Choreographic Programming [22] was introduced to ad-
dress these problems. In this paradigm, programmers declaratively write the
communications that they wish to take place, as programs called choreogra-
phies. Choreographies are descriptions of concurrent systems that syntactically
disallow writing mismatched I/O actions, inspired by the “Alice and Bob” no-
tation of security protocols. An EndPoint Projection (EPP) can then be used to
synthesise implementations in process models, which faithfully realise the com-
munications given in the choreography and are guaranteed to be deadlock-free
by construction even in the presence of arbitrary protocol compositions [6, 25].

So far, work on choreographic programming focused on features of practical
value – including web services [5], multiparty sessions [6, 8], modularity [24], and
runtime adaptation [12]. The models proposed all come with differing domain-
specific syntaxes, semantics and EPP definitions (e.g., for channel mobility or
runtime adaptation), and cannot be considered minimal. Another problem, ar-
guably a consequence of the former, is that choreographic programming is meant
for implementation, but we still know little of what can be computed with the



code obtained from choreographies (choreography projections). The expressivity
of the aforementioned models is evaluated just by showing some examples.

In this paper, we propose a canonical model for choreographic programming,
called Core Choreographies (CC). CC includes only the core primitives that can
be found in most choreography languages, restricted to the minimal require-
ments to achieve the computational power of Turing machines. In particular,
local computation at processes is severely restricted, and therefore nontrivial
computations must be implemented by using communications. Therefore, CC is
both representative of the paradigm and simple enough to analyse from a the-
oretical perspective. Our technical development is based on a natural notion of
function implementation, and the proof of Turing completeness yields an algo-
rithm for constructing a choreography that implements any given computable
function. Since choreographies describe concurrent systems, it is also natural to
ask how much parallelism choreographies exhibit. CC helps us in formally defin-
ing parallelism in choreographies; we exemplify how to use this notion to reason
about the concurrent implementation of functions.

Choreographies

Projectable Choreographies

Processes

Deadlock-free Processes

Choreography Projections

EPP

However, analysing the expressivity of choreogra-
phies is not enough. What we are ultimately interested
in is what can be computed with choreography pro-
jections, since those are the terms that represent exe-
cutable code. However, the expressivity of choreogra-
phies does not translate directly to expressivity of pro-
jections, because EPP is typically an incomplete pro-
cedure: it must guarantee deadlock-freedom, which in
previous models is obtained by complex requirements,
e.g., type systems [5, 6]. Therefore, only a subset of choreographies (projectable
choreographies) can be used to synthesise process implementations. The EPPs of
such projectable choreographies form the set of choreography projections, which
are deadlock-free processes (see figure on the right).

The main technical contribution of this paper is showing that the set of pro-
jectable choreographies in CC is still Turing complete. Therefore, by EPP, the
set of corresponding choreography projections is also Turing complete, leading us
to a characterisation of a Turing complete and deadlock-free fragment of a pro-
cess calculus (which follows the same minimal design of CC). Furthermore, the
parallel behaviour observed in CC choreographies for function implementations
translates directly to parallel execution of the projected processes.

More importantly, the practical consequence of our results is that CC is a
simple common setting for the study of foundational questions in choreographies.
This makes CC an appropriate foundational model for choreographic program-
ming, akin to λ-calculus for functional programming and π-calculus for mobile
processes. As an example of such foundational questions, we describe how the
standard communication primitive of label selection can be removed from CC
without altering its computational power, yielding a truly minimal choreogra-
phy language wrt computation called Minimal Choreographies (MC). However,
doing so eliminates the clean separation between data and behaviour in message
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exchanges, which makes the resulting choreography hard to read. Thus, in a
practical application of our work, CC would be the better candidate as frontend
language for programmers, and MC could be used as an intermediate step in a
compiler. A key technical advantage of this methodology is that it bypasses the
need for the standard notion of merging [5], which is typically one of the most
complicated steps in EPP. Our EPP for MC enjoys an elegant definition.

Structure of the paper. CC is defined in § 2. In § 3, we introduce Stateful Processes
(SP), our target process model, and an EPP procedure from CC to SP. We show
that CC and its set of choreography projections are Turing complete in § 4. In
§ 5, we show that all primitives of CC except for label selections are necessary
to achieve Turing completeness; we then introduce MC (the fragment of CC
without label selections) and prove both that it is Turing complete and that
removing or weakening any of its primitives breaks this property. In § 6, we
discuss the implications of our work for other choreography languages. Related
work and discussion are given in § 7. Full definitions and proofs are in [9].

2 Core Choreographies

We introduce Core Choreographies (CC), define function implementation and
parallel execution of choreographies, and prove some key properties of CC.

Syntax. The syntax of CC is as follows, where C ranges over choreographies.

C ::= η;C | if p <-
=q thenC1 elseC2 | defX = C2 inC1 |X | 0

η ::= p.e -> q | p -> q[l] e ::= ε | c | s · c l ::= l | r

We use two (infinite) disjoint sets of names: processes (p, q, . . .) and procedures
(X, . . .). Processes run in parallel, and each process stores a value – a string of
the form s · · · s·ε – in a local memory cell. Each process can access its own value,
but it cannot read the contents of another process (no data sharing). Term η;C
is an interaction between two processes, read “the system may execute η and
proceed as C”. An interaction η is either a value communication – p.e -> q – or
a label selection – p -> q[l]. In p.e -> q, p sends its local evaluation of expression
e to q, which stores the received value. Expressions are either the constant ε, the
value of the sender (written as c), or an application of the successor operator
to c. In p -> q[l], p communicates label l (either l or r) to q. In a conditional

if p
<-
= q thenC1 elseC2, q sends its value to p, which checks if the received value

is equal to its own; the choreography proceeds as C1, if that is the case, or
as C2, otherwise. In value communications, selections and conditionals, the two
interacting processes must be different (no self-communications). Definitions and
invocations of recursive procedures are standard. The term 0, also called exit
point, is the terminated choreography.

Semantics. The semantics of CC uses reductions of the form C, σ → C ′, σ′. The
total state function σ maps each process name to its value. We use v, w, . . . to
range over values: v, w, . . . ::= ε | s ·v. Values are isomorphic to natural numbers
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via pnq = sn · ε. The reduction relation → is defined by the rules given below
and closed under structural precongruence �.

v = e[σ(p)/c]

p.e -> q;C, σ → C, σ[q 7→ v]
bC|Come

i = 1 if σ(p) = σ(q), i = 2 o.w.

if p
<-
=q thenC1 elseC2, σ → Ci, σ

bC|Conde

p -> q[l];C, σ → C, σ
bC|Sele

C1, σ → C′1, σ
′

defX = C2 inC1, σ → defX = C2 inC
′
1, σ
′ bC|Ctxe

These rules formalise the intuition presented earlier. In the premise of bC|Come,
we write e[σ(p)/c] for the result of replacing c with σ(p) in e. In the reductum,
σ[q 7→ v] denotes the updated state function σ where q now maps to v. The
key rule defining the structural precongruence is bC|Eta-Etae, allowing non-
interfering actions to be executed in any order.

bC|Eta-Etae if pn(η) ∩ pn(η′) = ∅ then η; η′ ≡ η′; η

Function pn(C) returns the set of all process names occurring in C, and C ≡ C ′
stands for C � C ′ and C ′ � C. The other rules for � are standard, and support
recursion unfolding and garbage collection of unused definitions.

Remark 1 (Label Selection). To the reader unfamiliar with choreographies, the
role of selection – p -> q[l] – may be unclear at this point. They are cru-
cial in making choreographies projectable, as we anticipate with the choreog-

raphy if p
<-
= q then (p.c -> r; 0) else (r.c -> p; 0). Here, p checks whether its

value is the same as that of q. If so, p communicates its value to r; other-
wise, it is r that communicates its value to p. Recall that processes are as-
sumed to run independently and share no data. Here, p is the only process
that knows which branch of the conditional should be executed. However, r
also needs to know this information, since it must behave differently. Intu-
itively, we need to propagate p’s decision to r, which is achieved with selections:

if p
<-
= q then (p -> r[l]; p.c -> r; 0) else (p -> r[r]; r.c -> p; 0). Now, p tells r about

its choice by sending a different label. This intuition will be formalised in our
definition of EndPoint Projection in § 3. The first choreography we presented
(without label selections) is not projectable, whereas the second one is.

Theorem 1. If C is a choreography, then either C � 0 (C has terminated) or,
for all σ, C, σ → C ′, σ′ for some C ′ and σ′ (C can reduce).

The semantics of CC suggests a natural definition of computation. We write
→∗ for the transitive closure of → and C, σ 6→∗ 0 for C, σ 6→∗ 0, σ′ for any σ′.

Definition 1. A choreography C implements a function f : Nn → N with input
processes p1, . . . , pn and output process q if, for all x1, . . . , xn ∈ N and for every
state σ s.t. σ(pi) = pxiq:

– if f(x̃) is defined, then C, σ →∗ 0, σ′ where σ′(q) = pf(x̃)q;
– if f(x̃) is undefined, then C, σ 6→∗ 0.
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By Theorem 1, in the second case C, σ must reduce infinitely (diverge).

Sequential composition and parallelism. The results in the remainder use chore-
ographies with only one exit point (a single occurence of 0). When C has a single
exit point, we write C # C ′ for the choreography obtained by replacing 0 in C
with C ′. Then, C # C ′ behaves as a “sequential composition” of C and C ′.

Lemma 1. Let C have one exit point, C ′ be a choreography, σ, σ′, σ′′ be states.

1. If C, σ →∗ 0, σ′ and C ′, σ′ →∗ 0, σ′′, then C # C ′, σ →∗ 0, σ′′.
2. If C, σ 6→∗ 0, then C # C ′, σ 6→∗ 0.
3. If C, σ →∗ 0, σ′ and C ′, σ′ 6→∗ 0, then C # C ′, σ 6→∗ 0.

Structural precongruence gives C #C ′ fully parallel behaviour in some cases.
Intuitively, C1 and C2 run in parallel in C1 #C2 if their reduction paths to 0 can

be interleaved in any possible way. Below, we write C
σ̃−→∗ 0 for C, σ1 → C2, σ2 →

· · · → 0, σn, where σ̃ = σ1, . . . , σn, and σ̃(p) for the sequence σ1(p), . . . , σn(p).

Definition 2. Let p̃ and q̃ be disjoint. Then, σ̃ is an interleaving of σ̃1 and σ̃2
wrt p̃ and q̃ if σ̃ contains two subsequences σ̃′1 and σ̃′2 such that:

– σ̃′2 = σ̃ \ σ̃′1;

– σ̃′1(p) = σ̃1(p) for all p ∈ p̃, and σ̃′2(q) = σ̃2(q) for all q ∈ q̃;

– σ̃(r) is a constant sequence for all r 6∈ p̃ ∪ q̃.

Definition 3. Let C1 and C2 be choreographies such that pn(C1) ∩ pn(C2) = ∅
and C1 has only one exit point. We say that C1 and C2 run in parallel in C1 #C2

if: whenever Ci
σ̃i−→∗ 0, then C1 # C2

σ̃−→∗ 0 for every interleaving σ̃ of σ̃1 and σ̃2
wrt pn(C1) and pn(C2).

Theorem 2. Let C1 and C2 be choreographies such that pn(C1) ∩ pn(C2) = ∅
and C1 has only one exit point. Then C1 and C2 run in parallel in C1 # C2.

Example 1. We present examples of choreographies in CC, writing them as

macros (syntax shortcuts). We use the notation m(params)
∆
= C, where m is

the name of the macro, params its parameters, and C its body.
The macro inc(p, t) increments the value of p using an auxiliary process t.

inc(p, t)
∆
= p.c -> t; t.(s · c) -> p; 0

Using inc, we write a macro add(p, q, r, t1, t2) that adds the values of p and
q and stores the result in p, using auxiliary processes r, t1 and t2. We follow the
intuition as in low-level abstract register machines. First, t1 sets the value of r to
zero, and then calls procedure X, which increments the value of p as many times
as the value in q. In the body of X, r checks whether its value is the same as q’s.
If so, it informs the other processes that the recursion will terminate (selection
of l); otherwise, it asks them to do another step (selection of r). In each step,
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the values of p and r are incremented using t1 and t2. The compositional usage
of inc is allowed, as it has exactly one exit point.

add(p, q, r, t1, t2)
∆
=

defX = if r
<-
= q then r -> p[l]; r -> q[l]; r -> t1[l]; r -> t2[l]; 0

else r -> p[r]; r -> q[r]; r -> t1[r]; r -> t2[r]; inc(p, t1) # inc(r, t2) #X

in t1.ε -> r;X

By Theorem 2, the calls to inc(p, t1) and inc(r, t2) can be executed in parallel.
Indeed, applying rule bC|Eta-Etae for � repeatedly we can check that:

p.c -> t1; t1.(s · c) -> p;︸ ︷︷ ︸
expansion of inc(p, t1)

r.c -> t2; t2.(s · c) -> r;︸ ︷︷ ︸
expansion of inc(r, t2)

X

� r.c -> t2; t2.(s · c) -> r;︸ ︷︷ ︸
expansion of inc(r, t2)

p.c -> t1; t1.(s · c) -> p;︸ ︷︷ ︸
expansion of inc(p, t1)

X

Definition 3 and Theorem 2 straightforwardly generalise to an arbitrary num-
ber of processes. We provide an example of such parallel behaviour in Theorem 6.

3 Stateful Processes and EndPoint Projection

We present Stateful Processes (SP), our target process model, and show how to
synthesise process implementations from choreographies in CC.

Syntax. The syntax of SP is reported below. Networks (N,M) are either the
inactive network 0 or parallel compositions of processes p .v B, where p is the
name of the process, v its stored value, and B its behaviour.

B ::= q!〈e〉;B | p?;B | q⊕ l;B | p&{li : Bi}i∈I | N,M ::= p .v B | 0 | N |M

| 0 | if c <-
=q thenB1 elseB2 | defX = B2 inB1 | X

Expressions and labels are as in CC. A send term q!〈e〉;B sends the evaluation of
expression e to q, proceeding as B. Term p?;B, the dual receiving action, stores
the value received from p in the process executing the behaviour, proceeding as
B. A selection term q⊕ l;B sends l to q. Dually, a branching term p&{li : Bi}i∈I
receives one of the labels li and proceeds as Bi. A process offers either: a single
branch (labeled l or r); or two branches (with distinct labels). In a conditional

if c
<-
= q thenB1 elseB2, the process receives a value from process q and compares

it with its own value to choose the continuation B1 or B2. The other terms
(definition/invocation of recursive procedures, termination) are standard.

Semantics. The reduction rules for SP are mostly standard, from process calculi.
The key difference from CC is that execution is now distributed over processes.
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We report the key rules for synchronisation:

u = e[v/c]

p .v q!〈e〉;B1 | q .w p?;B2 → p .v B1 | q .u B2
bS|Come

j ∈ I
p .v q⊕ lj ;B | q .w p&{li : Bi}i∈I → p .v B | q .w Bj

bS|Sele

i = 1 if v = e[w/c], i = 2 otherwise

p .v if c
<-
=q thenB1 elseB2 | q .w p!〈e〉;B′ → p .v Bi | q .w B

′
bS|Conde

Rule bS|Come follows the standard communication rule in process calculi. A
process p executing a send action towards a process q can synchronise with a
receive-from-p action at q; in the reduct, q’s value is updated with the value sent
by p, obtained by replacing the placeholder c in e with the value of p. Rule bS|Sele
is selection from session types [15], with the sender selecting one of the branches
offered by the receiver. In rule bS|Conde, p (executing the conditional) acts as
a receiver for the value sent by the process whose value it wants to read (q).
All other rules are standard (see [9]), and use a structural precongruence that
supports: recursion unfolding, garbage collection of terminated processes and
unused definitions, and associativity and commutativity of parallel composition.

As for CC, we can define function implementation in SP.

Definition 4. A network N implements a function f : Nn → N with input
processes p1, . . . , pn and output process q if N � (

∏
i∈[1,n] pi .vi Bi) | q .w B′ |N ′

and, for all x1, . . . , xn ∈ N:

– if f(x̃) is defined, then N(x̃)→∗ q .pf(x̃)q 0;
– if f(x̃) is not defined, then N(x̃) 6→∗ 0.

where N(x̃) is a shorthand for N [ ˜pxiq/vi], the network obtained by replacing in
N the values of the input processes with the arguments of the function.

Projection. We now define an EndPoint Projection (EPP) from CC to SP.
We first discuss the rules for projecting the behaviour of a single process

p, a partial function [[C]]p defined by the rules in Figure 1. All rules follow the
intuition of projecting, for each choreography term, the local action performed
by the process that we are projecting. For example, for a communication term
p.e -> q, we project a send action for the sender p, a receive action for the
receiver q, or just the continuation otherwise. The rule for selection is similar.
The rules for projecting recursive definitions and calls assume that procedure
names have been annotated with the process names appearing inside the body of
the procedure, in order to avoid projecting unnecessary procedure code (see [5]).

The rule for projecting a conditional is more involved, using the partial merg-
ing operator t to merge the possible behaviours of a process that does not know
which branch will be chosen. Merging is a homomorphic binary operator; for
all terms but branchings it requires isomorphism, e.g.: q!〈e〉;B t q!〈e〉;B′ =
q!〈e〉; (B tB′). Branching terms can have unmergeable continuations, as long as
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[[p.e -> q;C]]r =


q!〈e〉; [[C]]r if r = p

p?; [[C]]r if r = q

[[C]]r o.w.

[[p -> q[l];C]]r =


q⊕ l; [[C]]r if r = p

p&{l : [[C]]r} if r = q

[[C]]r o.w.

[[if p
<-
=q thenC1 elseC2]]r =


if c

<-
=q then [[C1]]r else [[C2]]r if r = p

p!〈c〉; ([[C1]]r t [[C2]]r) if r = q

[[C1]]r t [[C2]]r o.w.

[[0]]r = 0

[[defX p̃ = C2 inC1]]r =

{
defX = [[C2]]r in [[C1]]r if r ∈ p̃

[[C1]]r o.w.
[[X p̃]]r =

{
X if r ∈ p̃

0 o.w.

Fig. 1. Minimal Choreographies, Behaviour Projection.

they are guarded by distinct labels. In this case, merge returns a larger branching
including all options (merging branches with the same label):

p&{li : Bi}i∈J t p&{li : B′i}i∈K =

p&
(
{li : (Bi tB′i)}i∈J∩K ∪ {li : Bi}i∈J\K ∪ {li : B′i}i∈K\J

)
Merging explains the role of selections in CC, common in choreography models [2,
5, 6, 16, 12, 25]. Recall the choreographies from Remark 1. In the first one, the be-
haviour of r cannot be projected because we cannot merge its different behaviours
in the two branches of the conditional (a send with a receive). The second one
is projectable, and the behaviour of r is [[C]]r = p&{l : p?; 0, r : p!〈c〉; 0}.

Definition 5. Given a choreography C and a state σ, the endpoint projection
of C and σ is the parallel composition of the projections of the processes in C:
[[C, σ]] =

∏
p∈pn(C) p .σ(p) [[C]]p.

Since the σs are total, [[C, σ]] is defined for some σ iff [[C, σ′]] is defined for all
other σ′. In this case, we say that C is projectable.

EPP guarantees the following operational correspondence.

Theorem 3. Let C be a projectable choreography. Then, for all σ:

Completeness: If C, σ → C ′, σ′, then [[C, σ]] →� [[C ′, σ′]];
Soundness: If [[C, σ]] → N , then C, σ → C ′, σ′ for some σ′, with [[C ′, σ′]] ≺ N .

The pruning relation ≺ [5, 6] deletes branches introduced by merging when
no longer needed; N � N ′ means N ′ ≺ N . Pruning does not alter the behaviour
of a network: eliminated branches are never selected, as shown in [5, 18, 12]. As
a consequence of Theorems 1 and 3, choreography projections never deadlock.

Theorem 4. Let N = [[C, σ]] for some C and σ. Then, either N � 0 (N has
terminated), or N → N ′ for some N ′ (N can reduce).
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Choreography Amendment. An important property of CC is that all unpro-
jectable choreographies can be made projectable by adding some selections. We
annotate recursion variables as for EPP, assuming that pn(X p̃) = {p̃}.

Definition 6. Given C in CC, the transformation Amend(C) repeatedly ap-
plies the following procedure until no longer possible, starting from the inner-

most subterms in C. For each conditional subterm if p
<-
= q thenC1 elseC2 in C,

let r̃ ⊆ (pn(C1) ∪ pn(C2)) be the largest set such that [[C1]]r t [[C2]]r is undefined

for all r ∈ r̃; then if p
<-
=q thenC1 elseC2 in C is replaced with:

if (p
<-
=q) then (p -> r1[l]; · · · ; p -> rn[l];C1) else (p -> r1[r]; · · · ; p -> rn[r];C2)

From the definitions of Amend, EPP and the semantics of CC, we get:

Lemma 2. For every choreography C:

Completeness: Amend(C) is defined;
Projectability: for all σ, [[Amend(C), σ]] is defined;
Correspondence: for all σ, C, σ →∗ C ′, σ′ iff Amend(C), σ →∗ Amend(C ′), σ′.

Example 2. Applying Amend to the first choreography in Remark 1 yields the
second choreography in the same remark. Thanks to merging, amendment can
also recognise some situations where additional selections are not needed. For ex-

ample, in the choreography C = if p
<-
= q then (p.(s · c) -> r; 0) else (p.(c) -> r; 0),

r does not need to know the choice made by p, as it always performs the same
input action. Here, C is projectable and Amend(C) = C.

4 Turing completeness of CC and SP

We now move to our main result: the set of choreography projections of CC (the
processes synthesised by EPP) is not only deadlock-free, but also capable of com-
puting all partial recursive functions, as defined by Kleene [17], and hence Turing
complete. To this aim, the design and properties of CC give us a considerable pay
off. First, by Theorem 3, the problem reduces to establishing that a projectable
fragment of CC is Turing complete. Second, by Lemma 2, this simpler problem is
reduced to establishing that CC is Turing complete regardless of projectability,
since any unprojectable choreography can be amended to one that is projectable
and computes the same values. We also exploit the concurrent semantics of CC
and Theorem 2 to parallelise independent sub-computations (Theorem 6).

Our proof is in line with other traditional proofs of computational complete-
ness [11, 17, 27], where data and programs are distinct. This differs from other
proofs of similar results for, e.g., π-calculus [26] and λ-calculus [1], which en-
code data as particular programs. The advantages are: our proof can be used to
build choreographies that compute particular functions; and we can parallelise
independent sub-computations in functions (Theorem 6).

Partial Recursive Functions. Our definition of the class of partial recursive func-
tions R is slightly simplified, but equivalent to, that in [17], where it is shown
to be the class of computable functions. R is defined inductively as follows.
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Unary zero: Z ∈ R, where Z : N→ N is s.t. Z(x) = 0 for all x ∈ N.
Unary successor: S ∈ R, where S : N→ N is s.t. S(x) = x+ 1 for all x ∈ N.
Projections: If n ≥ 1 and 1 ≤ m ≤ n, then Pnm ∈ R, where Pnm : Nn → N is

s.t. Pnm(x1, . . . , xn) = xm for all x1, . . . , xn ∈ N.
Composition: if f, gi ∈ R for 1 ≤ i ≤ k, with each gi : Nn → N and f : Nk →

N, then h = C(f, g̃) ∈ R, where h : Nn → N is defined by composition from
f and g1, . . . , gk as: h(x̃) = f(g1(x̃), . . . , gk(x̃)).

Primitive recursion: if f, g ∈ R, with f : Nn → N and g : Nn+2 → N, then
h = R(f, g) ∈ R, where h : Nn+1 → N is defined by primitive recursion from
f and g as: h(0, x̃) = f(x̃) and h(x0 + 1, x̃) = g(x0, h(x0, x̃), x̃).

Minimization: If f ∈ R, with f : Nn+1 → N, then h = M(f) ∈ R, where
h : Nn → N is defined by minimization from f as: h(x̃) = y iff (1) f(x̃, y) = 0
and (2) f(x̃, y) is defined and different from 0 for all z < y.

Encoding Partial Recursive Functions in CC. All functions in R can be imple-
mented in CC, in the sense of Definition 1. Given f : Nn → N, we denote its
implementation by [[f ]]p̃ 7→q, where p̃ and q are parameters. All choreographies
we build have a single exit point, and we combine them using the sequential
composition operator # from § 2. We use auxiliary processes (r0, r1, . . .) for inter-
mediate computation, and annotate the encoding with the index ` of the first
free auxiliary process name ([[f ]]p̃ 7→q

` ). To alleviate the notation, the encoding as-
signs mnemonic names to these processes and their correspondence to the actual
process names is formalised in the text using π(f) for the number of auxiliary
processes needed for encoding f : Nn → N, defined by

π(S) = π(Z) = π (Pnm) = 0 π(R(f, g)) = π(f) + π(g) + 3

π (C(f, g1, . . . , gk)) = π(f) +
∑k
i=1 π(gi) + k π(M(f)) = π(f) + 3

For simplicity, we write p̃ for p1, . . . , pn (when n is known) and {Ai}ni=1 for
A1 # . . . # An. We omit the selections needed for projectability, as they can be
inferred by amendment; we will discuss this aspect formally later.

The encoding of the base cases is straightforward.

[[Z]]p 7→q
` = p.ε -> q [[S]]p 7→q

` = p.(s · c) -> q [[Pnm]]p̃ 7→q
` = pm.c -> q

Composition is also simple. Let h = C(f, g1, . . . , gk) : Nn → N. Then:

[[h]]p̃ 7→q
` =

{
[[gi]]

p̃ 7→r′i
`i

}k
i=1

# [[f ]]
r′1,...,r

′
k 7→q

`k+1

where r′i = r`+i−1, `1 = ` + k and `i+1 = `i + π(gi). Each auxiliary process
r′i connects the output of gi to the corresponding input of f . Choreographies
obtained inductively use these process names as parameters; name clashes are
prevented by increasing `. By definition of # [[gi+1]] is substituted for the (unique)
exit point of [[gi]], and [[f ]] is substituted for the exit point of [[gk]]. The resulting
choreography also has only one exit point (that of [[f ]]). Below we discuss how
to modify this construction slightly so that the gis are computed in parallel.
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For the recursion operator, we need to use recursive procedures. Let h =
R(f, g) : Nn+1 → N. Then, using the macro inc from Example 1 for brevity:

[[h]]p0,...,pn 7→q
` = def T = if (rc

<-
= p0) then (q′.c -> q; 0)

else [[g]]rc,q
′,p1,...,pn 7→rt

`g
# rt.c -> q′; inc(rc, rt) # T

in [[f ]]p1,...,pn 7→q′

`f
# rt.ε -> rc; T

where q′ = r`, rc = r`+1, rt = r`+2, `f = ` + 3 and `g = `f + π(f). Process rc is
a counter, q′ stores intermediate results, and rt is temporary storage; T checks
the value of rc and either outputs the result or recurs. Note that [[h]] has only
one exit point (after the communication from r to q), as the exit points of [[f ]]
and [[g]] are replaced by code ending with calls to T .

The strategy for minimization is similar, but simpler. Let h = M(f) : Nn →
N. Again we use a counter rc and compute successive values of f , stored in q′,
until a zero is found. This procedure may loop forever, either because f(x̃, xn+1)
is never 0 or because one of the evaluations itself never terminates.

[[h]]
p1,...,pn+1 7→q
` = def T = [[f ]]p1,...,pn,rc 7→q′

`f
# rc.ε -> rz;

if (rz
<-
= q′) then (rc.c -> q; 0) else (inc(rc, rz) # T )

in rz.ε -> rc; T

where q′ = r`, rc = r`+1, rz = r`+2, `f = ` + 3 and `g = `f + π(f). In this case,
the whole if-then-else is inserted at the exit point of [[f ]]; the only exit point of
this choreography is again after communicating the result to q.

Definition 7. Let f ∈ R. The encoding of f in CC is [[f ]]p̃ 7→q = [[f ]]p̃ 7→q
0 .

Main Results. We prove that our construction is sound by induction.

Theorem 5. If f : Nn → N and f ∈ R, then, for every k, [[f ]]p̃ 7→q
k implements

f with input processes p̃ = p1, . . . , pn and output process q.

Let SPCC = {[[C, σ]] | [[C, σ]] is defined} be the set of the projections of all
projectable choreographies in CC. By Theorem 4, all terms in SPCC are deadlock-
free. By Lemma 2, for every function f we can amend [[f ]] to an equivalent
projectable choreography. Then SPCC is Turing complete by Theorems 3 and 5.

Corollary 1. Every partial recursive function is implementable in SPCC.

We finish this section by showing how to optimize our encoding and obtain
parallel process implementations of independent computations. If h is defined
by composition from f and g1, . . . , gk, then in principle the computation of the
gis could be completely parallelised. However, [[]] does not fully achieve this,
as [[g1]],. . . ,[[gk]] share the processes containing the input. We define a modified

variant {{}} of [[]] where, for h = C(f, g1, . . . , gk), {{h}}p̃ 7→q
` is{

pj .c -> pij
}
1≤i≤k,1≤j≤n #

{
{{gi}}

p̃i 7→r′i
`i

}k
i=1

# {{f}}r
′
1,...,r

′
k 7→q

`k+1

with a suitably adapted label function `. Now Theorem 2 applies, yielding:
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Theorem 6. Let h = C(f, g1, . . . , gk). For all p̃ and q, if h(x̃) is defined and σ

is such that σ(pi) = pxiq, then all the {{gi}}
p̃i 7→r′i
`i

run in parallel in {{h}}p̃ 7→q.

This parallelism is preserved by EPP, through Theorem 3.

5 Minimality in Choreography Languages

We now discuss our choice of primitives for CC, showing it to be a good candidate
core language for choreographic programming. We analyse each primitive of
CC. Recall that Turing completeness of CC is a pre-requisite for the Turing
completeness of choreography projections. In many cases, simplifying CC yields a
decidable termination problem (thus breaking Turing completeness). We discuss
these cases first, and then proceed to a discussion on label selection.

Minimality in CC. Removing or simplifying the following primitives makes ter-
mination decidable.

– Exit point – 0: without it, no choreography terminates.
– Value communication – p.e -> q: without it, values of processes cannot be

changed, and termination becomes decidable. The syntax of expressions is
also minimal: ε (zero) is the only terminal; without c values become statically
defined, while without s no new values can be computed; in either case,
termination is decidable.

– Recursion – defX = C2 inC1 and X: without it, all choreographies triv-
ially terminate. The terms are minimal: they support only tail recursion and
definitions are not parameterised.

Theorem 7. Let C be a choreography with no conditionals. Then, termination
of C is decidable and independent of the initial state.

More interestingly, limiting processes to evaluating only their own local values
in conditions makes termination decidable. Intuitively, this is because a process
can only hold a value at a time, and thus no process can compare its current
value to that of another process anymore.

Theorem 8. If the conditional is replaced by if p.c = v thenC1 elseC2, where v

is a value, and rule bC|Conde by
i = 1 if σ(p) = v, i = 2 otherwise

if p.c = v thenC1 elseC2, σ → Ci, σ
, then

termination is decidable.

Label selection. The argument for including label selections in CC is of a dif-
ferent nature. As the construction in § 4 shows, selections are not needed for
implementing computable functions in CC; they are used only for obtaining
projectable choreographies, via amendment. We now show that we can encode
selections introduced by amendment using the other primitives of CC, thereby
eliminating the need for them from a purely computational point of view.

We denote by Minimal Choreographies (MC) the fragment of CC that does
not contain label selections. We can therefore view amendment as a function from
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(|0|) = 0 (|p.e -> q;C|) = p.e -> q; (|C|) (|defX = C2 inC1|) = defX = (|C2|) in (|C1|)

(|X|) = X (|if p <-
=q thenC1 elseC2|) = if p

<-
=q then (|C1, C2|)1 else (|C1, C2|)2

(|C1, C2|) = 〈(|C1|), (|C2|)〉 if C1 and C2 do not begin with a selection

(|p -> q[l]; C1, p -> q[r]; C2|) =〈
q.c -> q•; p.ε -> q; if q

<-
= z then q•.c -> q; (|C1, C2|)1 else q•.c -> q; (|C1, C2|)2,

q.c -> q•; p.sc -> q; if q
<-
= z then q•.c -> q; (|C1, C2|)1 else q•.c -> q; (|C1, C2|)2

〉
Fig. 2. Elimination of selections from amended choreographies.

MC into the subset of projectable CC choreographies. Recall that the definition
of amendment guarantees that selections only occur in branches of conditionals,
and that they are always paired and in the same order (see Definition 6). The
fragment of CC obtained by amending choreographies in MC is thus:

C ::= p.e -> q;C | if p <-
=q thenS(p, r̃, l, C1) elseS(p, r̃,r, C2) | defX = C2 inC1 |X | 0

Term S(p, r̃, l, C) denotes a series of selections of label l from p to all processes
in the list r̃. Formally, S(p, ∅, l, C) = C and S(p, r :: r̃, l, C) = p -> r[l]; S(p, r̃, l, C).

Definition 8. Let C be obtained by amending a choreography in MC. The en-
coding (|C|)+ of C in MC uses processes p, p• for each p ∈ pn(C) and a special
process z, and is defined as (|C|)+ = p.ε -> z; (|C|), with (|C|) defined in Figure 2.

The definition of (|C|) exploits the structure of amended choreographies,
where selections are always paired at the top of the two branches of conditionals.
It is immediate that |pn((|C|)+)| = 2|pn(C)|+ 1 (the extra process is z). Let |C|
be the size of the syntax tree of C. Then, |(|C|)+| ≤ 2|C|, and in the worst case
we get exponential growth. However, EPP collapses all branches of conditionals,
hence projections do not grow exponentially: |[[(|C|)+]]q• | ≤ |[[(|C|)+]]q| ≤ 3|[[C]]q|
for every q ∈ pn(C).

Theorem 9. For every choreography C in MC, [[(|Amend(C)|)]] is defined.

It is straightforward to prove that C and (|Amend(C)|) behave exactly in the
same way when we only observe communications between the original processes
– except that label selections are replaced by regular messages.

Lemma 3. If C, σ → C ′, σ′ and σ+ is such that σ+(p) = σ(p) for p ∈ pn(C)
and σ+(z) = ε, then (|Amend(C)|), σ+ →∗ (|C ′|), σ′+ for some σ′

+
similarly

related to σ′. Conversely, if (|Amend(C)|), σ+ → C ′, σ′, then C, σ → C ′′, σ′′

where C ′, σ′ →∗ (|Amend(C ′′)|), σ′′+.
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Corollary 2. With the notation of the previous lemma, if C, σ →∗ C ′, σ′, then
(|Amend(C)|)+, σ+ →∗ (|Amend(C ′)|), σ′+.

As a consequence, the set SPMC = {[[C, σ]] | C in MC and [[C, σ]] is defined}
of projections of minimal choreographies is also Turing complete.

Corollary 3. Every partial recursive function is implementable in SPMC.

Since choreographies in MC do not have selections, process projections of
choreographies in MC never have branchings. This means that, in the case of
MC, the merging operator t used in EPP is exactly syntactic equality (since the
only nontrivial case was that of branchings). Consequently, we can replace the
rule for projecting conditionals with a simpler one:

[[if p
<-
=q thenC1 elseC2]]r =


if c

<-
=q then [[C1]]r else [[C2]]r if r = p

p!〈c〉; [[C1]]r if r = q and [[C1]]r = [[C2]]r

[[C1]]r if r 6∈ {p, q} and [[C1]]r = [[C2]]r

The advantages of eliminating selections are thus a simpler choreography
language, a simpler definition of EPP (without merging), and a simpler pro-
cess language (without selection and branching). The main drawback is that
eliminating a selection needed for projectability makes the choreography expo-
nentially larger and requires the addition of extra processes and communications;
this significantly changes the structure of the choreography, potentially making
it unreadable. Selections are also present in virtually all choreography mod-
els [2, 5, 6, 16, 12, 25], therefore we believe that a core model such as CC should
have them (in addition to the drawback we mentioned).

Our results suggest the viability of a particular implementation strategy for
choreographic programming. Programmers could write choreographies without
label selections, and then our results could be used to translate these choreogra-
phies to process implementations in a simple language that does not include label
communications, thus simplifying the target language. The exponential growth
of the intermediate choreography representation can be bypassed by using shared
data structures for the syntax tree, since the generated choreographies contain
a lot of duplicate terms.

However, this implementation removes an important ability provided in CC
and all other standard choreography calculi: deciding at which point of execution
selections should be performed. In more expressive languages than CC, processes
can perform complex internal computations [10]. For example, assume that p had
to assign tasks to other two processes r and s based on a condition. In one case,
r would run a slow task and s a fast one; otherwise, r would run a fast task and
s a slow one. In this case, p should begin by sending a selection to the process
with the slow task and then by sending it the necessary data for its computation,
before it sends the selection to the process with the fast task.
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6 CC and other languages

CC is representative of the body of previous work on choreographic program-
ming, where choreographies are used for implementations, for example [5, 6, 8,
24, 12, 28]. All the primitives of CC can be encoded in such languages. Thus, we
obtain a notion of function implementation for these languages, induced by that
for CC, for which they are Turing complete. For the model in [6], we formalise
this result in [9]. Below, we discuss the significance of our results for the cited
languages.

Differently from CC, other choreography languages typically use channel-
based communications (as in the π-calculus [26]). Communications via process
references as in CC can be encoded by assigning a dedicated channel to each
pair of processes [9]. For example, the calculus in [6], which we refer to as
Channel Choreographies (ChC), features an EPP targeting the session-based π-
calculus [2]. ChC is a fully-fledged calculus aimed at real-world application that
has been implemented as a choreographic programming framework (the Chor
language [8]). Our formal translation from CC to ChC (given in [9]) shows that
many primitives of ChC are not needed to achieve Turing completeness, includ-
ing: asynchronous communications, creation of sessions and processes, channel
mobility, parameterised recursive definitions, arbitrary local computation, un-
bounded memory cells at processes, multiparty sessions. While useful in practice,
these primitives come at the cost of making the formal treatment of ChC very
technically involved. In particular, ChC (and its implementation Chor) requires
a sophisticated type system, linearity analysis, and definition of EPP to ensure
correctness of projected processes. These features are not needed in CC. Using
our encoding from CC to ChC, we can repeat the argument in § 4 to characterise
a fragment of the session-based π-calculus from [2] that contains only deadlock-
free terms and is Turing complete. ChC has also been translated to the Jolie
programming language [14, 23], whence our reasoning also applies to the latter
and, in general, to service-oriented languages based on message correlation.

The language WS-CDL from W3C [28] and the formal models inspired by
it (e.g., [5]) are very similar to ChC and a similar translation from CC could
be formally developed, with similar implications as above. The same applies
to the choreography language developed in [12], which adds higher-order fea-
tures to choreographies in terms of runtime adaptation. Finally, the language
of compositional choreographies presented in [24] is an extension of ChC and
therefore our translation applies directly. This implies that adding modularity
to choreographies does not add any computational power, as expected.

7 Related Work and Discussion

Register Machines. The computational primitives in CC recall those of the Un-
limited Register Machine (URM) [11], but CC and URM differ in two main as-
pects. First, URM programs contain go-to statements, while CC supports only
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tail recursion. Second, in the URM there is a single sequential program manip-
ulating the cells, whereas in CC computation is distributed among the various
cells (the processes), which operate concurrently.

Simulating the URM is an alternative way to prove Turing completeness of
CC. However, our proof using partial recursive functions is more direct and gives
an algorithm to implement any function in CC, given its proof of membership
in R. It also yields the natural interpretation of parallelisation stated in The-
orem 6. Similarly, we could establish Turing completeness of CC using only a
bounded number of processes. However, such constructions encode data using
Gödel numbers, which is not in the spirit of our declarative notion of function
implementation. They also restrict concurrency, breaking Theorem 6.

Multiparty Sessions and Types. The communication primitives in CC recall
those of protocols for multiparty sessions, e.g., in Multiparty Session Types
(MPST) [16] and conversation types [4]. These protocols are not meant for com-
putation, as in choreographic programming (and CC); rather, they are types
used to verify that sessions (e.g., π-calculus channels) are used accordingly to
their respective protocol specifications. For such formalisms, we know of a strong
characterisation result: a variant of MPST corresponds to communicating finite
state machines [3] that respect the property of multiparty compatibility [13].
To the best of our knowledge, this is the first work studying the expressivity of
choreographic programming (choreographies for implementations).

Full β-reduction and Nondeterminism. Execution in CC is nondeterministic due
to the swapping of communications allowed by the structural precongruence
�. This recalls full β-reduction for λ-calculus, where sub-terms can be evalu-
ated whenever possible. However, the two mechanisms are actually different.

Consider the choreography C
∆
= p.c -> q; q.ε -> r; 0. If CC supported full

β-reduction, we should be able to reduce the second communication before the
first one, since there is no data dependency between the two. Formally, for some
σ: C, σ → p.c -> q; 0, σ[r 7→ ε]. However, this reduction is disallowed by our
semantics: rule bC|Eta-Etae cannot be applied because q is present in both com-
munications. This difference is a key feature of choreographies, stemming from
their practical origins: controlling sequentiality by establishing causalities using
process identifiers is important for the implementation of business processes [28].
For example, imagine that the choreography C models a payment transaction
and that the message from q to r is a confirmation that p has sent its credit card
information to q; then, it is a natural requirement that the second communica-
tion happens only after the first. Note that we would reach the same conclusions
even if we adopted an asynchronous messaging semantics for SP, since the first
action by q is a blocking input.

While execution in CC can be nondeterministic, computation results are de-
terministic as in many other choreography languages [6, 7, 24]: if a choreography
terminates, the result will always be the same regardless of how its execution
is scheduled (recalling the Church–Rosser Theorem for the λ-calculus). Nonde-
terministic computation is not necessary for our results. Nevertheless, it can be
easily added to CC. Specifically, we could augment CC with the syntax primitive
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C1⊕pC2 and the reduction rule C1⊕pC2 → Ci for i = 1, 2. Extending SP with
an internal choice B1 ⊕B2 and our definition of EPP is straightforward: in SP,
we would also allow B1 ⊕ B2 → Bi for i = 1, 2, and define [[C1 ⊕p C2]]r to be
[[C1]]r ⊕ [[C2]]r if r = p and [[C1]]r t [[C2]]r otherwise.

Merging and Amendment. Amendment was first studied in [19] for a simple
language with finite traces (thus not Turing complete). Our definition is different,
since it uses merging for the first time.

Actors and Asynchrony. Processes in SP communicate by using direct refer-
ences to each other, recalling actor systems. However, there are notable differ-
ences: communications are synchronous and inputs specify the intended sender.
The first difference comes from minimality: asynchrony would add possible be-
haviours to CC, which are unnecessary to establish Turing completeness. We
leave an investigation of asynchrony in CC to future work. The second differ-
ence arises because CC is a choreography calculus, and communication primitives
in choreographies typically express both sender and receiver.
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