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Abstract
Over the last decade, global descriptions have been successfully
employed for the verification and implementation of communi-
cating systems, respectively as protocol specifications and chore-
ographies. In this work, we bring these two practices together by
proposing a purely-global programming model. We show a novel
interpretation of asynchrony and parallelism in a global setting
and develop a typing discipline that verifies choreographies against
protocol specifications, based on multiparty sessions. Exploiting
the nature of global descriptions, our type system defines a new
class of deadlock-free concurrent systems (deadlock-freedom-by-
design), provides type inference, and supports session mobility. We
give a notion of Endpoint Projection (EPP) which generates correct
entity code (as π-calculus terms) from a choreography. Finally, we
evaluate our approach by providing a prototype implementation for
a concrete programming language and by applying it to some ex-
amples from multicore and service-oriented programming.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Semantics of Pro-
gramming Languages]: Process Models

General Terms Design, Languages, Theory

Keywords Concurrency, Choreography, Types, Sessions.

1. Introduction
Global descriptions represent a powerful paradigm for designing
communicating systems where the programmer gives a global view
of how messages are exchanged during execution, instead of sep-
arately defining the behaviour of each endpoint (entity). Then, the
local behaviour of each endpoint can be automatically generated
by means of EndPoint Projection (EPP). The paradigm has been
studied in formal models [10, 15, 22, 26], standards [1, 37], and
language implementations [23, 33, 36]. Global descriptions have a
great impact on the quality of software, as they represent “formal
blueprints” of how communicating systems should behave and of-
fer a concise view of the message flows enacted by a system. In
particular, they (i) lower the possibility of introducing program-
ming errors and (ii) ease the task (both manual and automatic) of
detecting them. Global descriptions can be used at different lev-
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els of abstraction, ranging from abstract descriptions of protocols
to descriptions of concrete system implementations, dubbed chore-
ographies. These different incarnations respectively underpin two
recent and successful development methodologies.

In the first methodology, programmers design abstract protocols
using global descriptions [22, 23]. These are automatically pro-
jected onto abstract endpoint specifications which are finally used
for the static verification of manually written endpoint code:

Protocols
protocol projection

−−−−−−−−−−−−→ Abstract
Endpoints

endpoint validation
−−−−−−−−−−−−→ Endpoint

Code

The approach above has the benefit of producing very clear pro-
tocol specifications. However, it deprives the programmer from a
global view of the system when dealing with its implementation. A
major consequence is that programming becomes error-prone when
dealing with the actual interleaving of different protocol instances.
For example, it can easily lead to deadlocked systems [7].

The second methodology deals with system implementations
using choreographies [36, 37]. Programmers can write a choreog-
raphy and then automatically project an executable system from it:

Choreography
choreography projection

−−−−−−−−−−−−−−→ Endpoint Code

Here, the main advantage is the precise view given by chore-
ographies on the possible system executions. However, choreogra-
phies lack in abstraction wrt global protocol descriptions and their
programming needs to be disciplined with additional tools. Cur-
rent disciplines for choreography-driven programming are based
on writing abstract endpoint descriptions and then using them to
check the behaviour of each endpoint, directly on the choreogra-
phy or its EPP [15, 36]. Hence, in these models, we lose a global
view of the system when describing its protocol specifications.

Inspired by these observations and by private conversations with
our industry collaborators [2, 20, 31, 35, 37], we ask:

Can we design a unified framework that combines global
descriptions of protocols and implementations?

Clearly, a positive answer would retain the advantages of global de-
scriptions for both the writing of protocols and that of implemen-
tations. Moreover, a natural following question is whether such a
unified framework could offer more than just the sum of the parts:
are there other advantages that can arise from the combination of
global protocol descriptions with choreographies?

In order to answer the questions above, we build and analyse a
model for a fully global framework. In our model, developers de-
sign both protocols and implementations from a global viewpoint.
Endpoint implementations can then be automatically generated:

Protocols

global

validation
−−−−−−−→ Choreography

choreography

projection
−−−−−−−−−→ Endpoint

Code
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The challenge of reaching our objective is twofold. First, since
we aim at designing a model where choreographies can instanti-
ate different protocols multiple times and interleave their execu-
tion, the model should ensure that these interleavings will not lead
to bad behaviour. Second, it is not clear how common aspects of
concurrent systems such as asynchrony (communications are asyn-
chronous) and parallelism (parallel executions) should influence
the interpretation of a choreography: choreographies describe com-
munications as atomic actions, making concurrency less explicit.
Main contributions. We provide the following contributions:
Multiparty Choreographies. We introduce a choreography model
with multiparty protocol instances (sessions) as first-class elements
(§ 3) and provide an EPP that, under simple restrictions, correctly
generates endpoint code from a choreography (§ 5).
Asynchrony and Parallelism. Our framework gives a novel and
concise interpretation of asynchrony and parallelism, by inferring
the implicit concurrent behaviour specified in a choreography (§ 3).
Typing and Type inference. We provide a type system (§ 4) for
checking choreographies against protocol specifications given as
multiparty session types [22]. Our type analysis plays a major role
in ensuring the correctness of EPP code. Interestingly, due to the
global nature of choreographies, our framework can generate cor-
rect endpoint code that is not allowed by current multiparty session
typings (§ 5, Typing expressiveness). We also give a type inference
technique supporting the opposite methodology, i.e., extracting the
protocols implemented in a choreography (§ 4, Type inference).
Delegation. This is the first work to provide a choreography model
supporting session delegation, a mobility mechanism for delegating
the continuation of a protocol (§ 3). Due to asynchrony and paral-
lelism, typing delegation (§ 4) is nontrivial since messages prior to
and after delegation may be interleaved, making it difficult to check
that channel ownerships are consistently respected.
Deadlock-freedom-by-design. Our framework seamlessly guaran-
tees deadlock freedom (§ 5, Corollary 1), a notoriously hard prob-
lem in multiparty sessions types [7]. This feature follows from us-
ing a choreography as initial design tool.
Implementation and Evaluation. We provide a prototype imple-
mentation of our framework (§ 6), featuring a programming lan-
guage (Chor), an IDE, and an EPP that support the development
of concurrent systems using our global methodology. We use Chor
to evaluate our programming model against examples of different
nature, from multicore to distributed programming (§ 7).

Proofs and full definitions can be found in [14].

2. Model Preview
In this section we give an informal description of our model, whose
key elements are protocols and choreographies. A protocol is an
abstract specification of the structure of some communications in
a system, whereas a choreography describes a concrete system
implementing one or more protocols. We represent protocols with
global types [22], global descriptions where entities are abstracted
as roles that communicate following a given conversation structure.

Example 1 (Two-buyer protocol). In this protocol, two buyers B1
and B2 wish to share the purchase of a product from a seller S:

1. B1 -> S : 〈string〉; S -> B1 : 〈int〉; S -> B2 : 〈int〉; B1 -> B2 : 〈int〉;
2. B2 -> S : { ok : B2 -> S : 〈string〉; S -> B2 : 〈date〉, quit : end }

Above, B1, B2 and S are called roles. Buyer B1 sends to a seller S
a purchase request of type string. Then, S sends a quote to B1 and
another potential buyer B2. Thereafter, B1 tells B2 the amount she
wishes to contribute with. Afterwards, B2 notifies S of whether she
has accepted (ok or quit). If so, B2 sends to S a string (address)
and, finally, S replies with a delivery date of type date.

In this paper, we introduce a choreography model for globally
implementing protocols such as the one above. Its core elements
are threads and sessions. A thread represents a (logical) processing
unit that executes a sequence of instructions. Each thread has its
own local variables, and can exchange messages with other threads
by performing I/O communications. Threads can be programmed
to be already active or dynamically created at runtime. A session is
an instance of a protocol and implements communications between
some threads. Sessions can be dynamically created by threads.

Example 2 (Two-buyer choreography). We give a choreography
implementing the two-buyer protocol in Example 1.

1. b1[B1], b2[B2] start s[S] : a(k);
2. b1[B1].book -> s[S].x1 : k;
3. s[S].quote(x1) -> b1[B1].y1 : k;
4. s[S].quote(x1) -> b2[B2].z1 : k;
5. b1[B1].contrib(y1) -> b2[B2].z2 : k;
6. if (z1 − z2 ≤ 100)@b2

7. then b2[B2] -> s[S] : k[ok ];
8. b2[B2].addr -> s[S].x2 : k;
9. s[S].ddate -> b2[B2].z3 : k

10. else b2[B2] -> s[S] : k[quit ]

In Line 1, threads b1, b2 and freshly spawned thread s start a session
k through public channel a playing roles B1, B2 and S respectively.
In Lines 2-5, b1 asks s for book “book” and gets back the quote
“quote(book)” which is also sent to b2. Note that, e.g., b1 uses its
local variable y1 to receive the evaluation of “quote(book)”. Then,
b1 tells b2 the amount she wishes to contribute for the purchase,
namely “contrib(quote(book))”. In Line 6, b2 evaluates the offer
received by b1 in the guard (z1−z2 ≤ 100)@b2. If positive, b2

communicates her decision with the selection b2[B2] -> s[S] :
k[ok ], sends her address addr and receives the delivery date ddate
(Lines 7-9). Otherwise, b2 aborts by selecting quit in Line 10.

Observe that the structure of session k in Example 2 is that of
the protocol given in Example 1. The only differences are that data
has become explicit and that we introduced the start primitive.
The latter allows threads to synchronise on a public name, e.g.,
a, and create new threads and sessions. In Line 1 of Example 2,
b1 and b2 are already active threads while s is a service thread,
i.e., a dynamically spawned thread. Active threads appear on the
left-hand side of the start keyword, whereas (fresh) service threads
appear on its right-hand side. Role annotations, e.g., b1[B1], relate
each thread to the role it plays in a session.

Example 3 (Two-buyer-helper choreography). Choreographies
can also describe multiple, interleaved instances of multiple proto-
cols. Hereafter, we extend the two-buyer choreography from Ex-
ample 2 with two other sessions, k′ and k′′, that b1 and b2 will
respectively use for getting help in the transaction.

...as Lines 1-5 in Example 2...

6. b1[B] start h1[H] : b(k′);
7. b1[B].(contrib(y1)/2) -> h1[H].y : k′;
8. b1[B] -> h1[H] : k′[done];

 C1

9. b2[B] start h2[H] : b(k′′);
10. b2[B].((z1 − z2)/2) -> h2[H].z : k′′;
11. b2[B] -> h2[H] : k′′[del ];
12. b2[B].z1 -> h2[H].z′ : k′′;
13. b2[B] -> h2[H] : k′′〈〈k[B2]〉〉;

 C2

14. if ((z/z′) ≤ 30%)@h2

15. then h2[B2] -> s[S] : k[ok ];
16. h2[B2].addr -> s[S].x2 : k;
17. s[S].ddate -> h2[B2].z′′ : k
18. else h2[B2] -> s[S] : k[quit ]

 C3

The choreography starts with the first 5 lines of that in Example 2.
In block C1, b1 starts a new session with a helper h1, asks it to
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contribute for half of its part (Line 7), and informs it that it does
not need to do more (Line 8). On the other hand, in block C2, b2

does the same with another thread h2 until Line 11. Differently
now, b2 asks h2 to continue session k by taking on its role (Line
11). Then, it sends the total price received from s to h2 (Line 12)
and delegates the session reference (Line 13). Finally, in block C3,
h2 completes the two-buyer protocol instead of b2, checking that
its own contribution is less than 30% of the total price. Note that h1

and h2 are started through the same public channel b, which acts as
a reusable shared channel in multiparty session types [22].

Our model has two features that interestingly influence chore-
ography interpretation in subtly different ways. Firstly, parallelism:
thread executions may concurrently proceed without any predeter-
mined ordering unless causal constraints are introduced. Secondly,
asynchrony: communications are asynchronous, so a thread may
send a message to another thread and then immediately proceed
before the message has actually been delivered by the network.

For instance, in Example 3, the threads whose behaviour is de-
scribed in blocks C1 and C2 are different (b1 and h1 for C1, b2 and
h2 for C2). Therefore, their executions may interleave due to paral-
lelism. E.g., b2 and h2 may start session k′′ before b1 and h1 start
session k′. Even more, k′′ may be completely executed before k′ is
started. Hence, the interpretation of C1;C2 should be equivalent to
that ofC2;C1, and, in general, to that of any interleaving ofC1 and
C2. Furthermore, in Lines 3 and 4 of Example 2, where s sends the
quote to b1 and then b2, it may happen that b2 (Line 4) receives the
quote before b1 due to asynchronous messaging. Parallelism and
asynchrony are respectively handled by our swapping relation and
our asynchronous semantics, both formalised in the next section.

In general, we say that our relaxed sequential operator lifts
the programmer from expressing the degree of concurrency (asyn-
chrony and parallelism) of a system. Indeed, our framework will
automatically infer the latter by looking at the thread identifiers.
We made this choice in favour of design minimality and simplicity.
In real tools, combining the sequential operator with explicit prim-
itives for, e.g., parallelism, may be preferrable for clarity purposes.
We discuss this in § 9, Sequential and Parallel Operators.

3. Choreographies with Multiparty Sessions
We introduce the Global Calculus (GC), a choreography model
with multiparty asynchronous sessions.
Syntax. The syntax of our calculus is reported in Figure 1.

C ::= η;C (sequence)
| if e@τ thenC1 elseC2 (conditional)
| 0 (inaction)

| recX(x̃@τ , k̃, τ̃) = C′ inC (recursion)

| X(ẽ@τ , k̃, τ̃) (call)
| (νr) C (restriction)

η ::= τ1[p].e -> τ2[q].x : k (communication)
| τ1[p] -> τ2[q] : k[l ] (selection)
| τ1[p] -> τ2[q] : k〈〈k′[p′]〉〉 (delegation)

| τ1[p1], ..., τn[pn] start τn+1[pn+1], ..., τm[pm] : a(k) (start)

Figure 1. Global Calculus with Multiparty Sessions, syntax.

C is a choreography, τ is a thread, and k is a session (identifier).
Interactions between threads are specified by the term η;C which
reads: the system may execute the interaction η and continue as C.
We distinguish four different kinds of interaction: (start), (commu-
nication), (selection), and (delegation). (start) denotes session ini-

tiation: threads τi (for 1 ≤ i ≤ m) start a new multiparty session
through public channel a and tag it with a fresh identifier k, called
session channel. The first n threads, dubbed the active threads, are
already running, while τn+1, . . . , τm, dubbed the service threads,
are dynamically created and started. We assume that m ≥ 2 (a ses-
sion has at least two participants) and n ≥ 1 (a session is started by
at least one running thread). The pi’s denote the roles played by the
threads in the session. (communication) denotes a communication
where thread τ1 sends, over session k, the evaluation of a first-order
expression e to thread τ2, which binds it to variable x1. In (selec-
tion), τ1 communicates to τ2 her selection of branch l . Through
(delegation), τ1 delegates to τ2 over k her role p′ in session k′.

GC also offers other standard programming language con-
structs. In (conditional), expression e is labelled with a thread
name, indicating where it is evaluated. (recursion) and (call) model
standard recursive procedures, where each variable in x̃ or expres-
sion in ẽ, respectively, is located at a thread in τ̃ . In (call), we as-
sume that each expression can only be either a variable or a value.
(restriction), which is only used at runtime and cannot be used in
programs, models name restriction. r (for restricted name) can be
a thread or a session channel. The term 0 denotes termination.

In a term η;C, η can bind session channels, threads and
variables. When η is a (start), τ1, . . . , τn are free while k and
τn+1, . . . , τm are bound (since they are freshly created). If η is
a (communication), variable x is bound. As usual, r is bound in
(νr) C. We often omit 0, empty vectors, and irrelevant variables.
In the remainder, (νr1, . . . , rn) is a shortcut for (νr1) . . . (νrn) .
Semantics. Above, we stated that the term η;C specifies a system
that may execute the interaction η and then continue as C. Threads,
however, are assumed to run in parallel. As a consequence, some
actions in C may be performed before η. For example, blocks C1

andC2 from Example 3 describe the behaviour of different threads.
Therefore, as discussed in § 2, in an actual system run of these
threads, their executions may interleave due to parallelism. To deal
with such cases, we define the swapping congruence relation 'C ,
which allows permutations of this kind of interaction sequences2.
'C is defined as the smallest congruence satisfying the rules in
Figure 2. 'C exchanges terms with different threads. The top rule
swaps two conditionals: C′1 and C2 are swapped to preserve the
semantics of the term wrt the evaluations of the conditions. The
bottom-left rule swaps two interactions η and η′ that do not share
any thread names (calculated by thr(η)). The bottom-right rule
swaps an interaction η out of a conditional if it prefixes both
branches and does not involve the thread that checks the condition.

Asynchronous messaging can cause situations as the one dis-
cussed for Lines 3 and 4 of Example 2 in § 2, where s sends the
quote to b1, then to b2, and b2 may receive the quote before b1.
Unlike for parallelism, we address this issue directly in the opera-
tional semantics. This is because asynchrony is somehow asymmet-
ric: even though the receiving actions may interleave in a different
order wrt that in the choreography, the sending actions instead will
surely happen in the specified order, since the thread performing
the outputs is the same. This is different from parallelism, where
the ordering of both receiving and sending actions may change. It
is unsafe to manipulate the syntax of the choreography for simulat-
ing asynchrony, since when we will generate the code for the sender
thread (cf. § 5) remembering the order of outputs will be important.

Figure 3 contains the rules defining the labelled reduction se-
mantics for GC, whose labels λ are defined as:

λ ::= η | if@τ | (νr) λ

1 For clarity, we annotate threads with roles. This is necessary only for
(start) since roles can be inferred from session identifiers in all other terms.
2 Handling parallelism with a congruence simplifies our development, since
swaps in a choreography do not influence the behaviour of its EPP [14].
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τ 6= τ ′

if e@τ then ( if e′@τ ′ thenC1 elseC2 ) else ( if e′@τ ′ thenC′1 elseC′2 ) 'C if e′@τ ′ then (if e@τ thenC1 elseC′1) else (if e@τ thenC2 elseC′2)

thr(η) ∩ thr(η′) = ∅
η; η′ 'C η′; η

τ 6∈ thr(η)

if e@τ then (η;C1) else (η;C2) 'C η; if e@τ thenC1 elseC2

Figure 2. Global Calculus with Multiparty Sessions, swap relation 'C .

bC|ACTe η ∈ {(selection), (delegation), (start)} ⇒ η;C
η−→ (νr̃) C

(
r̃ = bn(η)

)
bC|COMe η = τ1[p].e -> τ2[q].x : k ⇒ η;C

η[v/e]−−−−−→ C[v/x@τ2] (e ↓ v)

bC|ASYNCe C
λ−→ (νr̃) C′ ⇒ η;C

λ−→ (νr̃) η;C′
(

snd(η) ∈ fn(λ) r̃ = bn(λ) η 6= (start)
rcv(η) 6∈ fn(λ) r̃ 6∈ fn(η)

)
bC|IFe if e@τ thenC1 elseC2

if@τ−−−→ Ci (i = 1 if e ↓ true , i = 2 otherwise)

bC|CTXe C1
λ−→ C′1 ⇒ recX(x̃@τ , k̃, τ̃) = C2 inC1

λ−→ recX(x̃@τ , k̃, τ̃) = C2 inC′1

bC|RESe C
λ−→ C′ ⇒ (νr) C

(νr) λ−−−−−→ (νr) C′

bC|EQe C1RC′1 C′1
λ−→ C′2 C′2RC2 ⇒ C1

λ−→ C2 R ∈ {'C ,≡}

Figure 3. Global Calculus with Multiparty Sessions, semantics.

A label is either an interaction η, an internal action if@τ by thread
τ (conditional), or another label with restricted name r (when new
threads or session channels are created). Rule bC|ASYNCe captures the
asynchronous behaviour of endpoint systems, allowing a thread to
send a message and then proceed freely before the intended receiver
actually receives it. In the rule, the sender of η performs the action
λ in the continuation C without waiting for the message in η to
be delivered. We check that the receiver of η is not involved in
λ since otherwise causality between η and λ would be violated.
Finally, η is kept for the later observation of the message delivery.
Rule bC|ACTe models interactions that are not (communication). In
the reductum, if η is a (start) then r̃ contains the freshly created
service threads and the session channel. For all other cases, r̃
is empty. In bC|COMe, we substitute variable x with value v (the
evaluation of the expression e in a system that we leave unspecified)
with the smart substitution C[v/x@τ ], which substitutes x with
v only under the free name τ in C, modelling local variables.
In rule bC|EQe, the relation R can be either the swapping relation
'C or structural congruence ≡. Structural congruence handles
name restriction and recursion unfolding. We just mention the
rule for unfolding: recX(x̃@τ , k̃, τ̃) = C′ inX(ṽ@τ , k̃, τ̃) ≡
recX(x̃@τ , k̃, τ̃) = C′ inC′[ṽ/x̃@τ̃ ]. All other rules are standard
and can be found in [14].

Choreographies enjoy deadlock-freedom since every term but 0
has a corresponding semantic rule that can reduce it. Formally,

Theorem 1 (Deadlock-Freedom). Let C 6≡ 0 and contain no free
variable names. Then, there exist C′, λ such that C λ−→ C′.

4. Typing Choreographies
We now present our typing system which allows to specify proto-
cols in terms of global types [7, 22] and then check whether session
behaviours in a choreography respect them.
Syntax. Figure 4 contains the syntax of global types. p -> q :
〈U〉;G abstracts an interaction from role p to role q with continua-
tion G, where U , referred to as the carrying type, is the type of the
exchanged message. U can either be a basic type S or G@p. Com-
municating G@p means that a sender role delegates to another role
her role p in protocol G. In p -> q : {li : Gi}i∈I , role p can select
one label li and continue as Gi. All other terms are standard.

G ::= p -> q : 〈U〉;G (communication)
| p -> q : {li : Gi}i∈I (choice)
| end (inaction)
| rec t;G (recursion)
| t (call)

U ::= S | G@p (values)
S ::= bool | int | string | . . . (sort)

Figure 4. Global Types, syntax.

Semantics. We give a semantics for global types, which expresses
the (abstract) execution of protocols. G α−→ G′ is the smallest
relation on the recursion-unfolding of global types satisfying the
rules given in Figure 5. A label α shows which interaction is con-
sumed. Since our discussion on asynchrony and parallelism applies
also to protocols, we need to capture these aspects also in their se-
mantics. Similarly to bC|ASYNCe, bG|ASYNC-COMe models asynchrony in
global types by allowing a sender role to proceed before the corre-
sponding receiver has actually received the message. bG|ASYNC-BRANCHe
does the same for branching. Observe that since we are allowing an
asynchronous action from inside branch Gj to take place, we re-
strict the branching to the choice lj : Gj in order to disable the
other branches. In bG|SWAPe, the relation'G for global types models
parallelism and is defined similarly to 'C ; formally, it is the small-
est congruence satisfying the rules in Figure 6. The rules are similar
to the ones for'C where conditional is now replaced by branching.
Type checking. We now introduce our multiparty session typing,
which checks that sessions in a program (choreography without re-
strictions) follow the protocol specifications given as global types.
We use three kinds of typing environments:

(Service Env) Γ ::= Γ, a〈p̃ || q̃〉 : G | Γ, x@τ : S | ∅
| Γ, X : (Γ,Θ,∆)

(Thread Env) Θ ::= Θ, τ : k[p] | ∅
(Session Env) ∆ ::= ∆, k : G | ∅

A service environment Γ carries the global type of each public
channel, specifying how a session has to be executed after initiali-
sation. In a〈p̃ || q̃〉, p̃ and q̃ are the roles of the active and service
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bG|COMe p -> q : 〈U〉;G p -> q:〈U〉−−−−−−−→ G bG|BRANCHe p -> q : {li : Gi}i∈I∪{j}
p -> q:lj−−−−−−→ Gj

bG|RECe
G[rec t;G/t]

α−−→ G′

rec t;G
α−−→ G′

bG|SWAPe
G1 'G G′1

α−−→ G′2 'G G2

G1
α−−→ G2

bG|ASYNC-COMe
G

α−−→ G′ p ∈ roles(α), q 6∈ roles(α)

p -> q : 〈U〉;G α−−→ p -> q : 〈U〉;G′
bG|ASYNC-BRANCHe

Gj
α−−→ G′j p ∈ roles(α), q 6∈ roles(α)

p -> q : {li : Gi}i∈I∪{j}
α−−→ p -> q : {lj : G′j}

Figure 5. Global Types, semantics.

bGS|COM-COMe
{p, q} ∩ {p′, q′} = ∅

p -> q : 〈U〉; p′ -> q′ : 〈U ′〉 'G p′ -> q′ : 〈U ′〉; p -> q : 〈U〉

bGS|COM-CHOICEe
{p, q} ∩ {p′, q′} = ∅

p -> q : {li : p′ -> q′ : 〈U〉; Gi}i∈I 'G p′ -> q′ : 〈U〉; p -> q : {li : Gi}i∈I

bGS|CHOICE-CHOICEe
{p, q} ∩ {p′, q′} = ∅

p -> q : {li : p′ -> q′ : {l ′j : Gij}j∈J}i∈I 'G p′ -> q′ : {l ′j : p -> q : {li : Gij}i∈I}j∈J

Figure 6. Global Types, swap relation 'G .

threads respectively. Γ also keeps the sort types of variables and all
environments necessary for typing recursive procedures. A thread
environment Θ keeps track of which role each thread is playing in a
session. Finally, a session environment ∆ records the type of each
running session k. We assume that we can write Γ, a : G only if a
does not occur in Γ; the same holds for ∆ wrt sessions k. Further-
more, we can write Θ, τ : k[p] only if τ is not associated to any
other role in the same session k in Θ. Consequently, a thread can
participate in multiple sessions playing different roles, but it cannot
participate in the same session with more than one role.

Typing judgements have the shape Γ; Θ ` C .∆. Intuitively,
C is well-typed provided that public channels are used according to
Γ, threads play roles according to Θ, and session channels are used
according to ∆. Figure 7 contains the typing rules. Rule bGT|STARTe
types a (start) term by checking that, in the subterm C, session k
is used according to the type G of public channel a. Also, each
thread τi is checked to play role pi in C when using session k. We
require all roles pi to occur in G (roles(G)), enforcing that each
thread communicates at least once in the session. We abuse nota-
tion τn+1, . . . , τm 6∈ Θ for checking that threads τn+1, . . . , τm
are not (associated to any session) in Θ, ensuring their freshness.
In bGT|COMe we check that, given an interaction between τ1 and τ2
over session channel k, (i) the global type for k in the session en-
vironment requires a communication of type S between role p and
role q, (ii) τ1 plays role p and τ2 plays role q according to Θ, and
(iii) expression e and variable x have type S according to Γ. Rule
bGT|SELe deals with selection and is similar to bGT|COMe, although we
now check that the chosen label is among the ones allowed by the
type. bGT|DELe addresses session delegation: it transfers the owner-
ship of role p′ in session k′ and checks that the carrying type in the
session type of k is the type of the continuation of k′. bGT|RECe types
a recursive procedure and the choreography in which it is used.
The recursion body is checked using only the types of its parame-
ters (stored in Γ), public channels (Γsrv), and giving the possibility
to invoke other procedures (Γrec). All other rules are standard.

For instance, the protocol in Example 1 types channel a in
Example 2.
Runtime typing. For showing that well-typed programs never go
wrong, we need to extend our typing to runtime choreographies. In
particular, we need to deal with two issues: asynchronous delega-
tions and parallelism. Hereby, we give an intuition of these issues
and how we deal with them (see [14] for details).

Asynchronous Delegation. We check runtime choreographies with
new judgements of the form Γ; Θ `Σ C . ∆. The extra envi-
ronment Σ, the delegation environment, contains information about
channels that may have been already delegated by rule bC|ASYNCe.
E.g., consider the following choreography:

C = τ1[p].e -> τ2[q].x : k︸ ︷︷ ︸; τ1[p′] -> τ3[q′] : k′〈〈k[p]〉〉︸ ︷︷ ︸;
η1 η2

τ3[p].e′ -> τ4[r].y : k︸ ︷︷ ︸
η3

By bC|ASYNCe, C may execute η2 before η1 and reduce to η1; η3.
When typing η1; η3, we need to remember the delegation η2 in
Σ, since we cannot construct a thread environment Θ for typing
both η1 and η3. Therefore, the choreography η1; η3 would be well-
typed with Σ = η2 but not with Σ = ∅. Parallelism can actually
make things worse, e.g., η3; η1, a swap of η1; η3, is clearly still
safe at endpoint, since the output in η1 has already been executed
and thus τ1 will no longer use k. Our type system uses Σ also to
gracefully handle these cases. To exemplify how we formalise this
mechanism, we show the runtime typing version of rule bGT|COMe:(

Θ ` τ1 : k[p] ∨ delegates(Σ, τ1, k[p])
)

Θ ` τ2 : k[q] ¬delegated(Σ, k[q])

Γ, x@τ2 :S; Θ `Σ C . k :G,∆ Γ ` e@τ1 : S

Γ; Θ `Σ τ1[p].e -> τ2[q].x : k;C . k : p -> q : 〈S〉;G,∆

The rule above differs from bGT|COMe in Figure 7 only in the role
checks for the two interacting threads, given in the first two lines.
In the first line, we check that thread τ1 plays role p in session
k, using Θ, or that τ1 has asynchronously delegated p to another
thread, using Σ through the auxiliary predicate delegates. This
covers our example above, whereC reduces to η1; η3. In the second
line, we check that τ2 plays role q, as before in rule bGT|COMe for
programs. However, now we also need to check that τ2 has not
asynchronously delegated its role to another thread, using another
auxiliary predicate delegated on Σ. This condition is necessary for
guaranteeing that q is played only by one thread, in order to avoid
races on the receiving of messages for q in session k.
Parallelism. Consider the following protocol:

G = p1 -> p2 : 〈int〉; p3 -> p4 : 〈string〉
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bGT|STARTe
Γ ` a〈p1, . . . , pn || pn+1, . . . , pm〉 : G {p1, . . . , pm} = roles(G)

Γ; Θ, τ1 :k[p1], . . . , τm :k[pm] ` C .∆, k :G τn+1, . . . , τm 6∈ Θ

Γ; Θ ` τ1[p1], ..., τn[pn] start τn+1[pn+1], ..., τm[pm] : a(k);C .∆

bGT|VARe
Γ = Γsrv,Γ

′ ∆′ end only

Γ, X : (Γ′,Θ,∆); Θ `X(x̃@τ, k̃, τ̃) .∆,∆′

bGT|COMe
Γ ` e@τ1 :S Θ ` τ1 :k[p], τ2 :k[q] Γ, x@τ2 :S; Θ ` C . k :G,∆

Γ; Θ ` τ1[p].e -> τ2[q].x : k;C . k : p -> q : 〈S〉;G, ∆
bGT|ZEROe

∆ end only

Γ; Θ ` 0 .∆

bGT|SELe
Θ ` τ1 :k[p], τ2 :k[q] Γ; Θ ` C . k :Gj , ∆ j ∈ I

Γ; Θ ` τ1[p] -> τ2[q] :k[lj ];C . k : p -> q :{li :Gi}i∈I
bGT|IFe

Γ ` e@τ : bool Γ; Θ ` C1 .∆ Γ; Θ ` C2 .∆

Γ; Θ ` if e@τ thenC1 elseC2 .∆

bGT|DELe
Θ ` τ1 :k[p], τ2 :k[q] Γ; Θ, τ2 :k′[p′] ` C . k :G, k′ :G′, ∆

Γ; Θ, τ1 :k′[p′] ` τ1[p] -> τ2[q] :k〈〈k′[p′]〉〉;C . k :p -> q : 〈G′@p′〉;G, k′ :G′, ∆

bGT|RECe
Γ, X : (Γ|

x̃@τ
,Θ|τ̃ ,∆|k̃); Θ ` C .∆ Γrec,Γsrv,Γ|x̃@τ ; Θ|τ̃ ` C′ . ∆|k̃

Γ; Θ ` recX(x̃@τ, k̃, τ̃) = C′ inC .∆

Figure 7. Global Calculus with Multiparty Sessions, typing rules.

which can correctly type public channel a in the choreography:

C =
τ1[p1], τ2[p2] start τ3[p3], τ4[p4] : a(k);
τ1[p1].e -> τ2[p2].x : k; τ3[p3].e′ -> τ4[p4].y : k

Since {τ1, τ2} ∩ {τ3, τ4} = ∅, we can swap C with C′ such that:

C′ =
τ1[p1], τ2[p2] start τ3[p3], τ4[p4] : a(k);
τ3[p3].e′ -> τ4[p4].y : k; τ1[p1].e -> τ2[p2].x : k

Public channel a in C′ does not have type G anymore, but C′ is
clearly still correct since we can easily follow its swap from C in
type G using swapping for global types:

G 'G p3 -> q4 : 〈string〉; p1 -> p2 : 〈int〉

Our type system, however, does not deal with swappings in global
types, and would reject C′. We made this choice so that program-
mers do not need to think about the swap relations when writing
programs, which could make error messages confusing in some
cases. However, at runtime, we must consider swaps in order to pre-
serve well-typedness wrt reductions (Subject Reduction). There-
fore, our runtime type system augments rules bGT|STARTe and bGT|DELe
for typing up to 'G .

Properties. We can now present the expected main properties of
our type system. In the sequel, we say that ∆

k:α−−−→ ∆′ whenever
k : G is in ∆ such that G α−→ G′ and ∆′ is the result of
substituting k : G in ∆ with k : G′. Also, we write ∆ 'G ∆′ iff
dom(∆) = dom(∆′) and ∆(k) 'G ∆′(k) for all k ∈ dom(∆).

Theorem 2. Assume Γ; Θ `Σ C . ∆. Then,
• (Subject Swap) C 'C C′ implies Γ; Θ `Σ C′ . ∆′ where

∆ 'G ∆′.
• C

λ−→ C′ implies that there exists ∆′ such that
(Subject Reduction) Γ; Θ′ `Σ′ C′ . ∆′ for some Θ′, Σ′.
(Session Fidelity) if λ is a communication on session k then
∆

k:α−−−→ ∆′ with α and λ on the same roles; else, ∆ = ∆′.

Type inference. We exploit the close correspondence between pro-
tocols and choreographies to perform type inference of public chan-
nels. Thus, we can automatically extract protocols from choreogra-
phies. First, we define subtyping as set inclusion on branching la-
bels, similarly to the covariant typing of rule bGT|SELe in Figure 7.
Then, we modify our rules to determine the principal type of a
choreography. Hereby, we discuss this aspect informally (cf. [14]
for the formalisation). We change rule bGT|SELe to require a sin-
gleton branching type for the label of interest. Then, bGT|IFe will

have to compute the least upper bound (lub) of the session envi-
ronments ∆1 and ∆2 (for C1 and C2 in the branches), by merging
their branching types. Similarly, rule bGT|STARTe will need to update
service types in Γ with the lub of all the global types of each session
started through the same public channel a. Recursion is handled in
a standard manner [34].

For example, from b in Example 3, we can infer the type:
B -> H : 〈int〉; B -> H : {done : end, del :B -> H : 〈int〉; B -> H :
〈(. . . as Line 2 in Example 1. . . )@B2〉}.

5. Endpoint Projection and its Properties
We now address endpoint code generation. First, we recall an end-
point model that we shall use as a target language. Then, we show
how to generate endpoint code for each thread in a choreography
and, finally, how to obtain the code for the entire system. Our code
generation, the EndPoint Projection (EPP), will satisfy the EPP
Theorem, which gives a correspondence between the asynchronous
semantics of choreographies and the one of endpoint terms.
Endpoint model. We model endpoint code with the calculus for
multiparty sessions [7], whose syntax includes conditional, par-
allel, the inactive process and recursion plus the following terms,
where unboxed terms denote programs:

P,Q ::= . . .

| a[p1, . . . , pm](k);P | a[p](k);P | !a[p](k);P

| c?p(x);P | c?p((k′));P | c?p& {li : Pi}i∈I
| c!p〈e〉;P | c!p〈〈c′〉〉;P | c!p⊕ l;P

| k : h | (νk) P

c ::= k | k[q] h ::= (p, q,w) · h | ∅

w ::= v | l | k[p]

The first row contains the terms for implementing a session start:
request, accept and replicated accept respectively. Request and
accept are used by active threads, while the latter models a process
for spawning service threads. The second row concerns in-session
inputs of a value, channel (delegation), or label (branching). For
c = k, k?p is an input from role p over session k. Dually, the third
row has outputs, where p in k!p is the role the message is sent to.

Example 4. Ps | Pb1 | Pb2 is an endpoint implementation of Ex-
ample 2 where:
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Ps = !a[S](k); k?B1(x1); k!B1〈quote(x1)〉; k!B2〈quote(x1)〉;

k?B2&

 ok : k?B2(x2);
k!B2〈ddate〉,

quit : 0


Pb1 = a[B1, B2, S](k); k!S〈book〉; k?S(y1); k!B2〈contrib(y1)〉
Pb2 = a[B2](k); k?S(z1); k?B1(z2); if (z1−z2≤100)

then k!S⊕ ok ; k!S〈addr〉; k?S(z3)
else k!S⊕ quit

Boxed terms are used only at runtime. A session queue k : h
is a FIFO queue h for session channel k. A message in h contains
the sender and receiver roles, and the carried message w (a value
v, a label l or a delegated channel k[p]). Messages with different
pairs of roles can be permuted by structural congruence (omitted),
simulating a queue per each pair of roles [7]. Since messages in
a queue have both a receiver and a sender role, in-session inputs
and outputs are annotated with the executing role at runtime. E.g.,
the term k[q]!p ⊕ l;P is an executing process which will put the
message (q, p, l) in the queue k with sender q and receiver p.
Figure 8 contains a selection of the rules defining the semantics
of terms, where R =

∏
j∈J !a[pj ](kj);Qj , I = {1, . . . , n} and

J = {n + 1, . . . ,m}. The first rule initiates a session, creating an
empty session queue k : ∅ and substituting every occurrence of
session channel k (which will be restricted) with k[pj ] where pj is
the role that must be played by process Pj . Replicated services inR
model spawning of new processes. The second rule puts value v, the
evaluation of e, in the queue for k. The last rule is about branching:
it fetches a label lj from the queue and then continues as process
Pj . Labels, denoted by µ, annotate reductions to make their actions
observable. E.g., label !p -> q : k〈v〉 denotes a communication
from role p to role q on session channel k carrying v. Similarly, the
label for branching starts with a ?, denoting input.
Thread projection. We denote with C �τ the projection of the
behaviour of a thread in a choreography onto an endpoint term.
A selection of the rules defining C �τ is reported in Figure 9.
Thread projection adds no further ad-hoc communications wrt the
originating choreography. In a start, we project the first thread
to an endpoint request, threads τ2, . . . , τn to accepts and threads
τn+1, . . . , τm to replicated accepts. For selection, the sender is pro-
jected to an output and the receiver to a branching. Projections of
communication and delegation (omitted) follow the same principle.
In a choreography conditional, τ is projected to a local conditional,
whereas for all other threads we require their projected behaviours
to be merged by the merging partial operator t [15]. P t Q is
isomorphic to P and Q up to branching, where all branches of P
or Q with distinct labels are also included. As a full example, the
thread projections of the choreography in Example 2 (Two-buyer
choreography) are the processes reported in Example 4.
Linearity. The expressivity of the (start) primitive may introduce
races on public channels. For example, the choreography

τ1[p], τ2[q] start : a(k); τ3[p], τ4[q] start : a(k′) (1)
features four threads starting two different sessions on the same
public channel. If we run their projections in parallel, we have
a race between τ1 and τ3 and another between τ2 and τ4 for
synchronising on a. This may result in τ1 starting a session with
τ4 and τ2 starting a session with τ3, violating the choreography.

In the sequel an interaction node, denoted by n, is an abstrac-
tion of a node in a choreography syntax tree. n can either be
τ1, . . . , τn start τn+1, . . . , τm : a (abstracting a (start) node) or
τ1 -> τ2 (abstracting a session interaction). We write n1 ≺ n2 ∈ C
whenever n1 precedes n2 in the choreography C.

Definition 1 (Dependency). We write n1 ≺τ n2 ∈C if n1 ≺ n2 ∈
C and either

1. n1 = τ1, . . . , τn start τn+1, . . . , τm : a and n2 = τ -> τ ′ if
τ=τi, 1 ≤ i ≤ m; or,

2. n1 = τ1, . . . , τn start τn+1, . . . , τm : a and n2 = τ ′1, . . . , τ
′
n

start τ ′n+1, . . . , τ
′
m : a where τ = τi for 1 ≤ i ≤ m and

τ ∈ fn(n2); or,
3. n1 = τ ′ -> τ and τ ∈ fn(n2).

n1 ≺τ n2 ∈ C implies that the projection of τ for the origi-
nating node of n2 will not be enabled before that for n1. We use
dependencies to define linearity:

Definition 2 (Linearity). If ni = τ i1, . . . , τ
i
n start τ in+1, . . . , τ

i
m :

a (i = 1, 2, n ≥ 2) are in C and are not in different branches
of a (cond), we say C is linear if either ∀j ∈ {1, . . . , n}.∃j′ ∈
{1, . . . ,m}. n1 ≺τ1

j′
. . . ≺τ2j n2 or ∀j ∈ {1, . . . , n}.∃j′ ∈

{1, . . . ,m}. n2 ≺τ2
j′
. . . ≺τ1j n1.

Linearity checks that, for all start nodes n1 ≺ n2 ∈ C on the
same a, each active thread in n2 depends on some thread in n1,
avoiding races between active threads. This is not necessary for
service threads, since they will be merged by our EPP. Linearity is
preserved by our semantics and is decidable, since a choreography
is linear whenever its one-time unfolding of recursions is linear.

Example 5. In (1), we cannot build any dependency unless, e.g.,
τ1 = τ3 and τ2 = τ4. Instead, the following choreography is linear
with dependencies between τ1 and τ3 and between τ2 and τ4.
τ1[p], τ2[q] start : a(k); τ1[p1] -> τ3[p3] : k′; τ2[p2] -> τ ′2[p4] : k′;
τ ′2[p5] -> τ4[p6] : k′; τ3[p], τ4[q] start : a(k)

EPP. Since different service threads may be started on the same
public channel and play the same role, we use t for merging
their behaviours into a single replicated process. We identify such
threads with bCcap , the service grouping operator [14]. We can
finally give the complete definition of EPP:

Definition 3 (Endpoint Projection). Let C ≡ (ν τ̃ k̃)Cf where Cf
is restriction-free, i.e., there are no subterms (νr)C′ in Cf . Then,
the EPP of C is:

C � = (νk̃)

( ∏
τ ∈ fn(Cf )

Cf �τ

︸ ︷︷ ︸
|

∏
k∈ fn(Cf )

k : ∅

︸ ︷︷ ︸
)

|

(i) (ii)∏
a,p

( ⊔
τ∈bCf cap

Cf �τ

)
︸ ︷︷ ︸

(iii)

The EPP of C is the parallel composition of (i) the projections
of all active threads; (ii) the queues for all active sessions; and (iii)
the replicated processes obtained by merging the projections of
all service threads with same public channel and role. Note how
swapping has no influence on EPP, since we now have parallel
composition at the endpoint level, i.e., ifC 'C C′ thenC � ≡ C′ �.
Example 6. Let C be the two-buyer-helper choreography from
Example 3. Since h1 and h2 are grouped under bCcbH, the EPP of
C will merge their behaviour into a single process (say, Ph). I.e.,
C �= C �b1 | C �b2 | C �s | Ph where Ph is:

!b[H](k′);

k′?B(z); k′?B&


done : 0,

del : k′?B(z′); k′?B((k));
if (z−z′≤100)
then k!S⊕ ok; k!S〈addr〉; k?S(z′′)
else k!S⊕ quit



269



bP|STARTe a[p1, . . . , pm](k);P |
∏
i∈I a[pi](ki);Pi | R

p1,...,pn start pn+1,...,pm:a(k)
−−−−−−−−−−−−−−−−−−−−−−→

(νk)
(
P [k[p1]/k] |

∏
i∈I Pi[k[pi]/ki] |

∏
j∈J Qj [k[pj ]/kj ] | k : ∅

)
| R

bEP|SENDe k[p]!q〈e〉;P | k : h
!p -> q:k〈v〉−−−−−−−−→ P | k : h · (p, q, v) (e ↓ v)

bEP|BRANCHe k[q]?p& {li : Pi}i∈I | k : (q, p, lj) · h
?p -> q:k[lj ]−−−−−−−−→ Pj | k : h (j ∈ I)

Figure 8. Endpoint calculus, selected reduction rules.

(
τ1[p1], . . . , τn[pn] start
τn+1[pn+1], . . . , τm[pm] : a(k);C

)
�τi =


a[p1, . . . , pm](k); (C �τi ) if i = 1
a[pi](k); (C �τi ) if 2≤ i ≤ n
!a[pi](k); (C �τi ) if n+1≤ i≤m
C �τi otherwise

( τ1[p] -> τ2[q] : k[l ];C )�τ =

 k!q⊕ l; (C �τ ) if τ = τ1
k?p& {l : (C �τ )} if τ = τ2
C�τ otherwise

( if e@τ thenC1 elseC2 )�τ ′ =

{
if e then (C1 �τ ′ ) else (C2 �τ ′ ) if τ = τ ′

(C1 �τ ′ ) t (C2 �τ ′ ) otherwise

Figure 9. Thread projection, selected rules.

EPP Theorem. We now present our EPP Theorem, which for-
malises the relationship between the semantics of a well-typed, lin-
ear choreography and the semantics of its EPP. Without loss of gen-
erality, we consider only strict reductions, denoted by , i.e. reduc-
tions where restricted names not under a prefix are never renamed.
 ∗ denotes the closure of  . The entailment λ̃ ` µ̃ checks that
the endpoint actions µ̃ implement the global actions λ̃ (cf. [14]).

Theorem 3 (EPP). Let C ≡ (ν τ̃ k̃) Cf be linear and well-typed,
with Cf restriction-free. Then,
1. (Completeness) C λ

 C′ implies there exists P such that (i)
C′ �≺ P and either (ii) C �

µ
 P where λ ` µ or (iii)

C �
µ1 

µ2 P where λ ` µ1, µ2.

2. (Soundness) C �
µ̃

 ∗ P implies there exist P ′ and C′ such

that (i) P
µ̃′

 ∗ P ′; (ii) C
λ̃

 ∗ C′ and λ̃ ` µ̃, µ̃′; and (iii)
C′ �≺ P ′.
Above, the pruning relation P ≺ Q is such that P ∼ Q (∼ is

bisimilarity) and that P has some unused branches and replicated
accepts. Point 1. states that an EPP can mimic (up to pruning) all
the reductions of its originating choreography; on the other hand,
point 2. says that an EPP always eventually reduces (up to pruning)
to the projection of a (possibly reached after multiple reductions)
reductum of its originating choreography. Both points ensure that
the observables of a choreography and its EPP are correctly related.

By Theorems 1 and 3, we can formalise our deadlock-freedom-
by-design property. Below,

µ̃−→∗ is the closure of
µ−→ .

Corollary 1 (Deadlock-freedom-by-design). Let C be linear and
well-typed. Then, for any P such that C �

µ̃−→∗ P , we have that

either P
µ′
−−→ P ′ for some P ′, µ′ or 0 ≺ P .

Moreover, our EPP code enjoys standard communication safety:

Corollary 2 (Safety). Let C be linear, well-typed and C �
µ̃−→∗ P .

Then,
1. (Linearity) P has no races on any a or k with same role p;
2. (Error-freedom) if P has an enabled input k[p]?q that can

consume a message (p, q,w) from a session queue k : h in

P , then w is of the same type of the input (value, label, or
delegated channel).

Typing expressiveness. Previously proposed typing disciplines for
session types ensure properties similar to ours, but performing type
analysis directly on endpoint programs [7, 15, 22]. Our typing dis-
cipline subsumes a larger class of safe deadlock-free systems, by
exploiting the extra information that we gain from defining imple-
mentations with choreographies. In particular, our typing system
allows for two novel features wrt standard multiparty session typ-
ing: inter-protocol coherence and partial protocol implementation.

Let us discuss inter-protocol coherence. Consider the protocol:
G = p -> q : {l1 : r -> p : 〈int〉, l2 : r -> q : 〈int〉}

Above, p communicates to q a choice between labels l1 and l2. In
the first case another role, r, is expected to communicate an integer
to p. Otherwise, r will communicate an integer to q. A potential
use case for G could be that r possesses some good, and p decides
where the good should be sent to (p itself or q). Previous work on
global types cannot type any system implementingG, sinceG can-
not be projected onto a correct set of endpoint types [38]. Indeed,
in the protocol, r is not informed of the choice made by p and
thus cannot know whether it should communicate with p or q af-
terwards. We refer to this problem by saying that G is not coherent
for previous type systems based on global types. In our framework,
we do not consider protocol coherence because protocols such asG
above can easily be implemented by interleaving them with other
ones. For example, consider the following choreography:

1. τ1[p] start τ2[q], τ3[r] : a(k); τ2[p′], τ3[q′] start : b(k′);

2. if e@τ1 then τ1[p] -> τ2[q] : k[l1 ]; τ2[p′] -> τ3[q′] : k′[l1 ];

3. τ3[r].some int -> τ1[p].x : k

4. else τ1[p] -> τ2[q] : k[l2 ]; τ2[p′] -> τ3[q′] : k′[l2 ];

5. τ3[r].some int -> τ2[q].y : k

The choreography above can be typed correctly using G as type for
a (we omit the typing for b). In order to notify τ3, playing role r,
of the choice performed by τ1, playing role p, we make use of an
additional session between τ2 and τ3. We use this session, k′, after
τ2 receives the choice from τ1. Observe that the choreography is
typable and can be correctly projected by our EPP. The key aspect
of this example is that our framework leaves the task of defining a
coherent system to the implementation (the choreography). Hence,
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protocols can be designed at a higher level of abstraction. E.g., inG
we do not specify how r is notified of the choice. We call this aspect
inter-protocol coherence, since it is the composition of protocols in
a choreography that is checked for coherence (by checking whether
its EPP is defined), and not each protocol by itself.

We now discuss partial protocol implementation with the fol-
lowing choreography:

τ [p], τ ′[q] start : a(k); τ [p] -> τ ′[q] : k[l1 ];

τ [p], τ ′[q] start : a(k′); if e@τ then τ [p] -> τ ′[q] : k′[l2 ]
else τ [p] -> τ ′[q] : k′[l3 ]

The choreography above is typable in our system (a’s type is
p -> q : {l1 : end, l2 : end, l3 : end}). However, the endpoint
projection for τ ′ would not be typable with standard contra-variant
input typing, which requires that at least all the branches in the type
are implemented. Again, this is a consequence of using choreogra-
phies: since in the choreography we know exactly which outputs
will correspond to which inputs, we can ensure that the protocol
branches that τ ′ does not implement will never be used.

6. Implementation
Following our model, we have implemented the Chor programming
language [16]. Our implementation is open source and comes with
a complete IDE, developed as an Eclipse [19] plugin.

Chor features all GC primitives (Figure 1), an implementation
of our typing discipline (Figure 7), and an EPP implementation for
projecting choreographies onto executable endpoints (from § 5).
Chor also provides some syntax extensions for enhanced usability,
e.g., protocols may refer to other protocols and choreographies
allow local code for local state manipulation and user interactions.

We give an overview of the development methodology offered
by our framework, and detail some aspects of our implementation.
Development methodology. In the development methodology sug-
gested by Chor (see Figure 10), developers can first use our IDE to
write protocol specifications and choreographies. The programmer
is supported by on-the-fly verification which takes care of check-
ing (i) the syntactic correctness of program terms and (ii) the type
compliance of the choreography wrt the protocol specifications, us-
ing our typing discipline. Program errors are reported using syntax
highlighting, allowing for an interactive programming experience.

Once the global program is completed, developers can automat-
ically project to an endpoint implementation, given in the Jolie pro-
gramming language (cf. Executable artifacts). Nevertheless, Chor
is designed to be extended to multiple endpoint languages: poten-
tially, each thread in a choreography could be implemented with a
different endpoint technology. We plan future extensions to support
projecting endpoints to e.g., Java, C#, or WS-BPEL [30].

Each Jolie endpoint program comes with its own deployment
information, given as a term separated from the code implementing
the behaviour of the projected thread. This part can be optionally
customised by the programmer, which can be useful for running the
programs on some specific network or communication technology.

Finally, the Jolie endpoint programs can be executed. As ex-
pected, they will implement the originating choreography.
Executable artifacts. Our EPP implementation targets Jolie, an
open-source service-oriented language [3, 29]. Choosing Jolie has
several reasons: (i) Jolie offers constructs similar to those of our
endpoint calculus, e.g., communications and input choices, making
part of our EPP straightforward; (ii) Jolie has a formal semantics
and a reference implementation, which we used for implementing
some abstract aspects of our model such as message queues and
session channels; and (iii) Jolie supports a wide range of compati-
bility with other technologies as detailed below.
Deployment. By default, our endpoint programs will operate on
top of TCP/IP sockets. However, since Jolie also supports other

communication technologies – e.g. local memory IPC and Blue-
tooth – and data formats – e.g. HTTP and SOAP [4] – programmers
may customise deployment information of each endpoint. Hence,
some endpoints may communicate over, e.g., HTTP, while others,
e.g., using fast binary data formats. Additionally, different end-
points may be deployed in different machines and/or networks.

Notably, customising the deployment of an endpoint program
does not necessarily require updating the code of the others. Sup-
porting this flexibility has required a careful implementation of ses-
sion starts (rule bEP|STARTe), which are coordinated by special “start
services”. The (endpoint projections of the) active threads willing
to start a session contact the appropriate start service. Then, the
start service spawns the (projections of the) service threads by call-
ing the external services that implement them. In every message
exchange, each endpoint informs the start service of the binding in-
formation (e.g., IP address and data format) on which the endpoint
can be reached. Finally, the start service informs all participants
about all necessary bindings, so that each party can dynamically
update its references to the others (e.g., socket connections).

Another key feature concerning different communication tech-
nologies is that our queue implementation is based on the latest cor-
relation sets implementation in Jolie [28]. Correlation sets allow to
program incoming message queueing by correlating some data val-
ues inside messages with those inside of a thread local state. Our
EPP handles this programming to implement a separate queue for
each role in a session as required by our model. Afterwards, the
programmer can customise correlation for each deployment arti-
fact. For instance, some threads may identify sessions using HTTP
cookies (as in common web applications), while others may use
SOAP headers (as in the WS-Addressing specifications [5]).

Delegation. Session delegation is a nontrivial mechanism at the
level of endpoint implementation. The main concern lies in up-
dating channel references (bindings). For instance, assume that a
session k has some thread participants, say τ and τ̃ . Suppose now
that τ delegates its role on k to another thread τ ′ through a dif-
ferent session. In such a situation, all the threads in τ̃ need their
external references to be updated for reaching τ ′ instead of τ when
communicating with the session/role pair delegated by τ . In our
endpoint model this necessity is completely abstracted away by the
synchronisations on the centralised message queues (one per ses-
sion). However, in our implementation, message queues are com-
pletely distributed: each thread owns a message queue which must
be reached explicitly by other threads. [24] presents a survey of
possible solutions to this problem in asynchronous scenarios. The
main challenge is that τ̃ may send messages to τ before getting
notified of the delegation, and τ must thus resend these messages
to τ ′, adding extra communications. In our EPP implementation,
each thread in τ̃ knows when the delegation will happen using the
information from the choreography. Hence, we are always in the
optimal case where no messages are lost.

7. Examples
Choreography-based programming can have several applications,
ranging from multicore programming to distributed Web Services.
Below, we present and discuss two possible example applications.

Streaming-AVP. In this example, we show how to combine two
different protocols for implementing a streaming service for movie
files. We start by giving the protocol for streaming:

rec t; S -> C : 〈bytes〉; S -> C :
{

again : t, end : end
}

In the protocol above, S is a streaming server sending byte packets
to a client C. After each packet, S communicates to C whether there
are more bits to be sent or the stream is over (choices again and
end ). The other protocol (AVP, for Audio-Video Processing) is
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Figure 10. Development methodology with the Chor language.

defined by the following global type:

rec t; F -> A :〈bytes〉; F -> V :〈bytes〉; A -> S :〈bytes〉; V -> S :〈bytes〉;
F -> A :

{
again : A -> V : 〈bytes〉; V -> S : 〈bytes〉; t, end : end

}
Four roles participate in this protocol: a filesystem F, an audio
decoder A, a video decoder V, and a sink S. The flow of information
in this protocol consists of F sending the raw audio information to A
and the raw video information to V, read from the movie file. Then
both A and V send the processed decoded information to the sink S.

The goal of this example is to show how to interleave the two
protocols so that the information produced by an implementation
of AVP is forwarded to a client (e.g., a display) as pictured below:

F V
A S C

We implement such a system as follows:

c[C] start s[S] : a(stream); s[S] start f[F], a[A], v[V] : b(avp);
rec AVPStreaming(ε, (avp, stream), (f, a, v, s, c)) = C in

AVPStreaming(ε, (avp, stream), (f, a, v, s, c))

The choreography above starts two sessions (on a and b) cor-
responding to the two protocols specified above. Note that the
streamer in the first protocol and the file system, the audio decoder
and the video decoder in the second where chosen to be service
threads. The core of the choreography is the term C defined as:

1. f[F].audioByteChunk -> a[A].audioByteChunk : avp;
2. f[F].videoByteChunk -> v[V].videoByteChunk : avp;
3. a[A].decodeA(audioByteChunk) -> s[S].audioPkt : avp;
4. v[V].decodeV(videoByteChunk) -> s[S].videoPkt : avp;
5. s[S].(audioPkt+ videoPkt) -> c[C].pkt : stream;

6. if (more())@f

7. f[F] -> a[A] : avp[again]; a[A] -> v[V] : avp[again];
8. v[V] -> s[S] : avp[again]; s[S] -> c[C] : stream[again];

9. AVPStreaming(ε, (avp, stream), (f, a, v, s, c))

10. else

11. f[F] -> a[A] : avp[end ]; a[A] -> v[V] : avp[end ];
12. v[V] -> s[S] : avp[end ]; s[S] -> c[C] : stream[end ]

Choreography C can be repeated several times. Lines 1-5 describe
how the filesystem sends audio and video information to the threads
implementing the audio and video decoders respectively. Then, the
audio and video decoder resend the processed information to the
thread implementing the sink. The same thread implements the
streamer in the other protocol and therefore sends to the client data
obtained by composing the audio and video (this is like multiplex-
ing). Lines 7-9 correspond to the if-branch where the file server will
communicate to the other threads that there is more data to process.
Similarly, termination is communicated to the other threads in the
else-branch (Lines 11-12). Clearly, the choreography above is well-
typed wrt the two given global types.

As an example, the following process is the EPP for s:

!a[S](stream); b[S, F, A, V](avp);
rec AVPStreaming(ε, (avp, stream)) =

avp?A(audiopacket); avp?V(videopacket);
stream!C〈audiopacket+ videopacket〉;

avp?V&

 again : stream!C⊕ again;
AVPStreaming(ε, (avp, stream))

end : stream!C⊕ end




in AVPStreaming(ε, (avp, stream))

OpenID and Logging. We give an example using a variant of
OpenID [32], a protocol where a client (called user) authenticates
to a server (called relying party) through a third-party identity
provider. We define the protocol with the following global type:

U -> RP : 〈string〉; RP -> IP : 〈string〉; U -> IP : 〈string〉;

IP -> RP :

{
ok : RP -> U : {ok : RP -> U : 〈G@C〉; end},
fail : RP -> U : {fail : end}

}
Above, RP abstracts the relying party, IP the identity provider and U
the user. First, U sends her username to RP, which forwards it to IP.
Then, U sends her password to IP, which will notify RP of whether
the username/password credentials are valid (ok or fail ). Finally,
RP forwards the notification to U. If successful, RP also delegates to
U role C in a session of type G, where G = S -> C : 〈string〉.

This example interleaves OpenID with another protocol where
a client C asks a log server S for either a secret or a public log.
Finally, S replies with the corresponding log content. Formally,

C -> S :
{
secret : S -> C : 〈string〉, public : S -> C : 〈string〉

}
Now, we can program our system as follows:

1. rp[RP], u[U] start ip[IP] : publicOpenID(k);
2. u[U].user -> rp.user : k;
3. rp[RP].user -> ip[IP].username : k;
4. u[U].pwd -> ip[IP].password : k;
5. if (check(username, password))@ip
6. ip[IP] -> rp[RP] : k[ok ];
7. rp[RP] -> u[U] : k[ok ];
8. if (high(username))@rp
9. rp[C] start s[S] : log(k′);

10. rp[C] -> s[S] : k′[secret ];
11. rp[RP] -> u[U] : k〈〈k′[C]〉〉;
12. s[S].secret msg -> u[C].logContent : k′

13. else
14. rp[C] start s[S] : log(k′);
15. rp[C] -> s[S] : k′[public];
16. rp[RP] -> u[U] : k〈〈k′[C]〉〉;
17. s[S].public msg -> u[C].logContent : k′

18. else
19. ip[IP] -> rp[RP] : k[fail ];
20. ip[IP] -> u[U] : k[fail ]

where rp, u, ip, and s are the endpoints of the system. Line 1
describes the initiation of a protocol instance between rp, u and ip,
by means of the public name a. In Lines 2-4, u sends its credentials
to rp and ip (only username to rp). Then, ip checks the data received
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(Line 5) and communicates the outcome to rp (Lines 6 and 19). In
both cases, the selection is forwarded to u (Lines 7 and 20). In
the if-branch, rp checks the user access level. If high, it starts a
new session (log) spawning s (Line 9) and asks for a secret log
(Line 10). Consequently, rp will delegate its role in session k′ to
the user u through session k. Finally, u will get the requested log.
The system works similarly in the public log case (Lines 14-17).

We conclude by showing the EPP for service thread s:

!log[S](k′); k′?C&

{
secret : k′!C〈private msg〉,
public : k′!C〈public msg〉

}
Note how the thread projections of s for the different branches
of the choreography (Lines 9-12 and 14-17) would yield different
code which is then merged into the one above.
Other examples. In the Chor website [16] we provide other exam-
ples, which can also be directly tested in the Chor IDE. The exam-
ples include other applications of OpenID, usage of the choreogra-
phy language for programming a use case of the Ocean Observato-
ries Initiative [31], and other web services applications.

8. Related Work
Global methods for communicating systems occur in different
forms, including MSC [25], security protocols [8, 9, 12] and au-
tomata theory [21]. However, these works are not intended as fully-
fledged programming languages since they do not deal with, e.g.,
different layers of abstraction or value passing.

This is the first work proposing an asynchronous semantics for
a choreography language based on sessions. To the best of our
knowledge, the notion of delayed input [27] is the most similar
result to the asynchrony modelled by our semantics.

The closest work to ours is [15], which proposes a synchronous
choreography model without delegation based on binary (endpoint)
session types. Our framework shows that switching to multiparty
asynchronous sessions with delegation introduces more complex-
ity, but also that such complexity can be elegantly hidden from the
programmer. Moreover, [15] has implicit threads and deals with a
stronger sequential operator, requiring two syntactic restrictions on
choreographies, i.e., well-threadedness and connectedness. In con-
trast, our approach needs no such restrictions because of explicit
threads and a more relaxed sequential operator. Finally, [15] en-
sures EPP correctness based on a type preservation result, while
we guarantee the same without the need for an endpoint typing.

Multiparty session types have been previously used for check-
ing endpoint systems [7, 17, 22]. We have shown that they can be
adopted for typing choreographies, defining a new class of correct
well-typed endpoint systems (through EPP). Our global types as
well as our endpoint model are taken by [7]. Other works have
given an asynchronous semantics to global types: [22] defines a se-
mantics in terms of that of the projection of global types while [18]
interprets global types as asynchronous communication automata.
Our linearity notion is inspired by [22].

[7] guarantees progress for multiparty sessions by building ad-
ditional restrictions on top of (endpoint) session typing. Processes
satisfying progress do not get stuck provided that they can be run
in parallel with other processes that would unlock stuck states. In
our work progress, implied by deadlock-freedom, is an immediate
consequence of our EPP Theorem, yielding a simpler analysis.

9. Discussion and Future Extensions
We discuss some aspects of choreography-driven programming and
future extensions in relation to the work presented in this article.
Approach. It may be unclear how the choreography-driven ap-
proach may deal with standard aspects of programming such as
choreography composition and endpoint code reuse.

Choreography composition is fundamental for supporting dis-
tributed (team) development. Our framework supports it with (i)
service merging and (ii) procedures. (i) Our EPP merges service
threads started on the same public channel and role into a sin-
gle process. This allows two choreographies to be composed into a
bigger system, whenever their respective service threads are merge-
able. Mergeability can be assured by using a design pattern, i.e. en-
forcing service threads that need to be merged to start with distinct
branches. (ii) Procedures can be written and typed separately, so
to create libraries that can be used by other choreographies (code
reuse). As future work, we plan to extend Chor with a namespacing
system to fully support this methodology.
Endpoint code reuse may be necessary when parts of the system be-
ing designed are already implemented. For instance, we may want
to reuse an existing identity provider service in § 7, OpenID and
Logging. Our model does not currently offer a way of integrating
existing endpoint code with the EPP of a choreography. We discuss
some potential solutions, which we leave as future work.

Using bisimulation techniques, we can verify some existing
service code to be bisimilar to the code that would be generated
by the EPP [10]. Alternatively, we could use a type system, such as
multiparty session typing [7, 22], for guaranteeing that the existing
code has a behaviour “compatible” with the choreography.

Both the techniques mentioned above can be adjusted to al-
low for refinement, i.e. the legacy code may do extra actions as
long as they do not interfere with the good behaviour of the chore-
ography. The resulting system would still guarantee communica-
tion safety and session fidelity (protocol compliance). Deadlock-
freedom would also still be guaranteed, provided that the legacy
code has been verified to be deadlock-free. Note that our imple-
mentation of delegation (§ 6, Delegation) would need to fall back
to the protocol presented in [24] for those sessions whose behaviour
is partly implemented by legacy code, since the latter cannot refer
to the necessary information provided by the choreography.
GC features. Based on our conversations with our industry collab-
orators, we discuss some relevant aspects and extensions of GC.
Sequential and Parallel operators. The relaxed semantics of our se-
quential operator “;” allows our framework to express parallelism
with a minimal syntax. However, an explicit parallel operator may
make choreographies more readable. We discuss here two possible
extensions in this sense, based upon a hypothetical operatorC1 |C2

equipped with the classical interleaving semantics of parallel com-
position. We use the following choreography as reference example:

Cpar = τ1[p1].e -> τ2[p2].x : k | τ3[p3].e′ -> τ2[p4].y : k′

Whenever τ1, τ2, τ3, τ4 are all different, Cpar can be encoded using
our sequential operator:

Cseq = τ1[p1].e -> τ2[p2].x : k; τ3[p3].e′ -> τ2[p4].y : k′

In fact, thanks to our swap relation 'C , Cpar would behave exactly
as Cseq . If the two interactions in Cpar share a thread name, e.g.,
τ2 = τ4, the parallel operator | would not be syntax sugar
anymore, since the projection of τ2 would be a parallel composition
of two input actions. This also means that τ2 would no longer be a
simple sequential thread, raising the complexity of our framework
and going out of the scope of the present work.
Public channel passing. We leave the treatment of public channel
name passing as future work. The main challenge is to statically
establish where such channels can be located in the endpoints.
Interactional exceptions. Our language does not offer specific fea-
tures for error/exception recovery. A possible extension is to in-
clude exceptions in our choreography language in the spirit of what
is informally suggested by [13] for binary sessions.
Dynamic join. We plan to extend our model to allow threads to
dynamically join and leave an existing session, similarly to [11, 17].
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We conjecture that asynchrony and parallelism will influence these
extensions in a nontrivial way.
Multiple roles. In our model, a thread can play only one role per
session. However, there are cases in which multiple roles in a
protocol may be implemented by a single thread, which would be
useful both for system simplification and resource saving. We plan
to extend our typing system to allow for this occurrences. [6, 11]
follow a similar direction, but using endpoint implementations.
Global deployment. Chor projects Jolie programs with a default de-
ployment configuration that can be edited afterwards for each end-
point. This may be inconvenient for the programmer, since a chore-
ography may describe many participants. Therefore, we plan to
introduce a global deployment language for choreographies, from
which the deployment configuration of each endpoint could be au-
tomatically generated. We envision that this extension could be rel-
evant for facilitating checks on the correctness of a deployment
configuration of a system, e.g., consistent I/O connections.
Security. Global descriptions are particularly suitable for the study
of security-related aspects in distributed systems [8, 9, 12]. Our
choreographies give a global view of how sessions are interleaved
and how their references are transmitted. It would be interesting to
see how this aspect may influence the security analysis of a system.
Scaffolding. Since in our model a protocol and a session behaviour
in a choreography have similar structures, we could implement a
scaffolding tool in our IDE that, given a protocol, would gener-
ate a prototype choreography with “dummy” data that implements
it. Then, programmers would refine and interleave different proto-
types to obtain the desired behaviour.

10. Conclusions
We presented a fully-fledged model for defining asynchronous sys-
tem implementations as global programs. We developed a type sys-
tem for checking choreographies against multiparty protocol spec-
ifications. Moreover, through type inference, developers can also
use choreographies as implementation prototypes to infer new pro-
tocol standards. Our EPP generates correct endpoint code, ensuring
nontrivial properties such as deadlock freedom and communica-
tion safety. Finally, we provided a prototype implementation of our
framework and applied it to some realistic examples.
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