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Abstract

Choreographies are descriptions of distributed systems where the developer gives a global
view of how messages are exchanged by endpoint nodes (endpoints for short), instead of
separately defining the behaviour of each endpoint. They have a significant impact on the
quality of software, as they offer a concise view of the message flows enacted by a system.
For this reason, in the last decade choreographies have been employed in the development
of programming languages, giving rise to a programming paradigm that in this dissertation
we refer to as Choreographic Programming.

Recent formal investigations of choreographies show that they have potential as foun-
dations for the development of safe distributed software. The key idea is that since chore-
ographies abstract from the single input/output actions of endpoints, they avoid typical
safety problems such as deadlocks and race conditions; the concrete implementation of
each endpoint described in a choreography can then be automatically obtained by compila-
tion, ensuring that such implementations are also safe by construction from the originating
choreography. However, current formal models for choreographies do not deal with critical
aspects of distributed programming, such as asynchrony, mobility, modularity, and multi-
party sessions; it remains thus unclear whether choreographies can still guarantee safety
when dealing with such nontrivial features.

This PhD dissertation argues for the usefulness of choreographic programming as a
paradigm for the development of safe distributed systems. We proceed by investigating its
foundations and application. To this aim we provide three main contributions.

The first contribution is the development of a formal model and type theory for chore-
ographic programming that support asynchrony, mobility, modular development, and mul-
tiparty sessions. We prove that our model guarantees safety by mapping choreographies to
distributed implementations in terms of a variant of the π-calculus, the reference model for
mobile processes. Our translation preserves the expected safety properties of choreogra-
phies, among which freedom from deadlocks and race conditions.

The second contribution is the development of Linear Connection Logic (LCL), a for-
mal logic that captures the reasoning behind choreographic programming. We show that
LCL is a conservative extension of Linear Logic. We then develop a Curry-Howard cor-
respondence between LCL and a calculus of choreographies, proving that: (i) proofs in
LCL correspond to choreographies; and (ii) the transformations between proofs in LCL to
proofs in Linear Logic and vice versa correspond to compiling choreography programs to
π-calculus terms and vice versa. The latter result, known as round-trip development, con-
tributes to the open problem of extracting choreographies from existing endpoint programs.

The third contribution is the implementation of a prototype programming framework
for choreographic programming, called Chor. Chor provides an Integrated Development
Environment (IDE) for programming with choreographies, equipped with a type checker
for verifying that choreographies respect protocol specifications given as session types.
Programs in Chor can be compiled to executable endpoint implementation in the Jolie
programming language, a general-purpose language for distributed computing, which we
extend to support the development of multiparty asynchronous sessions. We use Chor for
evaluating choreographic programming against a series of use cases.
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CHAPTER 1

Introduction

1.1 Problem Description

Distributed systems are ubiquitous and can be of vital importance in the modern developed
society: they can be found in our information databases, mobile devices, transportation sys-
tems, and medical equipments. A distributed system is composed by individual endpoint
nodes (endpoints for short) that execute concurrently and communicate with each other by
sending and receiving messages. These communications are supported by channels, which
can be implemented at the levels of software (e.g., TCP/IP sockets [24]) and hardware (e.g.,
network cables).

A major reason, if not the most important reason, that drove the wide adoption of dis-
tributed systems is their scalability: they can be formed by a single or a very large number
of endpoints. For example, a personal computer is a distributed system in itself, in which
the CPUs communicate with internal and external peripherals via standard buses (e.g., the
Universal Serial Bus [97]). Different computers can be connected together in larger sys-
tems, by using wired or wireless networks. Such larger systems can be inter-connected
once again, allowing endpoints in a system to communicate with those in other systems.
By repeating this procedure, we can obtain huge “systems of systems” with billions (or
more) of computer components. The currently best known system of systems of this kind
is the Internet.

The scalability of distributed computing is not free of obstacles: bad programming
of the sending/receiving actions of a single endpoint (also called input/output, or simply
I/O actions) may compromise the functioning of a whole system. Typical consequences of
programming errors are: (i) system freezes due to the indefinite waiting time for a message,
known as deadlocks [35]; and (ii) faulty computations due to the concurrent access to a
shared resource, known as race conditions [78]. More broadly, we refer to malfunctionings
caused by bad communication programming as safety issues; we say that a distributed
system is safe when it has no safety issues.

Programming safe distributed systems is known to be hard, due to the complex nonde-
terministic behaviour that arises from the concurrent execution of many endpoint programs.
Such behaviour makes detecting bugs with static analyses more difficult, because it may
generate an exponential growth of the possible execution traces of programs; notably, the
decidability of static analyses for concurrent programs depends on the expressive power of
the language primitives that endpoint programs can use to communicate, which elevates the
importance of formal language design in this setting [91, 42]. Moreover, the usual diagnos-
tic techniques for detecting software bugs during execution, such as testing and debugging,
are more unreliable than in the sequential setting because bugs appear nondeterministically.
In general, the concurrent executions of many endpoints and their interactions makes the
global behaviour of a distributed system hard to predict; consequently, the programming of
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distributed systems is notoriously error-prone.
In a recent study, Lu et al. analyse the bugs found in some major software projects

(e.g., MySQL [83] and Mozilla web browsers [76]) and reveal that in most cases fixing a
concurrency-related bug is hard even after it has been identified in the source code [66]. The
study shows that most of the investigated concurrency bugs (97%), which include dead-
locks and races, are due to violations of the programmers’ order or atomicity intentions,
i.e., systems executing actions in an order or a number not intended by the designer. These
actions, in distributed systems, are the sendings and receivings of messages performed by
the endpoints; therefore, the critical factor in achieving a safe distributed system is the cor-
rect implementation of the communications between the endpoints. The importance of this
factor is also reflected in the efforts made by the software engineering community, where
global descriptions of communication flows, such as Message Sequence Charts (MSC), are
used to document the intended order of communications in distributed systems [59].

From the observations above, we can conclude that the programming of safe distributed
software is error-prone because of the difficulty in programming the communication flows
between endpoints.

Problem Statement
Programming safe distributed software is error-prone, because it is difficult to pro-
gram correctly the communication flows between endpoints.

1.2 Aim and Hypothesis

The goal of this dissertation is to contribute to the scientific foundations of safe distributed
programming. Since the safety of a distributed system depends on the correct programming
of its communication flows, our aim is in particular to support programmers in the writing
of safe communication flows, i.e., communication flows that do not make a distributed
system unsafe.

Aim
To contribute to lay the scientific foundations of safe distributed programming, by
developing methods that support programmers in the writing of safe communication
flows.

Our methodology is to develop language models providing language abstractions that
support the programming of safe communication flows. Language abstractions are known
to play a major role when dealing with the writing and analysis of safe concurrent pro-
grams [66, 91, 94]. Our work starts from the following observation: the key problem in
programming safe communication flows is that expressing them by defining the sending/re-
ceiving actions of each endpoint is difficult. A communication occurs when an endpoint
executes a sending action and another endpoint executes a matching receiving action; com-
munications are thus effects of matching endpoint actions. However, since the behaviour
of each endpoint is defined in a separate program that will execute concurrently with the
others, predicting whether the combination of endpoint programs will enact the intended
communications is hard. Clearly, it would be much easier if programmers could just write
the communications they want to take place, rather than focus on endpoint actions; there-
fore, we ask the following question:
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Is it possible to develop languages for programming distributed systems in
which communications are the objects of discourse?

Our hypothesis is that the research question above can be answered positively by build-
ing on the emerging paradigm of Choreographic Programming. Choreographic program-
ming is a programming paradigm for designing communication-based systems, where
programmers write a choreography that describes how two or more endpoints exchange
messages during execution, instead of a collection of programs that define individually
the behaviour of each endpoint. As an example of a choreography, consider the follow-
ing code (whose syntax is derived from the “Alice and Bob” notation by Needham and
Schroeder [77]):

1. Alice -> Bob : book;
2. Bob -> Alice : money

The choreography above describes the behaviour of two endpoints, Alice and Bob. In Line
1, Alice sends to Bob a book; then, in Line 2, Bob replies to Alice with some money
for paying the book he received. Observe that a choreography is “safe by design”, since it
describes directly the intended communications in a system: a choreography can be seen as
the formalisation of the communication flow intended by the programmer. Moreover, each
communication is treated as atomic: the sending and receiving actions of the respective
sender and receiver endpoints cannot be seen separately.

In [31], Carbone et al. show that it is theoretically possible to use choreographies for the
programming of safe distributed systems, by projecting a choreography to the executable
code for each endpoint (which we call endpoint code) using a procedure known as Endpoint
Projection (EPP). The authors formally prove that their definition of EPP is correct, i.e., it
preserves the intended behaviour of a projected choreography in the produced endpoint
code; in other words, executing the endpoint code produced by EPP leads exactly to the
communications defined in the originating choreography. This property enables a develop-
ment methodology in which developers write a choreography and then distributed software
implementing the choreography is automatically generated. We depict such methodology
in the following:

Choreography
choreography projection (EPP)
−−−−−−−−−−−−−−−−−−−−−−−−−→ Endpoint Code

The key aspect of the methodology above is that the produced endpoint code is safe by
construction: since the EPP procedure is correct, it follows that the communications de-
fined by the programmer are implemented faithfully and without errors. Carbone et al.
prove that, as a consequence, the code produced by their EPP procedure is always free
from deadlocks and race conditions [31]. Such results have been shown in other works
in different, but similar, settings [89, 61]. In [67], the authors informally discuss how to
project choreographies to endpoint code using real-world languages, i.e., the choreography
language WS-CDL [102] and the endpoint process language WS-BPEL [79].

The safety properties that can be obtained by adopting choreographies make choreo-
graphic programming a candidate for supporting the development of safe distributed sys-
tems. However, this potential remains untapped because choreographies are currently im-
practical for other reasons. In their own investigation on theoretical foundations for chore-
ographies and their EPP, Qiu et al. write that “it seems that a lot of work should be done
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before a widely accepted result in this field” [89]; Aalst et al. also report that a “real”
choreography language still has to be proposed [99]. We discuss some of the major issues
in the following:

• Compositionality. Choreographies are not compositional: a choreography program
cannot reuse other separately developed systems, nor be reused by them. Choreogra-
phies are thus unable to scale, as they cannot modularly build the typical systems of
systems of distributed computing.

• Multiparty Sessions. Sessions are abstractions capturing private conversations be-
tween some endpoints; the concept is a hallmark of modern methodologies for dis-
tributed programming (found, e.g., in most web programming technologies [86, 82]).
Currently, the only choreography model supporting the implementation of sessions
is that presented in [31]. However, such model supports only the programming of
binary sessions, i.e., sessions with two participants, and therefore it cannot be used
to define the behaviour of sessions with multiple participants, called multiparty ses-
sions.

• Asynchrony. In distributed systems communications can be asynchronous, i.e., a
sender endpoint can send a message and proceed in its execution before the intended
receiver has actually received the message. It is unclear how to represent asyn-
chronous communications in choreography languages, because communications are
given in choreographies as atomic actions and asynchrony is inherently linked to the
separation of sending and receiving actions.

• Mobility. Choreographies do not offer any mobility mechanisms. For example,
it is not possible for an endpoint to make another endpoint join a session during
execution.

• Round-trip Development. In practice, software developers make use of choreogra-
phies in combination with the typical programming of each endpoint [1, 79]. The
idea is to use the choreographic view to check that a system follows the expected
flow of communications and to use the endpoint view to program the internal com-
putations of each endpoint. Current formal choreography models do not support
round-trip development; in general, supporting the editing of endpoint code in such
a way that it is always possible to reconstruct the choreography that the endpoints
implement is a hard problem [18, 63].

• Implementation. Despite a significant amount of research has already been con-
ducted on formal choreography models, there are still no concrete implementations
of applied programming languages based on them; this prevents the evaluation of
such models in real-world scenarios.

The limitations described above need to be addressed if we want to employ choreo-
graphic programming for the development of real-world distributed systems. Of course,
these are not the only features that will be needed in the future: as for the π-calculus [69],
the seminal formal model of concurrent and mobile systems, many extensions may be
needed depending on the application domain (cf. [20]). However, the features we listed
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are of particular relevance; for example, compositionality and mobility are crucial for cap-
turing the development of scalable systems and are hallmarks of successful languages and
models for distributed computing [79, 1, 69]. Therefore, showing that choreographies can
deal with such issues would be a strong sign that they can be successfully employed as a
future basis for the development of safe distributed systems. The hypothesis of this disser-
tation is that this is possible, and that choreography models can be successfully applied to
many real-world scenarios.

Hypothesis
It is possible to address the current limitations of choreography models and adopt
choreographies for the programming of real-world distributed systems.

1.3 Thesis Statement

In this dissertation we investigate the paradigm of choreographic programming for demon-
strating how it can capture the programming of real-world distributed systems, guarantee-
ing that the systems obtained through such methodology are safe:

Thesis Statement
Choreographic Programming provides a solid foundation for the development of safe
distributed systems.

More specifically, we test our hypothesis by developing models for choreography-based
programming and by investigating how such models can be implemented in real technolo-
gies.

1.4 Contributions

This dissertation provides three main contributions.
The first contribution is the development of formal models and type theories for chore-

ographic programming that support asynchrony, compositionality, mobility, and multiparty
sessions. Choreographies are mapped to endpoint programs through Endpoint Projection
(EPP); EPP is formally proven to guarantee the expected safety properties of choreogra-
phies, among which freedom from deadlocks and race conditions.

The second contribution is the development of a formal logic, called Linear Connection
Logic (LCL), that is a logical reconstruction of choreographies and their semantics. LCL
is a generalisation of Linear Logic [46]. Based on previous results on a Curry-Howard
correspondence between Linear Logic and the π-calculus [27], we show that LCL is in a
Curry-Howard correspondence with a model of compositional choreographies that supports
round-trip development, i.e., choreographies can always be translated to π-calculus terms
and vice versa by following proof transformations in LCL.

The third contribution is the implementation of a prototype programming framework
for choreographic programming, called Chor. Chor offers an Integrated Development En-
vironment (IDE) for programming with choreographies, equipped with a type checker for
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verifying that choreographies respect protocol specifications given as session types. Pro-
grams in Chor can be compiled to executable endpoint implementations in the Jolie pro-
gramming language, a general-purpose language for distributed computing [60], which we
extend to support the programming of multiparty sessions as required by our framework.
We finally use Chor for evaluating choreographic programming against a series of use
cases.

1.5 Structure of the Dissertation

The structure of the rest of this dissertation is outlined in the following. Each Chapter is an
extended version of material produced in the course of the PhD studies, and is organised to
be relatively self-contained.

• Part I: Models
In this part we develop formal models for Choreographic Programming, and exploit
the structure of choreographies to guarantee safety properties in distributed systems.

– Chapter 2: Global Programming
We present the Choreography Calculus, a language model for the programming
of distributed systems using only global descriptions for both the specification
of protocols and their implementation as multiparty asynchronous sessions. We
exploit the global nature of choreographies to guarantee, by construction, the
deadlock-freedom property of systems developed with choreographies.

– Chapter 3: Compositional Choreographies
We extend choreographies to handle the composition of systems developed
independently. Our results yield a fresh view on how to deal with the no-
tion of deadlock-freedom when some participants in a system are still missing
(progress) and in the presence of mobility features.

– Chapter 4: Round-Trip Choreographic Programming
We propose a new logic, called Linear Connection Logic (LCL), obtained by
conservatively extending Linear Logic. LCL enjoys a Curry-Howard corre-
spondence with a fragment of our compositional choreographies: choreogra-
phies correspond to proofs in LCL and vice versa. By following our Curry-
Howard correspondence, we derive a language model for round-trip develop-
ment in which choreographies can always be transformed to equivalent pro-
cesses and vice versa.

• Part II: Implementation
In this part we develop the tools necessary to support the programming of multi-
party sessions and then use them to build a prototype programming framework for
choreographies.

– Chapter 5: Programming Sessions with Correlation Sets
We present a model for programming multiparty sessions by routing messages
depending on their data content. We implement our model by extending the
Jolie language.
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– Chapter 6: Process-aware Web Programming
This chapter is dedicated to investigating how our extension of the Jolie lan-
guage can be applied to the broad field of web programming. We extend Jolie
to deal with HTTP messages natively, by abstracting them as messages that can
be sent and received through sessions; then, we evaluate our approach through
web-based use cases.

– Chapter 7: Chor: a Framework for Choreographic Programming
We present Chor, a language implementation of the Choreography Calculus
from Chapter 2. Chor comes with an IDE for developing safe choreographies
and automatically project them to executable code. We execute systems devel-
oped with Chor by using our extension of Jolie from Chapter 5.

• Part III: Appendices
This part includes additional material and technical details relative to the first two
parts.

– Appendix A: Global Programming: Additional Material

– Appendix B: Compositional Choreographies: Additional Material

– Appendix C: Round-Trip Choreographic Programming: Additional Material





Part I

Models





CHAPTER 2

Global Programming

2.1 Introduction

The idea of using global descriptions of the communications in a system is not confined
to choreographies. Another particularly fruitful application is that of using a global view
for defining protocol specifications [55, 25]. Protocol specifications differ from choreogra-
phies in that a choreography concretely defines the implementation of a system, whereas
a protocol defines requirements on the communication flow that a system implementation
has to follow. In this chapter we develop a calculus for choreographic programming by
bringing these two practices together, allowing choreographies to be checked for safety
through globally-specified protocols. The outcome of this endeavour is the formal defini-
tion of a programming model that developers can use to program distributed systems by
reasoning only at the global level, i.e., without having to deal with the programming of
separate endpoint programs.

Global descriptions have been studied in formal models [26, 61, 55, 31], standards [102,
1], and language implementations [53, 87, 95]. Such descriptions have a great impact on the
quality of software, as they represent “formal blueprints” of how communicating systems
should behave and offer a concise view of the message flows enacted by a system. As
mentioned above, global descriptions can be used at different levels of abstraction, ranging
from abstract descriptions of protocols to descriptions of concrete system implementations,
called choreographies. These different incarnations respectively underpin two recent and
successful development methodologies.

In the first methodology, programmers design abstract protocols using global descrip-
tions [55, 53]. These are automatically projected onto abstract endpoint specifications
which are finally used for the static verification of manually written endpoint code:

Protocols

protocol
projection
−−−−−−−−−→ Abstract

Endpoints

endpoint
validation
−−−−−−−−−→ Endpoint

Code

The approach depicted above has the benefit of producing very clear protocol specifica-
tions. However, it deprives the programmer from a global view of the system when dealing
with its implementation. A major consequence is that programming becomes error-prone
when dealing with the actual interleaving of different protocol instances. For example, it
can easily lead to deadlocked systems [21].

The second methodology deals with system implementations using choreographies [102,
95]. Programmers can write a choreography and then automatically project an executable
system from it:

Choreography
choreography projection
−−−−−−−−−−−−−−−−−−−−→ Endpoint Code
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Here, the main advantage is the precise view given by choreographies on the possible sys-
tem executions. However, choreographies lack in abstraction wrt global protocol descrip-
tions and their programming needs to be disciplined with additional tools. Current disci-
plines for choreographic programming are based on writing abstract endpoint descriptions
and then using them to check the behaviour of each endpoint, directly on the choreography
or its EPP [31, 95]. Hence, in these models, we lose a global view of the system when
describing its protocol specifications.

Inspired by these observations and by private conversations with our industry collabo-
rators [102, 90, 6, 80, 41], we ask:

Can we design a unified framework that combines global descriptions of pro-
tocols and implementations?

Clearly, a positive answer would retain the advantages of global descriptions for both the
writing of protocols and that of implementations. Moreover, a natural following question
is whether such a unified framework could offer more than just the sum of the parts: are
there other advantages that can arise from the combination of global protocol descriptions
with choreographies?

In order to answer the questions above, we build and analyse a model for a fully-global
framework. In our model, developers design both protocols and implementations from a
global viewpoint. Endpoint implementations can then be automatically generated:

Protocols

global
validation
−−−−−−−−−→ Choreography

choreography
projection

−−−−−−−−−−−−→ Endpoint
Code

The challenge of reaching our objective is twofold. First, since we aim at designing
a model where choreographies can instantiate different protocols multiple times and in-
terleave their execution, the model should ensure that these interleavings will not lead to
bad behaviour. Second, it is not clear how common aspects of concurrent systems such
as asynchrony (communications are asynchronous) and parallelism (parallel executions)
should influence the interpretation of a choreography: choreographies describe communi-
cations as atomic actions, making concurrency less explicit.

2.1.1 Contributions

This chapter provides the following contributions:

Multiparty Choreographies. We introduce a choreography model with multiparty
protocol instances (sessions) as first-class elements (§ 2.3) and provide an EPP that, un-
der simple restrictions, correctly generates endpoint code from a choreography (§ 2.5).

Asynchrony and Parallelism. Our framework gives a novel and concise interpretation
of asynchrony and parallelism, by inferring the implicit concurrent behaviour specified in
a choreography (§ 2.3).

Typing and Type inference. We provide a type system (§ 2.4) for checking chore-
ographies against protocol specifications given as multiparty session types [55]. For the
first time, we formalise an operational semantics for multiparty session types that defines
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the abstract execution of global protocol specifications (§ 2.4.1); we use our semantics for
protocols to establish a tight operational correspondence between the execution of proto-
cols and the choreographies they type (§ 2.4.4). Our type analysis plays a major role in
ensuring the correctness of EPP code. Interestingly, due to the global nature of choreogra-
phies, our framework can generate correct endpoint code that is not allowed by current
multiparty session typings (§ 2.5.6). We also give a type inference technique supporting
the opposite methodology, i.e., extracting the protocols implemented in a choreography
(§ 2.4.5).

Delegation. This is the first work to provide a choreography model supporting session
delegation, a mobility mechanism for delegating the continuation of a protocol (§ 2.3).
Due to asynchrony and parallelism, typing delegation (§ 2.4) is nontrivial since messages
prior to and after delegation may be interleaved, making it difficult to check that channel
ownerships are consistently respected.

Deadlock-freedom-by-design. Our framework seamlessly guarantees deadlock free-
dom (§ 2.5.5, Corollary 2.5.1.1), a notoriously hard problem in multiparty sessions types [21].
This feature follows from using a choreography as initial design tool.

Evaluation. We evaluate our programming model against examples of different nature,
from multicore to distributed programming (§ 2.6).

2.2 Preview

In this section we give an informal description of our model, whose key elements are pro-
tocols and choreographies. A protocol is an abstract specification of the structure of some
communications in a system, whereas a choreography describes a concrete system imple-
menting one or more protocols. We represent protocols with global types [55], global
descriptions where entities are abstracted as roles that communicate following a given con-
versation structure.

Example 2.2.1 (Two-buyer protocol). In this protocol, two buyers B1 and B2 wish to share
the purchase of a product from a seller S:

1. B1 -> S : 〈string〉; S -> B1 : 〈int〉; S -> B2 : 〈int〉; B1 -> B2 : 〈int〉;
2. B2 -> S : { ok : B2 -> S : 〈string〉; S -> B2 : 〈date〉, quit : end }

Above, B1, B2 and S are called roles. Buyer B1 sends to a seller S a purchase request of
type string. Then, S sends a quote to B1 and another potential buyer B2. Thereafter, B1
tells B2 the amount she wishes to contribute with. Afterwards, B2 notifies S of whether she
has accepted (ok or quit). If so, B2 sends to S a string (address) and, finally, S replies with
a delivery date of type date.

In this Chapter, we introduce a choreography model for globally implementing proto-
cols such as the one above. Its core elements are processes and sessions. A process repre-
sents a (logical) processing unit that executes a sequence of instructions. Each process has
its own local variables, and can exchange messages with other processes by performing
I/O actions. Processes can be programmed to be already active or dynamically created at
runtime. A session is an instance of a protocol and implements communications between
some processes. Sessions can be dynamically created by processes.



14 Chapter 2. Global Programming

Example 2.2.2 (Two-buyer choreography). We give a choreography implementing the
two-buyer protocol in Example 2.2.1.

1. b1[B1], b2[B2] start s[S] : a(k);
2. b1[B1].book -> s[S].x1 : k;
3. s[S].quote(x1) -> b1[B1].y1 : k;
4. s[S].quote(x1) -> b2[B2].z1 : k;
5. b1[B1].contrib(y1) -> b2[B2].z2 : k;
6. if (z1 − z2 ≤ 100)@b2

7. then b2[B2] -> s[S] : k[ok];
8. b2[B2].addr -> s[S].x2 : k;
9. s[S].ddate -> b2[B2].z3 : k

10. else b2[B2] -> s[S] : k[quit]

In Line 1, processes b1, b2 and freshly spawned process s start a session k through shared
channel a playing roles B1, B2 and S respectively. In Lines 2–5, b1 asks s for book “book”
and gets back the quote “quote(book)” which is also sent to b2. Note that, e.g., b1 uses
its local variable y1 to receive the evaluation of “quote(book)”. Then, b1 tells b2 the
amount she wishes to contribute for the purchase, namely “contrib(quote(book))”. In Line
6, b2 evaluates the offer received by b1 in the guard (z1−z2 ≤ 100)@b2. If positive, b2

communicates her decision with the selection b2[B2] -> s[S] : k[ok], sends her address
addr and receives the delivery date ddate (Lines 7-9). Otherwise, b2 aborts by selecting
quit in Line 10.

Observe that the structure of session k in Example 2.2.2 is that of the protocol given
in Example 2.2.1. The only differences are that data has become explicit and that we
introduced the start primitive. The latter allows processes to synchronise on a shared name,
e.g., a, and create new processes and sessions. In Line 1 of Example 2.2.2, b1 and b2 are
already active processes while s is a service process, i.e., a dynamically spawned process.
Active processes appear on the left-hand side of the start keyword, whereas (fresh) service
processes appear on its right-hand side. Role annotations, e.g., b1[B1], relate each process
to the role it plays in a session.

Example 2.2.3 (Two-buyer-helper choreography). Choreographies can also describe mul-
tiple, interleaved instances of multiple protocols. Hereafter, we extend the two-buyer
choreography from Example 2.2.2 with two other sessions, k′ and k′′, that b1 and b2 will
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respectively use for getting help in the transaction.

...as Lines 1-5 in Example 2.2.2...
6. b1[B] start h1[H] : b(k′);
7. b1[B].contrib(y1)/2 -> h1[H].y : k′;
8. b1[B] -> h1[H] : k′[done];

 C1

9. b2[B] start h2[H] : b(k′′);
10. b2[B].((z1 − z2)/2) -> h2[H].z : k′′;
11. b2[B] -> h2[H] : k′′[del];
12. b2[B].z1 -> h2[H].z′ : k′′;
13. b2[B] -> h2[H] : k′′〈k[B2]〉;

 C2

14. if ((z/z′) ≤ 30%)@h2

15. then h2[B2] -> s[S] : k[ok];
16. h2[B2].addr -> s[S].x2 : k;
17. s[S].ddate -> h2[B2].z′′ : k
18. else h2[B2] -> s[S] : k[quit]

 C3

The choreography starts with the first 5 lines of that in Example 2.2.2. In block C1, process
b1 starts a new session with a helper process h1, asks it to contribute for half of its part (Line
7), and informs it that it does not need to do more (Line 8). On the other hand, in block
C2, b2 does the same with another process h2 until Line 11. Differently now, b2 asks h2 to
continue session k by taking on its role (Line 11). Then, it sends the total price received
from s to h2 (Line 12) and delegates the session reference (Line 13). Finally, in block C3,
h2 completes the two-buyer protocol instead of b2, checking that its own contribution is less
than or equal to 30% of the total price. Note that h1 and h2 are started through the same
shared channel b, which acts as a reusable channel in multiparty session types [55].

Our model has two features that interestingly influence the interpretation of a choreog-
raphy in subtly different ways. Firstly, parallelism: process executions may concurrently
proceed without any predetermined ordering unless causal constraints are introduced. Sec-
ondly, asynchrony: communications are asynchronous, so a process may send a message
to another process and then immediately proceed before the message has actually been
delivered by the network.

For instance, in Example 2.2.3, the processes whose behaviour is described in blocks
C1 and C2 are different (b1 and h1 for C1, b2 and h2 for C2). Therefore, their executions
may interleave due to parallelism; e.g., b2 and h2 may start session k′′ before b1 and h1

start session k′. Even more, k′′ may be completely executed before k′ is started. Hence,
the interpretation of C1;C2 should be equivalent to that of C2;C1, and, in general, to that
of any interleaving of C1 and C2. Furthermore, in Lines 3 and 4 of Example 2.2.2, where
s sends the quote to b1 and then b2, it may happen that b2 (Line 4) receives the quote
before b1 due to asynchronous messaging. Parallelism and asynchrony are respectively
handled by our swapping relation and our asynchronous semantics, both formalised in the
next section (§ 2.3).

In general, we say that our relaxed sequential operator lifts the programmer from ex-
pressing the degree of concurrency (asynchrony and parallelism) of a system. Indeed, our
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C ::= η;C (seq)

| if e@p thenC1 elseC2 (cond)

| 0 (inact)

| def X(D̃) = C ′ inC (def)

| X〈Ẽ〉 (call)

| (νr) C (res)

η ::= p.e -> q.x : k (com)

| p -> q : k[l] (sel)

| p -> q : k〈k′[C]〉 (del)

| p̃ start q̃ : a(k) (start)

p, q, . . . ::= p[A] (typed process)

D ::= p(x̃, k̃) (def param)

E ::= p(ẽ, k̃) (call param)

Figure 2.1: Choreography Calculus, syntax.

framework will automatically infer the latter by looking at the process identifiers. We made
this choice in favour of design minimality and simplicity. However, in applied languages
and tools combining the sequential operator with explicit primitives for, e.g., parallelism,
may be preferable for clarity purposes. We discuss this in § 2.8, Sequential and Parallel
Operators.

2.3 Choreography Calculus

We introduce the Choreography Calculus (CC), a choreography model with multiparty
asynchronous sessions.

2.3.1 Syntax

The syntax of CC is reported in Figure 2.1. C is a choreography, p is a process identifier, A
is a role, and k is a session identifier (or session channel). Interactions between processes
are specified by the term η;C which reads: the system may execute the interaction η and
continue as C. We distinguish four different kinds of interaction: (start), (com), (sel), and
(del). Term (start) denotes session initiation: processes p̃ and q̃ start a new multiparty
session through shared channel a and tag it with a fresh identifier k, called session channel.
Processes p̃, dubbed the active processes, are already running, while processes q̃, dubbed
the service processes, are dynamically created and started. We assume that |p̃| + |q̃| ≥ 2
(a session has at least two participating processes) and that p̃ is nonempty (a session is
started by at least one running process). Each process is annotated with the role it plays
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in the newly created session k. Term (com) denotes a communication where process p
sends, over session k, the evaluation of a first-order expression e to process q, which binds
it to variable x. In (sel), p communicates to q its selection of branch l. Through (del), p
delegates to q over k its role C in session k′.

CC also offers some standard programming language constructs. In (cond), expression
e is labelled with a process name, indicating where it is evaluated. Terms (def) defines a
recursive procedureX , declaring parameters D̃ of the form p(x̃, k̃), meaning that process p
uses variables x̃ and sessions k̃ inside the procedure. A procedure can be called using term
(call), where we assume that each expression can only be either a variable or a value; we
also assume that procedure calls are always guarded. Term (res) models name restriction,
where a name r (for restricted name) can be a process or a session. We assume that name
restriction is never used inside the bodyC ′ of a procedure. The term 0 denotes termination.

In a term η;C, η can bind session channels, processes and variables. When η is a
(start), p̃ and a are free while k and q̃ are bound (since they are freshly created). If η is a
(com), variable x is bound. As usual, r is bound in (νr)C. We often omit 0, empty vectors,
and irrelevant variables. In the remainder, (νr1, . . . , rn) is a shortcut for (νr1) . . . (νrn) .

Remark 2.3.1 (Role Annotations). For clarity, we annotate processes with roles in all in-
teractions. Technically, this is necessary only for term (start) since roles can be inferred
from session identifiers in all other terms. For example, consider the following (pseudo)
choreography:

1. p[A] start q[B] : a(k);
2. p.e -> q.y : k

Above, Line 2 defines a communication from process p to process q without specifying
their roles in session k. However, it would be easy to infer that their roles are, respectively,
A and B by looking at the preceding (start) term in Line 1. Avoiding role annotations may be
preferable in a real tool, and indeed we do not require them in the language implementation
that we present in Chapter 7. On the contrary, having explicit role annotations is more
elegant when discussing our model, because in the semantics for choreographies that we
present in the next section (start) terms can be executed and consumed; in such cases,
explicit role annotations allow us to avoid using extra constructs, or term rewritings, to
bookkeep the roles of each process in a session.

2.3.2 Semantics

Above, we stated that the term η;C specifies a system that may execute the interaction η
and then continue as C. Processes, however, are assumed to run in parallel. As a con-
sequence, some actions in C may be performed before η. For example, blocks C1 and
C2 from Example 2.2.3 describe the behaviour of different processes. Therefore, as dis-
cussed in § 2.2, in an actual system run of these processes their executions may interleave
due to parallelism. To deal with such cases, we define the swapping congruence relation
'C , which allows permutations of this kind of interaction sequences1. The relation 'C is
defined as the smallest congruence satisfying the rules in Figure 2.2. The rules exchange
terms with disjoint sets of participating processes. Rule bCS|ETA-ETAe swaps two interactions

1Handling parallelism with a syntactic congruence simplifies our development, since swaps in a choreog-
raphy do not influence the behaviour of its EPP. We will formalise this notion in § 2.5.
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pn(η) � pn(η′)

η; η′ 'C η′; η
bCS|ETA-ETAe

p 6= q

if e@p then ( if e′@q thenC1 elseC2 ) else ( if e′@q thenC ′1 elseC ′2 )
'C

if e′@q then (if e@p thenC1 elseC ′1) else (if e@p thenC2 elseC ′2)

bCS|COND-CONDe

p 6∈ pn(η)

if e@p then (η;C1) else (η;C2) 'C η; (if e@p thenC1 elseC2)
bCS|ETA-CONDe

Figure 2.2: Choreography Calculus, swap relation 'C .

η and η′ that do not share any process names. In the rule, the auxiliary function pn(η) re-
turns the set of process names in η and� is a shortcut for asserting that two sets are disjoint
(for two sets A and B, A � B if and only if A ∩ B = ∅). Rule bCS|COND-CONDe swaps two
independent conditionals tested by different processes, rearranging the branchesC ′1 andC2

to preserve the semantics of the choreography term. C ′1 and C2 are swapped to preserve the
semantics of the term wrt the evaluations of the conditions. Finally, rule bCS|ETA-CONDe rule
swaps an interaction η out of a conditional if η prefixes both branches in the conditional
and does not involve the process that evaluates the condition.

Asynchronous messaging can cause situations as the one discussed for Lines 3 and 4
of Example 2.2.2 in § 2.2, where s sends the quote to b1, then to b2, and b2 may receive the
quote before b1. Unlike for parallelism, we address this issue directly in the operational
semantics. This is because asynchrony is asymmetric: even though the receiving actions
may interleave in a different order wrt that in the choreography, the sending actions instead
will surely happen in the specified order, since the process performing the outputs is the
same. This is different from parallelism, where the ordering of both receiving and sending
actions may change. It would be unsafe to manipulate the syntax of the choreography for
simulating asynchrony using a congruence relation such as swapping, since when we will
generate the code for the sender process (cf. § 2.5) remembering the order of the outputs
will be important2.

Figure 2.3 contains the rules defining the labelled reduction semantics for CC, whose
labels λ are defined as:

λ ::= η | τ@p | (νr) λ

A label is either an interaction η, an internal action τ@p (used in the evaluation of condi-
tionals), or another label with restricted name r (when new processes or session channels
are created). Rule bC|ACTe models interactions that are not (com). In the reductum, if η is
a (start) then r̃ contains the freshly created service processes and the session channel. For
all other cases, r̃ is empty. In bC|COMe, we substitute variable x with value v (the evaluation
of the expression e in a system that we leave unspecified) with the localised substitution

2 We conjecture that an alternative syntactic notion to capture asynchrony can be defined as a precongruence
relation. We leave the study of such alternative to future work.
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η ∈ {(sel), (del), (start)} r̃ = bn(η)

η;C
η−→ (ν r̃) C

bC|ACTe
η = p[A].e -> q[B].x : k e ↓ v

η;C
η[v/e]−−−−→ C[v/x@q]

bC|COMe

C
λ−→ (ν r̃) C ′ snd(η) ∈ fn(λ) r̃ = bn(λ)

η 6= (start) rcv(η) 6∈ fn(λ) r̃ 6∈ fn(η)

η;C
λ−→ (ν r̃) η;C ′

bC|ASYNCe

C1
λ−→ C ′1

def X(D̃) = C2 inC1
λ−→ def X(D̃) = C2 inC ′1

bC|CTXe

i = 1 if e ↓ true , i = 2 otherwise

if e@p thenC1 elseC2
τ@p−−−→ Ci

bC|CONDe C
λ−→ C ′

(νr) C
(νr) λ−−−−→ (νr) C ′

bC|RESe

R ∈ {'C ,≡} C1RC ′1 C ′1
λ−→ C ′2 C ′2RC2

C1
λ−→ C2

bC|EQe

Figure 2.3: Choreography Calculus, semantics.

(νr) 0 ≡ 0 (νr) (νr′) C ≡ (νr′) (νr) C def X(D̃) = C in0 ≡ 0

def X(D̃) = C ′ in
(
(νr) C

)
≡ (νr)

(
def X(D̃) = C ′ inC

)
if r /∈ fn(C ′)

def X(p̃(x̃, k̃)) = C ′ inC[X〈p̃(ẽ, k̃)〉] ≡ def X(p̃(x̃, k̃)) = C ′ inC[C ′[ ˜ẽi/x̃i@pi]]

Figure 2.4: Choreography Calculus, structural congruence ≡.

C[v/x@q], which substitutes x with v only under the free process name q in C, modelling
local variables. Rule bC|ASYNCe captures the asynchronous behaviour of endpoint systems,
allowing a process to send a message and then proceed freely before the intended receiver
actually receives it. In the rule, the sender of η performs the action λ in the continuation
C without waiting for the message in η to be delivered. We check that the receiver of η is
not involved in λ since otherwise causality between η and λ would be violated. Finally, η
is kept for the later observation of the message delivery. In rule bC|EQe, the relation R can
be either the swapping relation 'C or the structural congruence ≡. Structural congruence
handles name restriction and recursion unfolding; it is formally defined as the smallest
congruence supporting α-conversion and satisfying the rules reported in Figure 2.4. In the

rule for recursion unfolding (last rule in Figure 2.4), we use the notation C[X〈p̃(ẽ, k̃)〉] for

indicating that X〈p̃(ẽ, k̃)〉 is a subterm of C that we replace with the term C ′[ ˜ẽi/x̃i@pi]
(the substitution of the procedure parameters in its body with the expressions used in the
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G ::= A -> B : 〈U〉;G (com)

| A -> B : {li : Gi}i∈I (branch)

| end (end)

| rec t;G (rec)

| t (call)

U ::= S | G@A (values)

S ::= bool | int | string | . . . (sort)

Figure 2.5: Global Types, syntax.

call) in the right-hand side.

Deadlock-freedom of Choreographies. Choreographies enjoy deadlock-freedom, pro-
vided that (i) they do not contain free variable names and (ii) the arguments in procedure
calls match the parameters of their respective procedure definitions. We refer to property
(ii) as well-sortedness in the remainder.

Theorem 2.3.2 (Deadlock-freedom). Let C be well-sorted and contain no free variable
names; then, C 6≡ 0 implies that there exist C ′, λ such that C λ−→ C ′.

Proof. By induction on the structure of C. The interesting cases are C = def X(D̃) =
C ′ inX〈Ẽ〉 and C = p.e -> q.x : k;C ′. For the first, we can apply structural congru-
ence to expand the call because C is well-sorted and then the thesis follows by induction
hypothesis. For the second case, we can apply rule bC|COMe because we can evaluate e ↓ v
as C contains no free variable names. All other cases are trivial: they follow immediately
by the semantics of the Choreography Calculus, since all other terms can be reduced by a
corresponding rule.

2.4 Typing Choreographies

We now present our typing system which allows to specify protocols in terms of global
types [55, 21] and then check whether session behaviours in a choreography respect them.

2.4.1 Types

We report the syntax and semantics of global types, types for specifying multiparty proto-
cols.

2.4.1.1 Syntax

The syntax of global types is reported in Figure 2.5. A type A -> B : 〈U〉;G abstracts
an interaction from role A to role B with continuation G, where U , dubbed carried type,
is the type of the exchanged message. A carried type U can either be a basic type S or a
delegation type G@A. Communicating G@A means that the sender role delegates to the
receiver role her role A in protocol G. In the type A -> B : {li : Gi}i∈I , role A can select
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A -> B : 〈U〉;G A -> B:〈U〉−−−−−−→ G
bG|COMe

A -> B : {li : Gi}i∈I∪{j}
A -> B:[lj ]−−−−−−→ Gj

bG|BRANCHe

G[rec t;G/t]
α−→ G′

rec t;G
α−→ G′

bG|RECe
G1 'G G′1

α−→ G′2 'G G2

G1
α−→ G2

bG|SWAPe

G
α−→ G′ A ∈ roles(α), B 6∈ roles(α)

A -> B : 〈U〉;G α−→ A -> B : 〈U〉;G′
bG|ACOMe

Gj
α−→ G′j A ∈ roles(α), B 6∈ roles(α)

A -> B : {li : Gi}i∈I∪{j}
α−→ A -> B : {lj : G′j}

bG|ABRANCHe

Figure 2.6: Global Types, semantics.

one label li offered by role B and the protocol continues as Gi. Type end is the terminated
protocol. The types rec t;G and t handle recursion. We regard recursive types in the
standard way [88], i.e., taking an equi-recursive view such that type variables only appear
under prefixes.

2.4.1.2 Semantics

We give a semantics for global types, denoted by α−→, which expresses the (abstract) exe-
cution of protocols. Formally, G α−→ G′ is the smallest relation on the recursion-unfolding
of global types satisfying the rules given in Figure 2.6, where labels α are defined as:

α ::= A -> B : 〈U〉 | A -> B : [l]

A label α shows which interaction is consumed. Since our discussion on asynchrony and
parallelism applies also to protocols, we need to capture these aspects also in their se-
mantics. Similarly to rule bC|ASYNCe for choreographies, rule bG|ACOMe models asynchrony
in global types by allowing a sender role to proceed before the corresponding receiver has
actually received the message. Rule bG|ABRANCHe does the same for branching. Observe that
since we are allowing an asynchronous action from inside branch Gj to take place, we re-
strict the branching to the choice lj : Gj in order to disable the other branches. In bG|SWAPe,
the relation 'G for global types models parallelism and is defined similarly to 'C ; for-
mally, it is the smallest congruence satisfying the rules in Figure 2.7. The rules are similar
to the ones for 'C , where conditional is now replaced by branching.

2.4.2 Type checking

We now introduce our multiparty session typing, which checks that sessions in a program
(choreography without restrictions) follow the protocol specifications given as global types.
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{A, B} � {C, D}
A -> B : 〈U〉; C -> D : 〈U ′〉 'G C -> D : 〈U ′〉; A -> B : 〈U〉

bGS|COM-COMe

{A, B} � {C, D}
A -> B : {li : C -> D : 〈U〉; Gi}i∈I

'G
C -> D : 〈U〉; A -> B : {li : Gi}i∈I

bGS|COM-BRAe

{A, B} � {C, D}
A -> B : {li : C -> D : {l′j : Gij}j∈J}i∈I

'G
C -> D : {l′j : A -> B : {li : Gij}i∈I}j∈J

bGS|BRA-BRAe

Figure 2.7: Global Types, swap relation 'G .

(Unrestricted Env.) Γ ::= ∅ (empty env.)
| Γ, a :G〈Ã|B̃〉 (service)
| Γ, x@p :S (variable)
| Γ, X(D̃) : (Γ; ∆) (definition)
| Γ, p :k[A] (ownership)

(Session Env.) ∆ ::= ∅ (empty env.)
| k :G (session)

Figure 2.8: Choreography Calculus, typing environments.

We use two kinds of typing environments, the unrestricted environments Γ and the session
environments ∆. Their syntax is reported in Figure 2.9.

An unrestricted environment Γ contains type information that can be reused in a type
derivation. A typing a : G〈Ã|B̃〉 carries the global type of a shared channel a, specifying
how a session started through a has to be executed after initialisation; in the type, Ã are
the roles of the active processes and B̃ the roles of the service processes. In the remain-
der, whenever we write a :G〈Ã|B̃〉 we assume that Ã and B̃ are all the roles in G, formally
{Ã, B̃} = roles(G) where roles returns the set of roles in a protocol G. We will use the
knowledge of which roles are to be implemented as services to enforce that services remain
available during execution. Γ also keeps the sort types of variables at processes, x@p :S,
and the environments needed to type recursive procedures, X(D̃) : (Γ; ∆). Finally, an
ownership typing p :k[A] asserts that p plays role A in session k. A session environment ∆
records the global type of each running session k, k :G, tracking the protocols that sessions
are expected to follow. Differently from unrestricted environments, session environments
contain linear typings; specifically, each interaction inside a global type in a typing k :G
must be consumed exactly once. We adopt the standard assumption that typing environ-
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ments are maps: a shared channel, a variable at a process, a recursive variable, or a session
can appear at most once in the same environment. Typings p :k[A] in a Γ are exceptions to
this assumption: a process can appear more than once, but we can write Γ, p :k[A] only if p
is not associated to any other role in the same session k in Γ. Consequently, a process can
participate in multiple sessions playing different roles, but it cannot participate in the same
session with more than one role.

Typing judgements have the shape:

Γ ` C . ∆

For the sake of presentation, we often highlight the term that we are typing as done above.
Intuitively, a choreography C is well-typed provided that shared channels are used and
processes play roles according to Γ, and session channels are used according to ∆. We can
now present our typing rules. We discuss them below one by one.

Start. We type session starts as follows:

Γ ` a : G〈Ã|B̃〉 Γ, init(p̃[A], q̃[B], k) ` C . ∆, k :G q̃ 6∈ Γ

Γ ` p̃[A] start q̃[B] : a(k);C . ∆
bT|STARTe

Rule bT|STARTe types a (start) term by checking that, in the subterm C, session k is used
according to the type G of the shared channel a used for creating the session. Each process
in the (start) term is given ownership of the role declared for it in the created session k by
using the function init, which returns a set of ownership assignments as formalised below:

init(p̃[A], k) =
{

q :k[B] | q[B] ∈ p̃[A]
}

We abuse the notation q̃ 6∈ Γ for checking that no process in q̃ appears in Γ, ensuring the
freshness of the newly created service processes.

Communication. The typing rule for communications is:

Γ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S ` C . ∆, k :G

Γ ` p[A].e -> q[B].x : k;C . ∆, k :A -> B : 〈S〉;G
bT|COMe

Above, we check that the communication is expected by the protocol for session k in the
session environment. Furthermore, the processes performing the communication must own
their respective roles in the session. This is obtained by the judgement Γ ` p[A] -> q[B] : k,
which reads “an interaction between process p playing role A and process q playing role B
over session k respects the channel ownerships in Γ”. We formalise this judgement with a
system for ownership typing, whose only rule is the following one:

Γ ` p :k[A], q :k[B]

Γ ` p[A] -> q[B] : k
bO|COMe

Basically, a judgement Γ ` p[A] -> q[B] : k is valid if and only if the ownership typings
p : k[A] and q : k[B] are in Γ3. Rule bT|COMe also checks that the type of the expression sent

3For now, ownership typing is straightforward and its reasoning could be easily embedded directly in the
typing rules for choreographies. However, defining it as a separate system will allow us to extend ownership
reasoning elegantly in the rest of our presentation, for handling runtime terms in § 2.4.3 and § 3.4.
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by the sender is the expected carried type S in the protocol of the session. Finally, the
continuation C is typed by assigning the type S to the variable used by the receiver in the
communication.

Selection. We type selections with the following rule:

Γ ` p[A] -> q[B] : k Γ ` C . ∆, k :Gj j ∈ I
Γ ` p[A] -> q[B] : k[lj ];C . ∆, k :A -> B : {li : Gi}i∈I

bT|SELe

A selection of a label lj on session k is well-typed if the involved processes own their
respective roles in the session and the label is in those allowed by the protocol of session k
(j ∈ I). The continuation C must then implement the selected continuation Gj on session
k.

Delegation. The typing rule for session delegations is:

Γ ` p[A] -> q[B] : k Γ, q :k′[C] ` C . ∆, k :G, k′ :G′

Γ, p :k′[C] ` p[A] -> q[B] : k〈k′[C]〉;C . ∆, k :A -> B : 〈G′@C〉;G, k′ :G′
bT|DELe

Rule bT|DELe addresses session delegation by transferring the ownership of role C in session
k′ from the sender process p to the receiver process q. The global type G′ of the delegated
session must be the expected one in the protocol for session k; the latter also specifies
which role C in session k′ must be transferred.

Conditional. We type conditionals with the rule:

Γ ` e@p : bool Γ ` C1 . ∆ Γ ` C2 . ∆

Γ ` if e@p thenC1 elseC2 . ∆
bT|CONDe

Rule bT|CONDe is standard. First, we check that the expression used as condition can be
evaluated as a boolean; then, we check that regardless of the branch chosen by process p
all protocols are implemented as expected by the session environment ∆.

Restriction. The rule for typing a name restriction follows:

Γ ` C . ∆

Γ \ r ` (νr) C . ∆ \ r
bT|RESe

Rule bT|RESe is standard. Above, we abuse the notations Γ \ r and ∆ \ r for hiding all
typings containing the name r from, respectively, environments Γ and ∆. Observe that if r
is a process identifier, then only Γ is affected since ∆ never refers to processes.

Termination. The typing rule for the terminated choreography is:

end(∆)

Γ ` 0 . ∆
bT|ENDe

Rule bT|ENDe is carried over from the standard type system of global types [55]. A ter-
minated choreography 0 is well-typed under any unrestricted environment Γ and session
environment ∆, provided that each session k typed in ∆ has type end, denoting that its
protocol is terminated; the latter condition is checked in the premise of rule bT|ENDe using
the auxiliary predicate end(∆). Formally, the predicate end(∆) is true if and only if for all
typings k :G in ∆, we have that G = end.
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Recursion. We type definitions of recursive procedures and their calls with the follow-
ing respective rules:

Γ, X(D̃) : (Γ′; ∆′) ` C . ∆ Γ′, X(D̃) : (Γ′; ∆′) ` C ′ . ∆′ Γ′|sha ⊆ Γ

Γ ` def X(D̃) = C ′ inC . ∆
bT|DEFe

end(∆) Γ′′ ` xij@pi : Sij Γ ` eij@pi : Sij Γ′ ⊆ Γ

D = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n) E = p1(ẽ1, k̃1), . . . , pn(ẽn, k̃n)

Γ, X(D̃) : (Γ′,Γ′′; ∆′) ` X〈Ẽ〉 . ∆,∆′
bT|CALLe

Rule bT|DEFe types a recursive procedure and the choreography in which it is used. We
assume that we can write X(D̃) : (Γ; ∆), where D = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n), only
when the following conditions hold:

(i) q :k[A] ∈ Γ iff ∃i ∈ [1, n]. q = pi ∧ k ∈ k̃i

(ii) y@q :S ∈ Γ iff ∃i ∈ [1, n]. q = pi ∧ y ∈ x̃i

(iii) dom(∆) =
⋃
i∈[1,n] k̃i

Above, we check that all the processes and sessions used for typing a definition body have
been declared as parameters. The definition body can also use all the shared channels and
other previously defined procedures that are in Γ (Γ′|sha ⊆ Γ, where Γ′|sha denotes the
subset of all shared channel and definition typings in Γ′). Rule bT|CALLe is standard, as it
simply checks that all the expressions used for invoking the procedure have the same types
as their respective parameter declarations in the procedure definition.

Example 2.4.1 (Choreography Typing). The protocol in Example 2.2.1 types the shared
channel a in Example 2.2.2.

2.4.3 Runtime typing

For showing that our typing discipline is sound (well-typed programs never go wrong), we
need to extend our typing to handle the runtime behaviour of our choreography calculus.
Specifically, we need to deal with two issues: asynchronous delegations and parallelism.

2.4.3.1 Typing Asynchronous Delegations

Asynchronous delegations, i.e., delegations executed using rule bC|ASYNCe, introduce the
need for a more refined typing of session ownerships that takes asynchrony into account
when dealing with runtime terms. Formally, we check runtime choreographies with new
judgements of the following form:

Γ; Σ ` C . ∆

Above, the new environment Σ, dubbed asynchrony environment, contains information
about sessions that have been delegated by rule bC|ASYNCe. Asynchrony environments contain
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(Asynchrony Env.) Σ ::= ∅ (empty env.)
| Σ, p :k[A] (async. delegation)

Figure 2.9: Choreography Calculus, asynchrony typing environment Σ.

session ownership information, which we will use to record ownership transfers by means
of asynchronous delegations:

We discuss this aspect with an example. Consider the following choreography:

C = p[A].e -> q[B].x : k︸ ︷︷ ︸; p[C] -> r[D] : k′〈k[A]〉︸ ︷︷ ︸; r[A].e′ -> s[E].y : k︸ ︷︷ ︸
η1 η2 η3

By rule bC|ASYNCe, the choreography C may execute η2 before η1 and reduce to η1; η3. When
typing η1; η3, we need to remember the delegation performed by η2 using Σ, since we can-
not construct an environment Γ containing ownership information for typing both η1 and
η3 (the latter would require Γ to contain both p : k[A] and r : k[A], which are in contradic-
tion). Therefore, the choreography η1; η3 would be well-typed with Σ = p : k[A] but not
with Σ = ∅. Parallelism can actually make things worse, e.g., η3; η1, a swap of η1; η3, is
clearly still safe at endpoint, since the output in η1 has already been executed and thus p
will no longer use k.

We extend our type system to gracefully handle cases such as the one described above
with two modifications. First, we change rule bO|COMe to consider asynchronous delegations
when typing session ownerships by using Σ:

(Γ ` p :k[A] ∨ Σ ` p :k[A]) Γ ` q :k[B] Σ 6` q :k[B]

Γ ` p[A] -> q[B] : k
bO|COMe

Above, we are now allowing the sender process p to play role A in a session k if it either
owns the role (Γ ` p : k[A]) or it has asynchronously delegated the role to another process
(Σ ` p :k[A]). For the receiver process q, we require instead that it owns role B in session k
(Γ ` q :k[B]) and that it has not asynchronously delegated it (Σ 6` q :k[B]). The difference
between the checks on Σ for, respectively, the sender and receiver processes reflects that
asynchrony is a property of sending actions only. The second modification we need is for
rule bT|DELe, which we change as follows:

Γ; Σ ` p[A] -> q[B] : k p :k′[C] 6∈ Σ G′ 'G G′′

Γ, q :k′[C]; Σ \ q :k′[C] ` C . ∆, k :G, k′ :G′

Γ, p :k′[C]; Σ ` p[A] -> q[B] : k〈k′[C]〉;C . ∆, k :A -> B : 〈G′′@C〉;G, k′ :G′
bT|DELe

The new version of rule bT|DELe is similar to the previous one: the only additions are the
usage of environment Σ and the check k′[C] 6∈ Σ. The latter ensures that C is played only
by one process, in order to avoid races on the receiving of messages for C in session k.

2.4.3.2 Typing Parallelism

Consider the following protocol:

G = A -> B : 〈int〉; C -> D : 〈string〉
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which can correctly type public channel a in the choreography:

C =
p[A], q[B] start r[C], s[D] : a(k);
p[A].e -> q[B].x : k; r[C].e′ -> s[D].y : k

Since {p, q} ∩ {r, s} = ∅, we can swap C with C ′ (C 'C C ′) such that:

C ′ =
p[A], q[B] start r[C], s[D] : a(k);
r[C].e′ -> s[D].y : k; p[A].e -> q[B].x : k

Public channel a in C ′ does not have type G anymore, but C ′ is clearly still correct since
we can easily follow its swap from C in type G using swapping for global types:

G 'G C -> D : 〈string〉; A -> B : 〈int〉

Our type system, however, does not deal with swappings in global types, and would reject
C ′. We made this choice so that programmers do not need to think about the swap relations
when writing programs, which could lead to confusing error messages in implementations.
However, at runtime, we must consider swaps in order to preserve well-typedness wrt re-
ductions (Subject Reduction). Therefore, our runtime type system augments rules bT|STARTe
and bT|DELe for typing up to 'G .

2.4.3.3 Runtime Typing Rules

We update all the rules for typing choreographies, by following the aforementioned obser-
vations on asynchrony and parallelism. The rules are reported in Figure 2.10. Each rule is
extended to handle the asynchrony environment Σ. For recursive procedures, we also ex-
tend their typing to handle asynchronous delegations by adding the possibility to specify an
asynchrony environment, formally X(D̃) : (Γ; Σ; ∆) where we assume that the following
condition is respected, for D = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n):

q :k[A] ∈ Σ iff ∃i ∈ [1, n]. q = pi ∧ k ∈ k̃i

2.4.4 Properties

Hereby, we present the main properties of our type system. In the remainder, we write
∆

k:α−−→ ∆′ whenever (i) k :G is in ∆, (ii)G α−→ G′, and (iii) ∆′ is the result of substituting
k :G in ∆ with k :G′. Also, we write ∆ 'G ∆′ iff dom(∆) = dom(∆′) and ∆(k) 'G
∆′(k) for all k ∈ dom(∆).

Lemma 2.4.1 (Subject Swap). Assume Γ; Σ ` C . ∆; then, C 'C C ′ implies Γ; Σ `
C ′ . ∆′ for some ∆′ such that ∆ 'G ∆′.

Proof. By induction on the rules that define 'C (Figure 2.2), showing that for each rule
there is another corresponding rule in the definition of 'G (Figure 2.7) for performing the
appropriate swapping in ∆.

Lemma 2.4.1 states that if a choreography C is well-typed, then each swapping C 'C
C ′ can be followed by the typing system by swapping the global types used for typing the
sessions in C. We use this Lemma for proving the following result of subject reduction.

Next, we formalise the soundness of our typing system by establishing a relationship
between the semantics of choreographies and that of global types.
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Γ; Σ ` a : G〈Ã|B̃〉 G 'G G′ q̃ 6∈ Γ; Σ

Γ, init({p̃[A], q̃[B]}, k); Σ ` C . ∆, k :G′

Γ; Σ ` p̃[A] start q̃[B] : a(k);C . ∆
bT|STARTe

Γ; Σ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S; Σ ` C . ∆, k :G

Γ; Σ ` p[A].e -> q[B].x : k;C . ∆, k :A -> B : 〈S〉;G
bT|COMe

Γ; Σ ` p[A] -> q[B] : k Γ; Σ ` C . ∆, k :Gj j ∈ I
Γ; Σ ` p[A] -> q[B] : k[lj ];C . ∆, k :A -> B : {li : Gi}i∈I

bT|SELe

Γ; Σ ` p[A] -> q[B] : k p :k′[C] 6∈ Σ G′ 'G G′′

Γ, q :k′[C]; Σ \ q :k′[C] ` C . ∆, k :G, k′ :G′

Γ, p :k′[C]; Σ ` p[A] -> q[B] : k〈k′[C]〉;C . ∆, k :A -> B : 〈G′′@C〉;G, k′ :G′
bT|DELe

Γ ` e@p : bool Γ; Σ ` C1 . ∆ Γ; Σ ` C2 . ∆

Γ; Σ ` if e@p thenC1 elseC2 . ∆
bT|CONDe

Γ; Σ ` C . ∆

Γ \ r; Σ \ r ` (νr) C . ∆ \ r
bT|RESe end(∆)

Γ; Σ ` 0 . ∆
bT|ENDe

Γ, X(D̃) : (Γ′; Σ′; ∆′); Σ ` C . ∆

Γ′, X(D̃) : (Γ′; Σ′; ∆′); Σ′ ` C ′ . ∆′ Γ′|sha ⊆ Γ

Γ; Σ ` def X(D̃) = C ′ inC . ∆
bT|DEFe

end(∆) Γ′′ ` xij@pi : Sij Γ ` eij@pi : Sij Γ′ ⊆ Γ Σ′ ⊆ Σ

D = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n) E = p1(ẽ1, k̃1), . . . , pn(ẽn, k̃n)

Γ, X(D̃) : (Γ′,Γ′′; Σ′; ∆′) ` X〈Ẽ〉 . ∆,∆′
bT|CALLe

Figure 2.10: Choreography Calculus, runtime typing rules.
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Γ; Σ ` p[A] -> q[B] : k Γ ` v :S Γ ` x@q :S

Γ; Σ ` p[A].v -> q[B].x : k . k :A -> B : 〈S〉
bL|COMe

Γ; Σ ` p[A] -> q[B] : k

Γ; Σ ` p[A] -> q[B] : k[l] . k :A -> B : [l]
bL|SELe

Γ; Σ ` p[A] -> q[B] : k Γ ` p :k′[C]

Γ; Σ ` p[A] -> q[B] : k〈k′[C]〉 . k :A -> B : 〈G@C〉
bL|DELe

Γ; Σ ` λ . k :α

Γ; Σ ` (νr) λ . k :α
bL|RESe (no rule for τ@p)

Figure 2.11: Choreography Calculus, label typing.

Theorem 2.4.2 (Subject Reduction). Assume Γ; Σ ` C . ∆; then, C λ−→ C ′ implies
that:

• if λ = (ν r̃) τ@p, then there exists ∆′ such that Γ; Σ ` C ′ . ∆′ and ∆ 'G ∆′;

• otherwise, there exist Γ′, Σ′ and ∆′ such that Γ′; Σ′ ` C ′ . ∆′, where ∆
k:α−−→ ∆′

and Γ; Σ ` λ . k :α.

Proof. See Appendix A.1.

Theorem 2.4.2 states that if a choreography is well-typed and makes a reduction, then
the reductum is still well-typed; furthermore, if the reduction was a communication on a
session, then the corresponding global type of the session can also make a corresponding
reduction. The correspondence between the labels of the choreography and global type
reductions is formalised by the label typing judgement Γ; Σ ` λ . k :α, whose rules are
reported in Figure 2.11.

2.4.5 Type Inference

In our model, choreographies and global types share deep syntactic and semantic corre-
spondences. We exploit this aspect to perform the type inference of public channels; there-
fore, we can automatically extract the protocols that a choreography implements with its
sessions.

We define type inference following the standard methodology [88]. First, we define
subtyping as set inclusion on branching labels, similarly to the covariant typing of rule
bT|SELe. Then, we modify our rules to determine the principal type of a choreography. In the
remainder of this section we shall consider only the typing of programs, therefore omitting
the asynchrony environment Σ (which is used only for typing runtime terms). Moreover,
we only refer to the shared names of Γ and ignore normal variables and recursion variables
when talking about principal typing.

Subtyping is formally defined as follows.
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I ⊆ J ∀i ∈ I.Gi << G′i
A -> B : {li : Gi}i∈I << A -> B : {li : G′i}i∈J

bSUB|BRANCHe

G1 << G′1 G2 << G′2
A -> B : 〈G1@A〉;G2 << A -> B : 〈G′1@A〉;G′2

bSUB|DELe

(G ≈ G′ ∨ G 'G G′ ) G << G′′

G′ << G′′
bSUB|EQe end ≈ G

end << G
bSUB|ENDe

Figure 2.12: Global Types, subtyping.

Definition 2.4.3 (Subtyping). The subtyping << is the smallest relation over closed and
unfolded global types satisfying the rules reported in Figure 2.12. We extend << to set
inclusion and point-wise to the typing of shared names and sessions. Given two types G
and G′, we denote their least upper bound (lub) wrt << with GOG′.

Remark 2.4.4 (Algorithmic Subtyping). Subtyping is algorithmically checkable. Given the
simplicity of global types, checking the subtyping relation is decidable since (i) swapping
is decidable (one-time unfolding of recursion is enough given that global types are regular
trees) and (ii) global types are regular trees hence recursive types can be standardly dealt
with as shown in [55] (cf. [88]). In particular, our swapping relation 'G plays a similar
rôle as the swap of outputs in [75].

Proposition 2.4.1.1 (Subsumption). Let Γ << Γ′ and ∆ << ∆′. Then, Γ ` C . ∆
implies Γ′ ` C . ∆′.

Proof. Immediate by the definitions of subtyping and rule bT|SELe.

We are now able to show that our type system has principal typing: this will follow by
subsumption and minimal typing wrt subtyping.

Proposition 2.4.1.2 (Existence of Minimal Typing). Let Γ ` C . ∅; then, there exists Γ0

such that Γ0 ` C . ∅ and whenever Γ′ ` C . ∅ for some Γ′, we have that Γ0 << Γ′.
The environment Γ0 can be algorithmically calculated from C and is called the minimal
typing of C.

Proof. The proof is standard and consists in constructing the minimal typing system defin-
ing Γ `min C . ∅, whose rules are reported in Figure 2.13. Note that we focus on
the reconstruction of global types, and leave the reconstruction of variable types undefined
since it is entirely standard (see [88]). To this end, the main modification is to change the
rule for selections, bMIN|SELe, to type a selection with a singleton branching global type and
then use subtyping to determine the least upper bound of branch types in rules bMIN|START2e
and bMIN|DEFe (for shared names) and bMIN|CONDe for conditionals. In the rules bMIN|ENDe and
bMIN|CALLe we use some auxiliary information, which can be easily obtained through a stan-
dard preliminary top-down visit of the choreography syntax tree (cf. [31]). Specifically,
vars and ownerships are respectively the variable and the ownership typings of the chore-
ography whose type is being inferred. We denote with vars(X) and ownerships(X) the
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same information, but obtained by inspecting the body of the inner-most recursive proce-
dure X instead. The set sessions contains exactly all the session identifiers used in the
choreography whose type we are inferring. Finally, solve(∆, t) solves the equation t = G
for all global types contained in ∆.

Γ, init({p̃[A], q̃[B]}, k) `min C . ∆, k :G q̃ 6∈ Γ a 6∈ Γ

Γ, a :G〈Ã|B̃〉 `min p̃[A] start q̃[B] : a(k);C . ∆
bMIN|START1e

Γ, init({p̃[A], q̃[B]}, k), a :G〈Ã|B̃〉 `min C . ∆, k :G′ q̃ 6∈ Γ

Γ, a : (GOG′)〈Ã|B̃〉 `min p̃[A] start q̃[B] : a(k);C . ∆
bMIN|START2e

Γ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S `min C . ∆, k :G

Γ `min p[A].e -> q[B].x : k;C . ∆, k :A -> B : 〈S〉;G
bMIN|COMe

Γ ` p[A] -> q[B] : k Γ `min C . ∆, k :G

Γ `min p[A] -> q[B] : k[l];C . ∆, k :A -> B : {l : G}
bMIN|SELe

Γ ` p[A] -> q[B] : k Γ, q :k′[C] `min C . ∆, k :G, k′ :G′

Γ, p :k′[C] `min p[A] -> q[B] : k〈k′[C]〉;C . ∆, k :A -> B : 〈G′@C〉;G, k′ :G′
bMIN|DELe

Γ ` e@p : bool Γ1 `min C1 . ∆1 Γ2 `min C2 . ∆2 Γ = Γ1OΓ2

Γ `min if e@p thenC1 elseC2 . ∆1O∆2

bMIN|CONDe

Γ `min C . ∆

Γ \ r `min (νr) C . ∆ \ r
bMIN|RESe

Γ = ownerships ∆ = {k : end | k ∈ sessions}
Γ `min 0 . ∆

bMIN|ENDe

Γ(X) = Γ′(X) if X ∈ dom(Γ) ∩ dom(Γ′)

Γ `min C . ∆ Γ′ `min C ′ . ∆′ Γ′|sha ⊆ Γ

(ΓOΓ′) \X `min def X(D̃) = C ′ inC . solve(∆O∆′, tX)
bMIN|DEFe

Γ = vars ∪ ownerships k̃ ∪ k̃′ = sessions k̃ =
⋃
i∈[1,n] k̃i

Γ′ = vars(X) ∪ ownerships(X) Γ′ ` xij@pi : Sij Γ ` eij@pi : Sij Γ′ ⊆ Γ

D = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n) E = p1(ẽ1, k̃1), . . . , pn(ẽn, k̃n)

Γ, X(D̃) : (Γ′; k̃ :tX) `min X〈Ẽ〉 . k̃ :tX , k̃′ :end
bMIN|CALLe

Figure 2.13: Choreography Calculus, minimal typing rules.
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P,Q ::= a[Ã](k);P (req)
| !a[A](k);P (serv)
| k[A]!B〈e〉;P (com-s)
| k[A]!B⊕ l;P (sel-s)
| k[A]!B〈k′[C]〉;P (del-s)
| if e thenP elseQ (cond)
| def X(x̃, k̃) = Q inP (def)
| (νk) P (res)

h ::= m · h (queue)
m ::= (A, B,w) (mesg)
w ::= v | l | k[A] (mesg-val)

| a[A](k);P (acc)
| P | Q (par)
| k[B]?A(x);P (com-r)
| k[B]?A& {li : Pi}i∈I (branch)
| k[B]?A(k′[C]);P (del-r)
| 0 (inact)
| X〈ẽ, k̃〉 (call)
| k : h (s-queue)

Figure 2.14: Endpoint Calculus, syntax.

Corollary 2.4.1.1 (Principal Typing). Minimal typing is also principal typing.

Example 2.4.5 (Two-buyer-helper type inference). For example, from b in Example 2.2.3,
we can infer the following global type:

B -> H : 〈int〉; B -> H :


done : end,

del : B -> H : 〈int〉;
B -> H : 〈(. . . as Line 2 in Example 2.2.1. . . )@B2〉


2.5 Endpoint Projection and its Properties

We now address endpoint code generation. First, we recall an endpoint model that we shall
use as a target language. Then, we show how to generate endpoint code for each process
in a choreography and, finally, how to obtain the code for the entire system. Our code
generation, the EndPoint Projection (EPP), will satisfy the EPP Theorem, which gives
a correspondence between the asynchronous semantics of choreographies and the one of
endpoint terms.

2.5.1 Endpoint Model

We model endpoint code with the Endpoint Calculus, a variant of the calculus for multi-
party sessions [55, 21].

2.5.1.1 Syntax

The syntax of terms in the endpoint calculus is reported in Figure 2.14. In the syntax, P ,Q,
. . . are processes. Terms (req), (acc) and (serv) support the creation of a session k (which is
a bound name). Term (req) requests the creation of a session k with roles Ã through shared
channel a; a requesting process is then responsible for implementing the first role in Ã in the
new session k. A request for creating a session can be accepted on the same shared channel
by an active process, term (acc), or by a service process (which acts as replicated), term
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(serv). Terms (com-s) and (com-r) model, respectively, the sending and the receiving of a
value. Sending and receiving actions are tagged with roles, to express (i) the role played by
the process in the session and (ii) which process we wish to send/receive a message to/from.
Specifically, we read k[A]!B〈e〉 as “from role A in session k, send the value of expression
e to the process that plays role B in session k”; dually, we read k[B]?A(x) as “receive a
value for role B in session k from the process that plays role A and store it in variable
x”. The same reasoning applies to the other terms. Terms (sel-s) and (branch) model,
respectively, the selection of a branch and the offering of some branches. Terms (del-s) and
(del-r) handle session delegation, by respectively sending and receiving a session; both the
session k′ and the role C are bound in (del-r), so the receiver of a delegation does not know
what session and role it will receive. In term (cond), a process evaluates a condition e to
choose whether to continue as process P orQ. Term (par) models the parallel composition
of processes, allowing their actions to interact. Term (inact) denotes a terminated process.
Terms (def) and (call) model, respectively, the definition and call of a recursive procedure.
The restriction term (νk) P is standard and restricts the scope of session k to process P .
A session queue k : h is a FIFO queue h for session k. Session queues are used to give an
asynchronous semantics to communications. A message m in a queue is a triple (A, B,w),
where A is the role of the message sender, B is the intended receiver role for the message,
and w is the content of the message (a value v, a label l, or a delegated channel k[A]).

Example 2.5.1 (Two-Buyer Endpoint Implementation). The process Ps | Pb1 | Pb2 is an
endpoint implementation of Example 2.2.2. The code for each endpoint process is given
below.

Ps = !a[S](k); k[S]?B1(x1); k[S]!B1〈quote(x1)〉; k[S]!B2〈quote(x1)〉;

k[S]?B2&

{
ok : k[S]?B2(x2); k[S]!B2〈ddate〉,

quit : 0

}
Pb1 = a[B1, B2, S](k); k[B1]!S〈book〉; k[B1]?S(y1); k[B1]!B2〈contrib(y1)〉
Pb2 = a[B2](k); k[B2]?S(z1); k[B2]?B1(z2);

if (z1−z2≤100)
then k[B2]!S⊕ ok; k[B2]!S〈addr〉; k[B2]?S(z3)
else k[B2]!S⊕ quit

2.5.1.2 Endpoint Semantics

We give semantics to our endpoint model with a labelled reduction relation
µ−→, defined as

the smallest relation on processes P satisfying the rules reported in Figure 2.15. Labels,
ranged over by µ, are defined as:

µ ::= Ã start B̃ : a(k) (start) | τ (internal)

| !A -> B : k〈v〉 (com-s) | ?A -> B : k〈v〉 (com-r)

| !A -> B : k〈k′[C]〉 (del-s) | ?A -> B : k〈k′[C]〉 (del-r)

| !A -> B : k[l] (sel-s) | ?A -> B : k[l] (sel-r)
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C̃ = Ã, B̃ Ã = A1, . . . , An B̃ = B1, . . . , Bm R =
∏
i∈[1,m]!a[Bi](k);Qi

a[C̃](k);P |
∏
i∈[2,n] a[Ai](k);Pi | R

Ã start B̃:a(k)−−−−−−−−−→

(νk)
(
P |

∏
i∈[2,n] Pi |

∏
i∈[1,m]Qi | k : ∅

)
| R

bP|STARTe

e ↓ v

k[A]!B〈e〉;P | k : h
!A -> B:k〈v〉−−−−−−−→ P | k : h · (A, B, v)

bP|COM-Se

k[B]?A(x);P | k : (A, B, v) · h ?A -> B:k〈v〉−−−−−−−→ P [v/x] | k : h
bP|COM-Re

k[A]!B〈k′[C]〉;P | k : h
!A -> B:k〈k′[C]〉−−−−−−−−−→ P | k : h · (A, B, k′[C])

bP|DEL-Se

k[B]?A(k′[C]);P | k : (A, B, k′[C]) · h ?A -> B:k〈k′[C]〉−−−−−−−−−→ P | k : h

bP|DEL-Re

k[A]!B⊕ l;P | k : h
!A -> B:k[l]−−−−−−−→ P | k : h · (A, B, l)

bP|SEL-Se

j ∈ I

k[B]?A& {li : Pi}i∈I | k : (A, B, lj) · h
?A -> B:k[lj ]−−−−−−−−→ Pj | k : h

bP|BRANCHe

P
µ−→ P ′

def X(x̃, k̃) = Q = P in
µ−→ def X(x̃, k̃) = Q = P ′ in

bP|CTXe

i = 1 if e ↓ true , i = 2 otherwise

if e thenP1 elseP2
τ−→ Pi

bP|CONDe P
µ−→ P ′

(νk) P
(νk) µ−−−−→ (νk) P ′

bP|RESe

P
µ−→ P ′

P | Q µ−→ P ′ | Q
bP|PARe P ≡ P ′ P ′

µ−→ Q′ Q′ ≡ Q
P

µ−→ Q
bP|STRUCTe

Figure 2.15: Endpoint Calculus, semantics.
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(νk) 0 ≡ 0 P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νk) (νk′) P ≡ (νk′) (νk) P ((νk) P ) | Q ≡ (νk) (P | Q) if k /∈ fn(Q)

k : h · (A, B,w) · (C, D,w′) · h′ ≡ k : h · (C, D,w′) · (A, B,w) · h′ (A 6= C or B 6= D)

def X(x̃, k̃) = P ′ in (P | Q) ≡ (def X(x̃, k̃) = P ′ inP ) | Q if X 6∈ fn(Q)

def X(x̃, k̃) = P ′ in0 ≡ 0

def X(x̃, k̃) = Q inP [X〈ẽ, k̃〉] ≡ def X(x̃, k̃) = Q inP [Q[ẽ/x̃]]

Figure 2.16: Endpoint Calculus, structural congruence ≡.

Rule bP|STARTe initiates a multiparty session, by synchronising the processes willing to start
it and thereafter by creating an empty session queue k : ∅. Rules bP|COM-Se, bP|DEL-Se and
bP|SEL-Se send, respectively, a value v, a session channel k′[C], and a label l by putting it in
the queue for Symmetrically, rules bP|COM-Re and bP|DEL-Re respectively extract a value and a
session channel from a queue. Rule bP|BRANCHe fetches a label lj from the queue and then
continues as process Pj . All other rules are standard. The structural congruence ≡ used in
rule bP|STRUCTe is the smallest congruence supporting α-conversion and satisfying the rules
reported in Figure 2.16.

Structural congruence allows us to permute messages with different pairs of roles in
a queue. Technically, this is equivalent to having a full-duplex queue per each pair of
roles [21]. In the rule for recursion unfolding (last rule in Figure 2.16), we use the notation
P [X〈ẽ, k̃〉] for indicating that X〈ẽ, k̃〉 is a subterm of P that we replace with the term
Q[ẽ/x̃] (the substitution of the procedure parameters in its body with the expressions used
in the call) in the right-hand side.

Example 2.5.2 (Two-Buyer Endpoint Semantics). Applying the semantics of the Endpoint
Calculus, we can prove the reduction

Pb1 | Pb2 | Ps
µ−→ (νk) (Qb1 | Qb2 | Qs) | Ps

µ′−−→ . . .
µ′′−−→ Ps

where the processes Qb1 , Qb2 , and Qs are defined below.

Qb1 = k[B1]!S〈book〉; k[B1]?S(y); k[B1]!B2〈contrib(y)〉
Qb2 = k[B2]?S(z1); k[B2]?B1(z2); if (z1 − z2 ≤ 100)

then k[B2]!S⊕ ok; k[B2]!S〈addr〉; k[B2]?S(w)
else k[B2]!S⊕ quit

Qs = k[S]?B1(x); k[S]!B1〈quote(x)〉; k[S]!B2〈quote(x)〉;

k[S]?B2&

{
ok : k[S]?B2(x′); k[S]!B2〈ddate〉

quit : 0

}
Above, we assume that z1 − z2 > 100, µ = B1, B2 start S : a(k), µ′ = !B1 -> S :
k〈book〉, µ′′ =?B2 -> S : k[quit]. Note that Ps will never reduce to 0 since it is a
replicated service. Also, the process is confluent: it always reduces to Ps.
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2.5.2 Process Projection

We establish now how we can project the behaviour of a single process. For this purpose,
we have to consider that the same process may appear in different branches of a choreog-
raphy. For example, consider the following choreography:

if e@p then p[A] -> q[B] : k[l1] else p[A] -> q[B] : k[l2]

Above, p performs an internal choice and then, depending on the chosen branch, sends to q
either label l1 or label l2. Observe that q does not know which branch has been chosen by
p until it receives a label from the latter. Thus, the projection of q should be able to react
to both labels. We address this issue with merging [31]. Whenever the code for a process
p is scattered in different branches of a choreography, we will try to obtain an endpoint
code that implements the behaviours of p in the different branches. Hence, in our example,
the projection of q should be k[B]?A& {l1 : 0, l2 : 0}. We formally define the merging
operator t as follows:

Definition 2.5.3. t is a partial commutative operator on processes such that:

1. (k[A]?B& {li : Pi}i∈I) t (k[A]?B& {lj : Qj}j∈J) =
k[A]?B& ( {li : Pi}i∈I\J ∪ {li : Qi}i∈J\I ∪ {li : (Pi tQi)}i∈I∩J )

2. otherwise, P tQ is defined congruently up to ≡.

We use merging to define the projection of the behaviour of a process in a choreography
onto a term in our endpoint model.

Definition 2.5.4 (Process Projection). [[C]]p is a partial operation from choreographies to
endpoint processes, inductively defined on the structure of C by the rules in Figure 2.17.

Process projection is faithful to the originating choreography, i.e., it does not add (nor
remove) any actions wrt what is specified by the choreography it projects. For a session
start, we project the first process and the other active processes to a request and accepts
respectively; the service processes are projected to endpoint services. In the case of a
communication between two processes, the sender process is projected to an output and
the receiver process to an input. The cases for selection and delegation are similar. The
projection of a conditional if e@p thenC1 elseC2 is a local conditional for the process p;
otherwise, it is the merging of the projections of the two branches C1 and C2, reflecting the
fact that the other processes should behave accordingly to both branches.

Example 2.5.5 (Two-Buyer Projection). The process projections of choreography given in
Example 2.2.2 are the processes reported in Example 2.5.1.

2.5.3 Linearity

The expressivity of the (start) primitive may introduce races on public channels. For ex-
ample, the following choreography

p[A], q[B] start : a(k); r[A], s[B] start : a(k′) (2.1)
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[[p̃[A] start q̃[B] : a(k);C]]r =


a[Ã, B̃](k); [[C]]r if r = p1

a[Ai](k); [[C]]r if r = pi and 2 ≤ i ≤ n
!a[Bi](k); [[C]]r if r = qi and 1 ≤ i ≤ m
[[C]]r otherwise

(
p̃[A] = p1[A1], . . . , pn[An]

q̃[B] = q1[B1], . . . , qm[Bm]

)

[[p[A].e -> q[B].x : k;C]]r =


k[A]!B〈e〉; [[C]]r if r = p
k[B]?A(x); [[C]]r if r = q
[[C]]r otherwise

[[p[A] -> q[B] : k[l];C]]r =


k[A]!B⊕ l; [[C]]r if r = p
k[B]?A& {l : [[C]]r} if r = q
[[C]]r otherwise

[[p[A] -> q[B] : k〈k′[C]〉;C]]r =


k[A]!B〈k′[C]〉; [[C]]r if r = p
k[B]?A(k′[C]); [[C]]r if r = q
[[C]]r otherwise

[[if e@p thenC1 elseC2]]r =

{
if e then [[C1]]relse [[C2]]r if r = p
[[C1]]r t [[C2]]r otherwise

[[def X(D̃) = C ′ inC]]r =

 def X(x̃i, k̃i) = [[C ′]]r in [[C]]r
if r = pi and 1 ≤ i ≤ n

[[C]]r otherwise
(D̃ = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n))

[[X〈Ẽ〉]]r =

{
X〈ẽi, k̃i〉 if r = pi and 1 ≤ i ≤ n
0 otherwise

(Ẽ = p1(ẽ1, k̃1), . . . , pn(ẽn, k̃n))

[[0]]r = 0

(no rule for (νr) C)

Figure 2.17: Choreography Calculus, process projection.
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features four processes starting two different sessions on the same public channel. If we
run their projections in parallel, we have a race between p and r and another between q
and s for synchronising on a. This may result in p starting a session with s and q starting a
session with r, violating the choreography. Here, we introduce a condition, called linearity,
for avoiding this kind of races.

In the sequel an interaction node, denoted by n, is an abstraction of a node in a choreog-
raphy syntax tree. n can either be p̃ start q̃ : a (abstracting a (start) node, where p̃ are free
names) or p -> q (abstracting a session interaction, where both p and q are free names).
We write n1 ≺ n2 ∈ C whenever n1 precedes n2 in the choreography C (as a consequence,
n1 and n2 cannot appear in different branches of a (cond) term). We use interaction nodes
for establishing dependencies between process actions, defined in the following.

Definition 2.5.6 (Dependency). We write n1 ≺p n2 ∈ C if n1 ≺ n2 ∈ C and either

1. n1 = p̃ start q̃ : a and n2 = p -> q where p ∈ p̃, q̃; or,

2. n1 = p̃ start q̃ : a and n2 = r̃ start s̃ : b where p ∈ p̃, q̃ and p ∈ r̃; or,

3. n1 = q -> p and p ∈ fn(n2).

Intuitively, n1 ≺p n2 ∈ C implies that the projection of process p for the originating
node abstracted by n2 will not be enabled before that for n1. We can now define the linearity
property:

Definition 2.5.7 (Linearity). Let C be a choreography. We say that C is linear if for all
nodes n1 = p̃ start q̃ : a and n2 = r̃ start s̃ : a such that n1 ≺ n2 ∈ C we have that
∀r ∈ r̃. ∃p ∈ p̃, q̃. n1 ≺p . . . ≺r n2.

Linearity checks that, for all start nodes n1 ≺ n2 ∈ C on the same a, each active process
in n2 depends on some process in n1, avoiding races between active processes. Linearity
is preserved by our semantics and is decidable, since a choreography is linear whenever its
one-time unfolding of recursions is linear (cf. [55], which formulates a similar notion of
linearity).

Example 2.5.8. In (2.1) we cannot build any dependencies unless, e.g., p = r and q =
s. Instead, the following choreography is linear with dependencies between p and r and
between q and s.

p[A], q[B] start : a(k); p[C] -> r[D] : k′; q[E] -> t[F] : k′;

t[F] -> s[G] : k′; r[A], s[B] start : a(k)

2.5.4 Endpoint Projection

Since different service processes may be started on the same public channel and play the
same role, we use t for merging their behaviours into a single replicated process. We
identify such processes with bCcaA, the service grouping operator, defined below.
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Definition 2.5.9 (Service Grouping). The operator bCcaA is inductively defined on C as
follows:

bp̃[A] start q̃[B] : a(k);CcaA =

{
{r} ∪ bCcaA if r ∈ q̃[B]
bCcaA otherwise

bif e@p thenC1 elseC2caA = bC1caA ∪ bC2caA bX〈Ẽ〉cap = b0cap = ∅

bdef X(D̃) = C ′ inCcaA = bC ′caA ∪ bCcaA

bη;CcaA = bCcaA if η is not a (start)

A service grouping bCcaA visits the structure of a choreography for finding all the ser-
vice processes started on the shared channel a that play role A.

We can finally give the complete definition of EPP. In the following, we say that a
choreography is restriction-free if it does not contain any subterm of the form (νr) C.

Definition 2.5.10 (Endpoint Projection). LetC ≡ (νp̃, k̃)Cf , whereCf is restriction-free.
The EPP of C, written [[C]], is:

[[C]] = (νk̃)

( ∏
p∈ fn(Cf )

[[Cf ]]p︸ ︷︷ ︸
|

∏
k∈ fn(Cf )

k : ∅

︸ ︷︷ ︸
)

|
∏
a,A

( ⊔
p∈bCf caA

[[Cf ]]p

)
︸ ︷︷ ︸

(i) (ii) (iii)

The EPP of a choreography C is the parallel composition of (i) the projections of all
active processes; (ii) the queues for all active sessions; and (iii) the replicated processes
obtained by merging the projections of all service processes with same public channel and
role.

Example 2.5.11. Let C be the two-buyer-helper choreography from Example 2.2.3. Since
h1 and h2 are grouped under bCcbH, the EPP of C will merge their behaviour into a single
process, say, Ph; i.e., [[C]] = [[C]]b1 | [[C]]b2 | [[C]]s | Ph where Ph = [[C]]h1 t [[C]]h2 is given
below:

!b[H](k′); k′[H]?B(z); k′[H]?B&



done : 0,

del : k′[H]?B(z′); k′[H]?B(k[B2]);
if (z−z′≤100)

then k[B2]!S⊕ ok;
k[B2]!S〈addr〉;
k[B2]?S(z′′)

else k[B2]!S⊕ quit


Now that we have defined EPP, we can formalise the intuition that the swapping relation

'C models the parallel execution of processes at the level of choreographies. Since at the
endpoint level parallel execution is captured structurally by the parallel operator | , a
swapping in a choreography does not influence the endpoint system generated by EPP.
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Lemma 2.5.1 (EPP invariance under swapping). Let C 'C C ′. Then, [[C]] = [[C ′]].

Proof (sketch). The main part of the proof is to show that process projection is invariant
under the rules that define the swapping relation for choreographies (Figure 2.2). Rule
bSW|INTERe is a trivial case. For rule bSW|COND-INTERe, we have to check that the projections of
the processes in the swapped interaction η do not change. We simply need to observe
that, in the definition of process projection for conditionals, for each p in η we have that
[[η]]p = [[η]]p t [[η]]p. The last case is rule bSW|COND-CONDe. Here, by the definition of merging,
we can observe that the projection of the choice and its swapped version is the same for all
processes.

2.5.5 EPP Theorem

Before showing the main theorem for our EPP we have to introduce some auxiliary con-
cepts for establishing the relationship between a choreography, its projection, and their
respective reduction labels.

Strict Reductions. In the following, we consider only strict reductions of terms, de-
noted by . Strict reductions are reductions where (ν) -restricted names that are active,
i.e. not under a prefix, are never renamed. Observe that we do not lose generality, since
for every reduction there is always a corresponding strict reduction (cf. [31]). Referring
only to strict reductions allows us to observe the actions performed by restricted names.
Formally this is obtained by changing the rules for handling restriction in the semantics of
the global and endpoint calculi. The updated rules are the ones concerning restriction:

Definition 2.5.12 (New Restriction Rules).

C
λ
 C ′

(νr) C
λ
 (νr) C ′

bC|RESe P
µ
 P ′

(νk) P
µ
 (νk) P ′

bP|RESe

We denote a finite strict reduction chain with C
λ̃
 ∗ C ′, i.e. λ̃ = λ1, . . . , λn for

C
λ1 . . .

λn C ′. We adopt the same notation for strict reduction chains in the endpoint
calculus.

Pruning. In our endpoint model, replicated services remain always available. How-
ever, in a choreography services can be removed by reductions, e.g., by reducing a (start)
term whose public channel does not appear in the reductum. To deal with this asymme-
try we introduce pruning, a relation that allows us to ignore unused endpoint services and
branches (this notion originally comes from [31]).

Definition 2.5.13 (Pruning). Let Q ≡ Q0 | R, where R =
∏
i∈I !ai[Ai](ki);Ri. If further-

more we have that:

(i) ai 6∈ fn(Q0) for every i ∈ I;

(ii) P tQ0 = Q0 for some P ;

(iii) Q0
µ−→ Q′0 implies that there exists P ′ such that P

µ−→ P ′ and P ′ ≺ Q′0.



2.5. Endpoint Projection and its Properties 41

λ̃ ` µ̃

p̃[A] start q̃[B] : a(k), λ̃ ` Ã start B̃ : a(k), µ̃
bTJ|STARTe

?A -> B : k /∈ µ̃1 λ̃ ` µ̃1, µ̃2

p[A].v -> q[B].x : k, λ̃ ` !A -> B : k〈v〉, µ̃1, ?A -> B : k〈v〉, µ̃2

bTJ|COMe

?A -> B : k /∈ µ̃1 λ̃ ` µ̃1, µ̃2

p[A] -> q[B] : k[l], λ̃ ` !A -> B : k[l], µ̃1, ?A -> B : k[l], µ̃2

bTJ|SELe

?A -> B : k /∈ µ̃1 λ̃ ` µ̃1, µ̃2

p[A] -> q[B] : k〈k′[C]〉, λ̃ ` !A -> B : k〈k′[C]〉, µ̃1, ?A -> B : k〈k′[C]〉, µ̃2

bTJ|DELe

λ̃ ` µ̃

τ@p, λ̃ ` τ, µ̃
bTJ|CONDe

ε ` ε
bTJ|EMPTYe

Figure 2.18: Choreography Calculus, trace judgements.

then we write P ≺ Q and say that P prunes Q.

Hereafter, we write Q � P iff P ≺ Q. Intuitively, P ≺ Q means that P is obtained
from Q by:

• removing some unused services (i);

• removing some input branches (ii) that were not going to be used (iii).

Trace Judgements. We establish a formal relationship between the labels of the chore-
ography calculus and those of the endpoint calculus, so that we can judge whether some
actions performed in the endpoint calculus implement the communications described in a
choreography. Intuitively, the entailment λ̃ ` µ̃ judges that the endpoint actions µ̃ imple-
ment the global actions λ̃.

Definition 2.5.14 (EPP trace judgements). The relation λ̃ ` µ̃ is the smallest relation
satisfying the rules reported in Figure 2.18.

We briefly comment the rules for trace judgements. Rule bTJ|STARTe checks that a start
performed in a choreography corresponds to an endpoint start with same roles, shared
channel and session. Rule bTJ|COMe checks that a communication in a choreography trace
is performed at the enpoint level by checking that both the corresponding input and output
actions are made. The rule allows for some interleaving of unrelated labels, which can
happen due to the asynchrony of endpoint systems. Rules bTJ|SELe and bTJ|DELe behave in the
same way, respectively for selections and delegations. Rules bTJ|CONDe and bTJ|EMPTYe handle
internal choices and empty traces, denoted by ε.
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EPP Theorem. We can finally present the main result of this Chapter, the EPP Theo-
rem, which formalises the relationship between the semantics of a well-typed, linear chore-
ography and the semantics of its EPP.

Theorem 2.5.15 (EPP Theorem). Let C ≡ (νp̃, k̃) Cf be linear and well-typed, with Cf
restriction-free; then,

1. (Completeness) C λ
 C ′ implies that there exist P and C ′′ such that (i) C ′

λ̃′

 ∗ C ′′;

(ii) [[C]]
µ̃

 ∗ P and λ, λ̃′ ` µ̃; and (iii) [[C ′′]] ≺ P .

2. (Soundness) [[C]]
µ̃

 ∗ P implies that there exist P ′ and C ′ such that (i) P
µ̃′

 ∗ P ′;

(ii) C
λ̃
 ∗ C ′ and λ̃ ` µ̃, µ̃′; and (iii) [[C ′]] ≺ P ′.

Proof. See Appendix A.2.

Above, point 1 states that an EPP can mimic (up to pruning) all the reductions of its
originating choreography; on the other hand, point 2 says that an EPP always eventually
reduces (up to pruning) to the projection of a (possibly reached after multiple reductions)
reductum of its originating choreography. Both points ensure that the observables of a
choreography are implemented by those of its EPP.

By Theorems 2.3.2 and 2.5.15, we can formalise our deadlock-freedom-by-design prop-

erty. Below,
µ̃−→∗ is the closure of

µ−→.

Corollary 2.5.1.1 (Deadlock-freedom-by-design). Let C be linear and well-typed. Then,

for any P such that [[C]]
µ̃−→∗ P , we have that either P

µ′−−→ P ′ for some P ′, µ′ or 0 ≺ P .

Proof. By Theorem 2.3.2, C can always reduce until it becomes equivalent to 0 up to ≡
(observe that the well-sortedness of C required by Theorem 2.3.2 is guaranteed by the type
system); by Theorem 2.5.15, P must be able to follow the reductions of C and therefore P
can only terminate when C does.

2.5.6 Typing expressiveness

Previously proposed typing disciplines for session types ensure properties similar to ours,
but performing type analysis directly on endpoint programs [31, 21, 55]. Our typing dis-
cipline subsumes a larger class of safe deadlock-free systems, by exploiting the extra in-
formation that we gain from defining implementations with choreographies. In particular,
our typing system allows for two novel features wrt standard multiparty session typing:
inter-protocol coherence and partial protocol implementation.

Inter-protocol coherence. Consider the protocol:

G = A -> B : {l1 : C -> A : 〈int〉, l2 : C -> B : 〈int〉}

Above, A communicates to B a choice between labels l1 and l2. In the first case another role,
C, is expected to communicate an integer to A; otherwise, C will communicate an integer to
B. A potential use case forG could be that C possesses some good, and A decides where the
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good should be sent to (A itself or B). Previous work on global types cannot type any system
implementing G, since G cannot be projected onto a correct set of endpoint types [105].
Indeed, in the protocol, C is not informed of the choice made by A and thus cannot know
whether it should communicate with A or B afterwards. We refer to this problem by saying
that G is not coherent for previous type systems based on global types. In our framework,
we do not consider protocol coherence because protocols such as G above can easily be
implemented by interleaving them with other ones. For example, consider the following
choreography:

1. p[A] start q[B], r[C] : a(k); q[D], r[E] start : b(k′);

2. if e@p then p[A] -> q[B] : k[l1]; q[D] -> r[E] : k′[l1];

3. r[C].some_int -> p[A].x : k

4. else p[A] -> q[B] : k[l2]; q[D] -> r[E] : k′[l2];

5. r[C].some_int -> q[B].y : k

The choreography above can be typed correctly using G as type for a (we omit the typing
for b). In order to notify r, playing role C in session k, of the choice performed by p,
playing role A in session k, we make use of an additional session between q and r. We
use this session, k′, after q receives the choice from p. Observe that the choreography
is typable and can be correctly projected by our EPP. The key aspect of this example is
that our framework leaves the task of defining a coherent system to the implementation
(the choreography). Hence, protocols can be designed at a higher level of abstraction.
For example, in G we do not specify how C is notified of the choice. We call this aspect
inter-protocol coherence, since it is the composition of protocols in a choreography that is
checked for coherence (by checking whether its EPP is defined), and not each protocol in
itself.

Partial protocol implementation. We now discuss partial protocol implementation
with the following choreography:

1. p[A], q[B] start : a(k); p[A] -> q[B] : k[l1];

2. p[A], q[B] start : a(k′); if e@p then p[A] -> q[B] : k′[l2]

3. else p[A] -> q[B] : k′[l3]

The choreography above is typable in our system; a type for a is the following:

A -> B : {l1 : end, l2 : end, l3 : end}

However, the endpoint projection for q would not be typable with standard contra-variant
input typing, which requires that at least all the branches in the type are implemented [54,
55]. Again, this is a consequence of using choreographies: since in the choreography
we know exactly which outputs will correspond to which inputs, we can ensure that the
protocol branches that q does not implement will never be used.

2.6 Examples

Choreography-based programming can have several applications, ranging from multicore
programming to distributed Web Services. Below, we present and discuss two possible
example applications.
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2.6.1 Streaming-AVP

In this example, we show how to combine two different protocols for implementing a
streaming service for movie files. We start by giving the protocol for streaming:

rec t; S -> C : 〈bytes〉; S -> C :
{
again : t, end : end

}
In the protocol above, S is a streaming server sending byte packets to a client C. After each
packet, S communicates to C whether there are more bytes to be sent or the stream is over
(choices again and end). The other protocol (AVP, for Audio-Video Processing) is defined
by the following global type:

rec t; F -> A :〈bytes〉; F -> V :〈bytes〉; A -> S :〈bytes〉; V -> S :〈bytes〉;
F -> A :

{
again : A -> V : 〈bytes〉; V -> S : 〈bytes〉; t, end : end

}
Four roles participate in this protocol: a filesystem F, an audio decoder A, a video decoder
V, and a sink S. The flow of information in this protocol consists of F sending the raw audio
information to A and the raw video information to V, read from the movie file. Then both A

and V send the processed decoded information to the sink S.

The goal of this example is to show how to interleave the two protocols so that the
information produced by an implementation of AVP is forwarded to a client (e.g., a display)
as pictured below:

F V
A S C

We implement such a system as follows:

c[C] start s[S] : a(stream); s[S] start f[F], a[A], v[V] : b(avp);

def AVPStreaming(c(stream), s(stream, avp), f(avp), a(avp), v(avp)) = C in

AVPStreaming〈c(stream), s(stream, avp), f(avp), a(avp), v(avp)〉

The choreography above starts two sessions (on a and b) corresponding to the two pro-
tocols specified above. The streamer in the first protocol, and the file system, the audio
decoder and the video decoder in the second were chosen to be service processes, but other
implementations may follow different directions. The core of the choreography is the term
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C defined below.

1. f[F].readAudioBytes() -> a[A].audioByteChunk : avp;
2. f[F].readVideoBytes() -> v[V].videoByteChunk : avp;
3. a[A].decodeA(audioByteChunk) -> s[S].audioPacket : avp;
4. v[V].decodeV(videoByteChunk) -> s[S].videoPacket : avp;
5. s[S].combine(audioPacket, videoPacket) -> c[C].packet : stream;

6. if (more())@f

7. f[F] -> a[A] : avp[again]; a[A] -> v[V] : avp[again];
8. v[V] -> s[S] : avp[again]; s[S] -> c[C] : stream[again];

9. AVPStreaming〈c(stream), s(stream, avp), f(avp), a(avp), v(avp)〉
10. else

11. f[F] -> a[A] : avp[end]; a[A] -> v[V] : avp[end];
12. v[V] -> s[S] : avp[end]; s[S] -> c[C] : stream[end]

Choreography C can be repeated several times. Lines 1–5 describe how the filesystem
process f sends audio and video information to the processes implementing the audio and
video decoders, respectively a and v. Then, the audio and video decoders send the pro-
cessed information to the process s, which implements the sink. The same sink process s
implements the streamer role in the other protocol and therefore sends to the client c the
data obtained by combining the audio and video packets (as in multiplexing). Lines 7–9
correspond to the branch where process f will communicate to the other processes that there
is more data to process. Similarly, termination is communicated to the other processes in
the else-branch (Lines 11–12). The choreography above is well-typed wrt the two given
global types.

The EPP of the choreography above is straightforward since it needs no merging of
services. As an example, the following process is the EPP for process s:

!a[S](stream); b[S, F, A, V](avp);
def AVPStreaming(stream, avp) =

avp[S]?A(audioPacket); avp[S]?V(videoPacket);
stream[S]!C〈combine(audioPacket, videoPacket)〉;

avp[S]?V&

{
again :stream[S]!C⊕ again; AVPStreaming〈stream, avp〉
end :stream[S]!C⊕ end

}


in AVPStreaming〈stream, avp〉

2.6.2 OpenID and Logging

We give another example using a variant of OpenID [81], a protocol where a client (called
user) authenticates to a server (called relying party) through a third-party identity provider.
We define the protocol with the following global type:

U -> RP : 〈string〉; RP -> IP : 〈string〉; U -> IP : 〈string〉;

IP -> RP :

{
ok : RP -> U : {ok : RP -> U : 〈G@C〉; end},

fail : RP -> U : {fail : end}

}
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Above, RP abstracts the relying party, IP the identity provider and U the user. First, U sends
her username to RP, which forwards it to IP. Then, U sends her password to IP, which will
notify RP of whether the username/password credentials are valid (ok or fail). Finally, RP
forwards the notification to U. If successful, RP also delegates to U role C in a session of
type G, where G = S -> C : 〈string〉.

We interleave OpenID with another protocol where a client C asks a log server S for
either a secret or a public log. Finally, S replies with the corresponding log content. For-
mally,

C -> S :
{
secret : S -> C : 〈string〉, public : S -> C : 〈string〉

}
Now, we can program our system as follows:

1. rp[RP], u[U] start ip[IP] : publicOpenID(k);
2. u[U].user -> rp.user : k;
3. rp[RP].user -> ip[IP].username : k;
4. u[U].pwd -> ip[IP].password : k;
5. if (check(username, password))@ip
6. ip[IP] -> rp[RP] : k[ok];
7. rp[RP] -> u[U] : k[ok];
8. if (high(username))@rp
9. rp[C] start s[S] : log(k′);

10. rp[C] -> s[S] : k′[secret];
11. rp[RP] -> u[U] : k〈k′[C]〉;
12. s[S].secret_msg -> u[C].logContent : k′

13. else
14. rp[C] start s[S] : log(k′);
15. rp[C] -> s[S] : k′[public];
16. rp[RP] -> u[U] : k〈k′[C]〉;
17. s[S].public_msg -> u[C].logContent : k′

18. else
19. ip[IP] -> rp[RP] : k[fail];
20. ip[IP] -> u[U] : k[fail]

Above, rp, u, ip, and s are the endpoints of the system. Line 1 describes the initiation of
a protocol instance between rp, u and ip, by means of the public name a. In Lines 2–4,
u sends its credentials to rp and ip (only the username to rp). Then, ip checks the data
received (Line 5) and communicates the outcome to rp (Lines 6 and 19). In both cases, the
selection is forwarded to u (Lines 7 and 20). In the if-branch, rp checks the user access
level. If high, it starts a new session (log) spawning s (Line 9) and asks for a secret log
(Line 10). Consequently, rp will delegate its role in session k′ to the user u through session
k. Finally, u will get the requested log. The system works similarly in the public log case
(Lines 14–17).

We conclude by showing the EPP for the service process s:

!log[S](k′); k′[S]?C&

{
secret : k′[S]!C〈private_msg〉,
public : k′[S]!C〈public_msg〉

}
Note that the process projections of s for the different branches of the choreography (Lines
9–12 and 14–17) would yield different code which is then merged into the one above.
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2.7 Related Work

Global methods for communicating systems occur in different forms, including MSC [59],
security protocols [25, 29, 22] and automata theory [44]. However, these works are not
intended as fully-fledged programming languages since they do not deal with, e.g., different
layers of abstraction or value passing.

This is the first work proposing an asynchronous semantics for a choreography lan-
guage based on sessions. To the best of our knowledge, the notion of delayed input [68] is
the most similar result to the asynchrony modelled by our semantics.

The closest work to ours is [31], which proposes a synchronous choreography model
without delegation based on binary session types, i.e., session types for protocols with two
participants that describe communications from the point of view of one of the endpoints
(binary session types are not global descriptions). Our framework shows that switching to
multiparty asynchronous sessions with delegation introduces more complexity, but also that
such complexity can be elegantly hidden from the programmer. Moreover, [31] has implicit
process identifiers and deals with a stronger sequential operator, requiring two syntactic re-
strictions on choreographies, i.e., well-threadedness and connectedness. In contrast, our
approach needs no such restrictions because of explicit process identifiers and a more re-
laxed sequential operator, given by our formalisations of asynchrony and parallelism in
choreographies. Finally, [31] ensures EPP correctness based on a type preservation result,
while we guarantee the same without the need for an endpoint typing.

Multiparty session types have been previously used for checking endpoint systems [55,
21, 36]. We have shown that they can be adopted for typing choreographies, defining a new
class of correct well-typed endpoint systems (through EPP). Our global types as well as our
endpoint model are taken from [21]. Other works have given an asynchronous semantics to
global types: [55] defines a semantics in terms of that of the projection of global types while
[37, 38] interprets global types as asynchronous communication automata. Our linearity
notion is inspired by [55].

In [21], the authors guarantee progress for multiparty sessions by building additional
restrictions on top of (endpoint) session typing. Processes satisfying progress do not get
stuck provided that they can be run in parallel with other processes that would unlock stuck
states. In our work progress, implied by deadlock-freedom, is an immediate consequence
of our EPP Theorem, yielding a simpler analysis.

2.8 Discussion and Extensions

We discuss some aspects of choreography-driven programming and future extensions in
relation to the work presented in this Chapter.

2.8.1 Approach

It may be unclear how the choreography-driven approach may deal with standard aspects
of programming such as team development and endpoint code reuse.

Team development. Our framework supports team development, i.e., the development
of a choreography by a team of many programmers, with (i) service merging and (ii) pro-
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cedures.
(i) Our EPP merges service processes started on the same public channel and role into

a single process. This allows two choreographies to be composed into a bigger system,
whenever their respective service processes are mergeable. Mergeability can be assured by
using a design pattern, i.e., enforcing service processes that need to be merged to start with
distinct branches.

(ii) Procedures can be written and typed separately, so as to create libraries that can be
used by other choreographies.

Both (i) and (ii) require choreographies to be composed before they are projected. In
Chapter 3, we investigate how to extend code composition to choreographies developed
and projected independently, so to support distributed choreographic programming and the
integration of software projected by different vendors.

Endpoint code reuse. Endpoint code reuse may be necessary when parts of the system
being designed are already implemented. For instance, we may want to reuse an existing
identity provider service in the OpenID example in § 2.6.2. Our model does not currently
offer a way of integrating existing endpoint code with the EPP of a choreography. We
discuss some potential solutions. Using bisimulation techniques, we can verify some ex-
isting service code to be bisimilar to the code that would be generated by the EPP [26].
Alternatively, we could use a type system, such as multiparty session typing [55, 21], for
guaranteeing that the existing code has a behaviour “compatible” with the choreography.
We explore this second option in Chapter 3.

Both the techniques mentioned above can be adjusted to allow for refinement, i.e., the
legacy code may do extra actions as long as they do not interfere with the good behaviour
of the choreography. The resulting system would still guarantee communication safety and
session fidelity (protocol compliance). Deadlock-freedom would also still be guaranteed,
provided that the legacy code has been verified to be deadlock-free.

2.8.2 Extensions

Based on our conversations with our industry collaborators, we discuss some relevant as-
pects and extensions of the Choreography Calculus.

Sequential and Parallel operators. The relaxed semantics of our sequential opera-
tor “;” allows our framework to express parallelism with a minimal syntax. However, an
explicit parallel operator may make choreographies more readable. We discuss here two
possible extensions in this sense, based upon a hypothetical operatorC1 |C2 equipped with
the typical interleaving semantics of parallel composition. We use the following choreog-
raphy as reference example:

Cpar = p[A].e -> q[B].x : k | r[C].e′ -> s[D].y : k′

Whenever p, q, r and s are all different, Cpar can be encoded using our sequential operator:

Cseq = p[A].e -> q[B].x : k; r[C].e′ -> s[D].y : k′

In fact, thanks to our swap relation 'C , Cpar would behave exactly as Cseq . However, if
the two interactions inCpar share a process name, e.g., q = s, the parallel operator | would
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not be syntax sugar anymore, since the projection of q would be a parallel composition of
two input actions. This also means that q would no longer be a simple sequential process,
raising the complexity of our framework and going out of the scope of this Chapter. In
Chapter 3, we explore the formalisation of a parallel operator for choreographies.

Interactional exceptions. Our language does not offer specific features for error/ex-
ception recovery. A possible extension is to include exceptions in our choreography lan-
guage in the spirit of what is informally suggested by [30] for binary sessions.

Dynamic join. We plan to extend our model to allow processes to dynamically join
and leave an existing session, similarly to [28, 36]. We conjecture that asynchrony and
parallelism will influence these extensions in a nontrivial way.

Multiple roles. In our model, a process can play only one role per session. However,
there are cases in which multiple roles in a protocol may be implemented by a single
process, which would be useful both for system simplification and resource saving. We
plan to extend our typing system to allow for this occurrences. In [28, 17], the authors
follow a similar direction, but using endpoint implementations.

Security. Global descriptions are particularly suitable for the study of security-related
aspects in distributed systems [25, 29, 22]. Our choreographies give a global view of how
sessions are interleaved and how their references are transmitted. It would be interesting to
see how this aspect may influence the security analysis of a system.

2.9 Conclusions

In this Chapter, we presented a fully-fledged model for defining asynchronous system im-
plementations as global programs. We developed a type system for checking choreogra-
phies against multiparty protocol specifications. Moreover, through type inference, de-
velopers can also use choreographies as implementation prototypes to infer new protocol
standards. Our EPP generates correct endpoint code, ensuring nontrivial properties such as
deadlock freedom and communication safety.





CHAPTER 3

Compositional Choreographies

3.1 Introduction

In Chapter 2 we have formalised a model, the Choreography Calculus (CC), for glob-
ally programming distributed systems by writing choreographies, and we have used global
types as protocol specifications for the sessions implemented in a choreography. For exam-
ple, a programmer may express a protocol for a choreography using the following global
type:

B -> C : 〈string〉; C -> B : 〈int〉; B -> T :

{
ok : B -> T : 〈string〉; T -> B : 〈date〉,

quit : end

}
Above, B, C and T are roles and abstractly represent endpoints in a system. In the protocol,
a buyer B sends the name of a product to a catalogue C, which replies with the price for that
product. Then, B notifies the transport role T of whether the price is accepted or not. In the
first case (label ok), B sends also a delivery address to T and T replies with the expected
delivery date. Otherwise (label quit), the protocol terminates immediately.

Our choreography calculus and, to the best of our knowledge, all previous choreog-
raphy programming models (e.g., [61, 31]) require the programmer to implement the be-
haviour of all roles in a protocol where it is used; e.g., it would not be possible to write the
choreography of a system that uses the protocol above but gives the implementations only
of roles C and T, to make those reusable by other programs as software libraries through an
API. This seriously hinders the applicability of choreographies in industrial settings, where
the interoperability of different systems developed independently is the key. In particular,
it is not currently possible to:

• use choreographies to develop software libraries that implement subsets of roles in
protocols such that they can be reused from other systems;

• reuse an existing software library that implements subsets of roles in protocols from
inside a choreography.

To tackle the issues above, we ask:

Can we design a choreography model in which the EPP of a choreography can
be composed with other existing systems?

The main problem is that existing choreography models rely on the complete knowledge of
the implementation details of all endpoints to ensure that the systems generated by EPP will
behave correctly. Such complete knowledge is not available when independently developed
implementations of distributed protocols need to be composed.
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In order to answer our question, we build a model for developing partial choreogra-
phies. Partial choreographies implement the behaviour of subsets of the roles in the pro-
tocols they use. Endpoint implementations are then automatically generated from partial
choreographies and composed with other systems, with the guarantee that their overall
execution will follow the intended protocols and the behaviour of the originating chore-
ographies.

3.1.1 Contributions

In this Chapter we provide the following contributions.

Compositional Choreographies. We introduce a new language for choreographies in
which the implementation of some roles in protocols can be omitted (§ 3.3). These partial
choreographies can then be composed with others through message passing. Our lan-
guage mixes choreography primitives, such as those of the Choreography Calculus from
Chapter 2, with the typical sending/receiving actions of endpoint calculi, such as the π-
calculus [69]. Building on our language, we show that it is possible to define a consistent
semantics that homogeneously captures both systems with many participants or just a sin-
gle endpoint (§ 3.3.2). We provide a notion of EPP that produces correct endpoint code
from a choreography, and we show that the EPP of a choreography preserves its composi-
tional properties (§ 3.5). Our model introduces shared channel mobility in choreographies,
which gains a dynamism when two protocols are composed.

Typing. We provide a type system for checking choreographies against protocol spec-
ifications given as multiparty session types [55]. The type system ensures that the compo-
sition of different programs implements the intended protocols correctly (§ 3.4), and that
our EPP produces code that follows the behaviour of the originating choreographies. Our
framework guarantees that the EPP is still typable (§ 3.5); therefore, the EPP is reusable
as a “black box” composable with other systems and the result of the composition can be
checked for errors by referring only to types.

Deadlock-freedom and Progress among Composed Choreographies. In the pres-
ence of partial choreographies, we prove that we can (i) capture the existing methodologies
for deadlock-freedom in complete choreographies as in [31] and Chapter 2 and (ii) ex-
tend the notion of progress for incomplete systems investigated in [55] to choreographies
(§ 3.5). Our results demonstrate for the first time that choreographies can be effectively
used also as a tool for progress in a compositional setting, offering a new viewpoint for
investigating progress and giving a fresh look to the results in [31] and Chapter 2.

3.2 Motivation: a Use Case of Compositional Choreographies

We present motivations for this study by reporting a use case from our industry collab-
orators [6], and informally introducing our model. For clarity, we discuss only its most
relevant parts. We report the extended version in Appendix B.1; a complete executable
implementation in the Jolie language can be found at [72].

In our use case a buyer company needs to purchase a product from one of many avail-
able seller companies. The use case has two aspects that previous choreography models
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cannot handle: (i) the system of the buyer company is developed independently from those
of the seller companies, and use the latter as software modules without revealing internal
implementation details; (ii) depending on the desired product, the buyer company selects a
suitable seller company at runtime. We address these issues with partial choreographies.
A partial choreography implements a subset of the roles in a protocol, leaving the imple-
mentation of the other roles to an external system. External systems can be discovered
at runtime. In our case, the buyer company will select a seller and then run the protocol
from the introduction by implementing only the buyer role B, and rely on the external seller
system to implement the other two roles C and T.

Buyer Choreography. We now define a choreography for the buyer company, which
we will refer to as CB .

CB =

1. u[U] start pd[PD] : a(k); u[U].prod -> pd[PD].x : k;
2. pd[PD] start r[R] : b(k′); pd[PD].x -> r[R].y : k′; r[R].find(y) -> pd[PD].z : k′;
3. pd[B] req C, T : z(k′′); pd[B].x -> C : k′′; C -> pd[B].price : k′′;
4. if check(price)@pd then
5. pd[B] -> T : k′′ ⊕ ok; pd[PD] -> u[U] : k[del]; pd[PD] -> u[U] : k〈k′′[B]〉;
6. u[B].addr -> T : k′′; T -> u[B].ddate : k′′

7. else
8. pd[B] -> T : k′′ ⊕ quit; pd[PD] -> u[U] : k[quit]

Above, a purchase in the buyer company is initiated by a user process u. In Line 1, pro-
cess u and the freshly created process pd (for purchasing department) start a session k by
synchronising on shared channel a. Each process is annotated with the role it plays in the
protocol that the session implements. Then, still in Line 1, u sends the product prod the
user wishes to buy to pd. In Line 2 pd starts a new session k′ with a fresh process r (a
service registry) through shared channel b. Then, pd forwards the product name to r, which
replies with the shared channel of the seller to contact for the purchase.

We refer to statements such as those in Lines 1–2 as complete, since they describe the
behaviour of all participants, both sender and receiver(s). On the other hand, the contin-
uation in Lines 3–8 is a partial choreography that relies on the selected external seller to
implement the protocol shown in the introduction and perform the purchase.

The partial choreography in Lines 3–8 is depicted as a sequence chart in Figure 3.1.a,
where dashed lines indicate interactions with external participants. In Line 3 pd requests a
synchronisation on the shared channel stored in its local variable z to create the new session
k′′, declaring that it will play role B and that it expects the environment to implement
roles C and T. Session k′′ proceeds as specified by the protocol in the introduction. First,
pd sends the product name stored in x through session k′′ to the external process that is
playing role C (the product catalogue executed by the seller company). Observe that here
we do not specify the process name of the receiver, since that will be established by the
external seller system. Then, pd waits to receive the price for the product from the external
process playing role C in k′′. In Line 4, pd checks whether the price is acceptable; if so,
in Line 5 pd tells the external process playing role T (the transport process executed by the
seller company) and user u (which remains internal to the buyer choreography) to proceed
with the purchase (labels ok and del respectively). Still in Line 5, pd delegates to u the
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u pd T : k'' C : k'' 
start k''start k''

product

price

[ok]
[del]

delegate k''

address

date

[quit]
[quit]

choice

(a)

B : k'' t c
start k''start k''

product

price

[ok]

[quit]

address

date

external
choice

(b)

u pd
start k''start k''

product

price

[ok]
[del]

delegate k''

address

date

[quit]
[quit]

t c

choice

(c)

Figure 3.1: Sequence charts for buyer (a), seller (b), and their composition (c).

continuation of session k′′ in its place, as role B. In Line 6, the user sends her address to T

and receives a delivery date. If the price is not acceptable, Line 7, then in Line 8 pd informs
the others to quit the purchase attempt.

Seller Choreography and Composition. We define now a choreography for a seller
that can be contacted by CB . Let the find function in CB return shared channel c for elec-
tronic products, and c′ for other products; we refer to the choreographies of the respective
seller companies as CS and C ′S . Below, we define CS (C ′S , omitted, is similar).

CS =

1. acc c[C], t[T] : c(k′′); B -> c[C].x2 : k′′; c[C].price(x2) -> B : k′′;

2. B -> t[T] : k′′&

{
ok : B -> t[T].daddr : k′′; t[T].time(daddr) -> B : k′′

quit : 0

}
The choreography CS , depicted as a sequence chart in Figure 3.1.b, starts by accepting
the creation of session k′′ through shared channel c, offering to spawn two fresh processes
c and t. Choreographies starting with an acceptance act as replicated, modelling typical
always-available modules. The acceptance in Line 1 would synchronise with the request
made by CB in the case z = c. Afterwards, c expects to receive the product name from
the process playing B in session k′′, and replies with the respective price. In Line 2, t (the
process for the transport) waits for either label ok or quit. In the first case, t also waits for
a delivery address and then sends back the expected time of arrival.

From the code of CB and CS and, graphically, from their respective sequence charts
we can see that they are compatible: sending actions match receiving actions on the other
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C ::= η;C (seq) | C1 | C2 (par)
| if e@p thenC1 elseC2 (cond) | (νr) C (res)
| def X(D̃) = C ′ inC (def) | X〈Ẽ〉 (call)
| 0 (inact) | A -> q : k&{li :Ci}i∈I (branch)

η ::= p start q̃ : a(k) (start) | p.e -> q.x : k (com)
| p -> q : k[l] (sel) | p -> q : k〈k′[C]〉 (del)
| p req B̃ : u(k) (req) | acc q̃ : a(k) (acc)
| p.e -> B : k (com-s) | A -> q.x : k (com-r)
| p -> B : k〈k′[C]〉 (del-s) | A -> q : k(k′[C]) (del-r)
| p -> B : k ⊕ l (sel-s)

p, q ::= p[A] u ::= x | a
D ::= p(x̃, k̃) E ::= p(ẽ, k̃)

Figure 3.2: Compositional Choreographies, syntax.

side and vice versa. Our model can recognise this by using roles in protocols as interfaces
between partial choreographies (§ 3.4). The code for buyer and seller companies can be
composed in a network with the parallel operator | as: C = CB | CS | C ′S . Parallel
composition allows partial terms in different choreographies to communicate. In § 3.3.2
we formalise a semantics for choreography composition. To give the intuition behind our
semantics, let us consider the sequence charts in Figure 3.1.a and Figure 3.1.b; their com-
position will behave as the sequence chart in Figure 3.1.c.

3.3 A Calculus of Compositional Choreographies

This section introduces our model for compositional choreographies, a calculus where
complete and partial actions can be freely interleaved.

3.3.1 Syntax

Figure 3.2 reports the syntax of our calculus. In the syntax, C is a choreography, η is a
complete or partial action, p is a typed process identifier made by a process identifier p and
a role annotation A, k is a session identifier, and a is a shared channel. A term η;C denotes
a choreography that may execute action η and then proceed as C. In the productions for η,
terms (start), (com), (sel) and (del) are complete actions, whereas all the others are partial.
In the productions for C, term (branch) is also partial.

Complete Actions. Term (start) initiates a session: process p starts a new multiparty
session through shared channel a and tags it with a fresh identifier k. p is already run-
ning and dubbed active process, while q̃ (which we assume nonempty) is a set of bound
service processes that are freshly created. A, B̃ represent the respective roles played by the
processes in session k. Term (com) denotes a communication where process p sends, on



56 Chapter 3. Compositional Choreographies

session k, the evaluation of a first-order expression e to process q, which binds it to its local
variable x. Expressions may be shared channel names, capturing shared channel mobility.
In (sel), p communicates to q its selection of branch l. Term (del) models session mobility:
process p delegates to q through session k its role C in session k′.

Partial Actions. In term (req), process p is willing to start a new session k by syn-
chronising through shared channel a with some other external processes. p is willing to
play role A in the session and expects the other processes to play the other roles B̃. (req)
terms are supposed to synchronise with always-available service processes, modelled by
term (acc). In term (acc), processes q̃ are dynamically spawned whenever requested by a
matching (req) term on the same shared channel a. Term (com-s) models the sending of
a message from a process p to an external process playing role B in session k. Dually, in
(com-r) process q receives a message intended for B in session k from the external process
playing role A. (del-s) and (del-r) model, respectively, the sending and receiving of a dele-
gation of role C in session k′. (sel-s) models the sending of a selection of label l. (sel-s) can
synchronise with a (branch) term, which offers a choice on multiple labels. Once a label li
is selected, (branch) proceeds by executing its continuation Ci.

Other terms. In term (cond), process p evaluates condition e to choose the continua-
tion C1 or C2. Term (res) restricts the usage of a name r to a choreography C. r can be
any name, i.e., a process identifier p, a session identifier k, or a shared channel a. Term
(par) models the parallel composition of choreographies, allowing partial actions to in-
teract through the network. The other terms are standard: terms (def), (call) and (inact)
model, respectively, a recursive procedure, a recursive call, and termination.

For clarity, we have annotated process identifiers with roles in all communications.
Technically, this is necessary only for terms (start), (req) and (acc) since roles can be
inferred from session identifiers in all other terms (cf. Remark 2.3.1).

3.3.2 Semantics

We give semantics to choreographies with a labelled transition system (lts), whose rules
are defined in Figure 3.3 and whose labels λ are defined as:

λ ::= η | p -> q : k〈v〉 | p -> B : k〈v〉 | A -> q : k〈v〉
| A -> q : k&l | τ@p | (νr) λ

We distinguish between labels representing complete or partial actions with the respective
sets CAct and PAct. CAct is the smallest set containing (i) all η that are complete actions,
(ii) complete communication labels of the form p -> q : k〈v〉, and internal actions τ@p,
closed under restrictions (νr) . PAct is the smallest set containing all η that are partial
actions, the partial communication labels p -> B : k〈v〉 and A -> q : k〈v〉, and the
branching labels A -> q : k&l, similarly closed under name restrictions. We also use other
auxiliary definitions. fc(C) returns the set of all session/role pairs k[A] such that k is free in
C and there is a process performing an action as role A in session k in C. rc(λ) is defined
only for partial labels that are not (req) or (acc), and returns the session/role pair of the
intended external sender or receiver of λ; e.g., rc(p.e -> B : k) = k[B]. fn and bn denote
the sets of free and bound names in a label or a term. snd(η) returns the name of the sender
process in η, and is undefined if η has no sender process (e.g., when η is a (com-r)). rcv(η),



3.3. A Calculus of Compositional Choreographies 57

η 6∈ {(com), (com-s), (com-r), (start), (acc)}
η;C

η−→ C
bC|ACTe

η = p start q̃[B] : a(k)

η;C
η−→ (νk, q̃) C

bC|STARTe
η = p.e -> q[B].x : k e ↓ v

η;C
p -> q[B]:k〈v〉−−−−−−−−→ C[v/x@q]

bC|COMe

η = p.e -> B : k e ↓ v

η;C
p -> B:k〈v〉−−−−−−−→ C

bC|COM-Se η = A -> q[B].x : k

η;C
A -> q[B]:k〈v〉−−−−−−−−→ C[v/x@q]

bC|COM-Re

j ∈ I

A -> q : k&{li :Ci}i∈I
A -> q:k&lj−−−−−−−→ Cj

bC|BRANCHe C1
λ−→ C ′1 C2

λ′−−→ C ′2

C1 | C2
λ◦λ′−−−→ C ′1 | C ′2

bC|SYNCe

i = 1 if e ↓ true, i = 2 otherwise

if e@p thenC1 elseC2
τ@p−−−→ Ci

bC|CONDe C
λ−→ C ′

(νr) C
(νr) λ−−−−→ (νr) C ′

bC|RESe

C1
λ−→ C ′1

def X(D̃) = C2 inC1
λ−→ def X(D̃) = C2 inC ′1

bC|CTXe

C1
λ−→ C ′1

(
λ ∈ CAct ∨ rc(λ) 6∈ fc(C2)

)
C1 | C2

λ−→ C ′1 | C2

bC|PARe

R ∈ {≡,'C} C1 R C ′1 C ′1
λ−→ C ′2 C ′2 R C2

C1
λ−→ C2

bC|EQe

i ∈ [1, n] {q̃} = {q̃1, . . . , q̃n} {B̃} = {B̃1, . . . , B̃n} C
p req B̃:u(k)−−−−−−−−→ C ′

Ci = acc q̃[B]i : a(k);C ′i C ′′ =
∏
iCi λ = p start q̃[B]1, . . . , q̃[B]n : a(k)

C | C ′′ λ−→ (νk, q̃)
(
C ′ |

∏
i(C
′
i)
)
| C ′′

bC|P-STARTe

C
λ−→ (ν r̃) C ′ snd(η) ∈ fn(λ) rcv(η) 6∈ fc(λ)

r̃ = bn(λ) r̃ 6∈ fn(η) η 6∈ {(start), (acc)} sdc(η, λ)

η;C
λ−→ (ν r̃) η;C ′

bC|ASYNCe

Figure 3.3: Compositional Choreographies, semantics.

instead, returns the session/role pair k[A] where k is the session used in η and A is the role
of the receiver (similarly for rcv(λ)). fc(λ) is as fc(C), but applied on labels. We comment
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the rules. Rule bC|ACTe handles actions that can be simply consumed. Rule bC|STARTe starts a
session with a global action, by restricting the names of the newly created session identifier
k and processes q̃. Rule bC|COMe handles the communication of a value by substituting, in the
continuation C, the binding occurrence x under process identifier q with value v (evaluated
from expression e). Similarly, rules bC|COM-Se and bC|COM-Re implement the respective partial
sending and receiving actions of a communication. In rule bC|BRANCHe, process q receives a
selection on a branching label and proceeds accordingly. Rules bC|CONDe, bC|RESe, and bC|CTXe
are standard. Rule bC|PARe makes global actions observable and blocks partial actions if
their counterpart is in the parallel branch C2.

Rule bC|SYNCe is the main rule and enables two choreographies to perform compatible
sending/receiving partial actions λ and λ′ to interact and realise a global action, defined by
λ ◦ λ′. The function ◦ : PAct× PAct→ CAct is formally defined by the rules below:

p[A] -> B : k〈v〉 ◦ A -> q[B] : k〈v〉 = p[A] -> q[B] : k〈v〉
p[A] -> B : k〈k′[C]〉 ◦ A -> q[B] : k(k′[C]) = p[A] -> q[B] : k〈k′[C]〉
p[A] -> B : k ⊕ l ◦ A -> q[B] : k&l = p[A] -> q[B] : k[l]

Observe that if λ ◦ λ′ is not defined (the actions are incompatible), then the rule cannot be
applied. Similarly, bC|P-STARTe models a session start by synchronising a partial choreogra-
phy that requests to start a session with other choreographies that can accept the request
on the same shared channel. The choreographies accepting the request remain available
afterwards, for reuse.

Rule bC|ASYNCe models asynchrony, allowing the sender process of an interaction η
(snd(η)) to send a message and then proceed freely before the intended receiver actually
receives it. In the rule, we require asynchrony to preserve the message ordering in a session
wrt receivers with a causality check: rcv(η) 6∈ fc(λ) and sdc(η, λ) (the sender channel in η
is not delegated in λ).

In rule bC|EQe, the relationR can either be the swapping relation'C , which swaps terms
that describe the behaviour of different processes, or the structural congruence ≡, which
handles name restriction and recursion unfolding. The relations'C and≡ are defined as the
smallest relations satisfying, respectively, the rules reported in Figure 3.4 and Figure 3.5.
The rules follow the same reasoning and are an extension of those discussed in § 2.3.2,
adding support for dealing with partial choreographies in 'C and the parallel operator in
≡.

Example 3.3.1 (Label composition). The composition of labels performed by rules bC|SYNCe
and bC|P-STARTe is a key aspect of our model. Consider the following two choreographies, CC
and CP :

CC = p[A].v -> q[B].x : k

CP = p[A].v -> B : k | A -> q[B].x : k

The choreographies CC and CP describe the same system, in which a process p sends a
value v to another process q over session k. However, CC is a complete choreography
and therefore describes the communication between p and q atomically, i.e., using a single
complete statement. By contrast, CP is the parallel composition of two partial choreogra-
phies, one defining the sending action of p towards q and the other defining the receiving
action of q for a message from p.
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pn(η) ∩ pn(η′) = ∅
η; η′ 'C η′; η

bCS|ETA-ETAe

p 6= q

if e@p then ( if e′@q thenC1 elseC2 ) else ( if e′@q thenC ′1 elseC ′2 )
'C

if e′@q then (if e@p thenC1 elseC ′1) else (if e@p thenC2 elseC ′2)

bCS|COND-CONDe

p 6∈ pn(η)

if e@p then (η;C1) else (η;C2) 'C η; (if e@p thenC1 elseC2)
bCS|ETA-CONDe

q 6∈ pn(η)

A -> q[B] : k&{li :η;Ci}i∈I 'C η; A -> q[B] : k&{li :Ci}i∈I
bCS|ETA-BRAe

p 6= q

A -> p[B] : k&{ li :C -> q[D] : k′&{l′ij :Cij}j∈J }i∈I
'C

C -> q[D] : k′&{ l′j :A -> p[B] : k&{lij :Cij}i∈I }j∈J

bCS|BRA-BRAe

p 6= q

A -> p[B] : k&{ li : if e@q thenCi1 elseCi2 }i∈I
'C

if e@q then ( A -> p[B] : k&{li :Ci1}i∈I ) else ( A -> p[B] : k&{li :Ci2}i∈I )

bCS|BRA-CONDe

Figure 3.4: Compositional Choreographies, swap relation 'C .

The intuition behind the design of our semantics is that choreographies describing the
same system should be indistinguishable by looking at their respective observable actions,
regardless of whether they are complete or partial. We have used this observation as a
consistency principle for mixing choreographies with typical sending/receiving actions.
Formally, by our semantics we can easily see that bothCC andCP have a unique transition,
with the same label:

CC
p[A] -> q[B]:k〈v〉−−−−−−−−−−→ 0

CP
p[A] -> q[B]:k〈v〉−−−−−−−−−−→ 0

In § 3.5, we exploit this aspect of our semantics to define a tight correspondence between
choreographies and their EPP.

3.4 Typing Compositional Choreographies

We now present our typing discipline, which ensures that sessions in a choreography follow
protocol specifications given as global types [55, 21]. The key advances from Chapter 2 are:
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(νr) 0 ≡ 0 (νr) (νr′) C ≡ (νr′) (νr) C def X(D̃) = C in0 ≡ 0

def X(D̃) = C ′ in
(
(νr) C

)
≡ (νr)

(
def X(D̃) = C ′ inC

)
if r /∈ fn(C ′)

def X(p̃(x̃, k̃)) = C ′ inC[X〈p̃(ẽ, k̃)〉] ≡ def X(p̃(x̃, k̃)) = C ′ inC[C ′[ ˜ẽi/x̃i@pi]]

C | C ′ ≡ C ′ | C ((νr) C) | C ′ ≡ (νr) (C | C ′) if r 6∈ fn(C ′)

(C1 | C2) | C3 ≡ C1 | (C2 | C3)

Figure 3.5: Compositional Choreographies, structural congruence ≡.

G ::= A -> B : 〈U〉;G | A -> B : {li : Gi}i∈I | rec t;G | t | end

T ::= !A〈U〉;T | ?A〈U〉;T | ⊕ A{li : Ti}i∈I | &A{li : Ti}i∈I | rec t;T | t | end

S ::= G | int | bool | . . . U ::= S | T

Figure 3.6: Global and Local Types, syntax.

(i) introduction of the typing rules for partial choreographies and shared channel passing;
and (ii) typing endpoints by local types, which offer transparent compositional properties
for the behaviour of each process.

3.4.1 Types

We have two kinds of types: global types, used for defining protocols, and local types, used
for defining the local behaviour of each endpoint in a protocol. Global types are related to
local types with a notion of type projection, taken from [105].

3.4.1.1 Syntax

The syntax of global and local types is reported in Figure 3.6.
In the syntax, G is a global type and T is a local type. We first discuss global types.

A global type A -> B : 〈U〉;G abstracts a communication from role A to role B with
continuation G, where U is the type of the exchanged message; U can either be a sort type
S (used for typing values or shared channels), or a local type T (used for typing session
delegation). In A -> B : {li : Gi}i∈I , role A selects one label li offered by role B and the
global type proceeds as Gi. All other terms are standard.

We discuss now the syntax of local types. A local type !A〈U〉;T represents the sending
of a message of type U to role A, with continuation T . Dually, type ?A〈U〉;T represents
the receiving of a message of type U from role A. Types ⊕A{li : Ti}i∈I and &A{li : Ti}i∈I
abstract the selection and the offering of some branches. The other terms are standard.

To relate a global type to the behaviour of an endpoint, we project a global type G
onto a local type that represents the behaviour of a single role. We write [[G]]A to denote
the projection of G onto the role A. Formally, [[G]]A is inductively defined by the rules in
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[[A -> B : 〈U〉;G]]C [[A -> B : {li : Gi}i∈I ]]C

=


!B〈U〉; [[G]]C if C = A

?A〈U〉; [[G]]C if C = B

[[G]]C otherwise
=


⊕B{li : [[Gi]]C}i∈I if C = A

&A{li : [[Gi]]C}i∈I if C = B⊔
i∈I [[Gi]]C otherwise

[[rec t;G]]A = rec t; [[G]]A (if A ∈ roles(G)) [[rec t;G]]A = end (otherwise)

[[t]]A = t [[end]]A = end

Figure 3.7: Global Types, type projection.

Figure 3.7. The rules follow the same intuition of the EPP presented in § 2.5.2, yielding
the local action of the role we are projecting for each given global type. In the rule for
projecting a branching, we require the local behaviour of all roles univolved in the choice to
be merged with the merging operator for local types t. Formally, T tT ′ is isomorphic to T
and T ′ up to branching, where all branches of T or T ′ with distinct labels are also included
(this is just a reformulation for local types of the merging operator for choreographies
described in § 2.5.2). Our definition of projection from global to local types is the same
as in [105], where it is proven sound: global types and their projections have the same
behaviour. We formalise the semantics of types in the following.

3.4.1.2 Semantics

Semantics of Global Types. We give a semantics to global and local types for ex-
pressing the (abstract) execution of protocols. G α−→ G′ is the smallest relation on the
recursion-unfolding of global types satisfying the rules reported in Figure 3.8. The seman-
tics of global types is the same as that presented in § 2.4.1.2; we report the rules again here
for the reader’s convenience.

Semantics of Local Types. The semantics of local types is defined as a labelled tran-
sition system on typing environments ∆ of the following form:

∆ ::= k[A] :T,∆ | ∅

Formally, the semantics of local typings ∆
α−→ ∆′ is the smallest relation closed under

the rules reported in Figure 3.9. The rules follow the intuition of the semantics for partial
actions in choreographies. Rules bL|SENDe and bL|RECVe model respectively the sending and
receiving of values. bL|SELe and bL|BRANCHe abstract selection. Rules bL|ASENDe and bL|ASELe
capture asynchrony. In rule bL|CONCe, rc(α) is similar to rc(λ). Finally, bL|SYNCe synchronise
(abstract) actions that are compatible according to the composition function for abstract
labels ◦. Intuitively, α ◦ α′ is defined for compatible sending/receiving actions and returns
the corresponding global label α; it is formally defined below:

k[A] : !B〈U〉 ◦ k[B] : ?A〈U〉 = k : A -> B : 〈U〉

k[A] : ⊕B〈l〉 ◦ k[B] : &A〈l〉 = k : A -> B : [l]

All other rules are standard.



62 Chapter 3. Compositional Choreographies

A -> B : 〈U〉;G A -> B:〈U〉−−−−−−→ G
bG|COMe

A -> B : {li : Gi}i∈I∪{j}
A -> B:[lj ]−−−−−−→ Gj

bG|BRANCHe

G[rec t;G/t]
α−→ G′

rec t;G
α−→ G′

bG|RECe
G1 'G G′1

α−→ G′2 'G G2

G1
α−→ G2

bG|SWAPe

G
α−→ G′ A ∈ roles(α), B 6∈ roles(α)

A -> B : 〈U〉;G α−→ A -> B : 〈U〉;G′
bG|ACOMe

Gj
α−→ G′j A ∈ roles(α), B 6∈ roles(α)

A -> B : {li : Gi}i∈I∪{j}
α−→ A -> B : {lj : G′j}

bG|ABRANCHe

Figure 3.8: Global Types, semantics.

3.4.2 Type checking

We now introduce our type checking discipline for checking compositional choreographies
against global types. We use two kinds of typing environments, the unrestricted environ-
ments Γ and the session environments ∆. Their syntax is reported in Figure 3.10. The
typing environments are nearly identical to those used for the Choreography Calculus in
Chapter 2. The only differences are the service typings a : G〈A|B̃|C̃〉 in Γ and the local
session typings k[A] :T in ∆. The syntax for ∆ is taken from [21], where k[A] :T maps a
local type T to a role A in a session k. In Γ, x@p :S types variable x of process p with type
S. X(D̃) : (Γ; ∆) types recursive procedure X . p :k[A] establishes that process p owns role
A in session k. a :G〈A|B̃|C̃〉 types a shared channel a with global type G: A is the role of
the active process that starts the session through a; B̃ are the roles of the service processes;
C̃ are the roles, in B̃, that a choreography implements for the shared channel a, enabling
compositionality of services. Whenever we write a :G〈A|B̃|C̃〉 in Γ, we assume that C̃ ⊆ B̃,
A 6∈ B̃, and that A, B̃ = roles(G). roles(G) returns the set of roles in a global type G.

We can write Γ, p : k[A] only if p is not associated to any other role in session k in Γ
(a process may only play one role per session). A process p may however appear more
than once in a same Γ, allowing processes to run multiple sessions. Similarly, a session k
may appear more than once in a same ∆, provided that it is always associated to different
roles. As usual, we require all other kinds of occurrences in environments to have disjoint
identifiers.

A typing judgement Γ ` C . ∆ establishes that a choreography C is well-typed.
Intuitively, C is well-typed if shared channels are used according to Γ and sessions are
used according to ∆. ∆ gives the session types of the free sessions in C. Following
the design idea that services should always be available, shared by other models [31], in
the remainder we assume that all (acc) terms in a choreography are not guarded by other
actions. A selection of the rules defining our typing judgement is reported in Figure 3.11;
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!A〈U〉;T !A〈U〉−−−−→ T
bL|SENDe

?A〈U〉;T ?A〈U〉−−−−→ T
bL|RECVe

⊕A{li : Ti}i∈I∪{j}
⊕A〈lj〉−−−−→ Tj

bL|SELe
&A{li : Ti}i∈I∪{j}

&A〈lj〉−−−−→ Tj

bL|BRAe

T [rec t;T/t]
α−→ T ′

rec t;T
α−→ T ′

bL|RECe
T

α−→ T ′, A 6∈ roles(α)

!A〈U〉;T α−→ !A〈U〉;T ′
bL|ASENDe

Tj
α−→ T ′j , A 6∈ roles(α)

⊕A{li : Ti}i∈I∪{j}
α−→ ⊕A{lj : T ′J}

bL|ASELe
T

α−→ T ′

k[A] :T
k[A]:α−−−−→ k[A] :T ′

bL|LIFTe

∆′
α−→ ∆′′

(
rc(α) 6∈ ∆

)
∆,∆′

α−→ ∆,∆′′
bL|CONCe

∆1
α−→ ∆′1 ∆2

α′−−→ ∆′2

∆1,∆2
α◦α′−−−→ ∆′1,∆

′
2

bL|SYNCe

Figure 3.9: Local Types, semantics.

(Unrestricted Env.) Γ ::= ∅ (empty env.)
| Γ, a :G〈A|B̃|C̃〉 (service)
| Γ, x@p :S (variable)
| Γ, X(D̃) : (Γ; ∆) (definition)
| Γ, p :k[A] (ownership)

(Session Env.) ∆ ::= ∅ (empty env.)
| ∆, k[A] :T (local session)

Figure 3.10: Compositional Choreographies, typing environments.

the complete set of rules can be found in Appendix B.2.
We comment the typing rules. Rule bT|STARTe types a (start); a : G〈A|B̃|B̃〉 checks that

the choreography implements all roles in protocol G and that the processes q̃ are fresh
(q̃ 6∈ Γ); the continuationC is checked by adding Γ′ and ∆′ which contain, respectively, the
process ownerships for k and the local types for the behaviour of each process ((Γ′,∆′) =

init(p[A], q̃[B], k,G)). Formally, the function init is defined as follows:

init(p̃[A], k,G) =
(
{q :k[B] | q[B] ∈ p̃[A]}, {k[B] : [[G]]B | q[B] ∈ p̃[A]}

)
Rule bT|SELe deals with selection, checking that the selected label lj is specified in the local
types and that the processes play the roles they are supposed to in session k according to
Γ; the latter is ensured by the ownership judgement Γ ` p[A] -> q[B] : k. Ownership
judgements follow the same intuition as those presented for the Choreography Calculus
(§ 2.4), but here we extend them to deal also with partial choreographies. The complete
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Γ, a :G〈A|B̃|B̃〉,Γ′ ` C . ∆,∆′ (Γ′,∆′) = init(p[A], q̃[B], k,G) q̃ 6∈ Γ

Γ, a :G〈A|B̃|B̃〉 ` p[A] start q̃[B] : a(k);C . ∆
bT|STARTe

Γ ` p[A] -> q[B] : k Γ ` C . ∆, k[A] :Tj , k[B] :T ′j j ∈ I

Γ ` p[A] -> q[B] : k[lj ];C . ∆, k[A] : ⊕B{li : Ti}i∈I , k[B] : &A{li : T ′i}i∈I
bT|SELe

Γ ` x@p :G〈A|B̃|∅〉 Γ, p :k[A] ` C . ∆, k[A] : [[G]]A

Γ ` p[A] req B̃ : x(k);C . ∆
bT|REQe

Γ,Γi ` Ci . ∆i pco(∆1,∆2)

Γ,Γ1 ◦ Γ2 ` C1 | C2 . ∆1,∆2

bT|PARe
cosha(Γ) end(∆)

Γ ` 0 . ∆
bT|ENDe

Γ, a :G〈D|B̃|∅〉,Γ′ ` C . ∆,∆′ (Γ′,∆′) = init(q̃[A], k,G) q̃ 6∈ Γ

Γ, a :G〈D|B̃|Ã〉 ` acc q̃[A] : a(k);C . ∆
bT|ACCe

Γ ` e@p :S Γ ` p[A] -> B : k Γ ` C . ∆, k[A] :T q :k[B] 6∈ Γ

Γ ` p[A].e -> B : k;C . ∆, k[A] :!B〈S〉;T
bT|COM-Se

Γ ` A -> q[B] : k Γ ` Ci . ∆, k[A] :Ti J ⊆ I p :k[A] 6∈ Γ

Γ ` A -> q[B] : k&{li :Ci}i∈I . ∆, k[B] : &A{lj : Tj}j∈J
bT|BRANCHe

Figure 3.11: Compositional Choreographies, selected typing rules.

rules for ownership typing are reported in Figure 3.12 (the rules are self-explanatory). In
rule bT|REQe, we check that the choreography requesting the services is not responsible for
implementing them, to avoid deadlocks due to the lack of services in parallel required by
rule bC|P-STARTe, and that the requesting process behaves as expected by its role in the pro-
tocol. We abuse the notation for unrestricted environments by assuming that we can write
Γ ` x@p : G〈A|B̃|∅〉 whenever Γ ` x@p : G. Conversely, bT|ACCe types an (acc) term
by ensuring that all the roles for which the choreography is responsible are implemented
(the other checks are similar to bT|STARTe). This distribution of the responsibilities for imple-
menting the different roles in a protocol is handled by rule bT|PARe, using the role distribution
operation Γ1 ◦ Γ2. Formally, Γ1 ◦ Γ2 is defined as the union of Γ1 and Γ2 except for the
typing of shared channels with the same name, which are merged with the following rule:

a :G〈A|B̃|C̃〉 = a :G〈A|B̃|D̃〉 ◦ a :G〈A|B̃|Ẽ〉 (C̃ = D̃ ] Ẽ)

Also in rule bT|PARe, predicate pco (for partial coherence, from [55]) checks that the local
types for a session are the projection of a same global type; formally, pco(∆) holds if for
all sessions k in ∆ there exists a global type G such that the following condition holds:

∀A. k[A] :T ∈ ∆ ⇒ T = [[G]]A
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Γ ` p :k[A], q :k[B]

Γ ` p[A] -> q[B] : k
bO|COMe

Γ ` p :k[A]

Γ ` p[A] -> B : k
bO|SENDe

Γ ` q :k[B]

Γ ` A -> q[B] : k
bO|RECVe

Figure 3.12: Compositional Choreographies, ownership typing.

Note that pco allows for some role projections to be missing in ∆: we are just interested in
checking that all the available participants agree on a same originating global type. In rule
bT|ENDe we check that all responsibilities have been implemented and that the sessions in ∆
have been executed. Specifically, predicate cosha(Γ) checks that for every a :G〈A|B̃|C̃〉 in
Γ either (i) C̃ = B̃, meaning that a was used only internally with (start) terms; or (ii) C̃ = ∅,
meaning that a is used compositionally in collaboration with other choreographies and all
roles that the current choreography is responsible for (C̃) have been implemented correctly
with (acc) terms. Rules bT|COM-Se and bT|BRANCHe type respectively a sending action and a
branching. They are very similar to their complete versions since local types allow us to
look at the behaviour of processes independently. They also check that the counterpart for
the partial action is not in the continuation, by ensuring that there is no process q such that
q plays the other role for session k in Γ, which could obviously lead to a deadlock because
process p would not have another process to communicate with in parallel as required by
rule bC|SYNCe.

3.4.3 Typing Expressiveness

Our typing system exploits the global information given by complete terms and seamlessly
falls back to typical session typing when dealing with partial actions. In particular, bT|SELe
judges that a choice in a protocol is implemented correctly even if only one of the branches
is actually followed. This is sound because we are typing a complete term, and therefore
we know that the other branches are not used. This aspect is the same as that of partial
protocol implementation described in § 2.5.6. However, such the global knowledge needed
for partial protocol implementation is not available in a partial choreography. For example,
in rule bT|BRANCHe we cannot know which branch will be selected by the sender and we must
therefore require that the receiver process supports at least all the branches specified by the
corresponding local type, as in standard session typing for endpoints [54, 55].

3.4.4 Properties

We conclude this section by presenting the expected main properties of our type system.

Theorem 3.4.1 (Typing Soundness). Let Γ ` C . ∆. Then,

• (Subject Swap) C 'C C ′ implies Γ ` C ′ . ∆.

• C λ−→ C ′ implies that there exists ∆′ such that

– (Subject Reduction) Γ′ ` C ′ . ∆′ for some Γ′;

– (Session Fidelity) if λ is a communication on session k, then ∆
α−→ ∆′ with

Γ ` λ . α; otherwise, ∆ = ∆′.
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[[p[A] start q̃[B] : a(k);C]]r =


p[A] req B̃ : a(k); [[C]]r if r = p

acc r[C] : a(k); [[C]]r if r[C] ∈ q̃[B]
[[C]]r otherwise

[[p[A].e -> q[B].x : k;C]]r =


p[A].e -> B : k; [[C]]r if r = p
A -> q[B].x : k; [[C]]r if r = q
[[C]]r otherwise

[[p[A].e -> B : k;C]]r =

{
p[A].e -> B : k; [[C]]r if r = p
[[C]]r otherwise

[[A -> q[B].x : k;C]]r =

{
A -> q[B].x : k; [[C]]r if r = p
[[C]]r otherwise

[[if e@p thenC1 elseC2]]r =

{
if e@p then [[C1]]r else [[C2]]r if r = p
[[C1]]r t [[C2]]r otherwise

[[A -> q[B] : k&{li :Ci}i∈I ]]r =

{
A -> q[B] : k&{li : [[Ci]]r}i∈I if r = q⊔
i∈I [[Ci]]r otherwise

[[C1 | C2]]r = [[C1]]r | [[C2]]r

Figure 3.13: Compositional Choreographies, process projection (selected rules).

Proof. See Appendix B.2.2.

Theorem 3.4.1 establishes that well-typedness is closed under transitions and that ses-
sions in well-typed choreographies follow their protocols. The relationship between actions
in protocols and choreographies is given by the judgement Γ ` λ . α, which is formally
defined in Appendix B.2.2, Figure B.3.

3.5 Properties of Compositional Choreographies

This section states the main properties of our framework wrt the execution of actual systems
composed by endpoints.

3.5.1 Endpoint Projection

Endpoint Projection (EPP) generates correct endpoint code from a choreography. By end-
point code we mean choreographies that do not contain complete actions.

Process Projection. To define the complete EPP, we first define how the behaviour of
a single process in a choreography can be projected. We denote this process projection of a
process p in a choreography C with [[C]]p. We discuss a selection of the rules defining pro-
cess projection, reported in Figure 3.13; a complete definition is given in Appendix B.3.1.
Process projection follows the structure of the originating choreography. In a (start), we
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project the active process p to a request and the service processes q̃ to (always-available)
accepts. In a (com), the sender is projected to a partial sending action and the receiver to a
partial receiving action. The projections of (sel) and (del), omitted, follow the same princi-
ple. We also report the rule for projecting (com-s) and (com-r) to exemplify how we treat
partial choreographies: these are simply projected as they are for their respective process,
following the structure of the choreography. The projections of conditionals and partial
branchings are the only special cases. In a conditional, we project it as it is for the process
evaluating the condition, but for all other we merge their behaviours with the merging par-
tial operator t (as in § 2.5.2). C tC ′ is defined only for partial choreographies that define
the behaviour of a single process and returns a choreography isomorphic to C and C ′ up to
branching, where all branches with distinct labels are also included. We use t also in the
projection of (branch) terms, where we require the behaviour of all processes not receiving
the selection to be merged. As an example, the process projection for process u in the
choreography CB from our example in § 3.2 is (we omit the message type annotations for
communications):

[[CB]]u =

u[U] req PD : a(k); u[U].prod -> PD : k;

PD -> u[U] : k&


del : PD -> u[U] : k〈k′′[B]〉; u[B].addr -> T : k′′;

T -> u[U].ddate : k′′,
quit : 0


Endpoint Projection. Using process projection, we can now define the EPP of a whole

system. Since different service processes may be started through (start) terms on the same
shared channel and play the same role, we use t for merging their behaviours into a single
service. We identify these processes with the service grouping operator bCcaA from § 2.5.4
(extended to partial choreographies), which computes the set of all service process names
in a start or a request in C on shared channel a playing role A. Formally, EPP is the
endofunction [[C]] defined in the following.

Definition 3.5.1 (Endpoint Projection). Let C ≡ (νã, k̃, p̃)Cf , where Cf does not contain
(res) terms. Then, the EPP of C is:

[[C]] = (νã)

(
(νk̃, p̃)

( ∏
p∈fn(Cf )

[[Cf ]]p︸ ︷︷ ︸
)
|
∏
a,A

( ⊔
p∈bCf caA

[[Cf ]]p

)
︸ ︷︷ ︸

)

(i) (ii)

The EPP of a choreography C is the parallel composition of (i) the projections of all
active processes and (ii) the merged projections of all service processes started under same
shared channel and role. EPP respects the following Lemma, which shows that our model
can adequately capture not only typical complete choreographies, but also scale down to
describing the behaviour of a single endpoint.

Lemma 3.5.1 (Endpoint Choreographies). Let C be restriction-free, contain only partial
terms, and be well-typed. If one of the following two conditions apply, then C = [[C]].

1. C = acc q[B] : a(k);C ′ and q is the only free process name in C ′;

2. otherwise, C has only one free process name.
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Proof. From the hypothesis and the definition of EPP, we see that [[C]] = [[C]]q for some
process q; then, the thesis follows by induction on the process projection [[C]]q.

We refer to choreographies that respect one of the two conditions above as endpoint
choreographies. They implement either the behaviour of a single always-available service
process (1), or that of a single free process (2). The EPP for these choreographies is the
identity since they already model the behaviour of only one endpoint.

Service Distribution and EPP. Observe that the projection of services may lead to
undesirable behaviour if service roles for shared channels are not distributed correctly. For
example, if we put the choreography CB from § 3.2 in parallel with a choreography with
a conflicting service on shared channel b for role R (which is internally implemented in
CB) we obtain a race condition, even if protocols are correctly implemented. Consider the
following choreography:

CR = acc h[R] : b(k′); PD -> h[R].x : k′; h[R].c -> PD : k′

If we put the projection of CB in parallel with that of CR, we get a race condition between
the service processes r and h for role R on shared channel b. Hence, the projection of
process pd may synchronise with the service offered by CR for creating session k′, instead
of that by the projection of service process r in CB . Consequently, CB may not follow its
intended behaviour. The distribution of service roles performed by our type system avoids
this kind of situations. Observe that normal session typing cannot help us in detecting these
problems, because the service process h correctly implements the same communication
behaviour for session k′ as service process r.

3.5.2 Main Properties

We can now present our main properties for compositional choreographies.

3.5.2.1 EPP Type Preservation

We build our results on the foundation that the EPP of a choreography is still typable. As
in previous work [61, 31] and already discussed in § 2.5.5, we need to consider that in the
projection of complete choreographies, due to merging, some projected processes may still
offer branches that the original complete choreography has discarded with a conditional.
Therefore, we state our type preservation result below under the minimal typing of chore-
ographies `min, in which the branches in rules bT|SELe and bT|BRANCHe are typed using the
respective minimal branch types (see Appendix B.3.2 for the full definitions). Below, [[Γ]]
yields Γ where the typings of recursive procedures have been split into the typings of each
procedure at each endpoint process ([[Γ]] is formally defined in B.3.2).

Theorem 3.5.2 (EPP Type Preservation). Let Γ `min C . ∆. Then, [[Γ]] `min [[C]] . ∆.

Proof. See Appendix B.3.2.
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3.5.2.2 EPP Theorem

By Theorem 3.5.2, it follows that Theorem 3.4.1 applies also to the EPP of a choreography.
We use this result to prove that EPP correctly implements the behaviour of the originating
choreography, by establishing a formal relation between their respective semantics.

Theorem 3.5.3 (EPP Theorem). Let C ≡ (νã, k̃, p̃) Cf , where Cf is restriction-free, be
well-typed. Then,

1. (Completeness) C λ−→ C ′ implies [[C]]
λ−→� [[C ′]].

2. (Soundness) [[C]]
λ−→ C ′ implies C λ−→ C ′′ and [[C ′′]] ≺ C ′.

Proof. See Appendix B.3.3.

Above, the pruning relation C ≺ C ′ is a strong typed bisimilarity [31] such that C has
some unused branches and always-available accepts. � is a shortcut for ≺ interpreted in
the opposite direction.

3.5.2.3 Deadlock-freedom

We introduce our results on deadlock-freedom and progress mentioned in the Introduction.
First, we define deadlock-freedom:

Definition 3.5.4 (Deadlock-freedom). We say that choreography C is deadlock-free if ei-
ther (i) C ≡ 0 or (ii) there exist C ′ and λ such that C λ−→ C ′ and C ′ is deadlock-free.

In our semantics (Figure 3.3) complete terms can always be executed; therefore, chore-
ographies that do not contain partial terms, or complete choreographies, are deadlock-free.
This recalls the result of deadlock-freedom for choreographies presented in § 2.3.2; below,
we make the same assumption of well-sortedness, i.e., the arguments in procedure calls
match the parameters of their respective procedure definitions.

Theorem 3.5.5 (Deadlock-freedom for Complete Choreographies). Let C be a well-sorted
complete choreography and contain no free variable names. Then, C is deadlock-free.

Proof. Since we are dealing with the complete fragment of compositional choreographies,
the proof is the same as that for Theorem 2.3.2 in Chapter 2.

By Theorems 3.5.3 and 3.5.5 we can obtain, as a corollary, that the EPP of well-typed
complete choreographies never deadlock.

Corollary 3.5.1.1 (Deadlock-freedom for EPP). Let C be a complete choreography, con-
tain no free variable names, and be well-typed. Then, [[C]] is deadlock-free.

Proof. Since we are dealing with the complete fragment of compositional choreographies,
the proof is the same as that for Corollary 2.5.1.1 in Chapter 2.



70 Chapter 3. Compositional Choreographies

3.5.2.4 Progress

Our model can also be used to talk of deadlock-freedom compositionally. In a compo-
sitional setting, a choreography may be unable to proceed in the global execution of a
protocol because of partial actions that need to be executed in parallel composition with
other choreographies. We say that a choreography can progress if it can be composed
with another choreography such that (i) all free names can be restricted and the resulting
system is still well-typed, ensuring that protocols are implemented correctly; and (ii) the
composition is deadlock-free. Differently from deadlock-freedom for complete choreogra-
phies, progress for partial choreographies does not follow directly from the semantics. For
example, the following choreography does not have the progress property:

A -> q[B].x : k; p[A].e -> B : k

Above, q is waiting for a message on session k from A, but that role is implemented by
process p in the continuation. Thus, the two partial actions will never synchronise. As
shown in § 3.4, our type system takes care of checking that roles in sessions or services are
distributed correctly, avoiding cases such as this one and ensuring progress. In general, if a
well-typed choreography does not contain inner (par) terms we know that it can progress,
since role distribution ensures that there exists a compatible environment.

Theorem 3.5.6 (Progress for Partial Choreographies). Let C be a well-typed choreog-
raphy containing no (par) terms. Then, there exists C ′ such that (ν r̃) (C | C ′), with
r̃ = fn(C | C ′), is well-typed and deadlock-free.

Proof. See Appendix B.4.

By Theorems 3.5.2 and 3.5.6, it follows as a corollary that also the EPP of a well-typed
choreography can progress:

Corollary 3.5.1.2 (Progress for EPP). Let C contain no free variable names, be well-
typed, and contain no (par) terms. Then, there exists C ′ such that (ν r̃) ([[C]] | C ′) with
r̃ = fn(C | C ′), is well-typed and deadlock-free.

Proof. Follows immediately by combining Theorems 3.5.2 and 3.5.6.

3.5.2.5 Correctness of Choreography Composition

We end this section by presenting our key result: well-typed choreographies can be pro-
jected separately, and then their respective projections can be composed to obtain a correct
endpoint implementation of a system.

First, we observe that the definition of EPP is compositional, i.e., separate choreogra-
phies can be projected before or after they are composed without influencing the final
system. As an application example, this means that different vendors can develop chore-
ographies

Lemma 3.5.2 (Compositional EPP). Let C = C1 | C2 be well-typed. Then, [[C]] ≡
[[C1]] | [[C2]].
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Proof. We recall the definition of EPP:

[[C]] = (νã)

(
(νk̃, p̃)

( ∏
p∈fn(Cf )

[[Cf ]]p︸ ︷︷ ︸
)
|
∏
a,A

( ⊔
p∈bCf caA

[[Cf ]]p

)
︸ ︷︷ ︸

)

(i) (ii)

We discuss the key points for ensuring that the parallel composition of the EPPs of C1 | C2

is equivalent to that of C, up to≡. For (i), i.e., the process projections of all free processes,
we simply need to observe for any process p we have that [[C1]]p | [[C2]]p = [[C1 | C2]]p,
by definition of process projection. For (ii), i.e., the merged projections of all service
processes, we observe that by the typing rule bT|PARe we have that C1 and C2 do not share
any service processes that would be grouped together by the service grouping operator
bCfcaA; hence, the service projections of the two respective choreographies are also simply
put in parallel composition in the projection of C.

By combining Lemma 3.5.2 with the Theorems shown so far we get the following
corollary, which summarises the properties for well-typed compositions of choreographies
obtained in this Chapter.

Corollary 3.5.2.1 (Compositional Choreographies). Let C | C ′ be well-typed. Then,

1. (EPP Type Preservation) [[C]] | [[C ′]] is well-typed.

2. (Completeness) C | C ′ λ−→ C ′′ implies [[C]] | [[C ′]]
λ−→� [[C ′′]].

3. (Soundness) [[C]] | [[C ′]]
λ−→ C ′′ implies C | C ′ λ−→ C ′′′ and [[C ′′′]] ≺ C ′′.

Proof. Follows immediately by combining Theorems 3.5.2 and 3.5.3 with Lemma 3.5.2.

Our corollary above formally addresses the issues mentioned in the Introduction. Chore-
ographies (C and C ′ in the corollary) can be developed independently and then their re-
spective projections can be composed.

3.6 Related Work

Previous works have tackled the problem of defining a formal model for choreographies
and giving a correct EPP [61, 89, 31]. The main difference wrt our work is compositional-
ity: previous models can only capture closed systems, and do not offer a methodology for
composing choreographies. In [31], the authors ensure the typability of projections but do
not handle neither asynchrony nor multiparty sessions; instead, they type choreographies
with binary sessions. We have shown that choreographies can be made compositional by
introducing partial terms to perform message passing with the environment, and that it
is possible to ensure typability of EPP in a multiparty and asynchronous setting. This is
the first work introducing a compositional multiparty session typing for choreographies,
exploiting the projection of global types onto local types. Finally, [31] does not handle
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shared channel passing and session delegation in a compositional setting, where sessions
may be delegated to external or internal processes.

Compared to the Choreography Calculus proposed in Chapter 2, a major difficulty wrt
composition is that the EPP of a choreography in the Choreography Calculus may be unty-
pable with known type systems for session types. Typability of EPP is important to achieve
composition, since a programmer may need to reuse a choreography after it has been pro-
jected, as a black box in a larger system. The Choreography Calculus in Chapter 2 is, to the
best of our knowledge, the only previous work providing an asynchronous semantics for
multiparty sessions in choreographies; however, asynchrony is modelled in two different
ways in the choreography model and the endpoint model, raising complexity. As a conse-
quence, the EPP Theorem in § 2.5 has a more complex formulation with weak transitions
and confluence, whereas the EPP Theorem in this Chapter is formulated in a stronger form
where EPP mimics its original choreography step by step. We observe, however, that this
simplicity comes at the cost of a more restricting rule for asynchronous communications
in the calculus of Compositional Choreographies, which prevents a process to delegate a
channel that it is still using. We conjecture that this limitation may be removed by intro-
ducing explicit communication queues in compositional choreographies, which we leave
as future work.

Multiparty session types have been previously used for typing endpoint programs [55,
21, 36]. In our setting, endpoint programs can be captured as special cases of partial chore-
ographies. Our global types are taken from [21]. Differently from our framework, these
works capture asynchronous communications with dedicated processes that model order-
preserving message queues. An approach more similar to ours can be found in the notion
of delayed input presented in [68]. [21] reports a type system for progress by building addi-
tional restrictions on top of standard multiparty session typing; our model yields a simpler
analysis, since we can rely on the fact that complete terms in a choreography do not get
stuck. Nevertheless, the model in [21] can capture sessions started by more than one active
process. We leave an extension of our model in this direction as future work.

In [17] the authors use a concept similar to our partial choreographies for protocol
specifications, to allow a single process to implement more than one role in a protocol.
Differently from our approach, these are not fully-fledged system implementations but ab-
stract behavioural types, which are then used to type check endpoint code. In our setting,
the techniques in [17] can be seen as a more flexible way of handling the projection from
global types to local types. An extension of our type system to allow for a process to play
more than one role in a session as in [17, 36] is an interesting future work.

The relationship between choreographies and endpoints has been explored in, among
others, [26, 89, 61, 55, 31]. Our work distinguishes itself by adopting the same calculus
for describing choreographies and endpoints, simplifying the technical development.

3.7 Conclusions

We presented a new model where asynchronous communicating systems can be designed
by composing choreographies that mix complete and partial actions. Choreographies can
now be used as software libraries to design distributed software modularly. We developed a
type system that checks choreographies against multiparty protocol specifications, ensuring
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that the composition of compatible choreographies does not lead to bad behaviour. Relying
on our typing discipline, our EPP generates correct endpoint code guaranteeing nontrivial
properties such as deadlock-freedom and progress. The practical motivation and design
of our model come from our experiences on working with a tool for Web Services, Jolie
[60].





CHAPTER 4

Round-Trip Choreographic
Programming

4.1 Introduction

In the previous Chapters we have explored formal models for Choreographic Program-
ming that provide a notion of correct Endpoint Projection (EPP): systems can be globally
designed by using choreographies and then a sound endpoint implementation can be ob-
tained through EPP. However, in practice software developers using choreographies usu-
ally adopt Choreographic Programming together with the typical programming of each
process [1, 79]. The idea is to use the choreographic view to check that a system follows
the expected flow of interactions and to use the process view to program the internal ac-
tions of each process. This methodology, known as round-trip development, is supported
by two operations: endpoint projection (EPP), which compiles a choreography to the code
of the processes that realise it, and choreography extraction, which extracts from the code
of some processes the choreography they realise. However, to the best of our knowledge,
there is no programming model supporting choreography extraction; extraction is a harder
problem than EPP since it is difficult to predict how a concurrent system will execute at
runtime [18]. For this reason, finding solid theoretical foundations for round-trip develop-
ment remains elusive. The aim of this Chapter is making the first step towards laying the
foundations to tackle this issue. In particular, we ask:

Can we design a unified model that coherently offers both a choreographic
view and a process view on a communicating system?

The challenge in finding an answer lies in clarifying what are, exactly, the rules that under-
pin the reasoning behind choreographies and what is their relationship with the rules that
underpin the reasoning behind processes.

A good starting point for answering our question is the recent line of work on a Curry-
Howard correspondence between the π-calculus [69], a reference model for concurrent
computation, and linear logic [27, 103], which elicits the logical reasoning behind pro-
cesses. In particular, in their seminal paper, Caires and Pfenning present a logical recon-
struction of session types [54] by showing that terms in the π-calculus can be used as proof
terms for derivations in Intuitionistic Linear Logic (ILL) [27]. Such logical reconstruction
establishes the following correspondences:

propositions as sessions
proofs as processes
cut elimination as communication
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Caires and Pfenning provide thus a logical characterisation of the process view on a sys-
tem as proofs in ILL. The last correspondence, in particular, proves that cut elimination
describes the communications in a system. The key insight of this work is that chore-
ographies and cut elimination play similar roles, since they both capture the message flow
implemented by a system. We follow this intuition and formalise this relationship by pre-
senting a logical reconstruction of choreographies in form of a new logic, called LCL. We
show that proofs in LCL successfully capture a class of concurrent systems that supports
round-trip development: it offers both a choreographic view and a process view convert-
ible into one another, guaranteeing that the message flow described by the former and
implemented by the latter is identical. Interestingly, the class of systems captured by LCL
subsumes that captured by ILL, allowing us to apply round-trip global programming to all
those systems programmable in the ILL fragment of [27].

4.1.1 Contributions

The main contributions of this Chapter are:

Linear Connection Logic. We introduce Linear Connection Logic (LCL), a logic for
formally reasoning on the concurrent behaviour of multiple participants in the flavour of
choreographies (§ 4.3). The key to our development is the introduction of “connections”
between participants as first-class citizens in logical judgements (§ 4.2).

Round-trip Logical Reasoning. LCL is a conservative extension of Intuitionistic Lin-
ear Logic: on the one hand, it supports the typical reasoning found in linear logic, where
resources are composed from the viewpoint of a single participant and then compatible par-
ticipants are merged together; on the other hand, it also supports our new reasoning where
resources are constructed collaboratively by multiple participants. We provide automatic
transformations that allow us to switch from one methodology to the other (§ 4.4, Abstrac-
tion and Concretisation). We give an operational meaning to LCL proofs by defining how
connections can be always eliminated (§ 4.4, β-reductions). We finally show that proofs in
the two methodologies share a tight operational correspondence in terms of how they are
normalised (§ 4.4.3, Correspondence Theorem).

Round-trip Choreographic Programming. We build a logical reconstruction of a
fragment of Compositional Choreographies by using choreographies as proof terms for
LCL (§ 4.6), as in a Curry-Howard correspondence. Our reconstruction yields a type theory
for choreographies where propositions correspond to session types (§ 4.6, Typing). Based
on our results on LCL, we define a model for round-trip choreographic programming and
establish the following correspondences:

propositions as sessions
LCL proofs as compositional choreographies
proof concretisation as endpoint projection
proof abstraction as choreography extraction

Since it is always possible to transform proofs that correspond to processes to proofs that
correspond to choreographies and vice versa, we are ultimately able to prove that it is
always possible to switch between a choreographic view to a process view of a system: in
our setting, choreographies and processes are in a direct correspondence.
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4.2 Preview

In this section, we give an informal preview to the results in this Chapter. We will first
revisit the Curry-Howard correspondence between π-calculus terms and ILL [27]. Building
on ILL, we will informally introduce our logic LCL and show how it corresponds to an
extension of the π-calculus with choreographies.

4.2.1 ILL and the π-calculus

Consider the following π-calculus example:

x(tea); x(tr); tr(p)︸ ︷︷ ︸ x(tea); x(tr); tr(p); b(m)︸ ︷︷ ︸ b(m)︸ ︷︷ ︸
Pclient Pserver Pbank

(4.1)

The three processes above, respectively Pclient, Pserver, and Pbank, if composed in parallel,
will execute as follows: first, Pclient sends to Pserver a request for some tea on a channel x;
then, Pserver replies to Pclient on the same channel xwith a new channel tr (for transaction);
Pclient uses tr for sending to Pserver the payment p for the tea; after receiving the payment,
Pserver finally deposits some money m in the bank by sending it over channel b to process
Pbank.

The three processes above can be typed using the proof theory of ILL, by respectively
associating their channels to formulae; each formula describes how a channel is used during
execution, as in standard session types [54]. For example, channel x in process Pclient has
type string ⊗ (string ( end) ( end. Intuitively, this means that x must be used
as follows: first, we send a string; then, we receive a channel of type string ( end
and, finally, we stop using the channel (end). Concretely, in process Pclient, the channel
of type string ( end received through x is channel tr. The type of tr means that the
other process sending tr, i.e., Pserver, will use it to receive a string and then terminate
it; therefore, process Pclient is now responsible for implementing the dual operation of
that implemented by Pserver, i.e., Pclient has to execute an output (term tr(p)). Similarly,
channel b has type int⊗ end in Pserver, meaning that an integer will be sent over b.

In order to formally express the intuition above, we can write the following three judge-
ments, where A = string ⊗ (string( end)( end and B = int⊗ end:

Pclient . · ` x :A

Pserver . x :A ` b :B

Pbank . b :B ` z :end

The right hand side of each judgement consists of a sequent of the form ∆ ` x : A,
where ∆ expresses what the process needs to use from the rest of the system in order to
execute, while A is the behaviour that the process provides on channel x. For example, the
judgement Pserver . x :A ` b :B reads as “given a context that implements channel x with
type A, process Pserver implements channel b with type B”.

Given the judgements above, we can compose the processes Pclient, Pserver, and Pbank

as follows:
(νx) (Pclient | (νb) (Pserver | Pbank))
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C1 ` A C2 ` B
C1, C2 ` A⊗B

⊗R
A,B ` D
A⊗B ` D ⊗L

C1, C2 ` D
Cut

=⇒ C1 ` A
C2 ` B A,B ` D

C2, A ` D
Cut

C1, C2 ` D
Cut

Figure 4.1: A Cut Reduction in ILL.

Above, we have two compositions. The first is between Pserver and Pbank, which commu-
nicate using channel b. The second is between such composition and Pclient, using channel
x. Logically, these compositions can be constructed by using the standard Cut rule of ILL
as a typing rule, which we call TCut:

P . ∆1 ` x :A Q . ∆2, x :A ` y :B

(νx) (P | Q) . ∆1,∆2 ` y :B
TCut

We read rule TCut as “If a π-calculus expression provides A, and another requires A to
provide B, both can be executed in parallel to provide B”.

Caires and Pfenning [27] show that proofs in ILL correspond to process terms in the
π-calculus. In ILL, applications of rule Cut can always be reduced to smaller cuts until
all cuts are eliminated, a procedure of proof normalisation known as cut elimination. As a
corollary from the meta-theory of ILL, cut elimination provides a model of computation for
reducing processes. The result of this interpretation is a tight operational correspondence
between cut reductions and communications.

We illustrate a cut reduction, a step of cut elimination, in Figure 4.1. For readability, we
omit the process terms and use the purely logical form of ILL judgements. The proof on the
left-hand side applies a cut rule to two proofs, one providingA⊗B, and the other providing
D when provided withA⊗B. On either side,A⊗B is called the principal formula created
by the proofs above. Figure 4.1 shows how the same proof can be transformed into an
equivalent proof, where the application of the Cut rule on formula A⊗B has been reduced
to two applications of the Cut rule on the smaller formulae A and B.

Following Caires and Pfenning [27], the sample cut-reduction step in Figure 4.1 corre-
sponds, in the π-calculus, to executing a communication step. The left hand side represents
a system composed of two processes, one outputting on a channel of type A⊗ B, and an-
other reading from the same channel. The result of executing the communication step
yields a new system corresponding to the proof on the right-hand side. This is equivalent
to the following π-calculus reduction:

(νx)
(
x(y); (P | Q) | x(y);R

)
→ (νy)

(
P | (νx) (Q | R)

)
In the general case, Cut rules might have to be permuted to enable a cut reduction to apply.
Cut elimination corresponds therefore to reducing a system composed of several processes,
by transitively applying permutation and reduction steps. Cut-free proofs correspond then
to a system that has successfully completed all its internal communications.

4.2.2 Towards a logic for choreographies

In our previous example, we have described a system using a standard process view, i.e.,
by separately defining the code for all processes and then by composing them. In general,
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such an approach to programming distributed systems can be error-prone, in the sense that
the programmer does not have a clear picture of how the system executes as a whole. By
contrast, choreographies can be used for specifying the same system, by giving a syntactic
global description of how messages are supposed to flow during execution. Below, we
report a choreographic view of our example (4.1):

1. client -> server : x(tea);
2. server -> client : x(tr);
3. client -> server : tr(p);
4. server -> bank : b(m)

This choreography specifies the sequence of communications that are supposed to happen
when running the system it describes. For example, we read Line 1 as “process client sends
tea to process server through channel x”. In an implementation of the system described by
the choreography above, we would have the client process performing an output of tea on
channel x, while the server process would do the dual action, namely an input on x.

Now, our objective is to develop a relationship between the choreographic and the
process views of the same system. Since communications correspond to cut reductions, it
should be possible to use choreographies to describe cut reductions just as they can be used
to describe communications. Therefore, we start our investigation by developing a model
in which we can construct choreographies that describe the behaviour of the processes
captured by Caires and Pfenning [27].

A key point for syntactically describing cut reductions is to be able to formally record,
e.g., in a judgement, where we have applied a Cut rule in an ILL proof. Unfortunately,
none of the judgements in Figure 4.1 gives any insight on the fact that processes were
composed together with a Cut. If we consider the type systems for choreographies (as
in [31] and our Chapters 2 and 3), we notice that they have different judgements than the
typical ones for processes. The main difference is that a choreography typing judgement
contains information about multiple processes and the interactions that they perform with
each other. Following this idea, there are only two additions necessary to the work of
Caires and Pfenning in order to capture interactions. First, we extend judgements in ILL
to describe multiple processes. Our judgements are thus hypersequents, i.e., collections of
multiple ILL sequents [16]. Second, we need a way to talk about the connections between
sequents in a hypersequent, since two processes need to share a common connection for
interacting. As an example, the following is a valid judgement in LCL:

. ∆1 ` x :•A | ∆2, x :•A ` B

Above, we have composed two ILL sequents with the operator | , which captures the paral-
lel composition of processes (in this case, we have only two processes). The two sequents
are connected by the resource A, denoted by the shared name x and the modality •. Intu-
itively, • is a modality for hypotheses and conclusions of ILL sequents that tells whether a
conclusion of a sequent, called producer, is connected to the hypothesis of another sequent,
called consumer. Hypersequents and resource connections allow us to reason about inter-
actions. Specifically, when reasoning about interactions, we are never allowed to reason
only about one end of the connection in isolation, but we will need to reason about both
ends in synchrony: when we build an interaction from a connection, we need to “update”
the typing of both producer and consumer over their shared connection.
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Thanks to our judgements, we can now express the cut elimination process as a proof.
As an example, the following hypersequent:

. w1 :C1, w2 :C2 ` x :•(A⊗B) | x :•(A⊗B) ` z :D

models a system where a process can produce resource A ⊗ B by consuming resources
C1, C2, and another process can produce resource D by consuming resource A ⊗ B pro-
duced by the first process. Importantly, the resource produced by the first sequent is no
longer available since it is being used by the second sequent. Even more, we can also
mimic reductions in cut elimination. Consider:

. w1 :C1 ` y :•A | w2 :C2 ` x :•B | y :•A, x :•B ` z :D

The new hypersequent describes a system that still needs to consume C1 and C2 in order
to produce D. However, now we have three processes: one producing A from C1, one pro-
ducingB fromC2 and finally one usingA andB separately for producingD. Additionally,
both the first and the second sequent are connected to the third one. This corresponds to
the situation seen in Figure 4.1.

Choreographically, we are now able to express communications. In fact, if the latter
judgement above is the conclusion of a proof corresponding to some system P (the right-
hand side of Figure 4.1), the former judgement says that we are in a system where there
may be an interaction of type A⊗B between two processes and P is what we obtain after
such interaction has been executed.

4.3 Linear Connection Logic

4.3.1 Hypersequents and Connections

We are now ready to present LCL. The syntax of hypersequents is reported in Figure 4.2.
In the syntax, formulae are the same as in ILL. Hereby, we only present the multiplicative

(Propositions) A,B ::= 1 | A⊗B | A( B

(Hypotheses and Conclusions) T ::= x :A | x :•A
(Contexts) Γ,∆,Θ ::= · | ∆, T

(Hypersequents) Ψ ::= ∆ ` T | Ψ|Ψ

Figure 4.2: LCL, syntax of hypersequents.

connectives ⊗ and (; we will discuss the additive connectives of ILL later on in § 4.5.
The proposition (or formula) 1 is the multiplicative unit, A ⊗ B stands for “resources A
and B are available”, and A ( B says “if resource A is provided, then B is available”.
Contexts ∆ and hypersequents Ψ are equivalent modulo associativity and commutativity.
A hypersequent Ψ can be either a single sequent ∆ ` T , or the parallel composition of
many sequents. Given a sequent ∆ ` T , we call ∆ the hypotheses and T the conclusion
of the sequent. The hypotheses and conclusion of a sequent are identified by variables,
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denoted x, y, . . ., and can be marked with the modality •, representing a connection with
another sequent.

We make the standard assumption that a variable x can appear at most once in any
hypersequent, unless it is marked with •. In LCL, bulleted variables appear exactly twice in
a hypersequent, once as a hypothesis and once as a conclusion of two respective sequents
which we say are then “connected”. A provable hypersequent always has exactly one
sequent with a non-bulleted conclusion, which we call the conclusion of the hypersequent.
Similarly, we call non-bulleted hypotheses the hypotheses of the hypersequent. Intuitively,
a provable hypersequent is a tree of sequents, whose root is the only sequent with a non-
bulleted conclusion, and whose sequents have exactly one child for each of their bulleted
hypotheses.

4.3.2 Proof Theory

We write . Ψ for a judgement in LCL. We define the proof theory of judgements in two
steps. First, we define the resource fragment of LCL in terms of left/right rules for resources
A and their composition, and second we define the connection fragment and its rules for
connections •A.

4.3.2.1 Resource Fragment

The resource fragment of LCL is an embedding of the sequent formulation of ILL: the rules
carry over directly. We introduce the fragment in several stages. Hereby we discuss only
the multiplicative fragment of LCL; we will extend it to additive connectives in § 4.5 and
discuss how it can be extended to exponentials in § 4.8.

Unit. The rules for unit are like the ones of standard linear logic. The right rule for 1
is the only axiom of LCL.

. · ` x :1
1R

. Ψ | ∆ ` T
. Ψ | ∆, x :1 ` T 1L

Tensor. The left and right rules for tensor are almost standard, except that the non-
principal components of the conclusion in ⊗R need to be split into Ψ1 and Ψ2 and dis-
tributed to the premises.

. Ψ1 | ∆1 ` y :A . Ψ2 | ∆2 ` x :B

. Ψ1 | Ψ2 | ∆1,∆2 ` x :A⊗B ⊗R
. Ψ | ∆, y :A, x :B ` T
. Ψ | ∆, x :A⊗B ` T ⊗L

Linear Implication. The rules for linear implication are also standard, and since it is a
multiplicative connective, the non-principal components are split just as in the tensor case.

. Ψ | ∆, y :A ` x :B

. Ψ | ∆ ` x :A( B
(R

. Ψ1 | ∆1 ` y :A . Ψ2 | ∆2, x :B ` T
. Ψ1 | Ψ2 | ∆1,∆2, x :A( B ` T (L
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Connection and Scoping. Any standard presentation of inference rules for linear logic
would at this point introduce a Cut rule of the form

. Ψ1 | ∆1 ` x :A . Ψ2 | ∆2, x :A ` T
. Ψ1 | Ψ2 | ∆,∆2 ` T

Cut

which we will not do here. Instead, we pull the Cut rule apart, and obtain two rules de-
pending critically on hypersequents as an interim place to store information. The first rule,
named Conn, forms a connection by combining the two premises of the Cut rule:

. Ψ1 | ∆1 ` x :A . Ψ2 | ∆2, x :A ` T

. Ψ1 | Ψ2 | ∆1 ` x :•A | ∆2, x :•A ` T Conn

Rule Conn is only applicable for derivations of hypersequents ending in producing and
consuming a resource A.

The second rule, called Scope, delimits the scope of a connection. After applying
Scope, the scoped connection disappears:

. Ψ | ∆1 ` x :•A | ∆2, x :•A ` T
. Ψ | ∆1,∆2 ` T

Scope

It is easy to see that by composing the rules Conn and Scope, we obtain that the normal
Cut rule is easily derivable in LCL.

4.3.2.2 Connection Fragment

Connections are first-class citizens in LCL, and they are therefore object of logical reason-
ing. Formally, the connection fragment of LCL is formed by the Conn and Scope rules and
the rules reported below. We give three rules for reasoning on connections, one for each
linear logic connective. The rules are called 1C, ⊗C, and(C. By such rules connections
can be composed or decomposed, depending on whether the rules are read top-down or
bottom-up.

Unit. A connection for the exchange of the unit resource 1 can always be introduced,
since 1 can always be produced:

. Ψ | ∆ ` T
. Ψ | · ` x :•1 | ∆, x :•1 ` T 1C

Tensor. The connection rule for ⊗ combines two connections that share the same con-
sumer. Technically, when two producer sequents ∆1 ` y : •A and ∆2 ` x : •B are con-
nected to a consumer sequent ∆3, y : •A, x : •B ` T , we can merge the two connections
into a single one, obtaining the sequents ∆1,∆2 ` x :•(A⊗B) and ∆3, x :•(A⊗B) ` T :

. Ψ | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T
. Ψ | ∆1,∆2 ` x :•(A⊗B) | ∆3, x :•(A⊗B) ` T ⊗C
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Linear Implication. For(, its connection rule manipulates connections that have a
causal dependency, i.e., we use this rule when a sequent needs to consume a connected
resource in order to produce another connected resource. Technically, if ∆1 ` y : •A is
connected to ∆2, y : •A ` x : •B, which is connected to ∆3, x : •B ` T , then ∆2 ` x :
•(A( B) is connected to ∆1,∆3, x :•(A( B) ` T .

. Ψ |∆1 ` y :•A |∆2, y :•A ` x :•B |∆3, x :•B ` T
. Ψ | ∆2 ` x :•(A( B) | ∆1,∆3, x :•(A( B) ` T (C

From now on, we refer to the three rules above as C-rules. Observe that C-rules share
a deep relationship with the cut reductions found in linear logic. For instance, the con-
nections in the premise of rule ⊗C are a representation of the cuts in the right-hand side
proof in Figure 4.1, and the conclusion is a representation of the cuts in the left-hand side
proof. In general, all our C-rules are representations of cut reductions found in ILL. In the
next section, we exploit this aspect to show that the resource fragment and the connection
fragment share a deep relationship.

4.4 Proof Transformations

In LCL, a judgement containing connections can be derived by either (i) building resources
separately, using the resource fragment, and then using the Conn rule, or (ii) using the con-
nection fragment to compose more complex connections from simpler ones. For example,
consider the following derivations, D and E respectively:

. · ` x :1
1R

. · ` y :1
1R

. x :1 ` y :1
1L

. · ` x :•1 | x :•1 ` y :1
Connx

. · ` y :1
Scopex

. · ` y :1
1R

. · ` x :•1 | x :•1 ` y :1
1Cx

. · ` y :1
Scopex

Above, we have annotated some rule instances with the variable of the connection they
apply to. We write such annotations only when they are relevant, and omit them otherwise.
The two derivations D and E above reach the same conclusion by adopting, respectively,
the methodologies (i) and (ii). This hints at that the connection fragment is redundant.
However, it turns out that it is also, somehow, more efficient. As an example, consider a
proof ending with the judgement:

...
. Ψ | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T

Now, assume that we wished to extend the proof to derive

. Ψ | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T

When adopting methodology (ii), we can apply rule ⊗C and immediately complete the
proof. However, if we follow (i), we need to “open up” the whole proof, split the connec-
tions on x and y to access their resources, use the latter to rebuild two proofs respectively
providing and requiring A⊗B, and finally complete the proof by applying Conn.
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[αγ1] . · ` x :1
1R

. Ψ | ∆ ` T
. Ψ | ∆, x :1 ` T 1L

. Ψ | · ` x :•1 | ∆, x :•1 ` T Connx

x
99K . Ψ | ∆ ` T

. Ψ | · ` x :•1 | ∆, x :•1 ` T 1Cx

[αγ⊗]

. Ψ2 | ∆2 ` y :A . Ψ1 | ∆1 ` x :B

. Ψ1 | Ψ2 | ∆1,∆2 ` x :A⊗B ⊗R
. Ψ3 | ∆3, y :A, x :B ` T
. ∆3, x :A⊗B ` T ⊗L

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T Connx

x
99K

. Ψ1 | ∆1 ` x :B

. Ψ2 | ∆2 ` y :A . Ψ3 | ∆3, y :A, x :B ` T
. Ψ2 | Ψ3 | ∆2 ` y :•A | ∆3, y :•A, x :B ` T Conny

. Ψ1 | Ψ2 | Ψ3 | ∆1 ` x :•B | ∆2 ` y :•A | ∆3, y :•A, x :•B ` T Connx

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T ⊗Cx

[αγ(]

. Ψ2 | ∆2, y :A ` x :B

. Ψ2 | ∆2 ` x :A( B
( R

. Ψ1 | ∆1 ` y :A . Ψ3 | ∆3, x :B ` T
. Ψ1 | Ψ3 | ∆1,∆3, x :A( B ` T ( L

. Ψ1 | Ψ2 | Ψ3 | ∆2 ` x :•A( B | ∆1,∆3, x :•A( B ` T Connx

x
99K

. Ψ1 | ∆1 ` y :A . Ψ2 | ∆2, y :A ` x :B

. Ψ1 | Ψ2 | ∆1 ` y :•A|∆2, y :•A ` x :B
Conny

. Ψ3 | ∆3, x :B ` T
. Ψ1 | Ψ2 | Ψ3 | ∆1 ` y :•A | ∆2, y :•A ` x :•B | ∆3, x :•B ` T Connx

. Ψ1 | Ψ2 | Ψ3 | ∆2 ` x :•A( B | ∆1,∆3, x :•A( B ` T (Cx

Figure 4.3: LCL, Abstraction and Concretisation transformations.

In this section, we show that the two methods are equivalent, meaning that any judge-
ment proven using one method can also be proven with the other and vice versa. This
means that applications of rule Conn and C-rules that apply to the same connection can be
safely transformed into one another. We call the transformation from Conn to C-rules α-
abstraction, written D x

99K E , since it abstracts away the formation of a connection x from
two resources. Abstraction is an invertible operation: we call the opposite transformation

γ-concretisation, written E
x
D.

We further observe that both D and E above can be reduced to the simple application
of the axiom 1R, yielding . · ` y : 1. The process of erasing a connection x from a
proof is called β-reduction, denoted by D x−→ D′. We will see that there are two kinds of
β-reductions, depending on whether they apply to connections that have been constructed
using rule Conn or C-rules. In this Chapter, we also show that these two kinds of reductions
produce the same result. We call this result the “Correspondence Theorem”, which is our
main result on LCL. In § 4.6, we will use it to establish a tight correspondence between
processes and choreographies.

4.4.1 Abstraction and Concretisation

The transformations α-abstraction and γ-concretisation are the inverse of one another.
They are formally defined by the rules reported in Figure 4.3 closed under contexts, i.e.,
they can be applied to any subderivation in a proof. We explain the rules reading them
from left to right, which corresponds to abstraction; for concretisation, we read them from
right to left. Rule [αγ1] abstracts an application of the rule Conn with principal formula
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1 to an application of rule 1C. Rule [αγ⊗] transforms a connection of A ⊗ B, obtained
in the resource fragment, into the formation of a connection A ⊗ B within the connection
fragment. Rule [αγ(] is similar.

In the previous example, we can easily see that D x
99K E and E

x
D. However, it is

not always possible to apply abstraction or concretisation directly. For example, consider
the following proof:

. · ` x :1
1R

. · ` y :1
1R

. x :1 ` y :1
1L

. x :1, z :1 ` y :1
1L

. x :1 ` y :1( 1
( R

. · ` x :•1 | x :•1 ` y :1( 1
Conn

The application of rule Conn above cannot be abstracted, because it does not match the
left-hand side of rule (αγ1). However, we can find an equivalent proof for which (αγ1) is
applicable:

. · ` x :1
1R

. · ` y :1
1R

. x :1 ` y :1
1L

. · ` x :•1 | x :•1 ` y :1
Conn

. · ` x :•1 | x :•1, z :1 ` y :1
1L

. · ` x :•1 | x :•1 ` y :1( 1
( R

We observe that this proof can be obtained from the first by repeatedly permuting the ap-
plication of Conn with the rule application in its right premise. Concretely, we can permute
Conn with( R and then with 1L. In the general case, we can show that applications of
rule Conn can always be permuted so that abstraction or concretisation can be applied. We
call such permutations commuting conversions, denoted by the congruence relation ≡. We
give a selection of the rules defining ≡ in Figure 4.4 (see Appendix C for the other rules).

We report a representative case for each class of permutations, i.e., permutations with
rules in the resource fragment, with C-rules, with other Conn, and Scope. The rules are
self-explanatory.

A Conn rule can always be permuted with rules that do not manipulate the principal for-
mulae it connects. Formally, we can prove that it is always possible to push an application
of rule Conn up until it reaches one of the patterns required for abstraction.

Lemma 4.4.1 (One-Step Abstraction). Let D be a proof containing an application of
Connx. Then, there exists a proof D′ such that D ≡ D′ and D′ x

99K E for some E (ab-
breviated as D ≡ x

99K E).

By Lemma 4.4.1, Conn applications can always be abstracted in any order. Differently,
concretisation is order-sensitive. Consider the following example:

. ∆2 ` y :B

. ∆1 ` x :A . ∆3, x :A, y :B ` z :C

. ∆1 ` x :•A | ∆3, x :•A, y :B ` z :C
Connx

. ∆4, z :C ` T
. ∆1 ` x :•A | ∆3, x :•A, y :B ` z :•C | ∆4, z :•C ` T Connz

. ∆1 ` x :•A | ∆2 ` y :•B | ∆3, x :•A, y :•B ` z :•C | ∆4, z :•C ` T Conny

. ∆1,∆2 ` y :•(A⊗B) | ∆3, y :•(A⊗B) ` z :•C | ∆4, z :•C ` T ⊗Cy

. ∆3 ` z :•((A⊗B)( C) | ∆1,∆2,∆4, z :•((A⊗B)( C) ` T (Cz
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[Conn/( R/R/2]

. Ψ1 | Γ ` x :C

. Ψ2 | ∆, x :C, z :A ` y :B

. Ψ2 | ∆, x :C ` y :A( B
( R

. Ψ1 | Ψ2 | Γ ` x :•C | ∆, x :•C ` y :A( B
Connx

≡
. Ψ1 | Γ ` x :C . Ψ2 | ∆, x :C, z :A ` y :B

. Ψ1 | Ψ2 | Γ ` x :•C | ∆, x :•C, z :A ` y :B
Connx

. Ψ1 | Ψ2 | Γ ` x :•C | ∆, x :•C ` y :A( B
( R

[Conn/⊗ C/L/2]

. Ψ1 | ∆1 ` z :•A | ∆2 ` y :•B | ∆3, z :•A, y :•B ` x :C

. Ψ1 | ∆1,∆2 ` y :•A⊗B | ∆3, y :•A⊗B ` x :C
⊗Cy

. Ψ2 | ∆4, x :C ` T
. Ψ1 | Ψ2 | ∆1,∆2 ` y :•A⊗B | ∆3, y :•A⊗B ` x :•C | ∆4, x :•C ` T Connx ≡

. Ψ1 | ∆1 ` z :•A | ∆2 ` y :•B | ∆3, z :•A, y :•B ` x :C . Ψ2 | ∆4, x :C ` T

. Ψ1 | Ψ2 | ∆1 ` z :•A | ∆2 ` y :•B | ∆3, z :•A, y :•B ` x :•C | ∆4, x :•C ` T Connx

. Ψ1 | Ψ2 | ∆1,∆2 ` y :•A⊗B | ∆3, y :•A⊗B ` x :•C | ∆4, x :•C ` T
⊗Cy

[Conn/Conn/2]

. Ψ1 | ∆1 ` x :B

. Ψ2 | ∆2, x :B ` y :A . Ψ3 | ∆3, y :A ` T

. Ψ2 | Ψ3 | ∆2, x :B ` y :•A | ∆3, y :•A ` T Conny

. Ψ1 | Ψ2 | Ψ3 | ∆1 ` x :•B | ∆2, x :•B ` y :•A | ∆3, y :•A ` T Connx ≡

. Ψ1 | ∆1 ` x :B . Ψ2 | ∆2, x :B ` y :A

. Ψ2 | Ψ3 | ∆1 ` x :•B | ∆2, x :•B ` y :A
Connx

. Ψ3 | ∆3, y :A ` T
. Ψ1 | Ψ2 | Ψ3 | ∆1 ` x :•B | ∆2, x :•B ` y :•A | ∆3, y :•A ` T Conny

[Conn/Scope/L/2]

. Ψ1 | ∆ ` y :•B | Γ1, y :•B ` x :A

. Ψ1 | ∆,Γ1 ` x :A
Scopey

. Ψ2 | Γ2, x :A ` T
. Ψ1 | Ψ2 | ∆,Γ1 ` x :•A | Γ2, x :•A ` T Connx ≡

. Ψ1 | ∆ ` y :•B | Γ1, y :•B ` x :A . Ψ2 | Γ2, x :A ` T
. Ψ1 | Ψ2 | ∆ ` y :•B | Γ1, y :•B ` x :•A | Γ2, x :•A ` T Connx

. Ψ1 | Ψ2 | ∆,Γ1 ` x :•A | Γ2, x :•A ` T
Scopey

Figure 4.4: LCL, commuting conversions for rule Conn (selection).
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In the example above, we can neither concretise⊗Cy, because the Conn rules above do not
match the required right-hand pattern from Figure 4.3, nor( Cz , because it is preceded
by a ⊗C. Even by using commuting conversions, we observe that in this case we cannot
concretise(Cz because it is not possible to permute Connz and Conny down to(Cz as
required for its concretisation. Intuitively, this reflects the fact that in this example( Cz

has a dependency on ⊗Cy: ( Cz forms the connection •((A ⊗ B) ( C) by using the
connection •(A⊗B) formed by ⊗Cy. We further observe that it is instead possible to use
the commuting conversion [Conn/Conn/2] to permute Connx with Connz and reach the
case for the concretisation rule [αγ⊗]. By doing that and applying such concretisation, we
reach the proof:

. ∆1 ` x :A . ∆2 ` y :B

. ∆1,∆2 ` y :A⊗B ⊗R

. ∆3, x :A, y :B ` z :C . ∆4, z :C ` T

. ∆3, x :A, y :B ` z :•C | ∆4, z :•C ` T Connz

. ∆3, y :A⊗B ` z :•C | ∆4, z :•C ` T ⊗L

. ∆1,∆2 ` y :•(A⊗B) | ∆3, y :•(A⊗B) ` z :•C | ∆4, z :•C ` T Conny

. ∆3 ` z :•((A⊗B)( C) | ∆1,∆2,∆4, z :•((A⊗B)( C) ` T (Cz

In general, we say that a C-rule depends on a preceding C-rule if the former composes
a connection formed by the latter. In the sequel, we write Cx for either ⊗Cx or ( Cx.
Moreover, D :: . Ψ denotes a proof D ending with the judgment . Ψ.

Lemma 4.4.2 (One-Step Concretisation). Let D be a proof containing a subderivation of
the form:

E :: . Ψ′

. Ψ
Cx

such that Cx does not depend on any C-rule in E . Then, there exists a proof D′ such that

D ≡ D′ and D′
x
F for some F (abbreviated D ≡

x
F).

It is easy to see from the definitions of commuting conversions, abstraction, and con-
cretisation that judgements are always preserved:

Lemma 4.4.3 (αγ Preservation).

• If D :: . Ψ and D ≡ D′ then D′ :: . Ψ.

• If D :: . Ψ and D x
99K D′ then D′ :: . Ψ.

• If D :: . Ψ and D
x
D′ then D′ :: . Ψ.

We can now generalise our one-step results for abstraction and concretisation to charac-
terise two normalisation procedures that respectively produce Conn-free or C-free proofs.
In the following, we call the former α-normal and the latter γ-normal. Further, we denote

the transitive closure of
x
99K up to commuting conversions ≡ with

x̃
99K99K (resp.

x̃
for

x
). As an example, we abbreviate D ≡ x

99K≡ x′
99K E with D

x,x′

99K99K E .

Theorem 4.4.1 (αγ Normalisation). Let D :: . Ψ be a proof. Then:

• (α-normalisation) D x̃
99K99K E for some x̃ and E :: . Ψ α-normal;
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• (γ-normalisation) D
x̃
F for some x̃ and F :: . Ψ γ-normal.

Proof. By repeatedly applying Lemmas 4.4.1 and 4.4.3 for the first result, and Lemmas 4.4.2
and 4.4.3 for the second.

4.4.2 β-Reductions

The Scope rule merges two sequents in a hypersequent by eliminating their connection,
similarly to the Cut rule in ILL. Just like in ILL, where applications of the Cut rule can
always be eliminated, we prove that Scope can be eliminated from any proof in LCL.

As an example, the following proof contains two applications of the Scope rule:

. · ` x :1
1R

. · ` y :•1 | y :•1 ` x :1
1Cy

. · ` x :1
Scopey . · ` z :1

1R

. x :1 ` z :1
1L

. · ` x :•1 | x :•1 ` z :1
Connx

. · ` z :1
Scopex

Above, Scopex delimits the scope of a connection x that is introduced by a Connx rule
and Scopey delimits the scope of connection y introduced by 1Cy. Applications of rule
Scope can be eliminated by using β-reductions, denoted by D t−→ D′, where t can be x or
•x; formally, we define D t−→ D′ as the context closure of the rules that can be found in
Figure 4.5.

There are six β-rules. The first three rules define reductions within the resource frag-
ment and the other three within the connection fragment. β-reductions preserve provability.
We illustrate the reduction of Scopey in the example above, using two β-rules labelled •y
and x.

. . .
•y−−→

. · ` x :1
1R

. · ` z :1
1R

. x :1 ` z :1
1L

. · ` x :•1 | x :•1 ` z :1
Connx

. · ` z :1
Scopex x−→ . · ` z :1

1R

Similarly to α- and γ-reductions, β-reduction might not be directly applicable to a proof,
because a Scope-rule needs to be permuted to an appropriate place in the derivation. In
Figure 4.4, we have already encountered selected commuting conversions for Conn, and in
Figure 4.6 we complement them by selected commuting conversions rules for Scope.

A Scope rule can always be permuted with other rules that do not manipulate its prin-
cipal formulae. Formally, we can prove that it is always possible to push an application of
rule Scope up, until we match one of the patterns required for β-reduction.

Lemma 4.4.4 (One-Step Reduction). LetD be a proof containing an application of Scopex.
Then, there exists a proof D′ such that D ≡ D′ and D′ t−→ E , where t is either x or •x and
for some E (abbreviated as D ≡ x−→ E).

Proposition 4.4.4.1 (β Preservation). If D :: . Ψ and D t−→ D′ then D′ :: . Ψ.
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[β1]
. · ` x :1

1R
. Ψ | ∆ ` T

. Ψ | ∆, x :1 ` T 1L

. Ψ | · ` x :•1 | ∆, x :•1 ` T Connx

. Ψ | ∆ ` T
Scopex

x−→ . Ψ | ∆ ` T

[β⊗]

. Ψ2 | ∆2 ` y :A . Ψ1 | ∆1 ` x :B

. Ψ1 | Ψ2 | ∆1,∆2 ` x :A⊗B ⊗R
. Ψ3 | ∆3, y :A, x :B ` T
. Ψ3 | ∆3, x :A⊗B ` T ⊗L

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T Connx

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T
Scopex

x−→

. Ψ1 | ∆1 ` x :B

. Ψ2 | ∆2 ` y :A . Ψ3 | ∆3, y :A, x :B ` T

. Ψ2 | Ψ3 | ∆2 ` y :•A | ∆3, y :•A, x :B ` T Conny

. Ψ1 | Ψ2 | Ψ3 | ∆1 ` x :•B | ∆2 ` y :•A | ∆3, y :•A, x :•B ` T Connx

. Ψ1 | Ψ2 | Ψ3 | ∆1 ` x :•B | ∆2,∆3, x :•B ` T
Scopey

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T
Scopex

[β(]

. Ψ2 | ∆2, y :A ` x :B

. Ψ2 | ∆2 ` x :A( B
( R

. Ψ1 | ∆1 ` y :A . Ψ3 | ∆3, x :B ` T
. Ψ1 | Ψ3 | ∆1,∆3, x :A( B ` T ( L

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2, x :•A( B ` T | ∆3 ` x :•A( B
Connx

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T
Scopex

x−→

. Ψ1 | ∆1 ` y :A . Ψ2 | ∆2, y :A ` x :B

. Ψ1 | Ψ2 | ∆1 ` y :•A | ∆2, y :•A ` x :B
Conny

. Ψ3 | ∆3, x :B ` T
. Ψ1 | Ψ2 | Ψ3 | ∆1 ` y :•A | ∆2, y :•A ` x :•B | ∆3, x :•B ` T Connx

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•B | ∆3, x :•B ` T
Scopey

. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T
Scopex

[β1C]

. Ψ | ∆ ` T
. Ψ | · ` x :•1 | ∆, x :•1 ` T 1Cx

. Ψ | ∆ ` T
Scopex

•x−−→ . Ψ | ∆ ` T

[β⊗C]

. Ψ | ∆1 ` x :•B | ∆2 ` y :•A | ∆3, y :•A, x :•B ` T
. Ψ | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T ⊗Cx

. Ψ | ∆1,∆2,∆3 ` T
Scopex

•x−−→

. Ψ | ∆1 ` x :•B | ∆2 ` y :•A | ∆3, y :•A, x :•B ` T
. Ψ | ∆1 ` x :•B | ∆2,∆3, x :•B ` T

Scopey

. Ψ | ∆1,∆2,∆3 ` T
Scopex

[β(C]

. Ψ | ∆1 ` y :•A | ∆2, x :•B ` T | ∆3, y :•A ` x :•B
. Ψ | ∆1,∆2, x :•A( B ` T | ∆3 ` x :•A( B

(Cx

. Ψ | ∆1,∆2,∆3 ` T
Scopex

•x−−→

. Ψ | ∆1 ` y :•A | ∆2, x :•B ` T | ∆3, y :•A ` x :•B
. Ψ | ∆1,∆3 ` x :•B | ∆2, x :•B ` T

Scopey

. Ψ | ∆1,∆2,∆3 ` T
Scopex

Figure 4.5: LCL, β-reductions.
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[Scope/⊗ R/R]

. Ψ1 | Γ1 ` y :A . Ψ2 | ∆ ` z :•C | Γ2, z :•C ` x :B

. Ψ1 | Ψ2 | ∆ ` z :•C | Γ1,Γ2, z :•C ` x :A⊗B ⊗R

. Ψ1 | Ψ2 | ∆,Γ1,Γ2 ` x :A⊗B
Scope

≡

. Ψ1 | Γ1 ` y :A

. Ψ2 | ∆ ` z :•C | Γ2, z :•C ` x :B

. Ψ2 | ∆,Γ2 ` x :B
Scope

. Ψ1 | Ψ2 | ∆,Γ1,Γ2 ` x :A⊗B ⊗R

[Scope/⊗ C/2]

. Ψ | ∆1 ` z :•C | ∆2, z :•C ` y :•A | ∆3 ` x :•B | ∆4, y :•A, x :•B ` T
. Ψ | ∆1 ` z :•C | ∆2,∆3, z :•C ` x :•A⊗B | ∆4, x :•A⊗B ` T ⊗C

. Ψ | ∆1,∆2,∆3 ` x :•A⊗B | ∆3, x :•A⊗B ` T
Scope

≡

. Ψ | ∆1 ` z :•C | ∆2, z :•C ` y :•A | ∆3 ` x :•B | ∆4, y :•A, x :•B ` T
. Ψ | ∆1,∆2 ` y :•A | ∆3 ` x :•B | ∆4, y :•A, x :•B ` T

Scope

. Ψ | ∆1,∆2,∆3 ` x :•A⊗B | ∆3, x :•A⊗B ` T ⊗C

[Scope/Scope/2]

. Ψ | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T
. Ψ | ∆1 ` y :•A | ∆2,∆3, y :•A ` T

Scope

. Ψ | ∆1,∆2,∆3 ` T
Scope

≡

. Ψ | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, yA, x :•B ` T
. Ψ | ∆2 ` x :•B | ∆1,∆3, x :•B ` T

Scope

. Ψ | ∆1,∆2,∆3 ` T
Scope

[Scope/Conn/L/2]

. Ψ1 | ∆ ` x :•B | Γ1, x :•B ` y :A . Ψ2 | Γ2, y :A ` T
. Ψ1 | Ψ2 | ∆ ` x :•B | Γ1, x :•B ` y :•A | Γ2, y :•A ` T Conn

. Ψ1 | Ψ2 | ∆,Γ1 ` y :•A | Γ2, y :•A ` T
Scope

≡

. Ψ1 | ∆ ` x :•B | Γ1, x :•B ` y :A

. Ψ1 | ∆,Γ1 ` y :A
Scope

. Ψ2 | Γ2, y :A ` T
. Ψ1 | Ψ2 | ∆,Γ1 ` y :•A | Γ2, y :•A ` T Conn

Figure 4.6: LCL, commuting conversions for rule Scope (selection).
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We can now generalize our one-step reduction result and characterize a multi-step nor-
malization procedure that produces Scope-free proofs. In the following we call such a
proof β-normal. Furthermore, we denote the transitive closure of −→ up to commuting
conversions ≡ with −→→.

Theorem 4.4.2 (β Normalisation). Let D :: . Ψ be a proof thenD
t̃
−→→ D′ for some x̃ and

E :: . Ψ β-normal.

4.4.3 Correspondence Theorem

We can now present the main result of our development of LCL, namely the Correspon-
dence Theorem below:

Theorem 4.4.3 (Correspondence Theorem). Let x̃ = x1, . . . , xn and rev(x̃) = xn, . . . , x1.
Then,

• (α-correspondence) D
x̃
−→→ F for some F implies that D x̃

99K99K E for some E such

that E
•x̃
−→→ F .

• (γ-correspondence) D
•x̃
−→→ F for some F implies that D

rev(x̃)

E for some E such

that E
x̃
−→→ F .

Proof. We show the proof for α-correspondence; the proof for γ-correspondence is similar:
the only difference is that it needs to be proven separately for each connective.

We can depict α-correspondence with the following diagram:

D F

E
x̃

x̃

•x̃

The proof proceeds now by induction on the length of x̃. In the sequel, ≡yc,s is an abbrevia-
tion for≡yc≡ys , where≡yc and≡ys denote respectively the commuting conversions for Conn
and Scope applied to a connection y.

• Case x̃ is empty. The thesis holds for D = E = F .

• Case x̃ = y, z̃. In this case we know that D ≡yc,s
y−→ D′. Our induction hypothesis is

then that there exists E ′ α-normal such that:

D′ F

E ′
z̃

z̃

•z̃

We construct the thesis from the induction hypothesis by proving that the following
diagram commutes:
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D
≡yc
≡yc,s D′ F

E ′E ′′

E ≡ys

≡ys
y

y

•y z̃

z̃

z̃

•z̃

•y

We can split the diagram in two parts. The first part is the upper-left triangle that
instantiates every arrow to its one-time application:

D
≡yc
≡yc,s D′

E ′′ ≡ys
y

y

•y

This diagram commutes because, from the definitions of the proof transformations
in Figures 4.3–4.6, we can derive:

≡yc≡ys
y−→ = ≡yc

y
99K≡ys

•y−−→

Let us now consider the second part of the diagram. We need to prove that the
following part commutes, for y 6∈ z̃:

D′

E ′E ′′

E ≡ys

≡ys

•y z̃

z̃
•y

We observe that this diagram can be obtained by iteratively applying the following,
for u 6= v and some proofs G andH:

D′

≡vc

HE ′′

G ≡us

≡us
≡vc

•u
v

v
•u

This diagram commutes because we can derive the equality:

≡us
•u−−→≡vc

v
99K = ≡vc

v
99K≡us

•u−−→
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4.5 Additive Fragment

The logic LCL introduced in § 4.3 and the proof transformations introduced in § 4.4 cover
only the multiplicative fragment of linear logic, but it does not (yet) allow us to express
choice or selection. In linear logic these are respectively captured by the connectives of
additive conjunction A&B and additive disjunction A ⊕ B. A&B means that A or B can
be made available but not both, whereas A ⊕ B means that either A is available or B is
available but we do not know which one. We extend LCL accordingly:

(Propositions) A,B ::= . . . | A⊕B | A&B

Resource Fragment. The left and right rules for additive conjunction & for the re-
source fragment are a straightforward adoption of the standard rules from ILL. Observe
that the context is not split in the rules &R and ⊕L, a hallmark characteristic of the addi-
tives.

. Ψ | ∆ ` x :A . Ψ | ∆ ` x :B

. Ψ | ∆ ` x :A&B
&R

. Ψ | ∆, x :A ` T
. Ψ | ∆, x :A&B ` T &L1

. Ψ | ∆, x :B ` T
. Ψ | ∆, x :A&B ` T &L2

The left and right rules for the ⊕ are also a straightforward adoption of the standard
rules for linear logic.

. Ψ | ∆ ` x :A

. Ψ | ∆ ` x :A⊕B ⊕R1
. Ψ | ∆ ` x :B

. Ψ | ∆ ` x :A⊕B ⊕R2

. Ψ | ∆, x :A ` T . Ψ | ∆, x :B ` T
. Ψ | ∆, x :A⊕B ` T ⊕L

Connection Fragment. We turn now to the connection fragment, where we add four
connection rules forA&B andA⊕B. We define two connections rule forA&B expressing
external choice, and two rules for A⊕B, expressing external selection.

. Ψ | Ψ′ | ∆1 ` x :•A | ∆2, x :•A ` T . Ψ′ | ∆1 ` x :B

. Ψ | Ψ′ | ∆1 ` x :•A&B | ∆2, x :•A&B ` T &C1

. Ψ | ∆1 ` x :A . Ψ | Ψ′ | ∆1 ` x :•B | ∆2, x :•B ` T
. Ψ | Ψ′ | ∆1 ` x :•A&B | ∆2, x :•A&B ` T &C2

. Ψ | Ψ′ | ∆1 ` x :•A | ∆2, x :•A ` T . Ψ′ | ∆2, x :B ` T
. Ψ | Ψ′ | ∆1 ` x :•A⊕B | ∆2, x :•A⊕B ` T ⊕C1

. Ψ | ∆2, x :A ` T . Ψ | Ψ′ | ∆1 ` x :•B | ∆2, x :•B ` T
. Ψ | Ψ′ | ∆1 ` x :•A⊕B | ∆2, x :•A⊕B ` T ⊕C2

Properties. We can extend α, γ, and β-reduction to the additive fragment in a straight-
forward way. We omit the rules here (see Appendix C).

The seemingly irrelevant premises in some of the rules for the additives (the left-
most premise of ⊕C1 and &C1 and the rightmost premise of ⊕C2 and &C2) are there
for bookkeeping purposes; they ensure that the resources are appropriately consumed in
the branches that were not selected, and permit us to prove all our results obtained so far
also for this extended version of LCL.
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P,Q,R ::= x(y); (P | Q) (output) | x(y);P (input)

| x.inl;P (left sel) | x.inr;P (right sel)

| x.case(P,Q) (case) | P |x Q (par)

| close[x] (close) | wait[x];P (wait)

| (νx) P (res)


Processes

Choreographies

 |
−→
x(y);P (global com) |

−→
close[x] ;P (global close)

|
−→
x.l (P,Q) (global left sel) | −→

x.r (P,Q) (global right sel)

Figure 4.7: Internal Compositional Choreographies, syntax.

4.6 Typing Choreographies with LCL

In this Section we present the calculus of Internal Compositional Choreographies (ICC), a
fragment of that presented in Chapter 3 with only internal mobility (from the internal π-
calculus [93]). We then develop a typing discipline for internal compositional choreogra-
phies by using them as proof terms for proofs in LCL, thus establishing a Curry-Howard
correspondence between our calculus and LCL and revisiting the results from § 4.4.

4.6.1 Syntax

Let x, y, z range over a set of names N . Then, the syntax of compositional choreogra-
phies, denoted by P , is reported in Figure 4.7. Compositional choreographies P can be
either processes performing process actions, which form the process fragment of ICC,
or choreographies of system communications, which form the choreographic fragment of
ICC.

Processes. An (output) x(y); (P | Q) sends a fresh name y over channel x and then
proceeds with the parallel composition P | Q, whereas an (input) x(y);P receives y over
x and proceeds as P . In a (left sel) x.inl;P , we send over channel x our choice of the
left branch offered by the receiver. The term (right sel) x.inr;P selects the right branch
instead. Selections communicate with the term (case) x.case(P,Q), which offers a left
branch P and a right branch Q. The term (par) P |x P models parallel composition; here,
differently from the output case, the two composed processes are not independent, but share
the communication channel x. The term (res) is the standard restriction. Terms (close) and
(wait) model, respectively, the request and acceptance for closing a channel, following the
typical closing handshake in real-world communication protocols such as TCP.

Choreographies. Term (res) for name restriction is the same as for processes. A

(global com)
−→
x(y);P describes a system where a fresh name y is communicated over a

channel x, and then continues as P , where y is bound in P . The terms (global left sel)
and (global right sel) model systems where, respectively, a left branch or a right branch

is selected on channel x. Unused branches in global selections, e.g., Q in
−→
x.l (P,Q), are

unnecessary in our setting since they are never executed; however, they will be convenient
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P . Ψ | ∆ ` T

wait[x];P . Ψ | ∆, x :1 ` T
T1L

close[x] . · ` x :1
T1R

P . Ψ | ∆, y :A, x :B ` T

x(y);P . Ψ | ∆, x :A⊗B ` T
T⊗ L

P . Ψ2 | ∆1 ` y :A Q . Ψ2 | ∆2 ` x :B

x(y); (P |Q) . Ψ1 | Ψ2 | ∆1,∆2 ` x :A⊗B
T⊗ R

P . Ψ1 | ∆1 ` y :A Q . Ψ2 | ∆2, x :B ` T

x(y); (P |Q) . Ψ1 | Ψ2 | ∆1,∆2, x :A( B ` T
T( L

P . Ψ | ∆, y :A ` x :B

x(y);P . Ψ | ∆ ` x :A( B
T( R

P . Ψ | ∆, x :A ` T Q . Ψ | ∆, x :B ` T

x.case(P,Q) . Ψ | ∆, x :A⊕B ` T
T⊕ L

P . Ψ | ∆ ` x :A

x.inl;P . Ψ | ∆ ` x :A⊕B
T⊕ R1

Q . Ψ | ∆ ` x :B

x.inr;Q . Ψ | ∆ ` x :A⊕B
T⊕ R2

P . Ψ | ∆, x :A ` T

x.inl;P . Ψ | ∆, x :A&B ` T
T&L1

Q . Ψ | ∆, x :B ` T

x.inr;Q . Ψ | ∆, x :A&B ` T
T&L2

P . Ψ | ∆ ` x :A Q . Ψ | ∆ ` x :B

x.case(P,Q) . Ψ | ∆ ` x :A&B
T&R

P . Ψ1 | ∆1 ` x :A Q . Ψ2 | ∆2, x :A ` T

P |x Q . Ψ1 | Ψ2 | ∆1 ` x :•A | ∆2, x :•A ` T
TConn

P . Ψ | ∆1 ` x :•A | ∆2, x :•A ` T

(νx) P . Ψ | ∆1,∆2 ` T
TScope

Figure 4.8: Internal Compositional Choreographies, typing rules for the process fragment.

for our development of endpoint projection, which will follow the concretisation transfor-
mation for LCL proofs. Finally, term (global close) models the closure of a channel.

4.6.2 Typing

We can now show how compositional choreographies can be typed using the proof theory
of LCL. A typing judgement has the following form:

P . Ψ

Above, P is highlighted for readability. Now, in terms of channels, we say that a sequent
x1 : T1, . . . , xn : Tn ` x : T provides usage T on channel x and requires the usages
T1, . . . , Tn on their respective channels x1, . . . , xn.

The typing rules defining when a term P is well-typed are given in Figure 4.8 and
Figure 4.9. The rules are exactly the same as those for LCL; the only difference is that they
are now put in correspondence with the ICC terms that they type. Observe that the rules
for typing the process fragment are those of the resource fragment of LCL, whereas the
rules for typing the choreographic fragment of ICC are those of the connection fragment of
LCL, eliciting the logical difference between processes and choreographies. The rules in
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P . Ψ | ∆ ` T
−→

close[x];P . Ψ | · ` x :•1 | ∆, x :•1 ` T
T1C

P . Ψ | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T
−→
x(y);P . Ψ | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T

T⊗ C

P . Ψ | ∆1 ` y :•A | ∆2, x :•B ` T | ∆3, y :•A ` x :•B
−→
x(y);P . Ψ | ∆3 ` x :•A( B | ∆1,∆2, x :•A( B ` T

T(C

P . Ψ | Ψ′ | ∆1 ` x :•A | ∆2, x :•A ` T Q . Ψ′ | ∆1 ` x :B

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x :•A&B | ∆2, x :•A&B ` T

T&C1

P . Ψ | ∆1 ` x :A Q . Ψ | Ψ′ | ∆1 ` x :•B | ∆2, x :•B ` T
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x :•A&B | ∆2, x :•A&B ` T

T&C2

P . Ψ | Ψ′ | ∆1 ` x :•A | ∆2, x :•A ` T Q . Ψ′ | ∆2, x :B ` T
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x :•A⊕B | ∆2, x :•A⊕B ` T

T⊕ C1

P . Ψ | ∆2, x :A ` T Q . Ψ | Ψ′ | ∆1 ` x :•B | ∆2, x :•B ` T
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x :•A⊕B | ∆2, x :•A⊕B ` T

T⊕ C2

Figure 4.9: Internal Compositional Choreographies, typing rules for the choreographic
fragment.

Figure 4.8, corresponding to the process fragment, type terms of the internal π-calculus and
follows the idea of sessions types as proposed in [27]. The two rules for T1L and T1R type,
respectively, the acceptance and request for closing a channel. The rules for ⊗ correspond
to input and output. More precisely, T ⊗ L types a process performing an input of a name
y over a channel x. As in standard session typing [54], the continuation of the process
P will be able to interact over y and x with type A and B respectively. Dually, T ⊗ R
types a process performing an output over channel x of some fresh channel y. Once such
output has been performed, two processes, P and Q will handle, separately, channel y and
channel x respectively. Note that, as observed in [27, 103], forcing that the two channels
are operated by different processes in parallel avoids any possible deadlock caused by the
interleaving of y and x. The cases for(, ⊕, and & are treated similarly. Rule Conn types
the parallel composition of two processes that can be connected; the latter is registered by
the annotation x on the parallel constructor. Rule Scope types name restriction.

We now comment the typing rules for the choreographic fragment in Figure 4.9. Rule
1C is a weakening rule for connections on the unit type. As in the case of 1L, the process

term does not change. In rule ⊗C, we type a communication
−→
x(y);P with A ⊗ B if

the continuation P performs independent communications on x and y. Differently, rule

( C types a communication
−→
x(y);P when the communications on x in P are causally

dependent on the communications on y. In rule⊕C1 and⊕C2, we type the global selection
of a left and a right branch respectively. Rules &C1 and &C2 also type global selection.
The difference between the two operators is that branching is either on the required or the
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provided behaviour of x.

Remark 4.6.1 (Process identifiers). In typical choreography calculi, such as those presented
in Chapters 2 and 3, choreography terms identify the processes involved in a communica-
tion explicitly using an Alice-Bob notation [61, 31]. For instance, a communication of a
bound name y over a channel x would be written as p -> q : x(y), where p and q are pro-
cess identifiers representing respectively the sender and the receiver for the communication.

In ICC, process identifiers are implicit: for each communication
−→
x(y) there are a sender and

a receiver that can be automatically inferred by applying our concretisation transformation
γ. Omitting process identifiers is just a matter of presentational convenience, as our typing
with hypersequents makes them redundant; a way of retaining them would be to annotate
each sequent in a hypersequent with a process name, e.g., for rule T⊗ C:

P . Ψ | ∆1 `r y :•A | ∆2 `p x :•B | ∆3, y :•A, x :•B `q T
p -> q : x(y);P . Ψ | ∆1,∆2 `p x :•A⊗B | ∆3, x :•A⊗B `q T

T⊗ C

Example 4.6.2. We formalise and extend our example from § 4.2 as follows:

Pclient′ = x.inr; x(tea);
(

close[tea] | x(tr); tr(p); (close[p] | wait[tr]; close[x] )
)

Pserver′ = x.case

 x(water); b.inl; wait[water]; wait[x]; close[b],

x(tea); x(tr);

(
tr(p); wait[tea]; wait[p]; close[tr] |
b.inr; b(m);

(
close[m] | wait[x]; close[b]

) )


Pbank′ = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

P = (νx) (Pclient′ |x (νb) (Pserver′ |b Pbank′))

C = (νx) (νb)
−→
x.r


x(water); b.inl; wait[water]; wait[x]; close[b],

−→
x(tea);

−→
x(tr);

−→
tr(p);

−→
b.r

 wait[b]; close[z]

−→
b(m);

−→
close[tea, p, tr,m, x, b]




Process Pclient′ , the new version of the client, implements a client that selects the right
choice of a branching on channel x and then asks for some tea; then, it proceeds as Pclient

from § 4.2. Note that we have enhanced the processes with all expected closing of channels.
The server Pserver′ , instead, now offers to the client a choice between buying a tea (as in
§ 4.2) and getting a free glass of water. Since the water is free, the payment to the bank is
not performed in this case. In either case, the bank is notified of whether a payment will
occur or not, respectively right and left branch in Pbank. The processes are composed as a
system in P .

TermC is the equivalent choreographic representation ofP (where
−→

close[tea, p, tr,m, x, b]

is a shortcut for
−→

close[tea]; . . . ;
−→

close[b]). We can type channel x as (string ⊗ end) ⊕
(string ⊗ (string ( end) ( end) in both the process and the choreographic versions.
The type of channel b is: end ⊕ (string ⊗ end). For clarity, we have used concrete data
types instead of the abstract basic type 1.
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[Scope/Conn/L] (νy) (P |x Q) ≡ (νy) P |x Q
(
y 6∈ fn(Q)

)
[Scope/Conn/R] (νy) (P |x Q) ≡ P |x (νy)Q

(
y 6∈ fn(P )

)
[Scope/Scope] (νy) (νx) P ≡ (νx) (νy) P

[Scope/1L] (νx) wait[y];P ≡ wait[y]; (νx) P

[Scope/⊗ R/L], [Scope/( L/L] (νw) x(y); (P |Q) ≡ x(y); ((νw) P | Q)
(
w 6∈ fn(Q)

)
[Scope/⊗ R/R], [Scope/( L/R] (νw) x(y); (P |Q) ≡ x(y); (P | (νw)Q)

(
w 6∈ fn(P )

)
[Scope/⊗ L], [Scope/( R] (νw) x(y);P ≡ x(y); (νw) P

[Scope/⊕ R1], [Scope/&L1] (νw) x.inl;P ≡ x.inl; (νw) P

[Scope/⊕ R2], [Scope/&L2] (νw) x.inr;P ≡ x.inr; (νw) P

[Scope/⊕ L], [Scope/&R] (νw) x.case(P,Q) ≡ x.case((νw) P , (νw)Q)

[Scope/1C] (νw)
−→

close[x];P ≡
−→

close[x]; (νw) P

[Scope/⊗ C], [Scope/( C] (νw)
−→
x(y);P ≡

−→
x(y); (νw) P

[Scope/⊕ C1/L], [Scope/&C1/L] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw) P,Q)

(
w 6∈ fn(Q)

)
[Scope/⊕ C1/L/R], [Scope/&C1/L/R] (νw)

−→
x.l (P,Q) ≡

−→
x.l ((νw) P, (νw)Q)

(
w ∈ fn(Q)

)
[Scope/⊕ C2/R], [Scope/&C2/R] (νw)

−→
x.r (P,Q) ≡ −→x.r (P, (νw)Q)

(
w 6∈ fn(P )

)
[Scope/⊕ C2/L/R], [Scope/&C2/L/R] (νw)

−→
x.r (P,Q) ≡ −→x.r ((νw) P, (νw)Q)

(
w ∈ fn(P )

)
Figure 4.10: Internal Compositional Choreographies, structural equivalence ( ≡ ) rules for
restriction.

4.6.3 Structural Equivalence

Since well-typed compositional choreographies are proof terms for proofs in LCL, we can
refer to the commuting conversions for proofs denoted by ≡ from § 4.4 to establish a
notion of structural equivalence in our calculus. For example, if we annotate the proofs
in the commuting conversion [Scope/Scope] in Figure 4.6 with proof terms, we get the
following equivalence:

[Scope/Scope] (νy) (νx) P ≡ (νx) (νy) P

Based on all the commuting conversions in LCL, we define the structural congruence P ≡
P ′ as the smallest congruence that relates P and P ′ when their corresponding proofs can be
transformed in one another applying a commuting conversion. We report the rules defining
≡ in Figures 4.10 and 4.11, respectively corresponding to the commuting conversions in
LCL for the rules Scope and Conn.

We comment some rules. In all of them, we assume all names to be different. Rule
[Scope/ ⊗ C] allows us to swap the restriction of a name w after a communication of
name y on channel x (we recall that we assume w to be different from x and y). In rule
[Scope/⊗ R/R] we swap a restriction inside one of the two parallel processes after a send-
ing action, provided that the restricted channel is not a free name in the process it is pushed
into. Rule [Scope/Scope] states that two restrictions can always be swapped with one
another. All the other rules follow similar reasonings.

Since structural congruence is defined by our commuting conversions in LCL, which
preserve the concluding judgement of a proof, we immediately derive the following result:



4.6. Typing Choreographies with LCL 99

[Conn/Conn] (P |y Q) |x R ≡ P |y (Q |x R)

[Conn/1L/L] wait[x];P |y Q ≡ wait[x]; (P |y Q)

[Conn/1L/R] P |y wait[x];Q ≡ wait[x]; (P |y Q)

[Conn/⊗R/R/L], [Conn/(L/R/L] P |w x(y); (Q | R) ≡ x(y); ((P |w Q) | R)

[Conn/⊗R/R/R], [Conn/(L/R/R] P |w x(y); (Q | R) ≡ x(y); (Q | (P |w R))

[Conn/⊗ L/L] x(y);P |w Q ≡ x(y); (P |w Q)

[Conn/⊗ L/R], [Conn/( R/R] P |w x(y);Q ≡ x(y); (P |w Q)

[Conn/( L/L/R] x(y); (P |Q) |w R ≡ x(y); (P | (Q |w R))

[Conn/⊕ R1/R], [Conn/&L1/R] P |w x.inl;Q ≡ x.inl; (P |w Q)

[Conn/⊕ R2/R], [Conn/&L2/R] P |w x.inr;Q ≡ x.inr; (P |w Q)

[Conn/⊕ L/L] x.case(P,Q)|wR ≡ x.case((P |wR), (Q|wR))

[Conn/⊕ L/R], [Conn/&R/R] P|wx.case(Q,R) ≡ x.case((P |wQ), (P |wR))

[Conn/&L1/L] x.inl;P |w Q ≡ x.inl; (P |w Q)

[Conn/&L2/L] x.inr;P |w Q ≡ x.inr; (P |w Q)

[Conn/1C/L]
−→

close[x];P |w Q ≡
−→

close[x]; (P |w Q)

[Conn/1C/R] P |w
−→

close[x];Q ≡
−→

close[x]; (P |w Q)

[Conn/⊗ C/L], [Conn/(C/L]
−→
x(y);P |w Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(Q)

)
[Conn/⊗C/R], [Conn/(C/R] P |w

−→
x(y);Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(P )

)
[Conn/⊕ C1/L]

−→
x.l (P,Q)|wR ≡

−→
x.l ((P |wR), (Q|wR))

(
w ∈ fn(P ) ∩ fn(Q)

)
[Conn/⊕ C1/R], [Conn/&C1/R] P |w

−→
x.l (Q,R) ≡

−→
x.l ((P |wQ), (P |wR))

(
w ∈ fn(Q) ∩ fn(R)

)
[Conn/⊕C1/R/L],[Conn/&C1/R/L] P |w

−→
x.l (Q,R) ≡

−→
x.l ((P |w Q) , R)

(
w ∈ fn(Q), w 6∈ fn(R)

)
[Conn/⊕ C2/L]

−→
x.r (P,Q)|wR ≡

−→
x.r ((P |wR), (Q|wR))

(
w ∈ fn(P ) ∩ fn(Q)

)
[Conn/⊕ C2/R], [Conn/&C2/R] P |w

−→
x.r (Q,R) ≡ −→x.r ((P |wQ), (P |wR))

(
w ∈ fn(Q) ∩ fn(R)

)
[Conn/⊕C2/R/R],[Conn/&C2/R/L] P |w

−→
x.r (Q,R) ≡ −→x.r (Q , (P |w R))

(
w 6∈ fn(Q), w ∈ fn(R)

)
[Conn/&C1/L]

−→
x.l (P,Q) |w R ≡

−→
x.l ((P |w R), Q)

(
w ∈ fn(P ), w 6∈ fn(Q)

)
[Conn/&C2/L]

−→
x.r (P,Q) |w R ≡

−→
x.r (P , (Q |w R))

(
w 6∈ fn(P ), w ∈ fn(Q)

)
Figure 4.11: Internal Compositional Choreographies, structural equivalence ( ≡ ) rules for
parallel composition.

Theorem 4.6.3 (Subject Congruence). P . Ψ and P ≡ Q implies that Q . Ψ.

4.6.4 Reduction Semantics

We get the semantics of well-typed ICC terms directly by Curry-Howard correspondence
with β-reductions in LCL. Figure 4.12 represents the β-reductions on proofs from Fig-
ure 4.5 as ICC term reductions; the reduction relation on ICC terms P t−→ P ′ is closed
under term contexts. In the process fragment, when the redex channel is x and it has type
1, then we just erase the restriction on x together with the parallel composition on x of
the inactive process with some other process P . In the choreographic fragment, this corre-
sponds to just removing the restriction on x.

When x has type A ⊗ B, then a new session of type A is created. In the process
fragment, we obtain (νx)(νy)

(
Q |x (P |y R)

)
, showing that the continuation of the input

R is now linked to the process P through the freshly created channel y and to Q through x.
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[β1] (νx) (close[x] |x wait[x];Q)
x−→ Q

[β⊗] (νx) (x(y); (P | Q) |x x(y);R)
x−→ (νy) (νx)

(
P |y (Q |x R)

)
[β(] (νx) (x(y);P |x x(y); (Q | R))

x−→ (νx) (νy)
(
(Q |y P ) |x R)

[β⊕1 ] (νx) (x.inl;P |x x.case(Q,R))
x−→ (νx) (P |w Q)

[β⊕2 ] (νx) (x.inr;P |x x.case(Q,R))
x−→ (νx) (P |x R)

[β&1 ] (νx) (x.case(P,Q) |x x.inl;R)
x−→ (νx) (P |x R)

[β&2 ] (νx) (x.case(P,Q) |x x.inr;R)
x−→ (νx) (Q |x R)

[β1C] (νx)
−→

close[x];P
•x−−→ P

[β⊗C], [β(C] (νx)
−→
x(y);P

•x−−→ (νy) (νx) P

[β&C1 ], [β⊕C1 ] (νx)
−→
x.l (P,Q)

•x−−→ (νx) P

[β&C2 ], [β⊕C2 ] (νx)
−→
x.r (P,Q)

•x−−→ (νx)Q

Figure 4.12: Internal Compositional Choreographies, reductions.

In the choreographic fragment, we abstract from the way processes are linked, only seeing
that the new restriction (νy) is introduced. The cases for( and branching are similar.

Directly from the results in § 4.4, we obtain:

Theorem 4.6.4 (Subject Reduction). If P . Ψ and P t−→ Q then Q . Ψ.

Additionally, well-typed terms with restrictions never get stuck:

Theorem 4.6.5 (Progress). If P . Ψ and P contains restrictions then there exists Q such
that P t−→ Q.

4.6.5 Endpoint Projection and Choreography Extraction

By using abstraction and concretisation from § 4.4, we obtain Choreography Extraction and
Endpoint Projection respectively. Figure 4.13 shows the corresponding rules, redefining
the relations for abstraction 99K and for concretisation directly on processes. Note
how a choreography P corresponds to the parallel composition of two processes connected
through a channel x.

Example 4.6.6. Using the rules in Figure 4.13 and the structural congruence ≡, we can
now transform P |x Q to R in Example 4.6.2 and viceversa.

In the sequel, as done for proofs, we denote with −→→, 99K99K, and the transitive
closure, up-to ≡, of −→, 99K, and respectively. Finally, we can state the main theorem
of this section:

Theorem 4.6.7 (Correspondence). Let P be well typed. Then,
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[αγ1] close[x] |x wait[x];P
x
99K

−→
close[x];P

[αγ⊗] x(y); (P | Q) |x x(y);R
x
99K

−→
x(y);

(
P |y (Q |x R))

[αγ(] x(y);P |x x(y); (Q | R)
x
99K

−→
x(y);

(
(Q |y P ) |x R

)
[αγ&1 ] x.case(P,Q) |x x.inl;R

x
99K −→

x.l ((P |x R), Q)

[αγ&2 ] x.case(P,Q) |x x.inr;R
x
99K −→

x.r (P , Q |x R)

[αγ⊕1 ] x.inl;P |x x.case(Q,R)
x
99K −→

x.l ((P |x Q) , R)

[αγ⊕2 ] x.inr;P |x x.case(Q,R)
x
99K −→

x.r (Q , (P |x R))

Figure 4.13: Internal Compositional Choreographies, endpoint projection and choreogra-
phy extraction.

• (Choreography Extraction) P
x̃
−→→ P ′, with P ′ restriction-free, implies P

x̃
99K99K Q

such that Q
•x̃
−→→ P ′.

• (Endpoint Projection) P
•x̃
−→→ P ′, with P ′ restriction-free, implies P

x̃
Q such

that Q
x̃
−→→ P ′.

Proof. Follows immediately by Theorem 4.4.3, since choreographies are proof terms.

4.7 Related Work

The developments in this Chapter start from the work [27], where Caires and Pfenning in-
troduce a Curry-Howard correspondence between the π-calculus and Intuitionistic Linear
Logic (ILL). The typable process fragment of our compositional choreographies corre-
sponds to the typable processes in [27]. The only key difference is that, since we split the
Cut rule into Conn and Scope, we are now able to separate the parallel operator from re-
striction, yielding a bigger number of processes. However, the extra processes, if reducible,
are always convertible to those where a Conn is immediately followed by a Scope, hence
equivalent to those in [27].

Based on the developments in [27], Wadler introduces a Curry-Howard correspondence
between the π-calculus and Classical Linear Logic (CLL) [103]. We conjecture that the
concepts that we used to develop LCL from ILL can also be adopted in the classical setting;
our proofs should be reformulated in the new setting.

Previous works have tackled the problem of defining a formal model for choreogra-
phies and giving a correct transformation from choreographies to processes using process
calculi [31]. The main contributions introduced by our work in this regard are that our
transformations are invertible and complete, i.e., for all well-typed terms it is always possi-
ble to transform choreographies into processes and vice versa. Our commuting conversions
can be seen as a logical characterisation of the swapping relation in Chapter 3, which per-
mutes independent communications in a choreography.
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In general, transforming processes in the choreographies they implement is a known
hard problem [18], and our work is the first giving an elegant solution. In this work we have
not considered many interesting features supported by [31] and in our Chapters 2 and 3,
such as multiparty sessions, asynchrony, and replicated services. We plan to introduce them
as future work. Probably, the work closest to ours in providing choreographic synthesis
from endpoint processes is the one in [63]. However, the authors synthesis choreography-
like types from endpoint session types, whereas we synthesis programs. Furthermore, they
do not provide a unified model in that their approach does not capture compositional chore-
ographies.

Our mixing of choreography terms with process terms is similar to that found in [17]
for global protocols. The main difference wrt [17] is that we support the abstraction and
concretisation of program terms, whereas [17] handles the simpler setting of abstraction
and concretisation of protocols; handling program terms is more complicated, since we
have to deal with name passing and session interleaving, both nontrivial problems in the
context of session types [21].

With respect to Chapter 3, the main difference is in the typing system. Specifically,
the type system in Chapter 3 does not employ hypersequents and therefore loses informa-
tion on where the endpoints of connections are actually located. This information makes
Choreography Extraction possible in our setting.

4.8 Discussion

We discuss some aspects of this work and some future extensions.

Exponentials. Our work focuses on the multiplicative and additive fragments of linear
logic, but we have designed LCL to extend it with exponentials in the future. In particular,
we suspect that it is possible to split the known cut-rule for exponentials

Γ; · ` A Γ, A; ∆ ` C
Γ; ∆ ` C Cut!

into a connection rule and a scope rule such as:

. Ψ1 | Γ; · ` x :A . Ψ2 | Γ, x :A; ∆ ` T

. Ψ1 | Ψ2 | Γ; · ` x :•A | Γ, x :•A; ∆ ` T Conn!

. Ψ | Γ; · ` x :•A | Γ, x :•A; ∆ ` T
. Ψ | Γ; ∆ ` T Scope!

We believe that the development presented in this Chapter generalises to exponentials as
well. However, variable names, or an equivalent notation, would become mandatory in the
proof theory because otherwise connections between unrestricted and linear resources may
be confused, breaking our Correspondence Theorem. We leave a detailed investigation of
this fragment to future work.

Variables. The variable assignments in our typing discipline for choreographies are
inspired by [27] and is somehow impure wrt linearity. For example, in the typing rule
⊗R the variable x associated to A ⊗ B is also associated to B in the premise. Another
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possibility would be to follow Bellin-Scott’s Curry-Howard [19], associating to A ⊗ B a
fresh variable that is different from those assigned to A and B in the premises. While
this choice would influence our proof terms in § 4.6, it would not alter our results in any
way. We have chosen to follow the assignments in [27] since they give a more natural
correspondence with session types for process calculi, where the type of a channel tells
how the channel will be used later on during execution, implying that the same channel
name should be reused for the continuation of a type just like we do in our rules.

ILL. Any proof in ILL can be easily transformed into a proof in our logic. In fact, we
can simply carry over any rule application in our resource fragment directly, and represent
every instance of the Cut rule with consecutive applications of rules Conn and Scope. As
a consequence of this transformation, it follows that (i) proofs in linear logic are special
cases of γ-normal proofs in LCL, (ii) our proof reductions are a conservative extension
of the cut reductions of linear logic, and (iii) our abstraction result applies to linear logic.
In particular, (iii) means that it is always possible to reconstruct the choreography imple-
mented by some processes typed using linear logic, simply by carrying over the proof to
LCL.

Semantics. Due to the commuting conversions supported by LCL, our language sup-
ports term equivalences that are not included in the π-calculus, e.g., [Conn/( R/R] in
Figure 4.11. This aspect has already been noted in [103]; it is not a problem in our setting
because our process fragment is exactly the same as presented in [85], where the authors
prove that in well-typed processes the extra equivalences do not produce new reductions.
However, another possibility would be to state our results using only the commuting con-
versions supported by the normal π-calculus, as done in [27]. This however would add to
the complexity of our theory and we chose not to do so for presentational reasons.

Multiparty Sessions. Another interesting extension to our framework would be to
generalise our binary sessions in ICC to multiparty sessions in the spirit of Chapters 2
and 3. Being able to model multiparty session types corresponds to being able to identify
multiparty sessions, where each role in the session is identified by some local type [55].
We conjecture that this can be achieved by modifying rule Scope into a MultiScope rule, so
that it can execute more than one connection at the same time. In this way, each application
of rule MultiScope would identify a multiparty session. We leave this as interesting future
work.

4.9 Conclusions

We introduced LCL, a conservative extension of intuitionistic linear logic to hypersequents
that express connections between different sequents. LCL includes a new set of rules that
can manipulate connections; we showed that any judgement provable with the set of rules
corresponding to linear logic in LCL can also be proven with our new rules and vice versa.
Moreover, the new system is sound wrt the cut elimination process, represented by our β-
reductions. Finally, we showed that LCL is isomorphic to an extension of the π-calculus,
called internal compositional choreographies, and, in particular, choreographic behaviour
corresponds to the new set of rules for manipulating connections. We can now use internal
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compositional choreographies to safely apply the methodology of round-trip development,
where systems can be designed by using both a choreographic view and a process view.



Part II

Implementation





CHAPTER 5

Programming Sessions with
Correlation Sets

5.1 Introduction

In Part I, we have focused on the formalisation of models for Choreographic Programming,
which are all based upon the fundamental concept of session. In this Chapter and the next,
we investigate a methodology for implementing sessions that we will finally use in the
development of a framework for Choreographic Programming in Chapter 7.

A session is an abstract mechanism for matching sending and receiving actions per-
formed by processes that wish to exchange a message. In the real world, such processes
are typically executed inside some network nodes; therefore, whenever a process wishes
to send a message to another process over a network, the sender must provide enough in-
formation in the message to (i) identify the destination network node and (ii) identify the
receiver process running inside the destination network node.

Usually, routing information in messages is handled by a middleware layer. For exam-
ple, two processes can establish a TCP/IP socket connection to reliably exchange messages
with each other [24]; a socket API will allow each process to perform sending and receiv-
ing actions on the socket, dealing internally with the details of adding the proper message
headers for routing each message to its destination (e.g., a TCP port). This pattern appears
repeatedly in different implementations of sessions, e.g., in middleware for Inter-Process
Communications (IPC) or web sessions [2, 86, 82]. The main differences among these
implementations come from using different portions of data in messages as information for
their routing; e.g., a web-oriented middleware may require matching the value of an HTTP
cookie [43] with the value of a variable of a process running in a web server, whereas
an IPC middleware may use unique object identifiers. In other words, there is a common
conceptual ground between different implementations of sessions. Inspired by this obser-
vation, we ask:

Can we design a general programming framework for sessions, in which the
data used for routing messages can be specified by the programmer?

More specifically, we are interested in obtaining a framework that can be adapted to dif-
ferent application domains, ranging, e.g., from binary sessions between a web browser and
a web server to more complex multiparty sessions supporting distributed transactions in
other settings.

We start our investigation from the mechanism of correlation sets, introduced by WS-
BPEL [79] (BPEL for short), the reference orchestration language for Web Services [12].
Correlation sets are program parameters used to define routing policies for delivering in-
coming messages to the correct running process within a server (also called service). A
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message is relayed to an internal process whenever a part of its data content matches a part
of the process variable state. These parts are defined programmatically by the correlation
sets. Correlation sets are widely used in Service-Oriented Computing (SOC); their role re-
sembles that of unique keys in relational databases: they uniquely identify a process from
a portion of their data.

Correlation sets can be seen as a parameterised mechanism for implementing sessions,
where the parameters instruct which portions of data to use in messages for supporting
sessions; therefore, they may be seen as a solid candidate for answering our question.
However, the programming of correlation sets is error-prone in currently available tools.
For example, a programmer may declare his intention to use a single session identifier
variable sid to identify a session (by defining a correlation set), but then forget to actually
instantiate such variable in the program; this error would immediately lead to a deadlock,
since the session would then be unable to receive messages.

In this Chapter, we develop a language for programming correlation-based sessions.
Our main contribution is the formalisation of a semantics for correlation-based message
routing, and the development of a typing discipline for avoiding bad correlation program-
ming.

5.1.1 Contributions

This Chapter provides the following main contributions.

Correlation-based Programming. We formalise a language model for programming
sessions by using correlation sets (§ 5.3), where processes run inside services that can be
composed in networks and communicate and each correlation set defines a session through
which a process can be reached. The main aspect of our model is the usage of operation
names and message paths (i.e., paths pointing to content in messages) in the definitions
of correlation sets. Our model supports (i) a semantics for asynchronous communications
between processes that execute inside services (which represent network nodes), and (ii)
a notion of correlation aliasing which allows programmers to decouple the routing data in
messages from that used to distinguish processes. Both features are based on our structure
for correlation set definitions.

Typing. We define a typing discipline that prevents the occurrence of some runtime
errors due to bad correlation programming (§ 5.4). We guarantee that, in a well-typed
network, processes can always be uniquely identified by using correlation data. Our results
show how to discipline message routing programming based solely on data for obtaining a
determinism similar to that of π-calculus channels [69].

Implementation and Evaluation. We provide an implementation of our model by
extending the interpreter of the Jolie language [74, 60] (§ 5.5). We use our implementation
to evaluate our approach, by programming a nontrivial real-world example showing a fully-
functional distributed user authentication system based on multiparty sessions, inspired by
the OpenID Authentication specifications [81] (§ 5.6).
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5.2 Preview

In this section, we outline with an example the main ideas of our language. Formal syntax
and semantics will be given in § 5.3.

Our example is a common distributed scenario with a chat service supporting the man-
agement of chat rooms. Chat rooms are identified by name, as in IRC servers [5]. The
service allows users to: create new chat rooms, publish a message in a chat room, retrieve
published messages from existing chat rooms, and close chat rooms. When a client re-
quests the creation of a chat room, the service checks that no other room with the same
name exists. It then sends an administration token back to the invoker. Each chat room
has two sessions. The first session is identified by the chat room name and can be used
to publish messages in the room or retrieve the history of messages published so far. The
second session is identified by the administrator token and is intended to be used by the
initial creator whenever she wishes to close the room.

In our example, we implement each chat room with a separate process running inside
our chat service.

5.2.1 Data Structures

Each process implementing a chat room has a data structure representing its local state
where its name, description, published messages, and administration token are stored. In
our language, we represent data as trees where nodes are values of basic data types such as
strings and integers. For instance, the state of a chat room is represented by the tree:

5"hi;hey;" "fun"

descr csets

content

t'

name adminToken

"..."

(1)

The root has three children pointed to by labels descr, content and csets. Subn-
ode csets has two other children, name and adminToken. Data trees are accessed in
programs by means of paths. Paths are sequences of edge names separated by dots, and
can be used for traversing a tree starting from its root. Paths can be used in assignments
and expressions. For example, the tree above could be initialised in our language with the
following assignments:

descr = "..."; content = "hi;hey;";
csets.name = "fun"; csets.adminToken = 5

For brevity, we refer to a path as a variable, and the node it points to as its value. So in this
case variable content would have value "hi;hey;".

5.2.2 Communication Behaviour

In our language, data is exchanged between processes that run inside services by means
of message passing. As in Web Services, messages are labelled by operations. Given
operations create, publish, read and close, we could program the chat service
behaviour as:
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create(name)(csets.adminToken) { csets.adminToken = new };
run = 1; while( run ) {

[publish(msg)] { content = content + msg.content + ";" }
[read(req)(content) { 0 }] { 0 }
[close(req)] { run = 0 }

}

The first instruction is an input on operation create. The content of the received message
(a data tree) will be stored as a subtree of name which is a path in the local state. We call
this input instruction a process start since its execution will start a new chat romm. More-
over, it is also a Request-Response (as in WSDL [13]): the client will wait for the server
to reply with the content of csets.adminToken that is sent back once the local code
in curly brackets { csets.adminToken = new } is executed. new is a primitive
that returns a locally-fresh token. After invocation, the process enters a loop containing a
choice of three inputs with operations publish (for publishing in the chat room), read
(for reading already published messages), and close (for closing the chat room). The
inputs with operations publish and close are standard inputs called One-Way while
the one with operation read is a Request-Response.

Dually to the server, we can give an example program for a client:

roomName = "MyRoom"; create@Chat(roomName)(adminToken);
msg1.roomName = roomName; msg1.content = "hi";
msg2.roomName = roomName; msg2.content = "hey";
{ publish@Chat(msg1) | publish@Chat(msg2) };
read@Chat(roomName)(chatContent); close@Chat(adminToken)

This client example performs a Solicit-Response output (dual of Request-Response) on
operation create. The message is sent at location Chat, the location of the chat server.
Locations (cf. URIs) define where services are deployed, modeling locality. The instruction
is completed when the response from the server is received and assigned to adminToken.
Thereafter, the client sends messages to the chat with two Notification outputs (dual to One-
Way) executed in parallel by means of the | operator. Finally, the client reads the content
of the chat room through operation read and closes it by means of operation close.

In our language, messages are delivered asynchronously to processes. After a message
is sent, it is guaranteed that the receiving process has buffered it, but not that it has con-
sumed it. This can lead to bad behaviour. For this reason, the semantics of our language in
§ 5.3 preserves ordering of buffered messages.

5.2.3 Correlation Sets and Aliasing

The chat service may have many running processes executing in parallel, each one repre-
senting a chat room. Moreover, each process needs a way for safely identifying messages
coming from the room creator, since the room creator is the only one authorised to close
the chat room. Correlation sets address this kind of issues. In our language, a correla-
tion set represents a session and is a set of paths, called correlation variables, that define
which nodes of a session state identify the session. A correlation set is defined by means
of the keyword cset. Our chat service has two correlation sets: cset {name} and
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cset {adminToken}. The first implements a session for reading and publishing mes-
sages, and the second implements a session with the room creator. For example, if the chat
server receives a message carrying the tree:

"fun"

namecontent
"bye"

the first correlation set will then associate the message to the process running with the state
shown in (1), since both message and session share the same value for correlation variable
name, and route the message to it. We call this association correlation, and we say that
the message correlates with the process. The value for correlation variable name is stored
in the subtree csets in the session state. More generally, in our language every corre-
lation value must be put in that subtree. This makes modifications to data that influences
correlation explicit. We exploit this aspect in the definition of our type system, in § 5.4.

Correlation sets are specified by the receiver: the client does not need to be aware
of the correlation sets of the invoked service but needs only to send messages with the
expected data structures, enabling loose coupling. Correlation sets are also suitable for the
integration with different technologies. For example, a web server session can be identified
by the correlation set c = {sid}, the session identifier usually stored in a browser cookie1.

Above, we associated a message to a process by matching the value of the same path
name in the message tree and the process state. Such a mechanism is limiting, because
the fact that the two paths must be the same means that there is tight coupling between
the service implementation and its interface. This could be even completely unfeasible.
Consider, for instance, the case in which a programmer must write a service that interacts
with a legacy application. The interface of the service will have to be in accordance to
what the legacy application expects. Let us assume now that the legacy application will
send two different kinds of message to our new chat service, on different operations. The
first contains the room name under path roomName and the other in the root of the message
data tree; this is the behaviour of the client that we showed before. How can we relate both
values to the same correlation variable inside the process implementing the desired chat
room? We address this issue with a notion of aliasing: a correlation variable is defined
together with a list of aliases that tell where to retrieve, in a message, the value to be
compared with that of the process state, depending on the type of the incoming message
(aliasing can be looked at as a type itself). Hence, the correlation set definitions for the
chat service become:

cset { name: Create Publish.roomName Read }
cset { adminToken: Close }

where, for brevity, we assume the input message type of each operation has the same name
with an uppercase initial. Data types will be presented in § 5.5.

1We will develop further this idea in Chapter 6.
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5.3 Model

In this section we introduce our language model, the Correlation Calculus, and formalise
its data, syntax, and semantics.

5.3.1 Data Trees and Correlation

Let t range over a set of data trees T , with edges denoted by x,y,z,. . . and nodes denoted
by v. v is a value, which can be a string, an integer, a location or the undefined value v⊥.
Values is the set of all values. In programs, data trees are accessed by paths. A path p is a
sequence of tree edges x1. . . . .xn denoting an endofunction on data trees defined as:

p(t) =


t if p = ε
p′(t′) if p = x.p′ and x is an edge from the root of t to t’s subtree t′

t⊥ if p = x.p′ and there is no edge x from t to a subtree t′

where ε denotes the empty sequence and t⊥ a tree with a single node with value v⊥. We
denote the set of possible paths with Paths. Furthermore, we require paths written in
programs to be nonempty. We extract the value of the root of a tree by using the function
〈〈〉〉 : T → Values.

Definition 5.3.1 (Correlation Set). A correlation set, denoted by c, is a set of paths cor-
responding to those values that identify a running session of a service: c ⊆ Paths. A
service may define more than one correlation set: we denote with C a set of correlation
sets, C ⊆ P(Paths).

We model correlation aliasing by means of an aliasing function, αC , which establishes
where to retrieve correlation values in a message received for an operation. Let O be the
set of possible operations, ranged over by o. An aliasing αC is a function that given an
operation o returns a correlation set c ∈ C and a function from paths contained in c to
paths in the incoming message:

αC : O ⇀ C × (Paths ⇀ Paths)

The aliasing function αC bases aliases on operations, and not on message types like in
§ 5.2. This is just a matter of technical convenience; in our language implementation
(§ 5.5), aliases are defined on message types and are internally converted to an aliasing
function as described in this section.

We now present our definition of correlation in terms of the relation `αC :

Definition 5.3.2 (Correlation `). A data tree t′ received for operation o correlates with a
data tree t with respect to an aliasing αC , written t′, o `αC t, whenever

∃c, f. c 6= ∅ ∧ αC(o) = (c, f) ∧ ∀p ∈ c. 〈〈(f(p))(t′)〉〉 = 〈〈csets.p(t)〉〉 6= v⊥

5.3.2 Syntax

The syntax and semantics of our model are structured in three layers. The behavioural
layer models the actions performed by processes, the service layer handles the definition
of correlation sets, running processes, and session instantiation, and the network layer deals
with the deployment of services and their communications. This layering, which originally
comes from [51], is reflected in our language implementation presented in § 5.5.
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B ::=
∑
i

[ηi]{Bi} (input choice)

| η (input)
| η (output)
| if(e){B1}else{B2} (cond)
| while(e){B} (loop)
| p= e (assign)
| B1;B2 (seq)
| B1 | B2 (par)
| 0 (inact)

η ::= o(p) (one-way)
| o(p)(p’){B} (request-response)

η ::= o@p(p’) (notification)
| o@p(p’)(p”) (solicit-response)

e ::= new (new)
| l (location)
| p (path)
| . . . (first-order expr)

Figure 5.1: Correlation Calculus, syntax of behaviours.

5.3.2.1 Process layer

Behavioural terms, ranged over by B, and defined by the grammar reported in Figure 5.1
where r denotes a channel name, l, l′, . . . locations and e, e′, . . . unspecified first-order ex-
pressions that include locations, paths, and an operator new for generating locally-fresh
values. Input-guarded branching is available through (choice). Communications can be
unidirectional (one-way) or bidirectional (request-response). o(p) reads an incoming
message for operation o and places the received tree in the local state tree under path
p. Dually, o@p(p’) sends a message for operation o to the location stored in the state
node p points to, carrying the data in the local state pointed by p’. Alternatively, (request-
response) and (solicit-response) allow for Request-Response communications. In partic-
ular, in o(p)(p’){B}, the value at p’ will be returned after B is executed. All other
constructs are standard.

5.3.2.2 Service layer

The syntax of services, denoted by S, is reported in Figure 5.2. A service consists of a
behaviour definition that and an aliasing αC , defining its correlation sets. Term (service)
models a typical replicated service offering the always available operations in ηi for starting
processes that will execute behaviour Bi, respectively. Normally, services become active
only after they are invoked. For this reason, a system needs at least one service to spon-
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S ::=
∑
i

[ηi]{Bi} .αC 0 (service) | 0 .αC B · t⊥ · ε (starter)

Figure 5.2: Correlation Calculus, syntax of services.

N,M ::= [S]l | (νr)N | N | N | 0 (network)

Figure 5.3: Correlation Calculus, syntax of networks.

taneously start invoking other services. Term (starter) captures such services. A starter
specifies a single process executing behaviour B, which will start its execution without the
need to be triggered.

5.3.2.3 Network layer

Services are deployed on locations and composed in parallel to form networks, denoted by
N,M, . . ., using the syntax in Figure 5.3. We assume that, for any network, it is never the
case that two services are deployed with the same location.

5.3.3 Semantics

We extend the language syntax with runtime terms to model execution. The terms are
given in Figure 5.4. Services are extended to support multiple locally running processes
(denoted by P ). Each process consists of a runtime behaviour, a state t, and a FIFO mes-
sage queue m̃, with ε representing the empty queue. m is a message of the form (r, o, t)
where r is a channel, o an operation and t the message content. The terms Wait(r,p) and
Exec(r,p, B) model runtime Request-Response communications, where channel r is used
to communicate a response.

We equip our model with a structural congruence ≡, defined as the smallest congru-
ence relation on B, P , S, and N such that ( | ,0) is a commutative monoid, it supports
alpha-conversion, 0;B ≡ B, B ≡ B′ and P ≡ P ′ imply [B .αC P ]l ≡ [B′ .αC P

′]l,
(νr)(νr)′N ≡ (νr)′(νr)N and such that ((νr)N) |N ′ ≡ (νr)(N |N ′) if r /∈ cn(N ′),
where cn is a function that returns the set of channel names in a term.

We give semantics to terms with a labelled transition system (lts), in which labels are
ranged over by µ. We describe the semantics of each layer separately.

S ::= B .αC P (running service)

P,Q ::= B · t · m̃ | P | Q (running processes)

B ::= . . . | Wait(r,p) | Exec(r,p, B) (running behaviours)

Figure 5.4: Correlation Calculus, syntax of runtime terms.
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o@p(p’)(p”)
(νr) o@p(p’)−−−−−−−−−→Wait(r,p”)

bB|SOLICITe

o@p(p’)
(νr) o@p(p’)−−−−−−−−−→ 0

bB|NOTIFYe j ∈ J ηj
µ−→ B′j∑

i∈J [ηi]{Bi}
µ−→ B′j ;Bj

bB|CHOICEe

o(p)
r:o(p)−−−−→ 0

bB|ONEWAYe
o(p)(p’){B}

r:o(p)−−−−→ Exec(r,p’, B)
bB|REQUESTe

Exec(r,p,0)
r p−−→ 0

bB|EXECENDe
Wait(r,p)

r p−−→ 0
bB|WAITe

B
µ−→ B′

Exec(r,p, B)
µ−→ Exec(r,p, B′)

bB|EXECe
e(t) = false

while(e){B}
read t−−−−→ 0

bB|WHILEENDe

B
µ−→ B′′

B;B′
µ−→ B′′;B

bB|SEQe B
µ−→ B′′

B | B′ µ−→ B′′ | B
bB|PARe

p= e
p= e−−−→ 0

bB|ASSIGNe

i = 1 if e(t) = true, i = 2 otherwise

if(e){B1}else{B2}
read t−−−−→ Bi

bB|CONDe

e(t) = true

while(e){B}
read t−−−−→ B;while(e){B}

bB|WHILEe

Figure 5.5: Correlation Calculus, semantics of behaviours.

5.3.3.1 Behavioural layer

The rules defining the semantics of behavioural terms are reported in Figure 5.5. Rules
bB|ONEWAYe and bB|NOTIFYe allow, respectively, for the receiving and sending of asynchronous
one-way messages. Rules bB|REQUESTe and bB|SOLICITe do similarly for Request-Response pat-
terns, handling also the subsequent response computation and sending. The computation
of the response is handled by rule bB|EXECe; when the response computation terminates, the
caller and the callee communicate again by means of the private and previously established
channel r. The modeling of Request-Response replies through private channels supports
classic client-server communications, where the client could be unable to expose inputs of
its own due to external restrictions, e.g. firewalls.

5.3.3.2 Service layer

The service layer supports the execution of behaviours inside processes. The rules are
reported in Figure 5.6. Rule bS|STARTe implements the spawning of a new local process by
receiving a message that does not correlate with any running process on any correlation
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B
r:o(p)−−−−→ B′

B · t · (r, o, t′) ::m̃
τ−→ B′ · t←p t

′ · m̃
bS|GETe

B
(νr) o@p(p’)−−−−−−−−−→ B′

B · t · m̃ (νr) o@〈〈p(t)〉〉(p’(t))−−−−−−−−−−−−−→ B′ · t · m̃
bS|SENDe

B
r p−−→ B′

B · t · m̃ r p(t)−−−→ B′ · t · m̃
bS|SRe B

r p−−→ B′

B · t · m̃ r t′−−→ B′ · t←p t
′ · m̃

bS|RRe

B
p= e−−−→ B′

B · t · m̃ τ−→ B′ · t�p e(t) · m̃
bS|ASSIGNe B

read t−−−−→ B′

B · t · m̃ τ−→ B′ · t · m̃
bS|READe

Q
µ−→ Q′

B .αC P | Q µ−→ B .αC P | Q′
bS|LIFTe

t′, o `αC t

B .αC P | B′ · t · m̃ (νr) o(t′)−−−−−−−→ B .αC P | B′ · t · m̃ :: (r, o, t′)

bS|CORRe

t, o 0αC P B
r:o(p)−−−−→ B′ t′ = init(t, o, αC)

B .αC P
(νr) o(t)−−−−−−→ B .αC P | B′ · t⊥ ←p t←csets t

′ · ε
bS|STARTe

init(t, o, αC) =


t⊥ �p1 f(p1)(t) . . .�pn f(pn)(t) if αC(o) = ({p1, . . . , pn}, f)
t⊥ if o /∈ dom(αC)
undefined otherwise

Figure 5.6: Correlation Calculus, semantics of services.
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S1
(νr) o@l2(t)−−−−−−−−→ S′1 S2

(νr) o(t)−−−−−−→ S′2 r /∈ cn(S1) ∪ cn(S2)

[S1]l1 | [S2]l2
τ−→ (νr) ( [S′1]l1 | [S′2]l2 )

bN|COMe

S1
r t−−→ S′1 S2

r t−−→ S′2

(νr) ( [S1]l1 | [S2]l2 )
τ−→ [S′1]l1 | [S′2]l2

bN|RESPONSEe

N1
τ−→ N ′1

N1 | N2
τ−→ N ′1 | N2

bN|PARe
N1 ≡ N ′1 N ′1

µ−→ N ′2 N ′2 ≡ N2

N1
µ−→ N2

bN|EQe

Figure 5.7: Correlation Calculus, semantics of networks.

set (thus giving precedence to existing processes), initialising its csets subtree if there
is an aliasing definition for operation o. Note that the initialisation function init(t, o, αC)
is partial and undefined if the message does not contain all the correlation data specified
in αC for o; in this case, rule bS|STARTe can not be applied. The predicate t′, o 0αC P is
defined whenever there is no state t in P such that t′, o `αC t. Moreover, t ←p t

′ is a
function that returns a new tree obtained from t by replacing the subtree pointed by p with
t′; the function automatically creates the missing nodes for traversing t with p, initializing
them with v⊥. Function t �p e(t

′) does the same but replaces only the root in p(t) with
the value that results from the evaluation of e on t′, e(t′). Rule bS|GETe allows a running
process to fetch the first element from its message queue. Rule bS|SENDe propagates the label
for a sending, which will be used by the network layer for performing the actual message
transmission; the rule substitutes the paths p and p’ in the original label with, respectively,
the location pointed by p and the data tree pointed by p’ stored in the process state. Rules
bS|SRe and bS|RRe close a Request-Response communication by exchanging the final reply.
Rule bS|ASSIGNemodels variable assignment. Rule bS|CORRe allows a running session to receive
a correlating message and store it in its local queue (we omit the condition for handling the
special case of an empty queue m̃ = ε). All other rules are standard [51].

5.3.3.3 Network layer

The outer layer of our semantics, the network layer, deals with inter-service interactions.
The rules are standard and reported in Figure 5.7.

5.4 Typing and Properties

In this section we discuss some desirable properties of services that can be captured with
our language. Some of them are based on conditions that we will guarantee through the
use of a typing system.

5.4.1 Properties

Our properties focus on the integrity of sessions and communications.
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Property 5.4.0.1 (Message delivery atomicity). Let N ≡ (ν r̃) ([S1]l1 | M) such that

S1
(νr′) o@l2(t′)−−−−−−−−−→ S′1 and N τ−→ (ν r̃) (νr′) ([S′1]l1 | M ′). Then, M ≡ [S2]l2 | M ′′,

M ′ ≡ [S′2]l2 |M ′′ and either:

(i) S2 ≡ B .αC P | B′ · t · m̃ and S′2 ≡ B .αC P | B′ · t · m̃ :: (r, o, t′); or,

(ii) S2 ≡ B .αC P and S′2 ≡ B .αC P | B′ · t←p t
′ · ε for some t, p.

The property above states that if a service successfully executes a message sending
then there is another service in the network that either (i) put the message in the queue
of a correlating process or (ii) started a new process with a state containing the message
data. This is guaranteed by our semantics since a message sending is completed only by
synchronising with the receiver by means of rule bS|STARTe or rule bS|CORRe.

Property 5.4.0.2 (No session ambiguity). For all t′, o and service B .αC P , there is at
most one running session B′ · t · m̃ in P such that t′, o `αC t.

Our second property states that a service can never have more than one running process
that correlates with the same message on any session (i.e., by any correlation set definition
in the service). Such a situation would lead to non-deterministic assignments of incoming
messages, which goes against the principle that a session should be uniquely identifiable.

Property 5.4.0.3 (Possible inputs). Let S ≡ B .αC P | B′ · t · m̃. If B′ r:o(p)−−−−→ B′′ then
at least one of the following holds:

(i) m̃ = m̃′ :: (r, o, t′) ::m̃′′;

(ii) S
(νr) o(t′)−−−−−−−→ B .αC P | P ′ · t · m̃ :: (r, o, t′).

Property 3 says that if a process needs to perform an input action, then a message for
such input action is in its queue and/or the enclosing service is able to receive a message
for the process by correlation. In other words, whenever a process tries to perform an input
action its state has the related correlation set fully instantiated.

Properties 5.4.0.2 and 5.4.0.3 depend on the states of the processes running in a service.
Bad programming can lead to executions for which the properties do not hold. For example,
for αC = [join 7→ ({x}, [x 7→ ε])], if a service with behaviour

start(a);csets.x = 5;join(b)

gets invoked twice on operation start, it will spawn two processes which will both exe-
cute csets.x = 5. After that, by αC , both processes can correlate with a message for
operation join with value 5 as root node. This situation breaks Property 5.4.0.2, leading
to non-deterministic message routing. Also, if αC = [join 7→ ({x, y}, [x 7→ ε, y 7→ y])],
we break Property 5.4.0.3: the two processes would be stuck forever waiting for a message
for join, because rule bS|CORRe could never be applied due to the lack of a value for y in
the process states.

We address bad correlation programming as exemplified above with a typing discipline,
which we formalise in the following.
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5.4.2 Type system

We present a type system that focuses on the manipulation of correlation data. Our typ-
ing performs an initialisation analysis for correlation variables. Although this is a well-
established technique, our setting requires particular attention to the concurrent execution
of multiple processes, and the interplay between process behaviour and the aliasing func-
tion αC .

Typing judgements have the form

Γ ` B : ∆N |∆P

where ∆N ⊆ Paths and ∆P ⊆ Paths×{◦, •}. We also make use of the judgements ` S
and ` N , for asserting that services and networks are well-typed. In a judgement Γ `
B : ∆N |∆P , ∆N says which correlation paths B needs to be initialised its execution, and
∆P contains the correlation paths provided, i.e., initialised, by B. In ∆P each correlation
path is flagged with either ◦, telling that the path carries a fresh value, or •, telling that the
path does not carry a fresh value. An environment Γ : O ⇀ C maps each operation to its
correlation set. The typing rules are reported in Figure 5.8.

We comment the typing rules. Rule bT|NILe types the terminated behaviour, which does
not need nor provide any correlation path. Rule bT|ASSIGNe types assignments to paths that are
not used for correlation (p 6= csets.p’). Rules bT|CSET-NEWe and bT|CSET-EXPRe type, respec-
tively, the assignment of a fresh or a non-fresh value to a correlation path. In bT|CSET-EXPRe
we require e to be defined, i.e., that its evaluation will not yield v⊥. This is a simple (but
omitted) definite assignments analysis. Rule bT|CONDe types a conditional by requiring the
correlation paths needed by both branches and checking that the different branches pro-
vide the same correlation paths. Rule bT|CHOICEe follows similar reasoning to rule bT|CONDe.
In rule bT|PARe, we type the parallel composition of two behaviours by requiring the paths
of both and checking that they provide different paths (to avoid data races on correlation
paths). Rule bT|SEQe types a sequential composition, allowing the second behaviour to use
the paths provided by the first. Rule bT|WHILEe is standard, and cannot provide any paths. In
rules bT|NOTIe and bT|SRe we do not require any correlation paths, since those are used only
for receiving. Rule bT|OWe types a one-way input, requiring the correlation paths neces-
sary for the operation (Γ(o)) and checking that the correlation set for the operation is not
empty (which would make it impossible to correlate a message for it). Differently, in rule
bT|OW-STARTERe we judge that the correlation set for an input operation used at the top level of
a service definition (identified by the annotation s in `s) will be provided, since our rule
bS|STARTe will initialise it in the state of the newly created process. In the rule, Γ((o)) returns
the correlation set for o in Γ if it is defined, or the empty set otherwise; formally:

Γ((o)) =

{
Γ(o) if o ∈ dom(Γ)

∅ otherwise

Rules bT|RRe and bT|RR-STARTERe follow similar reasonings. In rule bT|STARTERe, a starter is well-
typed if its behaviour is well-typed. The premise Γ = π1(αC) ensures that Γ agrees with
the correlation aliasing function of the service; formally:

π1(αC) = {[o 7→ c] | αC(o) = [c 7→ f ]}
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Γ ` 0 : ∅|∅
bT|NILe p 6= csets.p’

Γ ` p= e : ∅|∅ b
T|ASSIGNe

Γ ` csets.p = new : ∅|{p◦} b
T|CSET-NEWe e 6= new e defined

Γ ` csets.p = e : ∅|{p•} b
T|CSET-EXPRe

Γ ` B1 : ∆N1 |∆P Γ ` B2 : ∆N2 |∆P

Γ ` if(e){B1}else{B2} : ∆N1 ∪∆N2 |∆P

bT|CONDe

Γ ` ηi;Bi : ∆Ni |∆P ∆N =
⋃
i∈I ∆Ni

Γ `
∑

i∈I [ηi]{Bi} : ∆N |∆P

bT|CHOICEe

Γ ` B1 : ∆N1 |∆P1 Γ ` B2 : ∆N2 |∆P2

Γ ` B1 | B2 : ∆N1 ∪∆N2 |∆P1 ]∆P2

bT|PARe

Γ ` B1 : ∆N1 |∆P1 Γ ` B2 : ∆N2 |∆P2 ∆′ = (∆N2 \∆P1) ∪∆N1

Γ ` B1;B2 : ∆′|∆P1 ]∆P2

bT|SEQe

Γ ` B : ∆N |∅
Γ ` while(e){B} : ∆N |∅

bT|WHILEe

Γ ` o@p(p’) : ∅|∅
bT|NOTIe p” 6= csets.p”’

Γ ` o@p(p’)(p”) : ∅|∅
bT|SRe

Γ(o) = c 6= ∅ p 6= csets.p’

Γ ` o(p) : c|∅
bT|OWe p 6= csets.p’

Γ `s o(p) : ∅|Γ((o))
bT|OW-STARTe

Γ(o) = c 6= ∅ Γ ` B : ∆N |∆P

Γ ` o(p)(p’){B} : c ∪∆N |∆P

bT|RRe

Γ ` B : ∆N |∆P

Γ `s o(p)(p’){B} : ∆N |∆P ] Γ((o))
bT|RR-STARTe

Γ = π1(αC) Γ ` B : ∅|∆P ∆P n C

` 0 .αC B · t⊥ · ε
bT|STARTERe

i ∈ I Γ = π1(αC) Γ `s ηi : c|∆Pi Γ `s Bi : ∆′Ni |∆
′
Pi

∆′Ni ⊆ c ∪∆Pi ∆Pi ∩∆′Pi = ∅ ∆Pi ]∆′Pi n C

`
∑
i∈I

[ηi]{Bi} .αC 0
bT|SERVICEe

Figure 5.8: Correlation Calculus, typing rules.
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t,o `αC t1 t,o `αC t2 S = B .αC P | B1 · t1 · m̃1 | B2 · t2 · m̃2

[S]l
wrong l−−−−→ [S]l

bN|WRONG-CORRe

B′
r:o(p)−−−−→ B′′ (r, o, t′) 6∈ m̃

B .αC P | B′ · t · m̃ (νr) o(t′)9 B .αC P | B′ · t · m̃ :: (r, o, t′)

[B .αC P | B′ · t · m̃]l
wrong l−−−−→ [B .αC P | B′ · t · m̃]l

bN|WRONG-INPUTe

N
wrong l−−−−→ N ′

N | N ′′ wrong l−−−−→ N ′ | N ′′
bN|WRONGe

Figure 5.9: Correlation Calculus, semantics of runtime errors.

Furthermore, the relation n captures that, for the sake of being uniquely identifiable by
correlation, a process needs at least one correlation variable to be fresh for every correlation
set that is completely initialised:

Definition 5.4.1 (Correlation set freshness relation n).

∆P n C iff ∀c ∈ C . (@p ∈ c . p /∈ ∆P ) ⇒ (∃p ∈ c . p◦ ∈ ∆P )

5.4.3 Typing soundness

We prove our typing sound by introducing a notion of error in the semantics of the Correla-
tion Calculus, with the rules reported in Figure 5.9. Specifically, we add two error rules and
another rule for lifting their observable behaviour. Both error rules use a label wrongl that
carries the location l of the originating service. Rule bN|WRONG-CORRe requires that a service
has two running sessions that correlate with the same message t for the same operation
o, the negation of Property 5.4.0.2. Rule bN|WRONG-INPUTe, instead, is active when a running
process wishes to input on an operation for which there is no message in its message queue
and the correlation mechanism can route no new message to such a session, the negation
of Property 5.4.0.3.

Next, we augment our typing system to deal with runtime terms and networks, with the
rules reported in Figure 5.10. Rule bT|WAITe types a response wait, which does not require
nor provide any correlation path. Rule bT|EXECe types the runtime computation of a response
for a request with the environments of its executing body. Rule bT|PROCESSe types a process,
using the process state to satisfy the required correlation paths of the process behaviour.
This is formalised by the predicate co(t,∆N |∆P ), which we assume holds only when the
following conditions hold:

∀p ∈ ∆N .csets.p(t) defined and ∀p ∈ ∆P .csets.p(t) undefined

In rule bT|RTSERVICEe, we add to the same premises of rule bT|SERVICEe the extra condition `
B′j · tj · m̃j (the runtime processes in the service must be well-typed) and

@k, k′ ∈ J, c ∈ C. ∀p ∈ c. csets.p(tk) = csets.p(tk′) 6= v⊥



122 Chapter 5. Programming Sessions with Correlation Sets

Γ ` Wait(r,p) : ∅|∅
bT|WAITe

Γ ` B : ∆N |∆P

Γ ` Exec(r,p, B) : ∆N |∆P

bT|EXECe

Γ ` B : ∆N |∆P co(t,∆N |∆P )

` B · t · m̃
bT|PROCESSe

i ∈ I Γ = π1(αC) Γ `s ηi : c|∆Pi Γ `s Bi : ∆′Ni |∆
′
Pi

∆′Ni ⊆ c ∪∆Pi ∆Pi ∩∆′Pi = ∅ ∆Pi ]∆′Pi n C

` B′j · tj · m̃j @k, k′ ∈ J, c ∈ C. ∀p ∈ c. csets.p(tk) = csets.p(tk′) 6= v⊥

`
∑

i∈I [ηi]{Bi} .αC
∏
j∈J B

′
j · tj · m̃j

bT|RTSERVICEe

` S
` [S]l

bT|LOCATIONe ` N ` N ′

` N | N ′
bT|NETWORKe

Figure 5.10: Correlation Calculus, runtime typing rules.

which ensures that each process is distinguishable from the others by at least one correla-
tion value.

We can finally show the main results of our type system:

Theorem 5.4.2 (Subject Reduction). ` N and N
µ−→ N ′ implies that ` N ′ .

Proof. By induction on the derivation of N
µ−→ N ′.

Theorem 5.4.3 (Typing soundness). Let l be a location in N . Then,

(i) ` N implies that N
wrong l9 N ′; and,

(ii) ` N implies that N | N ′ wrong l9 N ′′

Proof. Immediate by the definition of the runtime typing rules and the semantics of the
Correlation Calculus.

Note that point (ii) of Theorem 5.4.3 states that safety is independent of its context, i.e.,
a well-typed network respects our properties regardless of its context.

5.5 Implementation

We report here a brief description of the Jolie interpreter architecture and the changes that
we introduced to support our proposal.
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Parsing

Parser

Transformers

Analysers

...

Runtime Environment

Communication
CoreMain

ProcessProcess

... ... .........

OOIT

Figure 5.11: Jolie, interpreter architecture.

Jolie interpreter architecture. The Jolie interpreter is developed in the Java language;
its structure is depicted in Figure 5.11. The architecture of the Jolie interpreter resembles
that of our Correlation Calculus, with the OOIT, the Runtime Environment and the Commu-
nication Core representing, respectively, the behavioural, service and network layers [71].
The three components are loosely coupled, operating through their respective APIs just
like our three layers interact by means of the labels. The interpreter architecture has the
structure: The Parsing module encompasses the parsing of programs, extracting the related
ASTs (Abstract Syntax Trees) and analysing them. The AST is used to produce the OOIT
(Object-Oriented Interpretation Tree), which is composed by generic Process objects,
each one responsible for executing the semantics of a single rule in the behavioural seman-
tic layer. OOIT nodes do not deal directly with process state and communication semantics,
leaving this task to the Runtime Environment and the Communication Core modules. The
former manages the execution states of running sessions, whereas the latter supports the
other components in performing communications and listens for messages coming from
external services.

Changes. We updated the Parsing module for handling the syntax for defining corre-
lation sets, adding also an analyser that implements our type system and the generator that
creates the aliasing function αC for the Runtime Environment. The Java class used by the
Runtime Environment for controlling the execution of a process has been augmented with
a queue that stores received messages. When a node from the OOIT asks for a message
input, the Runtime Environment checks the message queue of its session as specified by
rule bS|GETe. The queue is filled by the Communication Core looking for correlation on
incoming messages as defined in rule bS|CORRe. If no correlating process is found it asks the
Runtime Environment to start a new process with the message, following rule bS|STARTe. If
the process can not be started, a CorrelationError fault is sent to the invoker and the
message is discarded (cf. [73, 49] for the semantics of faults in Jolie).

Request-Response interactions are supported by abstract channel objects. The OOIT
nodes involved in Request-Response communications – i.e. the two nodes implementing
rules bB|REQUESTe and bB|SOLICITe and their continuation – are given the channel of interest as a
parameter and can use it for sending or receiving responses as specified by rules bB|EXECENDe
and bB|WAITe. These channels are managed by the Communication Core and hide the under-
lying complexity for managing the receiving of the reply, which is dependent on underlying
transport details, e.g., one could use separate TCP/IP sockets or additional tags in message
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headers.

5.6 Example

We present now an example inspired by the OpenID Authentication specifications [81].
OpenID is a widely adopted decentralised authentication protocol that allows a service,
called relying party, to authenticate a user, the client, by relying on another external service
that is responsible for handling identities, the identity provider. When the client requests
access to the relying party, the latter opens an authentication session in the identity provider.
The client can then send its authentication credentials to the session in the identity provider,
which will inform the relying party on the result of the authentication attempt.

We implemented the protocol in our updated version of Jolie. The example can be
downloaded at [70], where we support web browser clients by means of the Jolie integration
with HTTP that will be described in Chapter 6.

The code below is a sketch of the relying party service:

cset { clientToken: ... }
cset { secureToken: AuthMessage.secureToken }
interface RelyingPartyInterface {
OneWay: authSucceeded(AuthMessage), authFailed(AuthMessage)
RequestResponse: login(LoginRequest)(Redirection) }
main {
login( loginRequest )( redirection ) {
clientToken = new; secureToken = new;
openRequest.relyingPartyIdentifier = MY_IDENTIFIER;
openRequest.clientToken = csets.clientToken;
openRequest.secureToken = csets.secureToken;
openAuth@IdentityProvider( openRequest );
/ * . . . b u i l d r e d i r e c t i o n message f o r c l i e n t . . . * /

}; [ authSucceeded( message ) ] { / * . . . * / }
[ authFailed( message ) ] { / * . . . * / }

}

First, the service receives a request on the Request-Response operation login from the
client for initiating the protocol. The body of login generates two fresh tokens: clientToken,
referred by the first correlation set2, and secureToken, referred by the second one. We
will use clientToken for receiving messages from the client and secureToken for
receiving messages from the identity provider. The client is not informed about secureToken,
preventing it to maliciously act as the identity provider. The body of login performs a call
to the identity provider, opening an authentication session and communicating secureToken.
We can now safely reply to the client that invoked operation login: Property 5.4.0.1, from
§ 5.4, guarantees that the process in the identity provider has been started at this point and
that the client will therefore find it ready. The reply will redirect the client to the iden-
tity provider. The relying party will then wait for a notification about the result of the

2 We omit the aliasings for clientToken in the relying party implementation sketch, since it will only
be used after establishing whether the user can log in.
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authentication attempt, hence the input choice on the operations authSucceeded and
authFailed, which correlate through secureToken.

We now show the identity provider behavioural code sketch omitting the interface def-
initions: we assume input types to be named with their respective operation names with an
initial uppercase letter.

cset { relyingPartyIdentifier:
OpenAuthentication.relyingPartyIdentifier
Authenticate.relyingPartyIdentifier,

token: OpenAuthentication.token Authenticate.token }
main {

openAuth( openRequest ); authenticate( authRequest );
/ * . . . v e r i f y a u t h e n t i c a t i o n . . . * /
message.secureToken = openRequest.secureToken;
if ( verified ) { authSucceeded@RelyingParty( message ) }
else { authFailed@RelyingParty( message ) }

}

The service can start a process with an input on openAuth (to be called by the rely-
ing party). The operation receives the values for initialising the correlation set, which is
composed by two variables: relyingPartyIdentifier and token. We need both
variables because there may be multiple active processes for handling requests from dif-
ferent relying parties: two relying parties may generate a same value for token. We
solve this issue by adding the identifier, e.g., a URL, of the relying party to the correla-
tion set. After the process has been started, we wait for the user credentials on operation
authenticate. The credentials are verified and the result sent to the relying party.

5.7 Related Work

Previous versions of Jolie (including its initial formal model SOCK [51]) feature corre-
lation sets where correlation data is manipulated within processes. However, they sup-
port no correlation aliasing and no static analysis for identifying bad correlation program-
ming. Moreover, they do not feature multiple correlation sets. All correlation variables
are, instead, put in one single correlation set, which does not act as unique session iden-
tifier: sessions may be ambiguous under correlation and hence message routing can be
non-deterministic.

Our approach takes inspiration from BPEL [79], which supports multiple correlation
sets for identifying different processes and the sessions they participate in. In BPEL, corre-
lation programming is mixed with that of behaviours: correlation sets are scoped in specific
code blocks, and different input actions inside the same behaviour can use different cor-
relation sets for receiving even if they use the same operation name. This makes BPEL
programming more error-prone than in our approach, where correlation sets are based on
the service interface (its operations) and are defined independently from behaviours. Our
language expressiveness is still high, due to our support for correlation data manipulation
inside processes. BPEL does not support correlation programming with a typing discipline,
but relies on runtime faults for signaling undesired situations that the programmer specifies
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manually. Finally, BPEL does not come with formal specifications, making it impossible
to apply formal reasoning as we did in § 5.4 for guaranteeing safety properties.

Blite [65] is a model for service orchestration in which programs can be compiled to
BPEL processes [32]. The model is formally specified, but the final compilation to BPEL
makes the approach suffer from the unpredictable behaviour of the execution engine, due
to the lack of formality of BPEL specifications. Similarly, the calculus for web services
COWS [64] allows to correlate sessions based on channel usage. COWS features sev-
eral tools for static analyses and an interpreter, however it lacks a fully-fledged language
implementation like Jolie.

In [57], the authors present an implementation of channel-based sessions relying on
session types [54]. In their setting, message routing does not rely on data transmission like
in our model.

5.8 Conclusions

We have presented a language for programming services with correlation sets. Our ap-
proach features a direct manipulation of correlation data in programs and a notion of cor-
relation aliasing. We have shown how both aspects can be disciplined by means of a type
system. The applicability of our work has been demonstrated by exposing implementations
of real-world scenarios where correlation sets can be successfully employed. Our solution
has replaced the previous correlation mechanism in the Jolie language [74]. The features
guaranteed by our Properties 5.4.0.2 and 5.4.0.3 are similar to those provided by private
channels in the π-calculus [69]. In our approach different sessions use different instances
of correlation sets, much like in the π-calculus replications of a same process use different
private channels.

Our semantics for message queues can lead to deadlocks, because a process must con-
sume messages in the same order in which they are received. In Chapter 7, we extend the
implementation of Jolie to handle a separate message queue for each correlation set, to
support more concurrency between sessions (each represented by a correlation set). An-
other issue in our model is that it does not handle the garbage collection of processes, i.e.,
terminated processes are not removed from their executing service. Handling this aspect is
nontrivial, because a terminated process may have some messages left in its queue which
must be dealt with. We leave the investigation of this issues to future work.

More refined forms of static analysis may be developed for correlation. An interesting
aspect would be to analyzse the behaviour of service networks by introducing behavioural
types for participants such as session types [54, 55]. Another topic to be explored is that
of security. Programs may be checked to establish that correlation values are not compro-
mised.



CHAPTER 6

Process-aware Web Programming

6.1 Introduction

In this Chapter, we extend our language implementation from Chapter 5 to develop a pro-
gramming framework for the development of process-aware web information systems. We
then use such extension to evaluate how our methodology of programming sessions with
correlation sets integrates with existing web technologies (e.g., HTTP and HTML) and
practices (e.g., web servers and multiparty sessions over HTTP).

A Process-Aware Information System (PAIS) is an information system based upon the
execution of business processes. PAIS’s are largely adopted in many application scenar-
ios [39], from inter-process communication to automated business integration. Since pro-
cesses can assume many different structures (see [14] for a systematic account), many
formal methods [98, 48, 64, 31], tools [100, 74, 53, 56, 45], and standards [79, 102, 1] have
been developed to provide languages for their definition, verification, and execution.

In the last two decades, web applications have joined the trend of process-awareness.
Web processes are usually implemented server-side on top of sessions, which track incom-
ing messages related to the same conversation. Sessions are supported with a local memory
state, which lives through different client invocations until the session is terminated.

The major frameworks for developing web applications (e.g., PHP, Ruby on Rails,
and Java EE) do not support the explicit programming of structured processes. As a
workaround, programmers usually simulate the latter by exploiting the session-local mem-
ory state. For example, consider a process where a user has to authenticate through a
login operation before accessing another operation, say createNews (for posting a
news on a website). This would be implemented by defining the login and the createNews
operations separately. The code for login would update a bookkeeping variable in the
session state and the implementation for createNews would check that variable when it
is invoked by the user. Although widely used, this approach is error-prone: since processes
can assume quite complex structures, simulating them through bookkeeping variables soon
becomes cumbersome. Consequently, the produced code may be poorly readable and hard
to maintain.

The limitations described above can be avoided by adopting a multi-tier architec-
ture. For example, we may stratify an application by employing a web server technology
(e.g., Apache Tomcat) for serving content to web browsers; a web scripting framework
(e.g., PHP) for programmable request processing; a process-oriented language (e.g., WS-
BPEL [79]) for modelling the application processes; and, finally, mediation technologies
such as proxies and ESB [33] for integrating the web application within larger systems.
Such an architecture would offer a good separation of concerns. However, the resulting
system would be highly heterogeneous, requiring a specific know-how for handling each
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part. Thus, it would be hard to maintain and potentially prone to breakage in case of mod-
ifications.

The aim of this Chapter is to simplify the programming of process-aware web informa-
tion systems. We present a programming framework that successfully captures the different
components of such systems (web servers, processes, . . . ) and their integration using a ho-
mogeneous set of concepts. We build our results on top of Jolie [74, 60] (§ 6.2), a general-
purpose service-oriented programming language that can handle both the modelling of
processes (without bookkeeping code) and their integration within larger distributed sys-
tems [60].

6.1.1 Contributions

We report our major contributions.

Web processes. We integrate the Jolie language with the HTTP protocol, enabling
processes written in Jolie to send and receive HTTP messages (§ 6.3). The integration is
seamless, meaning that the processes defined in Jolie remain abstract from the underlying
HTTP mechanisms and data formats: Jolie’s data structures are transparently transformed
to HTTP messages and vice versa (§ 6.3.1). Transformations can be configured through
separate parameters (§ 6.3.2).

Web servers as processes. We enable Jolie processes to model the programming of
web servers, for serving content to clients (§ 6.4.1). Hence, in our framework web servers
are not ad-hoc third-party programs anymore, but are instead modelled using the same
language that we use for defining processes.

Multiparty sessions. A session in a web server is typically dedicated to a single web
client. The latter can refer to it through a session identifier. In process-oriented languages,
instead, sessions can be between more than two participants. Different participants are
identified by using different session identifiers, or multiple identifiers in the case of corre-
lation sets [79]. We combine correlation sets with HTTP to introduce multiparty sessions
in web applications (§ 6.4.2).

Multi-tiering. Aggregation [71] is a primitive of Jolie that allows for the composition
of separate services in an information system, as in ESB [33]. Our HTTP implementation
supports aggregation transparently. We show how to use this combination to obtain multi-
tiered architectures.

6.2 An overview of Jolie

Jolie [74] is a general-purpose service-oriented programming language, released as an
open-source project [60] and formally specified as a process calculus [71, 48] (see Chap-
ter 5). In this section we describe some of its features relevant for our discussion.

A Jolie program defines a service and is a composition of two parts: behaviour and
deployment. A behaviour defines the implementation of the operations offered by a service;
it consists of communication and computation instructions, composed into a structured
process (a workflow) using constructs such as sequences, parallels, and internal/external
choices. Behaviours rely on communication ports to perform communications, which are
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B ::= η (input)
| η (output)
| [ η1 ] { B1 } . . .[ ηn ] { Bn } (input choice)
| if( e ) B1 else B2 (cond)
| while( e ) B (while)
| B ; B′ (seq)
| B | B′ (par)
| throw(f) (throw)
| x = e (assign)
| x -> y (alias)
| nullProcess (inact)

η ::= o(x) (one-way)
| o(x)(e){ B } (request-response)

η ::= o@OP(e) (notification)
| o@OP(e)(y) (solicit-response)

Figure 6.1: Jolie, behavioural syntax (selection).

to be correctly defined in the deployment part. The latter can also make use of architectural
primitives for handling the structure of an information system. Formally, a Jolie program
is structured as:

D main { B }

where D represents the deployment part and B the behavioral part.

Behaviours. Figure 6.1 reports the (selected) syntax for service behaviours, which
offers primitives for performing communications, computation, and their composition in
processes. We briefly comment the syntax. Terms (input), (output), and (input choice)
implement communications. An input η can either be a one-way or a request-response,
following the WSDL standard [13]. Statement (one-way) receives a message for operation
o and stores its content in variable x. Term (request-response) receives a message for oper-
ation o in variable x, executes behaviourB (called the body of the request-response input),
and then sends the value of the evaluation of expression e to the invoker. (notification) and
(solicit-response) dually implement the outputs towards the input primitives. (notification)
sends a message containing the value of the evaluation of expression e. (solicit-response)
sends a message with the evaluation of e and then waits for a response from the invoked
service, storing it afterwards in variable y. In the output statements, OP is a reference to
an output port, to be defined in the deployment part. (input choice) is similar to the pick
construct in WS-BPEL: when a message for an input ηi can be received, all other branches
are deactivated and ηi and, afterwards, its respective branch behaviour Bi are executed.

Terms (cond) and (while) implement respectively the standard conditional and iteration
constructs. (seq) models sequential execution and reads as: execute B, wait for its termi-
nation, and then run B′. (par), instead, runs B and B′ in parallel. (throw) throws a fault
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IP ::= inputPort P OP ::= outputPort P

Port ::= id {
Location: Loc
Protocol: Proto
Interfaces: iface1, . . . , ifacen
}

Figure 6.2: Jolie, syntax of ports (selection).

signal f, interrupting execution (we omit the syntax for handling faults). If a fault signal
is thrown from inside a request-response body, the invoker is automatically notified of the
fault [73].

Term (assign) stores the result of the evaluation of expression e in variable x. (alias)
makes variable x an alias for variable y, i.e., accessing x will be equivalent to accessing y.
Term nullProcess denotes the empty behaviour.

Jolie natively supports structured data manipulation. In Jolie’s memory model the pro-
gram state is a tree (with array nodes, see [71]), and every variable, say x, can be a path
to a node of the memory tree. Paths are constructed through the dot operator; e.g., the
following sequence of assignments

person.name = "John"; person.age = 42

would lead to a state containing a tree with root label person. For clarity, a corresponding
XML representation would be:

<person> <name>John</name>
<age>42</age> </person>

Deployments. We introduce now the syntax for deployments (see [71] for a more com-
plete presentation). The basic deployment primitives are input ports, denoted by IP , and
output ports, denoted byOP , which respectively support input and output communications
with other services. Input and output ports are dual concepts and their syntaxes are quite
similar. Ports are based upon the three basic concepts of location, protocol and interface.
Their (selected) syntax is reported in Figure 6.2. In the syntax of ports, Loc is a URI (Uni-
form Resource Identifier), defining the location of the port; Proto is an identifier referring
to the data protocol to use in the port, specifying how input/output messages through the
port should be decoded/encoded; the ifacei’s are references to the interfaces accessible
through the port.

Jolie supports different locations and protocols. For instance, a valid Loc for accept-
ing TCP/IP connections on TCP port 8000 would be "socket://localhost:8000".
Other supported locations are Unix sockets, Bluetooth communication channels, and local
memory. Some supported instances ofProto are sodep [60], soap [10], and xmlrpc [15].

The interfaces declared in a communication port define the operations accessible through
it. Each interface defines a set of operations, pairing each with (i) the operation type (one-
way or request-response) and (ii) the types of its carried messages. For example, the fol-
lowing interface
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interface SumIface { RequestResponse: sum(SumT)(int) }

defines an interface SumIface with a request-response operation sum, which expects
input messages of type SumT and returns messages of type int (integers). Data types for
messages follow a tree-like structure; e.g., we could define SumT as follows:

type SumT:void { .x:int .y:int }

We can read the code above as: a message of type SumT is a tree with an empty root node
(void) and two subnodes, x and y, that have both type int.

A Jolie example. We give an example of how to combine behaviour and deployment
definitions, by showing a simple service defined in Jolie. The code follows:

type SumT:void { .x:int .y:int }
interface SumIface

{ RequestResponse: sum(SumT)(int) }

inputPort MyInput {
Location: "socket://localhost:8000"
Protocol: soap
Interfaces: SumIface
}

main {
sum( req )( resp ) {
resp = req.x + req.y

}
}

Above, input port MyInput deploys the interface SumIface (and thus the sum oper-
ation) on TCP port 8000, waiting for TCP/IP socket connections by invokers using the
soap protocol. The behavioural code in main defines a request-response input on oper-
ation sum. In this Chapter, we implicitly assume that all services are deployed with the
concurrent execution modality for supporting multiple session executions, from [71]
(which yields the semantics of concurrent process execution that we have formalised be-
fore in § 5.3). This means that whenever the first input of the behavioural definition of a
service can receive a message, Jolie will spawn a dedicated process to execute the rest of
the behaviour. This process will be equipped with a local variable state and will proceed
in parallel to all the others. Therefore, in our example, whenever our service receives a
request for operation sum it will spawn a new parallel process instance. The latter will
enter into the body of sum, assign to variable resp the result of adding the subnodes x
and y of the request message, and finally send back this result to the original invoker.

6.3 Extending Jolie to HTTP

We extend Jolie to support web applications by introducing a new protocol for communica-
tion ports, named http. The latter follows the HTTP protocol specifications and integrates
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the Jolie message semantics to that of HTTP and its different content encodings.

6.3.1 Message transformation

The basic issue to address for integrating Jolie with the HTTP protocol is establishing
how to transform HTTP messages in messages for the input and output primitives of Jolie
and vice versa. Hereby we discuss primarily how our implementation manages request
messages; response messages are similarly handled. The (abstract) structure of a request
message in HTTP is:

Method Resource HTTP/V ersion Headers Body

Above, Method specifies the action the client intends to perform and can be picked by a
static set of keywords, such as GET, PUT, POST, etc. Resource is a URI telling which
resource the client is requesting. V ersion is the HTTP protocol version of the message.
Headers include descriptive information (such as the encoding of the message body) or
even configuration parameters that are supposed to be respected by the receiver (e.g., the
wish to close the connection immediately after the response is sent, which our implemen-
tation handles automatically). Finally, Body contains the content of the HTTP message.

A Jolie message is composed by an operation name and a (structured) value. Hence,
we need to establish where to retrieve (or write) them in an HTTP message. For operations,
we interpret the path part of the Resource URI as the operation name. We have chosen
not to useMethod for operations since it cannot assume user-defined names, as operations
require. Method can still be read and written by Jolie programs through a configuration
parameter of our extension, described in § 6.3.2. The message value, instead, is obtained
from the Body part and the rest of the Resource URI. We need the latter to access REST
interfaces and to be able to decode querystring parameters as Jolie values.

An HTTP message content may be encoded in different formats. Our http exten-
sion handles querystrings, form encodings (simple and multipart), XML, JSON [7], and
GWT-RPC1 [4]. Programmers can use the format parameter (§ 6.3.2) to control the
data format for encoding and decoding messages. For incoming request messages, if the
Content-Type HTTP header is present then it is used to auto-detect the data format of
Body. If a response is sent back from Jolie and the request format was JSON and GWT-
RPC, then http defaults to the same format for encoding the response content. As an
example of message translation, the HTTP message:

GET /sum?x=2&y=3 HTTP/1.1

would be interpreted as a Jolie message for operation sum. The querystring x=2&y=3
would be translated to a structured value with subnodes x and y, containing respectively
the strings “2” and “3”.

1We have also developed a companion GWT-RPC client library, called jolie-gwt, for a more convenient
access to web services written in Jolie by integrating with the standard GWT development tools. In our library,
the operation name is encoded in the HTTP message content instead of the Resource field, following the
GWT specifications.
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Automatic type casting. Querystrings and other common message formats used in
web applications, such as HTML form encodings, do not carry type information. Instead,
they simply carry string representations of values that could have been typed on the in-
voker’s side. However, type information is necessary for supporting services such as the
sum service in § 6.2, which specifically requires its input values to be integers. To cope
with such cases, we introduce the notion of automatic type casting. Automatic type cast-
ing reads incoming messages that do not carry type information (such as querystrings or
HTML forms) and tries to cast their content values to the types expected by the service
interface for the message operation. As an example, consider the querystring x=2&y=3
above. Since its HTTP message is a request for operation sum, the automatic type casting
mechanism would retrieve the typing for the operation and see that nodes x and y should
have type int. Therefore, it would try to re-interpret the strings “2” and “3” as integers
before giving the message to the Jolie interpreter. Of course, type casting may fail; e.g., in
x=hello the string hello cannot be cast to an integer for x. In such cases, our http
protocol will send back a TypeMismatch fault to the invoker. The latter may catch the
fault in its web user interface code.

6.3.2 Configuration Parameters

We augment the deployment syntax of Jolie to support configuration parameters for our
http protocol. Specifically, these can be accessed through (assign) and (alias) instructions
put aside the protocol declaration of a port. For instance, the following input port definition

inputPort MyInput {
/ * . . . * /
Protocol: http {

.default = "d"; .debug = true;

.method -> m
}

}

would set the default parameter to "d", set the debug parameter to true, and bind
the method parameter to the value of variable m in the current Jolie process instance.

We briefly describe some notable configuration parameters. All of them can be mod-
ified at runtime (using the standard Jolie constructs for dynamic port binding, from [71],
which we omit here). Parameter default allows to mark an operation as a special fall-
back operation that will receive messages that cannot be handled by any operation de-
fined in the interface of its service. Parameter cookies allows to store and retrieve data
from browser cookies, by mapping cookie values in HTTP messages to subnodes in Jolie
messages. Parameter method allows to read/write the Method field for the latest re-
ceived/next to send HTTP message through the port. Parameter format can be used to
force the data format of output HTTP messages, such as json (for JSON), or xml (for
XML). The parameter alias allows to map values inside a Jolie message to resource paths
in the HTTP message, to support interactions with REST services. Parameter redirect
gives access to the Location field in HTTP, allowing to redirect clients to other loca-
tions. The parameter cacheControl allows to send directives to the client on how the
responses sent to it should be cached. Finally, parameter debug allows to print debug
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messages on screen whenever an HTTP message is sent or received.

6.4 Web Programming with Jolie

In this section we discuss how http extension can be used to cover some useful web
application patterns.

6.4.1 Modelling Web Servers

We first address how to program a web server for providing static content (e.g., the re-
sources for a web user interface) to web clients.

The main challenge in dealing with modelling a web server is that, in Jolie and other
service-oriented technologies such as WS-BPEL [79], a service interface is a statically de-
fined set of operations. Differently, web servers make a dynamic set of resources available
to clients: the code for implementing a web server does not change if its set of exposed
resources (from, e.g., a part of a filesystem) is modified.

To deal with dynamic resource names, i.e., resource names that we do not know at
design time, we need a means to bridge the static definition of interfaces to them. We
address this issue by using our default operation parameter. The default operation is
a special operation marked as a fallback in case a client sends a request message with an
operation that is not statically defined by the service. Instead, the message is wrapped in
the following data structure (we omit some subnodes not relevant for this discussion):

type DefaultOperationHttpRequest:void {
.operation:string
.data:undefined

}

where operation is the name of the operation that has been requested by the client and
data is the data content of the message.

Parameter default allows us to model a simple web server easily: whenever we
receive a request for the default operation, we try to find a file in the local filesystem that
has the same name as the operation originally requested by the client. We have used this
mechanism to implement Leonardo [9], a web server implementation written in pure Jolie.
For clarity, here we report a simplified version 2:

Listing 6.1: Leonardo Web Server (excerpt)

/ * . . . * /

interface MyInterface {
RequestResponse:

d( DefaultOperationHttpRequest )
( undefined )

}

2The entire implementation of Leonardo is made of about 80 LOCs and can be downloaded at [9]
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inputPort HTTPInput {
Location: "socket://localhost:80/"
Protocol: http

{ .default = "d" / * . . . * / }
Interfaces: MyInterface
}

main {
d( req )( resp ) {

/ * . . . * /
readFile@File( req.operation )( resp )

}
}

Above, we have set the default parameter for the http protocol in input port HTTPInput
to operation d. Therefore, when a message for an unhandled operation is received through
input port HTTPInput, it will be managed by the implementation of operation d. The
body of the latter invokes operation readFile of the File service from the Jolie stan-
dard library, which reads the file with the same name as the originally request operation
(req.operation). Finally, the data read from the file (resp) is returned back to the
client.

6.4.2 Multiparty Sessions

We present an implementation sketch of an extended version of the process-aware scenario
mentioned in the Introduction, where a user can access a createNews operation for post-
ing a news on a website after she has successfully logged in through a login operation.
We remind the reader that our http protocol accepts invocations with different formats,
so we will leave the code for the user interface unspecified; e.g., we could use AJAX calls
with the JSON format for calling operation login, or the following HTML form:

<form action="login" method="POST">
<input type="text" name="user"/>
<input type="password" name="pwd"/>
<input type="submit"/>

</form>

Our scenario will execute as follows. First, the user will download the web interface
from our service implementation. Afterwards, she will call the login operation for au-
thenticating. We will use an external Authenticator service for checking the user’s
credentials. If the authentication is not successful, we will interrupt the process by throw-
ing a fault (which will also automatically notify the user of the error). Otherwise, if the
authentication is successful we will wait for the user to invoke the createNews oper-
ation. When the latter is invoked, we will notify in parallel two external services of the
news creation request: Logger and Moderator. The former is used to log the user’s
operation. The latter, instead, is an external service handling another web application for
moderating news creation requests. Specifically, service Moderator (omitted here) is
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responsible for showing the news creation request on a moderation list. Moderators can
access the list through a web interface and get redirected to our service for approving or
rejecting the news creation request.

A critical aspect of our implementation is the modelling of sessions, or conversations.
Assume that, e.g., two users are logged in the service at the same time and, therefore,
are supported by two separate process instances in our Jolie service. When a message
for operation createNews arrives, how can we know if it is from the first user or the
second? We address this issue by using the correlation mechanism described in Chapter 5.
A correlation set specifies special variables that identify an internal service process from
the others. In this example, we combine our correlation set mechanism with HTTP cookies,
which are usually employed for storing session identifiers in web browsers. Our example
will have two correlation sets consisting of one variable each, respectively userSid and
modSid. We will use the first to identify calls from the user, and the second to identify
messages from the moderator. Having two separate identifiers for our process instance is
a fundamental aspect of multiparty sessions, such as the one in this example, for reasons
of security; e.g., since we will not make modSid known to the user, she will be unable to
(maliciously) impersonate the moderator.

We can finally show the code for our service:

Listing 6.2: A moderated news service

/ * Types , I n t e r f a c e s , Outpu t p o r t s , . . . * /

inputPort MyInput {
Location: "socket://localhost:8000/"
Protocol: http {

.cookies.userSid = "userSid";

.cookies.modSid = "modSid";

.default = "d"
}
Interfaces: MyIface
}

cset { userSid: createNews.userSid }
cset { modSid:
approve.modSid reject.modSid }

main {
[ d( req )( resp ) ] { / * . . . * / }

[ login( cred )( r ) {
check@Authenticator( cred )( ok );
if ( ok ) {
csets.userSid = new;
r.userSid = csets.userSid

} else { throw( AuthFailed ) }
} ] {
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createNews( news );
csets.modSid = new;
{ log@Logger( cred.username )

| notify@Moderator( csets.modSid ) };
[ approve() ] { / * . . . * / }
[ reject() ] { / * . . . * / }

}
}

Above, we have reused the web server pattern from § 6.4.1 to provide the resources for
the (omitted) web user interface to web browser clients. We combine that pattern with
a process that starts with a request-response input on login, using an (input choice).
When login is invoked, a new process is started which immediately checks if the user’s
credentials are valid through an external Authenticator service. If they are valid
(condition ok), then we instantiate the correlation variable csets.userSid (csets
is a special keyword for accessing correlation variables in the behaviour) to a fresh value,
given by primitive new; otherwise, we throw a fault AuthFailed, therefore notifying
the client and interrupting the execution of the process. We return csets.userSid to
the user through the response message for login. Observe that we configured http
with .cookies.userSid = "userSid". Hence, r.userSid will be encoded as a
cookie in our HTTP response to the client. When the user’s client will call our service on
operation createNews, our cookie configuration for userSid will convert the cookie
in the HTTP request to a subnode userSid inside the request message, which we will
use for correlating with the correct process instance. After createNews is invoked, we
instantiate our second correlation variable: modSid. Then, we use the parallel compositor
| to notify the Logger and Moderator services in parallel. The latter is informed of the
value for modSid, which we will expect as a cookie (per our http configuration) in in-
coming messages from the moderator’s user interface. The cookie will be used to correlate
with our process, which is finally waiting for a decision between the approve operation
and the reject operation.

Observe that our two correlation set definitions (the cset blocks before main) specify
that operation createNews can be invoked only through correlation variable userSid,
whereas accept and reject can be accessed only through modSid 3, modelling our
aforementioned security aspect.

A remarkable aspect of the combination between our http extension and Jolie is that
we abstract from where correlation data is encoded in the HTTP message. Instead of using
a cookie, the web user interface may also send the value for a correlation variable through
a querystring (enabling process-aware hyperlinks), or inside the HTTP message content.
Our extension transparently support these different methods without requiring specific con-
figuration.

6.4.3 Multi-tiering

In § 6.4.2, we have used a single service to handle both the content serving and the pro-
cess execution. However, usually it is more desirable to separate the service responsible

3We assume that operations are declared with request types with the same respective names.
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for serving content (the web server) from the service responsible for process execution.
Ideally, this separation of concerns should allow to perform changes in the web server
(e.g., implementing sitemaps or cache optimisations) abstracting from the internal code of
the process executors and vice versa. More in general, we want to stratify our service in
different tiers, as in classical multi-tiered web architectures. We reach this objective by
exploiting the aggregation mechanism [71]. Aggregation is a composition primitive where
an input port exposes operations that are not implemented in its service behaviour, but are
instead delegated to another external service. Using aggregation we can split the web server
code and the process code from our news service in two separate services.

We show first the code for the service responsible for handling the news moderation
process:

/ * Types , I n t e r f a c e s , Outpu t p o r t s , . . . * /

inputPort MyInput {
Location: "socket://localhost:8001/"
Protocol: soap
Interfaces: MyIface
}

cset { userSid: createNews.userSid }
cset { modSid:
approve.modSid reject.modSid }

main {
login( cred )( r ) { / * . . . * / }

}

The code above is taken from Listing 6.2. We have changed input port MyInput to be
deployed on a different location using the soap protocol and we have removed the code
for handling content serving. The rest of the service code is unmodified (the body of input
login is the same). Content service is moved to the following separate service:

/ * Types , I n t e r f a c e s , Outpu t p o r t s , . . . * /

outputPort News { / * . . . * / }

inputPort WebInput {
Location: "socket://localhost:8000/"
Protocol: http {

.cookies.userSid = "userSid";

.cookies.modSid = "modSid";

.default = "d"
}
Interfaces: ContentIface
Aggregates: News
}
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main {
d( req )( resp ) { / * . . . * / }

}

The service above implements the web content server for our web application. ContentIface
is an interface defining only operation d. Input port WebInput takes care of receiving
HTTP messages from web clients and aggregates the news service through output port
News (which points to input port MyInput of the news service). When a message is re-
ceived, Jolie will check whether its operation is defined in the interface of News. If so,
then the message will be transparently forwarded to the news service and the subsequent
response from the latter will be given back to the client. Otherwise, it will be interpreted
as an invocation to be handled through the default operation d.

Our http extension can be combined with aggregation also for handling Multi-Service
Architectures, i.e. web architectures where a single web application interacts with multiple
services. For example, we may build a web server that supports both the user interface for
users and for news moderators. Then, some web clients running the user interfaces would
need to access the processes inside service News while others would need to access service
Moderator. We can allow web clients to access both through the same web server by
adding Moderator to the list of aggregated output ports inside the web server:

Aggregates: News, Moderator

Remarkably, since all the invocations from the web client to the aggregated services pass
through the web server, this programming methodology respects the Same Origin Policy
by design.

6.5 Related Work

The frameworks most similar to ours are those for modelling business processes, such as
WS-BPEL [79], WS-CDL [102], and YAWL [100]. Differently from our approach, these
tools are integrated with web applications through third-party tools, increasing the overall
complexity of the system. Some of the ideas presented in this Chapter (e.g., the default
parameter for implementing web servers) may be easily applied to WS-BPEL, making our
work a useful reference.

Other works offer tools for supporting the development of process-aware web appli-
cations. [92] presents a process-based approach to deal with user actions through web
interfaces using EPML; like Jolie, EPML is formally specified and comes with an execu-
tion engine. JOpera comes with an integration layer for offering REST-based interfaces
to business processes [84]. These solutions are formed by integrating separate modules
for process modelling, computation, and system integration. In contrast, our framework
addresses all these aspects using the same language. EPML can integrate with other lan-
guages to integrate user interfaces with process execution; we are currently investigating in
a similar direction (see § 6.6.1, Scaffolding of User Interfaces).

Hop [96, 23] and GWT [4] are programming frameworks that deal with the program-
ming of both the user interface and the server-side application logic using a single code-
base, which gets then compiled in the code for the client interface and the services. Dif-
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ferently, in this Chapter we do not deal with the generation of client code. Instead, we
support the seamless integration of existing technologies (HTML, AJAX calls, JSON, . . . )
with our services. The client code compiled from GWT projects can be reused with our
http extension, which is able to parse GWT requests. Hop and GWT do not support the
process-aware modelling primitives offered by our framework, nor its ability to compose
many services on a same HTTP communication port (through aggregation).

Our default configuration parameter for http allows a service implementation to
catch and reply to invocations for operations that were not known at design time. The same
aspect has been previously modelled through mobility mechanisms for names in process
calculi, e.g. in [69, 94, 50]. However, our approach is less powerful because the cited
approaches elevate the received operation names at the language level; e.g., a service may
receive an operation name through a variable and then use the latter in (input) and (output)
primitives as operations. This is not possible in our behavioural language, since operations
in input and output statements are statically defined. We purposefully chose not to support
this kind of mobility, since it would have made the definitions of Jolie interfaces change at
runtime. This would break the basic assumption of statically defined operations, which is
used in our typing system in Chapter 5, in the WSDL standard for Web Services [13], and
in formal theories models for the verification of concurrent programming languages (e.g.,
session types [54], where selection labels can be thought of as operations).

6.6 Conclusions

We have presented a framework for the programming of process-aware web applications.
Through examples, we have shown how our solution subsumes useful web design patterns
and how it captures complex scenarios involving, e.g., multiparty sessions and the Same
Origin Policy. Our http extension is open source and is included in the standard distri-
bution of Jolie [8]. Remarkably, our integration is seamless, meaning that existing Jolie
code can easily be ported to HTTP by changing only the Protocol part of its communi-
cation ports to http and its configuration language. An important consequence is that the
programmer does not need to deal with the differences between the data formats employed
in HTTP messages (e.g., form encodings, querystrings, JSON, . . . ), since they will all be
translated to Jolie data structures. This also means that all the techniques developed for
the verification and execution of Jolie programs (as the typing system in Chapter 5) can be
transparently applied to the process-aware web application logic written in our framework.

Our framework has also been evaluated in the development of industrial products and
is now used in production at italianaSoftware [6], a software development company that
uses Jolie as reference programming language. For instance, the company’s website [6]
and Web Catalogue, a proprietary E-Commerce platform with a codebase of more than 400
services, use the framework and the programming patterns presented in this Chapter.

6.6.1 Future Work

Hereby, we discuss possible future extensions of our work.

Reversibility. A common problem in handling the interaction between a web user in-
terface and a business process is that the user may decide to take a step back in the execution
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flow (e.g., by pressing the “Back” button). This possibility must be manually taken into
account in the design of the process, increasing its complexity. We plan to extend Jolie with
reversibility techniques [62], which allow distributed processes to be reversed to previous
states by transparently dealing with the required communications to the involved parties.

Scaffolding of User Interfaces. 4 We will develop a scaffolding tool for user inter-
faces, starting from the process structure of a service. Specifically, given a behaviour B in
Jolie, it would be possible to automatically generate a user interface that follows the com-
munication structure of the behaviour. This would be in line with the notions of duality
formalised in [54, 52].

Behavioural analyses. Since our framework makes the process logic of a web appli-
cation explicit, it would be possible to develop a tool for checking that the invocations
performed by a web user interface written in, e.g., Javascript, match the structure of their
corresponding Jolie service. We plan to investigate this possibility using solutions similar
to the ones presented in [56, 45].

Declarative data validation. Our framework exploits the message data types declared
in the interfaces of a Jolie service to validate the content of incoming messages from web
user interfaces. We plan to extend this declarative support to data validation by introducing
an assertion language for message types that can check more complex properties (e.g.,
integer ranges, regular expressions, . . . ).

Extensions to other web protocols. We will extend our work by adding support to
new emerging protocols for web application communications, such as WebSocket [58] and
SPDY [3].

4The initial idea for this point comes originally from Claudio Guidi, during a private conversation.





CHAPTER 7

Chor: a Framework for
Choreographic Programming

7.1 Introduction

In Chapter 2 we have presented the Choreography Calculus, a calculus in which systems
can be developed by writing a choreography, verifying it against protocol specifications
given as global types [55], and then projecting a correct endpoint implementation. This
methodology is depicted below:

Protocols

global
validation
−−−−−−−−−→ Choreography

choreography
projection

−−−−−−−−−−−−→ Endpoint
Code

Building on the Choreography Calculus, in this Chapter we present Chor, a prototype
framework for Choreographic Programming. Chor offers a programming language, based
on choreographies, and an Integrated Development Environment (IDE) developed as an
Eclipse plugin [40] for the writing of programs. All code is open source and can be con-
sulted at the Chor website [34], along with an introductory video tutorial. Chor is available
also on the Eclipse Marketplace, the official distribution channel for Eclipse-based soft-
ware.

In the development methodology suggested with Chor, depicted in Figure 7.1, develop-
ers can first use our IDE to write protocol specifications and choreographies. The program-
mer is supported by on-the-fly verification which takes care of checking (i) the syntactic
correctness of program terms and (ii) the type compliance of the choreography wrt the pro-
tocol specifications, using our typing discipline from § 2.4. Program errors are reported
using syntax highlighting, allowing for an interactive programming experience.

Once the global program is completed, developers can automatically project it to an
endpoint implementation. Endpoint implementations are given in the Jolie programming
language [74]. Nevertheless, Chor is designed to be extended to multiple endpoint lan-
guages: potentially, each process in a choreography could be implemented with a different

Chor IDE

Code 
Editing/

Verification

... ... ...
Jolie 

Endpoint

Jolie 
Endpoint

Jolie EPP
(automatic)

Execution

Execution
Deployment Programming 

(Optional)

Deployment Programming 
(Optional)

Figure 7.1: Chor, development methodology.
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endpoint technology. We plan future extensions to support projecting endpoints to, e.g.,
Java, C#, or WS-BPEL [79].

Each Jolie endpoint program comes with its own deployment information, given as a
term separated from the code implementing the behaviour of the projected process. This
part can be optionally customised by the programmer, which can be useful for adapting the
endpoint programs to some specific network or communication technology. For example,
programs generated by Chor can be integrated with web applications by using the http
extension presented in Chapter 6.

Finally, the Jolie endpoint programs can be executed with our extension of the Jolie
interpreter presented in Chapter 5. As expected, they will implement the originating chore-
ography.

7.1.1 Contributions

This Chapter provides the following contributions.

A programming language for choreographies. We present a language implemen-
tation for programming concurrent systems with choreographies (§ 7.2). Our language
natively supports the development of multiparty sessions and their type checking against
protocol specifications, following the model in Chapter 2. Programs in Chor are written in
an IDE that supports on-the-fly type checking.

Endpoint Projection. A choreography program written in Chor can be automatically
compiled to a set of Jolie programs that will implement the processes in the originating
choreography (§ 7.3). We refer to this compilation procedure, as in the other Chapters, as
Endpoint Projection (EPP). The key to our implementation of projection is using correla-
tion sets (from Chapter 5) for supporting the execution of multiparty sessions.

Evaluation. We evaluate Chor with a series of real-world examples, e.g., authentica-
tion protocols and a use case from the Ocean Observatories Initiative (OOI) [80] (§ 7.4).

7.2 Language

In this section, we discuss the syntax of the Chor language.

7.2.1 Program structure

The syntax of programs is reported in Figure 7.2. A Chor program starts with the statement
program id, which declares a name for the program with the identifier id (giving names
to programs is reserved for future use in project management features). A program is then
composed by two parts: a Preamble and a Body.

The program preamble defines the protocols (∗ indicates that a nonterminal may be
repeated) and public names that will be used in the choreography of the program. Each
protocol definition is identified in the program by a name g, which is associated to a global
type G. Public names, which are the shared names from our Choreography Calculus (see
§ 2.3), are used to start sessions in a choreography. Each public name, identified by a name
a, is associated to a protocol g that the session started through a will be expected to follow.
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Program ::= program id; Preamble Body (program)

Preamble ::= Protocol∗ Public∗ (preamble)
Protocol ::= protocol g { G } (protocol)
Public ::= public a : g (public channel)

Body ::= Def∗ main { C } (body)

Figure 7.2: Chor, syntax of programs.

G ::= A -> B : op( U ) ; G (com)
| A -> B :{opi(Ui): Gi}i∈I (branch)
| g (call)
| end (end)

U ::= void | bool | string | int (data type)
| g@C (delegation type)

Figure 7.3: Chor, syntax of protocols.

The program body gives a list of procedure definitions Def∗ and a main procedure
main containing a choreography C, which is the program entry-point for execution.

7.2.2 Protocols

Protocols are expressed in terms of global types, whose syntax is reported in Figure 7.3.
A (com) global type A -> B : op( U ) ; G specifies a communication from role A
to role B through operation op, where the content of the message is required to have type
U . Then, the global type proceeds as G. A (branch) global type is similar, but A can now
choose among a set of different operations, each one with a corresponding carried type
Ui and continuation Gi. In term (call), we indicate that the global type proceeds as the
global type associated to protocol g. Type end indicates termination of a protocol; it is
automatically inserted by our implementation and it thus omitted in programs.

Remark 7.2.1 (Global types in Chor). Global types in Chor are a variant of those pre-
sented for the Choreography Calculus in § 2.4.1. Operations are simply the labels l used in
§ 2.4.1 for handling branchings; here, we chose to call labels operations to be nearer to the
terminology of implemented languages for service-oriented computing. The only major
difference wrt § 2.4.1 is that here we require the specification of an operation also for nor-
mal communications with no branching. This does not change the expressivity of global
types in any way since we could, e.g., retain typical global types by adopting a standard
operation name for non-branching communications. Our syntax allows us to give global
types that will relate directly to our generated Jolie code, in which communications always
specify an operation.
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Def ::= define d( p̃ )( D̃ ) { C } (def)
D ::= k:g[p̃[A]] (def param)

C ::= η;C (interaction)
| τ;C (local action)
| if(e)@p C1 else C2 (cond)
| d(p̃)( k̃ ) (call)
| { C } (block)
| end (end)

η ::= p̃[A] start q̃[B] : a(k); C (start)
| p.e -> q.x : op(k) ; C (com)
| p -> q : op(k(k’)) ; C (del)

τ ::= local@p( x = e ) (assign)
| ask@p( e, x ) (ask)
| show@p( e ) (show)

Figure 7.4: Chor, syntax of choreographies.

7.2.3 Choreographies

Procedure definitions and choreographies have similar syntax to that presented in the Chore-
ography Calculus from Chapter 2; it is reported in Figure 7.4.

Procedures. Term (def) defines a procedure d with a body C, declaring the processes
p̃ and the sessions k̃ that are used inside C. Each session is typed with a protocol g and the
processes that have to implement it playing their respective roles in C.

Interactions. A choreography C defines the behaviour of a system of processes. In
term (start), the active processes p̃ start the (fresh) service processes q̃ by synchronising
on public channel a to start a new session k; each process is annotated with the role A it
plays in the session. In term (com), the sender process p sends the evaluation of its local
expression e to the receiver process q, which stores the received value in its local variable
x, through operation op on session k; e and x can be omitted when unnecessary. Term
(del) implements a session delegation: process p delegates to process q, through session
k, its role in session k’.

Remark 7.2.2 (Process role annotations). Differently than in the Choreography Calculus
in 2, Chor requires processes to be annotated with the role they play in a session only in
session starts and the declaration of procedure parameters. Process roles are automatically
inferred in all other terms.

Local actions. We extend the Choreography Calculus from 2 with actions that can be
performed locally by a process. Term (assign) implements a local variable assignment,
where process p assigns the evaluation of its local expression e to its local variable x.
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Terms (ask) and (show) are used for interacting with a user. In term (ask), process p asks
the user to input a value for variable x by displaying message e with a message dialog. In
term (show), process p shows the user a message e.

Other terms. In term (cond), process p evaluates an internal condition e and decides
whether the system should proceed as choreography C1 or C2. Term (call) implements a
procedure call, passing the processes p̃ and sessions k̃ as parameters. Term (block) is the
standard block construct, used for explicitly grouping statements. Term (end) denotes ter-
mination; as in global types, it is automatically used by our implementation and is omitted
in programs.

Example 7.2.3 (Chor program example). We exemplify the syntax of Chor by giving a
simple program:

1 program simple;
2
3 protocol SimpleProtocol { C -> S: hi( string ) }
4
5 public a: SimpleProtocol
6
7 main
8 {
9 client[C] start server[S] : a( k );

10 ask@client( "[client] Message?", msg );
11 client.msg -> server.x : hi( k );
12 show@server( "[server] " + x )
13 }

Program simple above starts by declaring a protocol SimpleProtocol, in which role
C (for client) sends a string to a role S (for server) through operation hi. In the choreog-
raphy of the program, process code and a fresh service process server start a session
k by synchronising on the public channel a. Process client then asks the user for an
input message and stores it in its local variable msg, which is then sent to process server
through operation hi on session k, implementing protocol SimpleProtocol. Finally,
process server displays the received message on screen.

7.3 Implementation

In this section we comment the major aspects of the implementation of Chor.

7.3.1 Chor IDE

Chor comes with an IDE (Integrated Development Environment) developed as an Eclipse [40]
plugin based on the Xtext framework [104]. The IDE offers three main components: a code
editor for Chor programs; an on-the-fly type checker; and an automated endpoint projection
(EPP) implementation for obtaining executable code from a Chor program.
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Figure 7.5: Chor, example of error reporting.

The code editor takes care of checking that a program follows our syntax and offers
basic refactoring capabilities, e.g., the name of a protocol can be modified and then the
change is automatically reflected in all references to the protocol in the rest of the program.

Our type checker is an implementation of the typing discipline in § 2.4. Since type
checking is efficient (it has polynomial computational complexity) we run it on the fly,
i.e., whenever the program is modified. The programmer is then interactively notified of
mistakes, such as not implementing a protocol correctly in a session. This is visually
represented by the typical red underlining of errors in terms. We give an example of error
reporting in Figure 7.5, in which session k uses operation wrong instead of the correct
operation hi specified by the protocol. In the figure, we also show the entire error message
that the user can access through the standard Eclipse user interface.

The Endpoint Projection (EPP) procedure in Chor targets our extension of the Jolie
language from Chapter 5. The choice of Jolie has several reasons: (i) Jolie offers constructs
similar to those of our endpoint calculus, e.g., replicated services and input choices, making
part of our EPP straightforward; (ii) the support for programming multiparty sessions based
on correlation sets, which we used for implementing the sessions programmed in Chor; and
(iii) Jolie supports a wide range of compatibility with other technologies.

7.3.2 Deployment

By default, our endpoint programs will operate on top of TCP/IP sockets. However, since
Jolie also supports other communication technologies – e.g. local memory IPC and Blue-
tooth – and data formats – e.g. HTTP (cf. Chapter 6) and SOAP [10] – programmers may
customise deployment information of each endpoint. Hence, some endpoints may com-
municate over, e.g., HTTP, while others, e.g., using fast binary data formats. Additionally,
different endpoints may be deployed in different machines and/or networks, giving devel-
opers freedom on choosing the degree of distribution of the system, from a single machine
(e.g., multi-core systems) to a completely distributed setting (one endpoint program per
machine).

Notably, customising the deployment of an endpoint program does not necessarily re-
quire updating the code of the others. Supporting this flexibility has required a careful
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implementation of session starts (rule bP|STARTe from our endpoint model in § 2.5.1), which
are coordinated by special “start services”. The (endpoint projections of the) active pro-
cesses willing to start a session contact the appropriate start service. Then, the start service
spawns the (projections of the) service processes by calling the external services that imple-
ment them. In such message exchanges, which follow a variant of the standard Two-Phase
Commit protocol [47], each endpoint informs the start service of the binding information
(e.g., IP address and data format) on which the endpoint can be reached. Finally, the start
service informs all participants about all necessary bindings, so that each party can dy-
namically update its references to the others (e.g., socket, bluetooth, or local inter-process
connections).

Another key feature is that our implementation of message queues for sessions is based
on the correlation mechanism developed in Chapter 5. Specifically, for each session/role
pair that a process will play during execution we generate a corresponding correlation set.
We have extended the implementation of Jolie to handle a separate message queue for
each different correlation set, so to handle messages in different sessions concurrently as
required by our endpoint model in § 2.5.1. Afterwards, the programmer can customise cor-
relation for each deployment artifact. For instance, some processes may identify sessions
using HTTP cookies (using our configuration parameters for HTTP in Jolie from Chap-
ter 6), while others may use SOAP headers (as in the WS-Addressing specifications [11]).

Example 7.3.1 (Endpoint Projection in Chor). We give an example of EPP by reporting a
snippet of the code generated for process server from Example 7.2.3:

1 main
2 {
3 _start();
4 csets.tid = new;
5 _myRef.binding << global.inputPorts.MyInputPort;
6 _myRef.tid = csets.tid;
7 _start_S@a(_myRef)(_sessionDescriptor.k);
8 k_C << _sessionDescriptor.k.C.binding;
9 hi(x);

10 showMessageDialog@SwingUI("[server] " + x)()
11 }

The Jolie code above for process server waits to be started by receiving an input on
operation _start (which acts as replicated). This starts the commit protocol for creat-
ing session k. In Lines 4–6, the process initialises its correlation value for the session
(csets.tid), and then stores its binding information (e.g., its IP address) and correla-
tion value for the session in variable _myRef. In Line 7, the process completes the session
start protocol by sending its binding and correlation information to the service responsible
for synchronising the processes involved in the creation of the session (service a). Still in
Line 7, we receive in response a session descriptor for session k, which contains the bind-
ing information for reaching the other processes in the session. In Lines 9–10, we receive
the message on operation hi from the client and display it on screen as indicated by the
choreography.
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7.3.3 Delegation

Session delegation is a nontrivial mechanism at the level of endpoint implementation. The
main concern lies in updating channel references (bindings). For instance, assume that
a session k has some process participants, say p and q̃. Suppose now that p delegates
its role in k to another process r through a different session. In such a situation, all the
processes in q̃ need their external references to be updated for reaching r instead of p
when communicating with the session/role pair delegated by p. In our formal endpoint
model (see § 2.5.1) this necessity is completely abstracted away by the synchronisations
on the centralised message queues (one per session). However, in our implementation of
Chor, message queues are completely distributed: each process owns a message queue
which must be reached explicitly by other process, following our model for correlation-
based sessions from Chapter 5. In [57] the authors present a survey of possible solutions
to this problem in asynchronous scenarios1. The main challenge is that the processes in
q̃ may send messages to process p before getting notified of the delegation; in [57], this
issue is solved by making process p resending these messages to process r, adding extra
communications. In our EPP implementation, instead, each process in q̃ knows when the
delegation will happen since we have that information from the originating choreography.
Hence, we program the processes in q̃ to wait for receiving the updated binding information
for reaching process r before proceeding in the session, guaranteeing that we are always
in the optimal case where no messages are sent to the wrong recipient.

7.4 Examples

In this section, we discuss some examples that we have implemented using the Chor lan-
guage. Specifically, our examples below show how to deal with five typical aspects of dis-
tributed systems: multiparty sessions, session interleaving, service selection, delegation,
and recursive protocols. More examples, including the implementations of the examples in
§ 2.6, are available at the Chor website [34].

7.4.1 Multiparty Sessions

We show how to address multiparty sessions by implementing a protocol inspired by the
OpenID specifications for distributed authentication [81]:

1 program openid;
2
3 protocol OpenID {
4 U -> RP: username( string );
5 RP -> IP: username( string );
6 U -> IP: password( string );
7 IP -> RP: {
8 ok( void );
9 RP -> U: ok( void ),

1The work in [57] actually deals with binary sessions, not multiparty as in here, but the main arguments
presented therein remain valid also in the multiparty case.
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10 fail(string);
11 RP -> U: fail( string )
12 }
13 }
14
15 public publicOpenID: OpenID
16
17 main
18 {
19 rp[RP], u[U] start ip[IP]: publicOpenID( k );
20
21 ask@u( "[u] Insert Username", user );
22
23 u.user -> rp.user: username( k );
24 rp.user -> ip.username: username( k );
25
26 ask@u( "[u] Insert Password", pwd );
27
28 u.pwd -> ip.password: password( k );
29
30 ask@ip(
31 "[ip] Accept username ’" + username +
32 "’ and password ’" + password + "’ ?",
33 accept
34 );
35 if (accept == "yes")@ip {
36 ip -> rp: ok( k );
37 rp -> u: ok( k );
38 show@u( "[u] Authentication successful!" )
39 } else {
40 ip."Invalid credentials" -> rp.error: fail( k );
41 rp.error -> u.error: fail( k );
42 show@u( "[u] " + error )
43 }
44 }

In the code above, we start by declaring a protocol OpenID where a user U wants to
authenticate to a relying party RP using an external identity provider IP. The user starts
by sending her username to RP, which forwards it to IP; then, the user sends her password
to IP. In Lines 7–12, the identity provider IP selects either branch ok or fail on the
relying party, which terminates the protocol by forwarding the choice to the user.

We implement the protocol in our choreography with the session k and the three pro-
cesses rp, u, and ip. Lines 21–28 implement Lines 4–6 in the protocol, by asking in-
formation to the user and then communicating it. In Line 30, the ip asks whether the
presented username/password credentials are valid; in Lines 35–43, the choice is then for-
warded to processes rp and u, completing the protocol.
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7.4.2 Session Interleaving

In the example below, we give an implementation of a system where two sessions are
interleaved to reach a common goal.

1 program buyerseller;
2
3 protocol BuyerSeller {
4 Buyer -> Seller: buy( string );
5 Seller -> Buyer: price( int );
6 Buyer -> Seller: {
7 ok(void),
8 abort(void)
9 }

10 }
11
12 protocol AskUser {
13 Application -> User: question( string );
14 User -> Application: {
15 yes( void ),
16 no( void ),
17 maybe( void )
18 }
19 }
20
21 public a : BuyerSeller
22 public b : AskUser
23
24 main
25 {
26 buyer[Buyer] start seller[Seller] : a( k );
27 buyer."Coffee" -> seller.product : buy( k );
28 seller.100 -> buyer.price : price( k );
29
30 buyer[Application] start user[User]: b( k2 );
31 buyer.( "Can I pay " + price + "?" )
32 -> user.question: question( k2 );
33
34 local@user( s = question );
35 ask@user( s, answer );
36
37 if (answer == "yes")@user {
38 user -> buyer: yes( k2 );
39 buyer -> seller: ok( k );
40 show@seller( "[seller] Product sent!" )
41 } else {
42 user -> buyer: no( k2 );
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43 buyer -> seller: abort( k );
44 show@seller( "[seller] Transaction aborted!" )
45 }
46 }

Above, we specify two protocols: BuyerSeller and AskUser. In protocol BuyerSeller,
a Buyer asks a Seller for the price of a product using operation buy; the Seller
replies with operation price, and then the Buyer finally notifies the Seller of whether
she wishes to proceed with the purchase (operation ok) or not (operation abort). Proto-
col AskUser is very simple: an Application asks a User a question and then waits
for an answer from the User, which can be yes, no, or maybe.

The choreography starts by instantiating protocol BuyerSeller as session k, on
which the buyer asks for some coffee and the seller replies with the price 100. Now, in
Line 30, the buyer starts another session k2 with another process user by playing role
Application. The buyer uses session k2 to asks whether the user is willing to pay the
price required by the seller. Depending on the user’s choice, buyer completes session k
accordingly (Lines 37–45).

Observe that in session k2 we are not implementing option maybe, since we do not
need it. Our type checker will still accept the choreography as safe, following our typing
discipline from § 2.4 (see § 2.5.6 for details).

7.4.3 Service Selection and Delegation

We report an example from the Ocean Observatories Initiative (OOI) [80], in which a user
connects to an instrument for reading environmental data through a service responsible for
authorising user commands.

1 program instrument;
2
3 protocol AuthCommand {
4 U -> A: username( string );
5 U -> A: password( string );
6 A -> U: {
7 valid(Connect@U),
8 fail(void)
9 }

10 }
11
12 protocol Connect {
13 U -> R: connect( string );
14 R -> U: {
15 ok( ExecCommand@C ),
16 unavailable( void )
17 }
18 }
19
20 protocol ExecCommand {
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21 C -> I: {
22 readTemperature(void);
23 I -> C: result(string),
24 readPressure(void);
25 I -> C: result(string)
26 }
27 }
28
29 public a : AuthCommand
30 public b : Connect
31 public instrument1 : ExecCommand
32 public instrument2 : ExecCommand
33
34 define findAndExec( u, r )( connect[Connect: u[U], r[R]] )
35 {
36 ask@u( "[u] What instrument
37 do you want to connect to? (inst1/inst2)",
38 name );
39 u.name -> r.name: connect( connect );
40 if ( name == "inst1" )@r {
41 r[C] start i[I]: instrument1( exec );
42 r -> u: ok( connect( exec ) );
43 u -> i: readTemperature( exec );
44 i."28 C" -> u.temp: result( exec )
45 } else if ( name == "inst2" )@r {
46 r[C] start i[I]: instrument2( exec );
47 r -> u: ok( connect( exec ) );
48 u -> i: readTemperature( exec );
49 i."2 C" -> u.temp: result( exec )
50 } else {
51 r -> u: unavailable( connect )
52 }
53 }
54
55 main
56 {
57 u[U] start a[A]: a( auth );
58 ask@u( "[u] Insert username", username );
59 ask@u( "[u] Insert password", pwd );
60 u.username -> a.username: username( auth );
61 u.pwd -> a.pwd: password( auth );
62 ask@a( "[a] Confirm credentials? (yes/no) : "
63 + username + " : " + password,
64 confirm );
65 if ( confirm == "yes" )@a {
66 a[U] start r[R]: b( connect );
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67 a -> u: valid( auth( connect ) );
68 findAndExec( u, r )( connect )
69 } else {
70 a -> u: fail( auth )
71 }
72 }

We have three protocols. In protocol AuthCommand, a user U sends her credentials to
an authoriser A which decides whether the credentials are valid or not. If the credentials
are valid, then the authoriser delegates to the user access to a session for connecting to an
instrument. The latter will follow protocol Connect, in which the user asks a registry
R for a connection to a specific instrument. If the instrument is available, the registry
delegates to the user a session for communicating with the instrument she requested, which
follows protocol ExecCommand. Finally, in protocol ExecCommand, a client C (which
will be the user in our choreography) asks an instrument I for a temperature or a pressure
reading.

In the choreography, Lines 57–72 implement protocol AuthCommand. If successful,
the authoriser starts a session connect with the registry and delegates it to the user; the
choreography then proceeds by calling procedure findAndExec. In the procedure, the
user selects an instrument and asks the registry for being connected to it. If the instrument
is known by the registry, the latter creates a session with the instrument and then delegates
it to the user. Finally, the user uses the instrument for getting a reading.

7.4.4 Recursive Protocols

Our last example is about recursive protocols. Specifically, we define a protocol for stream-
ing some packets from a server to a client.

1 program stream;
2
3 protocol StreamingProtocol {
4 S -> C: packet( string );
5 S -> C: {
6 again( void ); StreamingProtocol,
7 stop( void )
8 }
9 }

10
11 public a : StreamingProtocol
12
13 define doStreaming
14 ( c, s )
15 ( stream[StreamingProtocol: c[C], s[S]] )
16 {
17 ask@s( "[s] Input data to send for packet number " + i,
18 data );
19
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20 s.data -> c.data: packet( stream );
21 local@c( result = result + data );
22 local@s( i = i + 1 );
23 if ( i < nPackets )@s {
24 s -> c: again( stream );
25 doStreaming( c, s )( stream )
26 } else {
27 s -> c: stop( stream );
28 show@c( "[c] Received data: " + result )
29 }
30 }
31
32 main
33 {
34 c[C] start s[S]: a( k );
35 ask@s( "[s] How many packets do you want to send?",
36 nPackets );
37 local@s( i = 0 );
38
39 doStreaming( c, s )( k )
40 }

Above, we have only one protocol StreamingProtocol. In the protocol, the server S
sends a packet to the client C and then informs the client on whether there are more packets
or not. In the first case (operation again), the protocol continues; otherwise (operation
stop), it terminates immediately.

In the choreography, a client process c starts a server process s to implement the pro-
tocol on session k. The server then establishes how many packets to send and the chore-
ography proceeds by calling procedure doStreaming. In the procedure, the server gets
some data to send to the client and sends it. The client aggregates the received data in its
local variable result. Thereafter, the server checks whether there are more packets to
send. If so, the server informs the client of continuing and the procedure recurs by invok-
ing itself; otherwise, the server informs the client that there are no more packets and the
choreography terminates.

7.5 Related Work

From a language perspective, Chor is essentially an implementation of the Choreography
Calculus presented in Chapter 2, so we refer the reader to § 2.7 for a discussion on related
work about the language design.

On the side of tools for choreographic programming, the works nearest to Chor are WS-
CDL [102] and BPMN [1]. The main difference is that Chor is strongly typed and supports
the type checking of sessions against formally-defined protocols, whereas WS-CDL and
BPMN do not come with this kind of typing discipline and are thus more error-prone.
Moreover, the semantics of both languages is informally specified, making their interpre-
tation potentially unclear, whereas Chor follows the formal semantics given in Chapter 2.
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Consequently, it is not possible to formally reason about safety properties on WS-CDL and
BPMN, whereas the design of Chor is based on the foundations investigated in Chapter 2.
However, regarding EPP, Chor targets Jolie code instead of the endpoint model given for
the Choreography Calculus in § 2.5. An interesting future work is therefore to formally
prove that adopting the Jolie model given in Chapter 5 for endpoint programs does not
alter the safety properties guaranteed in § 2.5.

7.6 Conclusions

We presented Chor, a prototype framework for Choreographic Programming. Through
examples, we evaluated Chor against a series of use cases and shown that it is already ex-
pressive enough to handle, e.g., the interleaving of protocols, service selection, and session
delegation.

7.6.1 Future Work

We discuss some directions for future work on Chor.

Language Extensions. Chor is an implementation of the model in Chapter 2, the
Choreography Calculus, which does not support all the features presented in this disser-
tation in the later Chapters. We plan to extend Chor to handle the composition of chore-
ographies and round-trip development as formalised, respectively, in Chapters 3 and 4.

Global Deployment. Chor projects Jolie programs with a default deployment config-
uration that can be edited afterwards for each endpoint. This may be inconvenient for the
programmer, since a choreography may describe many participants. Therefore, we plan
to introduce a global deployment language for choreographies, from which the deploy-
ment configuration of each endpoint could be automatically generated. We envision that
this extension could be relevant for facilitating checks on the correctness of a deployment
configuration of a system, e.g., consistent I/O connections.

Scaffolding. Since in our model a protocol and a session behaviour in a choreography
have similar structures, we could implement a scaffolding tool in our IDE that, given a
protocol, would generate a prototype choreography with “dummy” data that implements it.
Then, programmers would refine and interleave different prototypes to obtain the desired
behaviour.

Local Code. The local actions in Chor are still very limited and are only meant to
exemplify the idea of introducing internal computation at endpoints in choreographies. We
plan to investigate how to embed an entire language for internal actions, such as Jolie or
Java, so to reach a more general result. This would also be helpful for reusing already
existing libraries from other frameworks in choreographies.
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APPENDIX A

Global Programming: Additional
Material

A.1 Proof of Theorem 2.4.2

We first give some auxiliary results.
Below, we report the Substitution Lemma. Note that we do not require substitution for

session channels, processes and recursion variables [101].

Lemma A.1.1 (Substitution). Assume Γ; Σ ` C . ∆; then, Γ ` x@p : S and Γ ` v : S
implies Γ; Σ ` C[v/x@p] . ∆.

Proof. Immediate by induction on the typing rules reported in Figure 2.10.

Typing is preserved by structural congruence.

Lemma A.1.2 (Subject Congruence). Assume Γ; Σ ` C . ∆; then, C ≡ C ′ implies
Γ; Σ ` C ′ . ∆ (up to α-renaming).

Proof. The proof is standard, by induction on the rules defining the structural congruence
relation ≡ reported in Figure 2.4.

The following Lemma allows us to move session ownership typings to asynchrony
environments.

Lemma A.1.3 (Asynchronous delegation). Γ, p : k[A]; Σ \ p : k[A] ` C . ∆ and
q :k[A] 6∈ Σ implies Γ, p :k[A]; Σ, q :k[A] ` C . ∆.

Proof. Immediate from the typing rules reported in Figure 2.10.

We can now prove Subject Reduction, by establishing the stronger result below. In the
following, Γ[p 7→ k[A]] is Γ where all ownerships k[A] have been erased and then ownership
p :k[A] is added.

Theorem A.1.1 (Subject Reduction). Let Γ; Σ ` C . ∆; then, C λ−→ C ′ implies
Γ′; Σ′ ` C ′ . ∆′ for some Γ′, Σ′ and ∆′ such that

(i) if λ ∈ {τ@p, (start)} then Γ = Γ′, Σ = Σ′ and ∆ 'G ∆′;

(ii) if λ = p[A] -> q[B] : k〈k′[C]〉 and C λ−→ C ′ is by bC|ACTe then Γ′ = Γ[q 7→ k′[C]],

Σ′ = Σ and ∆
k:α−−→ ∆′ such that Γ; Σ ` λ . k :α;
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(iii) if λ = r[D] -> s[E] : k′′〈k′′′[F]〉 and C λ−→ C ′ is by bC|ASYNCe then Γ′ = Γ[s 7→ k′′′[F]],

Σ′ = Σ, r :k′′′[F] and ∆
k:α−−→ ∆′ such that Γ; Σ ` λ . k :α;

(iv) otherwise, Γ = Γ′, Σ = Σ′ and ∆
k:α−−→ ∆′ such that Γ; Σ ` λ . k :α.

Proof. The proof is by induction on the derivation of C λ−→ C ′.

• Case bC|ACTe. The case is:

η ∈ {(sel), (del), (start)} r̃ = bn(η)

C = η;C1
η−→ (ν r̃) C1 = C ′

bC|ACTe

We have three subcases, depending on the form of η.

– Case η = p[A] -> q[B] : k[lj ]. Since C is well-typed, we know that:

Γ; Σ ` p[A] -> q[B] : k Γ; Σ ` C ′ . ∆′′, k :Gj j ∈ I
Γ; Σ ` p[A] -> q[B] : k[lj ];C

′ . ∆′′, k :A -> B : {li : Gi}i∈I
bT|SELe

Hence C ′ is also well-typed by the premise of bT|SELe. Moreover, we can see
that:

∆ = ∆′′, k :A -> B : {li : Gi}i∈I
k:A -> B:[lj ]−−−−−−−→ ∆′′, k :Gj = ∆′

The thesis follows now by rule bL|SELe:

Γ; Σ ` p[A] -> q[B] : k j ∈ I
Γ; Σ ` p[A] -> q[B] : k[lj ] . k :A -> B : [lj ]

bL|SELe

– Case η = p[A] -> q[B] : k〈k′[C]〉. Since C is well-typed, we know that:

Γ′′; Σ ` p[A] -> q[B] : k p :k′[C] 6∈ Σ G′ 'G G′′

Γ′′, q :k′[C]; Σ \ q :k′[C] ` C′ . ∆′′, k :G, k′ :G′

Γ′′, p :k′[C]; Σ ` p[A] -> q[B] : k〈k′[C]〉;C′ . ∆′′, k :A -> B : 〈G′′@C〉;G, k′ :G′
bT|DELe

where Γ = Γ′′, p :k′[C]. Hence,C ′ is also well-typed. Moreover, we can derive:

∆ = ∆′′, k :A -> B : 〈G′′@C〉;G, k′ :G′ k:A -> B:〈G′′@C〉−−−−−−−−−−→ ∆′′, k :G, k′ :G′ = ∆′

The thesis follows by rule bL|DELe:

Γ; Σ ` p[A] -> q[B] : k Γ ` p :k′[C]

Γ; Σ ` p[A] -> q[B] : k〈k′[C]〉 . k :A -> B : 〈G′′@C〉
bL|DELe

– Case η = p̃[A] start q̃[B] : a(k). We know that r̃ = k, q̃. Also, since C is
well-typed we know that:

Γ; Σ ` a : G〈Ã|B̃〉 G 'G G′ q̃ 6∈ Γ; Σ

Γ, init({p̃[A], q̃[B]}, k); Σ ` C1 . ∆, k :G′

Γ; Σ ` p̃[A] start q̃[B] : a(k);C1 . ∆
bT|STARTe
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Let q̃ = q1, . . . , qn. Since q̃ 6∈ Γ; Σ, we can easily obtain the thesis by applying
bT|RESe n times. Formally:

Γ, init({p̃[A], q̃[B]}, k); Σ ` C1 . ∆.... b
T|RESe n times

Γ \ q̃; Σ ` (νq̃) C1 . ∆

Γ \ r̃; Σ ` (ν r̃) C1 . ∆ \ k
bT|RESe

• Case bC|COMe. The case is:

η = p[A].e -> q[B].x : k e ↓ v

C = η;C1
η[v/e]−−−−→ C1[v/x@q] = C ′

bC|COMe

Since C is well-typed, we know that:

Γ; Σ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S; Σ ` C1 . ∆′′, k :G

Γ; Σ ` p[A].e -> q[B].x : k;C1 . ∆′′, k :A -> B : 〈S〉;G
bT|COMe

Hence, by the Substitution Lemma A.1.1 we know that C ′ is also well-typed. More-
over, we can derive:

∆ = ∆′′, k :A -> B : 〈S〉;G k:A -> B:〈S〉−−−−−−−−→ ∆′′, k :G = ∆′

The thesis follows by rule bL|COMe:

Γ; Σ ` p[A] -> q[B] : k Γ ` v :S Γ ` x@q :S

Γ; Σ ` p[A].v -> q[B].x : k . k :A -> B : 〈S〉
bL|COMe

• Case bC|ASYNCe. The case is:

C1
λ−→ (ν r̃) C ′1 snd(η) ∈ fn(λ) r̃ = bn(λ)

η 6= (start) rcv(η) 6∈ fn(λ) r̃ 6∈ fn(η)

C = η;C1
λ−→ (ν r̃) η;C ′1 = C ′

bC|ASYNCe

We proceed by case analysis on η.

– Case η = p[A].e -> q[B].x : k. Since C is well-typed, we know that:

Γ; Σ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S; Σ ` C1 . ∆′′, k :G

Γ; Σ ` p[A].e -> q[B].x : k;C1 . ∆′′, k :A -> B : 〈S〉;G
bT|COMe

Now, we apply the induction hypothesis to C1
λ−→ (ν r̃) C ′1. According to the

Theorem statement that we are proving, we have four possibilities:

(i) if λ ∈ {τ@p, (start)} then we know that:

Γ, x@q :S; Σ ` (ν r̃) C ′1 . ∆′′′, k :G′
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where ∆′′, k :G 'G ∆′′′, k :G′. Assume r̃ = r1, . . . , rn; then:

Γ′′,Γ, x@q :S; Σ′′,Σ ` C ′1 . ∆1, k :G′
.... b

T|RESe n times
Γ, x@q :S; Σ ` (ν r̃) C ′1 . ∆′′′, k :G′

Let Γ′′′ = Γ′′,Γ, x@q : S; since r̃ 6∈ fn(η), we can prove the thesis as
follows:

Γ′′′; Σ′′,Σ ` p[A] -> q[B] : k Γ′′′ ` e@p :S Γ′′′; Σ′′,Σ ` C′1 . ∆1, k :G′

Γ′′,Γ; Σ′′,Σ ` η;C′1 . ∆1, k :A -> B : 〈S〉;G′
bT|COMe

.... b
T|RESe n times

Γ; Σ ` (ν r̃) η;C′1 . ∆′′′, k :A -> B : 〈S〉;G′

(ii) if λ = r[D] -> s[E] : k′′〈k′′′[F]〉 and we have applied bC|ACTe, then r̃ is
empty and we know:

λ ∈ {(sel), (del), (start)} r̃ = bn(λ)

C1 = λ;C2
λ−→ C2 = C ′1

bC|ACTe

C = η;λ;C2
λ−→ η;C2 = C ′

bC|ASYNCe

(
snd(η) ∈ fn(λ) r̃ = bn(λ)

η 6= (start) rcv(η) 6∈ fn(λ) r̃ 6∈ fn(η)

)
From the conditions of rule bC|ASYNCe, we know that p ∈ {r, s} and that
q 6∈ {r, s}. Now, we distinguish subcases depending on k, k′′, and k′′′.

* Case k′′ = k′′′. This case is not allowed, since C1 is well-typed and
rule bT|DELe forbids delegating a session over itself.

* Case k 6= k′′ and k = k′′′. Let Γ = Γ′′, p : k[A]. Since C1 is well-
typed, we know that p = r, A = F, and:

[. . .]

Γ′′; Σ ` p[D] -> s[E] : k′′ p :k[A] 6∈ Σ G2 'G G′2
Γ′′, s :k[A]; Σ \ s :k[A] ` C2 . ∆′′, k :G2, k

′′ :G′

Γ′′, p :k[A]; Σ ` λ;C2 . ∆′′, k :G2, k
′′ :D -> E : 〈G′2@A〉;G′

bT|DELe

Γ′′, p :k[A]; Σ ` η;λ;C2 . ∆′′, k :A -> B : 〈S〉;G2, k
′′ :D -> E : 〈G′2@A〉;G′

bT|COMe

Now the thesis follows by rule bT|COMe, Lemma A.1.3, and the seman-
tics of global types:

[. . .] Γ′′, s :k[A]; Σ, p :k[A] ` C2 . ∆′′, k :G2, k
′′ :G′

Γ′′, s :k[A]; Σ, p :k[A] ` η;C2 . ∆′′, k :A -> B : 〈S〉;G2, k
′′ :G′

bT|COMe

* Case k = k′′ and k 6= k′′′. Let Γ = Γ′′, p : k′[C]. Since C1 is well-
typed we know that p = r, A = D, and:

[. . .]

Γ′′; Σ ` p[A] -> s[E] : k p :k′′′[F] 6∈ Σ G′ 'G G′′′

Γ′′, s :k′′′[F]; Σ \ s :k′′′[F] ` C2 . ∆′′, k :G2, k
′′′ :G′

Γ′′, p :k′′′[F]; Σ ` λ;C2 . ∆′′, k :A -> E : 〈G′′′@F〉;G2, k
′′′ :G′

bT|DELe

Γ′′, p :k′′′[F]; Σ ` η;λ;C2 . ∆′′, k :A -> B : 〈S〉; A -> E : 〈G′′′@F〉;G2, k
′′′ :G′

bT|COMe
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Now the thesis follows by rule bT|COMe, Lemma A.1.3:

[. . .] Γ′′, s :k′′′[F]; Σ, p :k′′′[F] ` C2 . ∆′′, k :G2, k
′′′ :G′

Γ′′, s :k′′′[F]; Σ, p :k′′′[F] ` η;C2 . ∆′′, k :A -> B : 〈S〉;G2, k
′′′ :G′

bT|COMe

An interesting difference wrt the previous case is that we need to prove
the following reduction for the session typing:

A -> B : 〈S〉; A -> E : 〈G′′′@F〉;G2
A -> E:〈G′′′@F〉−−−−−−−−−−→ A -> B : 〈S〉;G2

which can be proven using rule bG|ACOMe.
* Case k 6= k′′ and k 6= k′′′ and k′′ 6= k′′′. This case follows the

previous proofs, although it is easier since there is no overlapping of
sessions.

(iii) if λ = r[D] -> s[E] : k′′〈k′′′[F]〉 and we have applied bC|ASYNCe, then r̃ is
empty and we know:

C2
λ−→ C ′2

C1 = η′;C2
λ−→ η′;C2 = C ′1

bC|ASYNCe

C = η; η′;C2
λ−→ η; η′;C ′2 = C ′

bC|ASYNCe

 snd(η) ∈ fn(λ) r̃ = bn(λ)

η 6= (start) rcv(η) 6∈ fn(λ) r̃ 6∈ fn(η)

snd(η′) ∈ fn(λ) rcv(η′) 6∈ fn(λ)


The induction hypothesis is:

Γ[s 7→ k′′′[F]], x@q :S; Σ, r :k′′′[F] ` C ′1 . ∆′1

where
∆1 = ∆′′, k :G

k′′′:D -> E:〈G′′′@F〉−−−−−−−−−−−−→ = ∆′1

Now, we distinguish subcases depending on k, k′′, and k′′′.

* Case k′′ = k′′′. This case is not allowed, since C1 is well-typed and
rule bT|DELe forbids delegating a session over itself.

* Case k 6= k′′ and k = k′′′. Since C1 is well-typed we know that p = r
and A = F. Assume Γ′ = Γ[s 7→ k′′′[F]] and Σ′ = Σ, r :k′′′[F]. By rule
bT|COMe we obtain:

Γ′; Σ′ ` p[A] -> q[B] : k Γ′ ` e@p :S Γ′, x@q :S; Σ′ ` C′1 . ∆′′, k :G′

Γ′; Σ′ ` p[A].e -> q[B].x : k;C′1 . ∆′′, k :A -> B : 〈S〉;G
bT|COMe

The thesis now follows by induction hypothesis.

* Case k = k′′ and k 6= k′′′. Since C1 is well-typed we know that p = r
and A = D. The reasoning is now similar to the case above. The only
interesting difference is to show that:

A -> B : 〈S〉; A -> E : 〈G′′′@F〉;G A -> E:〈G′′′@F〉−−−−−−−−−−→ A -> B : 〈S〉;G

which follows from rule bG|ACOMe.
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* Case k 6= k′′ and k 6= k′′′ and k′′ 6= k′′′. This case follows the
previous proofs, although it is easier since there is no overlapping of
sessions.

(iv) This case follows directly from the induction hypothesis.

– Case η ∈ {(sel), (del)}. These cases are similar to the one for η = p[A].e -> q[B].x :
k.

– Case η = p̃ start q̃ : a(k). This case is not allowed by rule bC|ASYNCe.

• Case bC|CTXe. Follows easily by induction hypothesis.

• Case bC|CONDe. In this case we have that:

i = 1 if e ↓ true , i = 2 otherwise

if e@p thenC1 elseC2
τ@p−−−→ Ci

bC|CONDe

Since C is well-typed, we know that:

Γ ` e@p : bool Γ; Σ ` C1 . ∆ Γ; Σ ` C2 . ∆

Γ; Σ ` if e@p thenC1 elseC2 . ∆
bT|CONDe

The thesis follows immediately from the premises of the typing above for both cases,
C ′ = C1 and C ′ = C2.

• Case bC|RESe. This case follows easily by induction hypothesis.

• Case bC|EQe. In this case we have that:

R ∈ {'C ,≡} C1RC ′1 C ′1
λ−→ C ′2 C ′2RC2

C1
λ−→ C2

bC|EQe

We have two subcases. For R ='C , we conclude by Lemma 2.4.1. Otherwise, for
R =≡, we conclude by Lemma A.1.2.

A.2 Proof of Theorem 2.5.15

Again, we start by presenting some auxiliary results before giving the main proof.
We begin by showing properties of EPP wrt substitutions:

Lemma A.2.1 (EPP Substitution).

[[C[v/x@p]]]p = [[C]]p[v/x]

Proof. Immediate from the definition of process projection.
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Lemma A.2.2 (EPP Substitution Locality). Let q be a free process name in C ′, i.e. q ∈
fn(C ′), and

[[C]] = (νk̃)

( ∏
p∈ fn(C′)

[[C ′]]p |
∏

k∈ fn(C′)

k : ∅

)
|
∏
a,A

( ⊔
p∈bC′caA

[[C ′]]p

)

Then

[[C[v/x@q]]] =

(νk̃)

(
[[C[v/x@q]]]q |

∏
p∈ fn(C)\q

[[C]]p |
∏

k∈ fn(C)

k : ∅

)
|
∏
a,A

( ⊔
p∈bCcaA

[[C]]p

)

Proof. Immediate from the definition of EPP and Lemma A.2.1.

Lemma A.2.2 says that a substitution under a free process q in a choreographyC affects
its projection [[C]] only in the process projection of q.

Lemma A.2.3 (Linearity). Let C be linear, and [[C]]
µ̃

 ∗ P for some P . If P has a redex
at a, then a[A] is enabled at most once in P for any A.

Proof. By induction on the length of the reduction chain from [[C]] to P .

Lemma A.2.4 (In-session Linearity). Let C be well-typed and

[[C]] ≡ (νk̃)
(
P | Q

)
where Q = k[A]!B;Q′ (k[A]!B is any output from A to B). Then, there are no actions with
free subject k[A] in P .

Proof (Sketch). From the well-typedness of C, we can derive that P does not have any
output (or input) on the free channel k with role A (this check is performed by the ownership
typing in Γ).

Now we observe that pruning is transitive, and show that it is preserved by all the
process projections that are not involved in the reduction of a choreography.

Proposition A.2.4.1 (Pruning preservation). Let P ≺ Q. Then, P
µ−→ P ′ implies that

there exists Q′ such that Q
µ−→ Q′ and P ′ ≺ Q′.

Lemma A.2.5 (Passive processes pruning invariance). Let C be restriction-free. Then

C
λ
 C ′ implies that for every p ∈ fn(C) \ fn(λ)

[[C ′]]p ≺ [[C]]p

Proof. By case analysis on the rules defining the semantics of the Choreography Calcu-
lus. The only interesting case is bC|CONDe. In this case, the projections of the processes
receiving selections are merged. The thesis follows immediately by definition of pruning.
Observe that we can safely ignore potential swaps in C performed in its reduction, thanks
to Lemma 2.5.1.
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Lemma A.2.6 (Pruning Lemma). Let C be well-typed and [[C]] = ((νk̃) P ) | R where

R =
∏
a,A

( ⊔
p∈bCcaA

[[C]]p

)

Let now R′ be the process obtained from R by (i) adding some new services on new public
channels and (ii) merging the services in R with some other services:

R′ =
∏
a,A

( ( ⊔
p∈bCcaA

[[C]]p
)
tRaA

)
|
∏
i∈I

!ai[Ai](ki);Pi

where for all i ∈ I , ai /∈ fn(C). Then, R′ defined implies: [[C]] ≺ ((νk̃) P ) | R′

Proof (Sketch). From the well-typedness of C, we can derive that P does not use any of
the new public channels ai. The same reasoning can be used for proving that all the new
branches introduced in R′ are never going to be used.

Lemma A.2.7 (EPP under ≡). Let C ≡ C ′. Then, [[C]] ≡ [[C ′]].

We can finally prove the EPP Theorem.

Theorem A.2.1 (EPP Theorem). Let C ≡ (νp̃, k̃) Cf be linear and well-typed, with Cf
restriction-free; then,

1. (Completeness) C λ
 C ′ implies that there exist P and C ′′ such that (i) C ′

λ̃′

 ∗ C ′′;

(ii) [[C]]
µ̃

 ∗ P and λ, λ̃′ ` µ̃; and (iii) [[C ′′]] ≺ P .

2. (Soundness) [[C]]
µ̃

 ∗ P implies that there exist P ′ and C ′ such that (i) P
µ̃′

 ∗ P ′;

(ii) C
λ̃
 ∗ C ′ and λ̃ ` µ̃, µ̃′; and (iii) [[C ′]] ≺ P ′.

For clarity, we split the proof in two parts. We first prove the completeness part and
then the soundness part of the Theorem.

Proof (Completeness). The proof is by induction on the derivation of C λ
 C ′.

• Case bC|COMe. We know that

C = p[A].e -> q[B].x : k;C1
p[A].v -> q[B].x:k

 C1[v/x@q] = C ′ (e ↓ v) (A.1)

We choose C ′ = C ′′. From the definition of EPP we have:

[[C]] ≡ (νk, k̃)

(
k[A]!B〈e〉; [[C ′′f ]]p | k[B]?A(x); [[C ′′f ]]q | k : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p)
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where (ν r̃) C ′′f ≡ C1, with C ′′f restriction-free, and k̃ are the free session channel
names in Cf excluding k. Using bP|COM-Se we can derive:

[[C]]
!A -> B:k〈v〉
 (νk, k̃)

(
[[C ′′f ]]p | k[B]?A(x); [[C ′′f ]]q | k : (A, B, v)

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = Q

By bP|COM-Re we obtain:

Q
?A -> B:k〈v〉
 (νk, k̃)

(
[[C ′′f ]]p | [[C ′′f ]]q[v/x] | k : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = P

which proves (ii).

Let us see now the projection of C ′′. From (A.1) and Lemma A.2.2 we have:

[[C ′′]] ≡ (νk̃′)

(
([[C ′′f ]]p) | ([[C ′′f [v/x@q]]]q) |

∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(C′′f )\p,q

[[C ′′f ]]p

)
|
∏
a,A

(
⊔

p∈bC′′f c
a
A

[[C ′′f ]]p)

where k̃′ are the free session channels in C ′′f . From Lemma A.2.1 we obtain:

[[C ′′]] ≡ (νk̃′)

(
[[C ′′f ]]p | [[C ′′f ]]q[v/x] |

∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(C′′f )\p,q

[[C ′′f ]]p

)
|
∏
a,A

(
⊔

p∈bC′′f c
a
A

[[C ′′f ]]p)

We observe now that fn(C ′′) ⊆ fn(C), because the reduction from C to C ′′ has not
added any free name. Hence, by Lemma A.2.5 we get:

[[C ′′]] ≺ (νk̃′)

(
[[C ′′f ]]p | [[C ′′f ]]q[v/x] |

∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p

)
|
∏
a,A

(
⊔

p∈bC′′f c
a
A

[[C ′′f ]]p)
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Using the same observation again (fn(C ′′) ⊆ fn(C)), it follows from the definition
of EPP (and merging) that:

[[C ′′]] ≺ (νk̃′)

(
[[C ′′f ]]p | [[C ′′f ]]q[v/x] |

∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p)

≺ P

which proves (iii).

• Case bC|ACTe. In this case we have:

η ∈ {(sel), (del), (start)} r̃ = bn(η)

C = η;C1
η−→ (ν r̃) C1 = C ′

bC|ACTe

We choose C ′ = C ′′ and proceed by case analysis on η.

– Case η = p[A] -> q[B] : k[l]. We know that

C = p[A] -> q[B] : k[l];C ′
p[A] -> q[B]:k[l]−−−−−−−−−→ C ′ (A.2)

From the definition of EPP we have:

[[C]] ≡ (νk, k̃)

(
k[A]!B⊕ l; [[C ′′f ]]p | k[B]?A& {l : [[C ′′f ]]q} | k : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p)

where (ν r̃) C ′′f ≡ C ′, with C ′′f restriction-free, and k̃ are the free session
channel names in Cf excluding k. Using bP|SEL-Se we can derive:

[[C]]
!A -> B:k[l]
 (νk, k̃)

(
[[C ′′f ]]p | k[B]?A& {l : [[C ′′f ]]q} | k : (A, B, l)

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = Q

By bP|BRANCHe we obtain:

Q
?A -> B:k[l]
 (νk, k̃)

(
[[C ′′f ]]p | [[C ′′f ]]q | k : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = P
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which proves (ii).
Let us see now the projection of C ′′. From (A.2) we have:

[[C ′′]] ≡ (νk̃′)

(
([[C ′′f ]]p) | ([[C ′′f ]]q) |

∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(C′′f )\p,q

[[C ′′f ]]p

)
|
∏
a,A

(
⊔

p∈bC′′f c
a
A

[[C ′′f ]]p)

where k̃′ are the free session channels in C ′′f . We observe now that fn(C ′′) ⊆
fn(C), because the reduction from C to C ′′ has not added any free name.
Hence, by Lemma A.2.5 we get:

[[C ′′]] ≺ (νk̃′)

(
[[C ′′f ]]p | [[C ′′f ]]q |

∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p

)
|
∏
a,A

(
⊔

p∈bC′′f c
a
A

[[C ′′f ]]p)

Using the same observation again (fn(C ′′) ⊆ fn(C)), it follows from the defi-
nition of EPP (and merging) that:

[[C ′′]] ≺ (νk̃′)

(
[[C ′′f ]]p | [[C ′′f ]]q |

∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p)

≺ P

which proves (iii).

– Case η = p[A] -> q[B] : k〈k′[C]〉. We know that

C = p[A] -> q[B] : k〈k′[C]〉;C ′ p[A] -> q[B]:k〈k′[C]〉−−−−−−−−−−−−→ C ′ (A.3)

From the definition of EPP we have:

[[C]] ≡ (νk, k̃)

(
k[A]!B〈k′[C]〉; [[C ′′f ]]p | k[B]?A(k′[C]); [[C ′′f ]]q | k : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p)

where (ν r̃) C ′′f ≡ C ′, with C ′′f restriction-free, and k̃ are the free session
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channel names in Cf excluding k. Using bP|DEL-Se we can derive:

[[C]]
!A -> B:k〈k′[C]〉

 (νk, k̃)

(
[[C ′′f ]]p | k[B]?A(k′[C]); [[C ′′f ]]q | k : (A, B, k′[C])

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = Q

By bP|DEL-Re we obtain:

Q
?A -> B:k〈k′[C]〉

 (νk, k̃)

(
[[C ′′f ]]p | [[C ′′f ]]q | k : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = P

which proves (ii). (iii) follows by same reasoning as the previous case.

– Case η = p̃[A] start q̃[B] : a(k). Let p̃ = p1, . . . , pn and q̃ = q1, . . . , qm. We
know that:

C = p̃[A] start q̃[B] : a(k);C1
p̃[A] start q̃[B]:a(k)

 (νk, q1, . . . , qm) C1 = C ′

From the definition of EPP we have that:

[[C]] ≡ (νk̃′)

(
a[Ã, B̃](k); [[C ′′f ]]p1 |

∏
i∈[2,n]

a[Ai](k); [[C ′′f ]]pi |
∏
k′∈k̃′

k′ : ∅

|
∏

p∈fn(Cf )\p̃

[[Cf ]]p

)
|
∏

i∈[1,m]

!a[Bi](k); (
⊔

q∈bCf caBi

[[C ′′f ]]q)

|
∏
a′ 6=a,A

(
⊔

p∈bCf ca
′

A

[[Cf ]]p) = Q

where k̃ are the free session channel names in Cf . We base our partitioning
of the services in the EPP on the fact that, thanks to the well-typedness of C,
we are sure that the roles B̃ are the only ones that are played by the service
processes in C on shared channel a.
Let µ = Ã start B̃ : a(k). Applying bP|STARTe we can derive

Q
µ
 (νk̃′, k)

( ∏
i∈[1,n]

[[C ′′f ]]pi |
∏

k′∈k̃′,k

k′ : ∅ |
∏

p∈fn(Cf )\[τ ]

[[Cf ]]p

)

|
∏

i∈[1,m]

!a[Bi](k); (
⊔

q∈bCf caBi

[[C ′′f ]]q) |
∏
a′ 6=a,A

(
⊔

p∈bCf ca
′

A

[[Cf ]]p) = P

which proves (ii). (iii) follows from similar reasoning as in the case for bC|COMe.
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• Case bC|ASYNCe. In this case we have that:

C1
λ
 (ν r̃) C ′1 snd(η) ∈ fn(λ) r̃ = bn(λ)

η 6= (start) rcv(η) 6∈ fn(λ) r̃ 6∈ fn(η)

C = η;C1
λ
 (ν r̃) η;C ′1 = C ′

bC|ASYNCe

Since snd(η) ∈ fn(λ), we know that λ ∈ {τ@p, (com), (sel), (del), (start)}We pro-
ceed by mutual case analysis on η and λ. We report one of the most interesting cases
(due to overlapping of session names and roles): η = p[A].e -> q[B].x : k and
λ = p[A].v′ -> r[C].y : k; all the other cases follow by similar reasoning to that
below.

By rules bC|COMe and bC|RESe we have that, for λ′ = p[A].e -> q[B].x : k:

C ′
λ′
 (ν r̃) C ′1[v/x@q] = C ′′ (e ↓ v) (A.4)

From the definition of EPP we have:

[[C]] ≡ (νk, k̃)

(
k[A]!B〈e〉; [[C ′′f ]]p | k[B]?A(x); [[C ′′f ]]q | [[C ′′f ]]r | k : ∅

|
∏

p∈fn(Cf )\p,q,r

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p)

where (ν r̃′) C ′′f ≡ C1, with C ′′f restriction-free, and k̃ are the free session channel
names in Cf excluding k. Using bP|COM-Se we can derive:

[[C]]
!A -> B:k〈v〉
 (νk, k̃)

(
[[C ′′f ]]p | k[B]?A(x); [[C ′′f ]]q | [[C ′′f ]]r | k : (A, B, v)

|
∏

p∈fn(Cf )\p,q,r

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = Q

Observe that the only difference between Q and [[C1]] is the projection of process q,
which in Q is k[B]?A(x); [[C ′′f ]]q and in [[C1]] is simply [[C ′′f ]]q. Since rcv(η) = q 6∈

fn(λ), we know that q is not involved in the reduction C1
λ
 (ν r̃) C ′1. Hence, we

can apply the induction hypothesis, add the prefix k[B]?A(x) to the projection of q in
[[C ′1]] and by rule bP|COM-Re obtain:

Q
µ̃′

 ∗
?A -> B:k〈v〉
 (νk, k̃)

(
[[C ′′f ]]p | [[C ′′f ]]q[v/x] | k : ∅

|
∏

p∈fn(Cf )\p,q

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)
|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = P

The thesis follows now by the definition of pruning and Lemmas A.2.2 and A.2.5.
Observe that the message (A, B, v) in the queue for k does not interfere with the re-
ductions labelled µ̃′, since B cannot be delegated by q in µ̃′ and therefore we can
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always swap such messages with others inserted in the queue for k using the struc-
tural congruence rule for session queues reported in Figure 2.16.

• Case bC|CTXe. Follows immediately from the definition of EPP and the induction
hypothesis.

• Case bC|CONDe. In this case we have:

i = 1 if e ↓ true , i = 2 otherwise

if e@p thenC1 elseC2
τ@p−−−→ Ci = C ′

bC|CONDe

We report the case for i = 1 (the other case, for i = 2, is similar). We choose
C ′ = C ′′. From the definition of EPP we have:

[[C]] ≡ (νk̃)

(
if e then [[C ′f ]]p else [[C ′′f ]]p |

∏
p∈fn(Cf )\p

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)

|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = Q

where (ν r̃′) C ′f ≡ C1 and (ν r̃′′) C ′′f ≡ C2, with C ′f and C ′′f restriction-free, and k̃
are the free session channel names in Cf . By rule bP|CONDe we get:

Q
τ
 (νk̃)

(
[[C ′f ]]p |

∏
p∈fn(Cf )\p

[[Cf ]]p |
∏
k′∈k̃

k′ : ∅

)

|
∏
a,A

(
⊔

p∈bCf caA

[[Cf ]]p) = P

The thesis follows now by Lemma A.2.5 and the definition of process projection.

• Case bC|RESe. Follows immediately from the definition of EPP and the induction hy-
pothesis.

• Case bC|EQe. In this case we have:

R ∈ {'C ,≡} CRC ′1 C ′1
λ
 C ′2 C ′2RC ′

C
λ
 C ′

bC|EQe

ForR ='C , the thesis follows from the induction hypothesis and Lemma 2.5.1. Oth-
erwise, forR =≡, the thesis follows from the induction hypothesis and Lemma A.2.7.

Proof (Soundness). We proceed by induction on the structure of Cf .
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• Case Cf = p[A].e -> q[B].x : k;Cb. The induction hypothesis is:

for all µ̃1 [[(νp̃k̃) Cb]]
µ̃1

 ∗ P1 ⇒ P1

µ̃′1
 ∗ P ′1

(νp̃k̃) Cb
λ̃′

 ∗ C ′1

λ̃′ ` µ̃1, µ̃′1
[[C ′1]] ≺ P ′1

From the definition of EPP we have

[[C]] ≡ (νk̃)

( ∏
p∈ fn(Cb)\p,q

[[Cb]]p | k[A]!B〈e〉; [[Cb]]p | k[B]?A(x); [[Cb]]q

|
∏

k′ ∈ fn(Cb)\k

k′ : ∅ | k : ∅

)
|
∏
a,A

( ⊔
p∈bCbcaA

[[Cb]]p

)

The projection of q is stuck on an input and the projection of p can perform an output.
Lemma 2.5.1 allows us not to consider potential swaps in C when looking at its EPP,
since it remains unchanged. From the induction hypothesis and the semantics for the
choreography calculus we get that

C
λ̃

 ∗ C ′1[v/x@q] = C ′ (e ↓ v)

where λ̃ = λ̃′1, p[A].v -> q[B].x : k, λ̃′2 for some λ′1 and λ′2 such that λ̃′ = λ̃′1, λ̃
′
2.

Now we have two cases, depending on the actions performed in the reduction chain

[[C]]
µ̃

 ∗ P . If the projection of p does not perform its output in these reductions,
then we apply the induction hypothesis choosing µ̃ = µ̃1 and we obtain

[[C]]
µ̃1

 ∗(νk̃′′)

(
Pb | k[A]!B〈e〉; [[Cb]]p | k[B]?A(x); [[Cb]]q | k : h

)

|
∏
a,A

( ⊔
p∈bCbcaA

[[Cb]]p

)
= P

where Pb may contain some new processes spawned by starting some services and
some session queues. From Lemma A.2.4 we also know that (A, B,w) /∈ h for any
w, since all the other processes cannot play the same roles of p and q in k. Now we
need to reduce P to P ′. Applying rules bP|COM-Se and bP|COM-Re we obtain

P
!A -> B:k〈v〉
 

?A -> B:k〈v〉
 (νk̃′′)

(
Pb | [[Cb]]p | [[Cb]]q[v/x] | k : h

)

|
∏
a,A

( ⊔
p∈bCbcaA

[[Cb]]p

)
= Q
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where e ↓ v. From well-typedness we know that [[Cb]]q is the only process using
name x. Therefore Q = P1[v/x]. The thesis follows now from the induction hy-
pothesis, choosing µ̃′ =!A -> B : k〈v〉, ?A -> B : k〈v〉, µ̃′1.

Let us now consider the case in which the projection of p performs its output in the
first reduction chain of [[C]]. By applying similar reasoning to the previous case, we
can split the reduction chain µ̃ as follows. First we have:

[[C]]
˜µ11

 ∗ (νk̃′′)

(
Pb | k[A]!B〈e〉; [[Cb]]p | k[B]?A(x); [[Cb]]q | k : h

)

|
∏
a,A

( ⊔
p∈bCbcaA

[[Cb]]p

)
= P11

where (A, B,w) /∈ h for any w. When p performs the output we obtain:

P11

!A -> q:k〈v〉
 (νk̃′′)

(
Pb | [[Cb]]p | k[B]?A(x); [[Cb]]q | k : h · (A, B, v)

)

|
∏
a,A

( ⊔
p∈bCbcaA

[[Cb]]p

)
= P12

where e ↓ v. Now there are two subcases: the projection of q may perform its input
in the reduction chain from P12 to P or not. Let us see the first subcase. We have:

P12

˜µ12

 ∗
?A -> q:k〈v〉
 (νk̃′′)

(
Pb | [[Cb]]p | ([[Cb]]q[v/x]) | k : h

)

|
∏
a,A

( ⊔
p∈bCbcaA

[[Cb]]p

)
= P13

Therefore we can split the reduction chain from [[C]] to P as:

[[C]]
˜µ11

 ∗ P11

!A -> B:k〈v〉
 P12

˜µ12

 ∗
?A -> B:k〈v〉
 P13

˜µ13

 ∗ P = P1[v/x]

The thesis now follows by induction hypothesis.

Let us see the other subcase, in which q does not perform the input in the reduction
chain from [[C]] to P . By similar reasoning we can split the reduction chain as:

[[C]]
˜µ11

 ∗ P11

!A -> B:k〈v〉
 P12

˜µ12

 ∗ P

Now we can choose to perform the input in the reduction chain from P to P ′:

P
?A -> B:k〈v〉
 P ′′

µ̃′1
 ∗ P ′

The thesis now follows by similar reasoning to the previous subcase.
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• CaseCf = p[A] -> q[B] : k[l];Cb. Similar to the case Cf = p[A].e -> q[B].x :
k;Cb.

• CaseCf = p[A] -> q[B] : k〈k′[C]〉;Cb. Similar to the case Cf = p[A].e -> q[B].x :
k;Cb.

• Case Cf = p̃[A] start q̃[B] : a(k);Cb. The induction hypothesis is:

for all µ̃1 [[(ν τ̃ k̃) Cb]]
µ̃1

 ∗ P1 ⇒ P1

µ̃′1
 ∗ P ′1

(νp̃k̃) Cb
λ̃1

 ∗ C ′1

λ̃1 ` µ̃1, µ̃′1
[[C ′1]] ≺ P ′1

The thesis can now be proven with similar reasoning as for the caseCf = p[A].e -> q[B].x :
k;Cb. The only important difference is that we have to check that the projection of

p̃[A] start q̃[B] : a(k)

should not introduce any race on a. This is guaranteed by Lemma A.2.3.

• CaseCf = if e@p thenC1 elseC2. From the definition of EPP we have:

[[C]] ≡ (νk̃)

( ∏
q∈ fn(Cf )\p

[[C1]]q t [[C2]]q | if e then [[C1]]p else [[C2]]p

|
∏

k′ ∈ fn(Cf )

k′ : ∅

)
|
∏
a,A

( ⊔
q∈bCf caA

[[C1]]q t [[C2]]q

)

Let e ↓ true (the other case is similar). The induction hypothesis is then: The induc-
tion hypothesis is:

for all µ̃1 [[(νp̃k̃) C1]]
µ̃1

 ∗ P1 ⇒ P1

µ̃′1
 ∗ P ′1

(νp̃k̃) C1

λ̃′

 ∗ C ′1

λ̃′ ` µ̃1, µ̃′1
[[C ′1]] ≺ P ′1

From the induction hypothesis and the semantics for the choreography calculus we
get that:

C
λ̃

 ∗ C ′1 = C ′

where λ̃ = λ̃′1, τ@p, λ̃′2 for some λ′1 and λ′2 such that λ̃′ = λ̃′1, λ̃
′
2.
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Now we have two cases, depending on the actions performed in the reduction chain

[[C]]
µ̃

 ∗ P . If the projection of p does not execute its conditional in these reductions,
then we apply the induction hypothesis choosing µ̃ = µ̃1 and we obtain:

[[C]]
µ̃1

 ∗(νk̃′′)

(
Pb | if e then [[C1]]p else [[C2]]p

)

|
∏
a,A

( ⊔
q∈bCf caA

[[C1]]q t [[C2]]q

)
= P

where Pb may contain some new processes spawned by starting some services and
some session queues. Now we need to reduce P to P ′. Applying rule bP|CONDe we
obtain:

P
τ
 (νk̃′′)

(
Pb | [[C1]]p

)
|
∏
a,A

( ⊔
q∈bCf caA

[[C1]]q t [[C2]]q

)
= P ′

The thesis follows now from the induction hypothesis and the definition of pruning,
choosing µ̃′ = τ, µ̃′1.

Let us now consider the case in which the projection of p executes its conditional in

the reduction chain [[C]]
µ̃

 ∗ P . By applying similar reasoning to the previous case,
we can split the reduction chain µ̃ as follows. First we have:

[[C]]
˜µ11

 ∗ (νk̃′′)

(
Pb | if e then [[C1]]p else [[C2]]p

)

|
∏
a,A

( ⊔
q∈bCf caA

[[C1]]q t [[C2]]q

)
= P11

When p executes the conditional we obtain:

P11

τ
 (νk̃′′)

(
Pb | [[C1]]p

)
|
∏
a,A

( ⊔
q∈bCf caA

[[C1]]q t [[C2]]q

) ˜µ12

 ∗� P1

The thesis now follows by induction hypothesis.

• CaseCf = 0. Trivial.

• CaseCf = def X(D̃) = C1 inC2. Follows by Lemma A.2.7 and the induction
hypothesis.

• CaseCf = X〈Ẽ〉. This case is not allowed by the hypothesis that C is well-typed.

• CaseCf = (νr) Cb. Follows immediately by induction hypothesis.



APPENDIX B

Compositional Choreographies:
Additional Material

B.1 Complete Use Case

We report an extended version of our case study, in which the buyer choreography also
performs an internal authentication of its user before proceeding with the purchase.

Buyer Choreography. We define the choreography for the buyer, CB . For clarity, we
have extracted two parts of it in separate terms, C ′B and C ′′B . CB starts with a choreography
for its internal network, where it perform some checks for authenticating a user. Then, it
proceeds by dynamically selecting a seller in C ′B , which is finally contacted with a partial
choreography in C ′′B . The code follows.

CB =

1. u[U] start a[A], pd[PD] : a(k); u[U].cred -> a[A].x : k;
2. if auth(x)@a then
3. a[A] -> pd[PD] : k[ok]; pd[PD] -> u[u] : k[ok];
4. u[U].prod -> pd[PD].y : k; C′B
5. else
6. a[A] -> pd[PD] : k[quit]; pd[PD] -> u[u] : k[quit]

C′B =
7. pd[PD] start r[R] : b(k′); pd[PD].y -> r[R].z : k′;
8. r[R].find(z) -> pd[PD].w : k′; C′′B

C′′B =

9. pd[B] req C, T : w(k′′); pd[B].y -> C : k′′;
10. C -> pd[B].x2 : k′′;
11. if check(x2)@pd then
12. pd[B] -> T : k′′ ⊕ ok; pd[PD] -> u[U] : k[del]; pd[PD] -> u[U] : k〈k′′[B]〉;
13. u[B].addr -> T : k′′; T -> u[B].ddate : k′′

14. else
15. pd[B] -> T : k′′ ⊕ quit; pd[PD] -> u[U] : k[quit]

We comment the code above. Inside the buyer, a purchase is initiated by a user process
u. In Line 1, process u and the freshly created processes a and pd start a session k by
synchronising on shared channel a. Each process is annotated with the role it plays in the
protocol that the session implements (we omit the protocol for session k). Then, u sends
her credentials “cred” to a. In Line 2, a tries to authenticate the credentials. If successful,
in Line 3 the choice ok is communicated to the others and in Line 4 u sends the name of the
product she wishes to purchase to pd; the choreography proceeds then as C ′B . Otherwise,
the choice quit is communicated from a to the others.

C ′B defines how the buyer actually purchases the product. In our use case, the buyer
has a registry of suppliers that reports which seller should be used for purchasing each kind
of product. This aspect is captured by mobility of shared channels. In Line 7 pd starts a
new session k′ with a fresh process r through shared channel b. Then, pd sends the name
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of the product to be purchased to r. In Line 8, r sends to pd the name of the shared channel
to contact the selected seller, computed with the internal function find(z), to pd. Finally,
the choreography proceeds as C ′′B .

C ′′B is a partial choreography that relies on an external seller to implement the protocol
shown in the introduction and perform the purchase. In Line 9, pd requests a synchronisa-
tion on the shared channel stored in its local variable w to create the new session k′′. pd
declares that it will play role B, and that it expects the environment to implement roles C
and T for session k′′. Session k′′ proceeds now as specified by the protocol in the introduc-
tion. First, right after the request in Line 9, pd sends the product name y through session
k′′ to the external process that is playing role C (the product catalogue executed by the
seller). Observe that here we do not specify the actual process name of the receiver, since
that will be established by the environment. In Line 10, pd waits to receive the price for
the product from the external process playing role C in k′′. In Line 11, pd checks whether
the price is acceptable. If so, in Line 12 it will tell the external process playing role T (the
transport process executed by the seller) and user u (which remains internal to the buyer
choreography) to proceed with the purchase (labels ok and del respectively). Still in Line
13, pd will also delegate to u the continuation of session k′′ in its place, as role B. In Line
14, the user can now send her delivery address to T and receive the expected delivery date.
If the price is not acceptable, then in Lines 15-16 pd informs the others to quit the purchase
attempt.

Seller Choreography and Composition. We define now a choreography for a seller
that can be contacted by CB (through C ′′B). The exact seller system contacted by C ′′B
depends on the result of find(z) in C ′B . Let us assume that find returns shared channel
c for computer-related products, and c′ for every other kind of products; we refer to the
choreography implementations of the respective seller companies as CS and C ′S . Below,
we define the implementation for the first (the second is similar).

CS =

1. acc c[C], t[T] : c(k′′); B -> c[C].y2 : k′′;
2. c[C].price(y2) -> B : k′′;

3. B -> t[T] : k′′&

{
ok : B -> t[T].daddr : k′′; t[T].time(daddr) -> B : k′′

quit : 0

}

Above, the seller choreography CS starts by accepting the creation of session k′′ through
shared channel c, offering to spawn two fresh processes c and t. Choreographies starting
with an acceptance act as replicated processes, modeling typical always-available modules.
The acceptance in Line 1 would synchronise with the request made by C ′′ in the case for
w = c. Right afterwards, still in Line 1, c[C] expects to receive the product name from the
process playing B in session k′′. In Line 2, c sends back the price for the product. Finally,
in Line 3, t (the process for the transport) waits to receive either label ok or quit. In the
first case, t will also wait to receive a delivery address and send back the expected time of
arrival.

Now that we have the code for both buyer and seller companies (we omit the code for
(C ′S), we can compose their choreographies in a network with the parallel operator | as:
C = CB | CS | C ′S .



B.2. Typing 181

Γ, a :G〈A|B̃|B̃〉,Γ′ ` C . ∆,∆′ (Γ′,∆′) = init(p[A], q̃[B], k,G) q̃ 6∈ Γ

Γ, a :G〈A|B̃|B̃〉 ` p[A] start q̃[B] : a(k);C . ∆
bT|STARTe

Γ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S ` C . ∆, k[A] :T, k[B] :T ′

Γ ` p[A].e -> q[B].x : k;C . ∆, k[A] :!B〈S〉;T, k[B] :?A〈S〉;T ′
bT|COMe

Γ ` p[A] -> q[B] : k Γ, q :k′[C] ` C . ∆, k[A] :T, k[B] :T ′, k′[C] :T ′′

Γ, p :k′[C] ` p[A] -> q[B] : k〈k′[C]〉;C . ∆, k[A] :!B〈T ′′〉;T, k[B] :?A〈T ′′〉;T ′, k′[C] :T ′′
bT|DELe

Γ ` p[A] -> q[B] : k Γ ` C . ∆, k[A] :Tj , k[B] :T ′j j ∈ I

Γ ` p[A] -> q[B] : k[lj ];C . ∆, k[A] : ⊕B{li : Ti}i∈I , k[B] : &A{li : T ′i}i∈I
bT|SELe

Γ ` e@p :bool Γ ` Ci . ∆

Γ ` if e@p thenC1 elseC2 . ∆
bT|CONDe

cosha(Γ) ∆ end only

Γ ` 0 . ∆
bT|ENDe

Γ, a :G〈A|B̃|B̃〉 ` C . ∆

Γ ` (νa) C . ∆
bT|RESSHAe

end(∆) Γ′′ ` xij@pi : Sij Γ ` eij@pi : Sij Γ′ ⊆ Γ

D = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n) E = p1(ẽ1, k̃1), . . . , pn(ẽn, k̃n)

Γ, X(D̃) : (Γ′,Γ′′; ∆′) ` X〈Ẽ〉 . ∆,∆′
bT|CALLe

Γ, X(D̃) : (Γ′; ∆′) ` C . ∆ Γ′, X(D̃) : (Γ′; ∆′) ` C′ . ∆′ Γ′|sha ⊆ Γ

Γ ` def X(D̃) = C′ inC . ∆
bT|DEFe

Γ ` C . ∆ co(∆, k)

Γ \ k ` (νk) C . ∆ \ k
bT|RESLINe

Γ ` C . ∆

Γ \ p ` (νp) C . ∆
bT|RESPROCe

Figure B.1: Compositional Choreographies, typing rules for complete terms.

B.2 Typing

We report all the rules of our typing system and the proof of their soundness.

B.2.1 Typing rules

Figure B.1 reports the rules for typing complete terms, while Figure B.2 the rules for typing
partial terms. In rule bT|RESLINe, the predicate co(∆, k) (from [21]) holds if there exists G
such that:

∆|k = {k[A] : [[G]]A | A ∈ roles(G)}

In other words, the portion of ∆ typing session k must be the projection of some global
type G. All the other typing rules follow the reasoning reported in § 3.4.
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Γ ` a :G〈A|B̃|∅〉 Γ, p :k[A] ` C . ∆, k[A] : [[G]]A

Γ ` p[A] req B̃ : a(k);C . ∆
bT|REQ1e

Γ ` x@p :G〈A|B̃|∅〉 Γ, p :k[A] ` C . ∆, k[A] : [[G]]A

Γ ` p[A] req B̃ : x(k);C . ∆
bT|REQ2e

Γ, a :G〈D|B̃|∅〉,Γ′ ` C . ∆,∆′ (Γ′,∆′) = init(q̃[A], k,G) q̃ 6∈ Γ

Γ, a :G〈D|B̃|Ã〉 ` acc q̃[A] : a(k);C . ∆
bT|ACCe

Γ ` e@p :S Γ ` p[A] -> B : k Γ ` C . ∆, k[A] :T q :k[B] 6∈ Γ

Γ ` p[A].e -> B : k;C . ∆, k[A] :!B〈S〉;T
bT|COM-Se

Γ ` A -> q[B] : k Γ, x@p :S ` C . ∆, k[B] :T p :k[A] 6∈ Γ

Γ ` A -> q[B].x : k;C . ∆, k[A] :?B〈S〉;T
bT|COM-Re

Γ ` p[A] -> B : k Γ ` C . ∆, k[A] :T q :k[B] 6∈ Γ

Γ, p :k′[C] ` p[A] -> B : k〈k′[C]〉;C . ∆, k[A] :!B〈T ′′〉;T, k′[C] :T ′′
bT|DEL-Se

Γ ` A -> q[B] : k Γ, q :k′[C] ` C . ∆, k[B] :T ′, k′[C] :T ′′ p :k[A] 6∈ Γ

Γ ` A -> q[B] : k(k′[C]);C . ∆, k[B] :?A〈T ′′〉;T ′
bT|DEL-Re

Γ ` p[A] -> B : k j ∈ I Γ ` C . ∆, k[A] :Tj q :k[B] 6∈ Γ

Γ ` p[A] -> B : k ⊕ lj ;C . ∆, k[A] : ⊕B{li : Ti}i∈I
bT|SEL-Se

Γ ` A -> q[B] : k Γ ` Ci . ∆, k[A] :Ti J ⊆ I p :k[A] 6∈ Γ

Γ ` A -> q[B] : k&{li :Ci}i∈I . ∆, k[B] : &A{lj : Tj}j∈J
bT|BRANCHe

Γi ` Ci . ∆i pco(∆1,∆2)

Γ1 ◦ Γ2 ` C1 | C2 . ∆1,∆2

bT|PARe

Figure B.2: Compositional Choreographies, typing rules for partial terms.
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Γ ` p[A] -> q[B] : k ` v :S

Γ ` p[A] -> q[B] : k〈v〉 . k :A -> B : 〈S〉
bLT|COMe

Γ ` p[A] -> B : k ` v :S

Γ ` p[A] -> B : k〈v〉 . k[A] :!B〈S〉
bLT|COM-Se

Γ ` A -> q[B] : k

Γ ` A -> q[B] : k〈v〉 . k[B] :?A〈S〉
bLT|COM-Re

Γ ` p[A] -> q[B] : k

Γ ` p[A] -> q[B] : k[l] . k :A -> B : [l]
bLT|SELe

Γ ` p[A] -> B : k

Γ ` p[A] -> B : k ⊕ l . k[A] : ⊕B〈l〉
bLT|SEL-Se

Γ ` A -> q[B] : k

Γ ` A -> q[B] : k&l . k[B] : &A〈l〉
bLT|BRAe

Γ ` p[A] -> q[B] : k Γ ` p :k′[C]

Γ ` p[A] -> q[B] : k〈k′[C]〉 . k :A -> B : 〈T 〉
bLT|DELe

Γ ` p[A] -> B : k

Γ ` p[A] -> B : k〈k′[C]〉 . k[A] :!B〈T 〉
bLT|DEL-Se

Γ ` A -> q[B] : k

Γ ` A -> q[B] : k(k′[C]) . k[B] :?A〈T 〉
bLT|DEL-Re

Γ ` λ . k :α

Γ ` (νr) λ . k :α
bLT|RESe (no rule for τ@p)

Figure B.3: Compositional Choreographies, label typing.

B.2.2 Proof of Theorem 3.4.1

We report the full definition of the judgement Γ ` λ . k :α in Figure B.3.
We now show some auxiliary results that we will use in our proof of Theorem 3.4.1.

Lemma B.1 (Type Projection is invariant under 'G). Let G and G′ be global types. Then,
G 'G G′ implies [[G]]A = [[G′]]A for every role A.

Proof. Immediate, from the definitions of'G and type projection, since'G allows to swap
only terms that have different roles.

Lemma B.2 (Substitution). Assume Γ ` C . ∆. Then, Γ ` x@p : S, v : S implies
Γ ` C[v/x@p] . ∆.

Proof. By induction on the typing rules.

Lemma B.3 (Subject Congruence). Γ ` C . ∆ and C ≡ C ′ imply Γ ` C ′ . ∆ (up
to α-renaming).

Proof. By induction on the rules that define ≡.

Lemma B.4 (Subject Swap). Let Γ ` C . ∆; then, C 'C C ′ implies Γ ` C ′ . ∆.

Proof. Easy induction on the derivation of C 'C C ′.
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We can now prove typing soundness, by establishing the stronger results below. In the
following, upd(Γ, λ) = Γ′ is defined only if λ ∈ {(del), (del-s), (del-r)} and is defined as:

upd(Γ, λ) =


Γ[q 7→ k′[C]] if λ = p[A] -> q[B] : k〈k′[C]〉
Γ \ p :k′[C] if λ = p[A] -> B : k〈k′[C]〉
Γ, q :k′[C] if λ = A -> q[B] : k(k′[C])

Theorem B.1 (Typing Soundness). Let Γ ` C . ∆; then, C λ−→ C ′ implies Γ′ `
C ′ . ∆′ for some Γ′ and ∆′ such that:

(i) if λ ∈ {τ@p, (start), (req), (acc)}, then Γ′ = Γ and ∆′ = ∆;

(ii) if λ ∈ {(del), (del-s), (del-r)}, then Γ′ = upd(Γ, λ) and ∆
k:α−−→ ∆′ such that Γ `

λ . k :α;

(iii) otherwise, Γ′ = Γ and ∆
k:α−−→ ∆′ such that Γ ` λ . k :α.

Proof. The proof is by induction on the derivation of C λ−→ C ′. It is almost the same as
the proof of Theorem 2.4.2 given in Appendix A.1. The interesting differences are: (i) the
interaction of partial terms, e.g., by rule bC|SYNCe; and (ii) the usage of local types instead of
global types for typing interactions.

• Case bC|ACTe. The case is:

η 6∈ {(com), (com-s), (com-r), (start), (acc)}
C = η;C ′

η−→ C ′
bC|ACTe

We proceed by case analysis on η.

– Case η = p[A] -> q[B] : k[lj ]. Since C is well-typed, we know that:

Γ ` p[A] -> q[B] : k Γ ` C′ . ∆, k[A] :Tj , k[B] :T ′j j ∈ I

Γ ` p[A] -> q[B] : k[lj ];C
′ . ∆, k[A] : ⊕B{li : Ti}i∈I , k[B] : &A{li : T ′i}i∈I

bT|SELe

We can easily prove the thesis with the following two derivations:

j ∈ I
⊕B{li : Ti}i∈I

α1−−→ Tj
bL|SELe

k[A] : ⊕B{li : Ti}i∈I
k:α1−−−→ k[A] :Tj

bL|LIFTe

j ∈ I
&A{li : T ′i}i∈I

α2−−→ T ′j
bL|BRAe

k[B] : &A{li : T ′i}i∈I
k:α2−−−→ k[B] :T ′j

bL|LIFTe

k[A] : ⊕B{li : Ti}i∈I , k[B] : &A{li : T ′i}i∈I
α−→ k[A] :Tj , k[B] :T ′j

bL|SYNCe

∆, k[A] : ⊕B{li : Ti}i∈I , k[B] : &A{li : T ′i}i∈I
α−→ ∆, k[A] :Tj , k[B] :T ′j

bL|CONCe

where α1 = ⊕A〈lj〉, α2 = &A〈lj〉 and α = α1 ◦ α2 = k :A -> B : k[lj ]; and,
finally:

Γ ` p[A] -> q[B] : k

Γ ` p[A] -> q[B] : k[lj ] . k :A -> B : [lj ]
bLT|SELe
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– Case η = p[A] -> B : k ⊕ lj . Since C is well-typed, we know that:

Γ ` p[A] -> B : k j ∈ I Γ ` C′ . ∆, k[A] :Tj q :k[B] 6∈ Γ

Γ ` p[A] -> B : k ⊕ lj ;C′ . ∆, k[A] : ⊕B{li : Ti}i∈I
bT|SEL-Se

We can easily prove the thesis with the following two derivations:

j ∈ I
⊕B{li : Ti}i∈I

α1−−→ Tj
bL|SELe

k[A] : ⊕B{li : Ti}i∈I
k:α1−−−→ k[A] :Tj

bL|LIFTe

where α1 = ⊕A〈lj〉; and, finally:

Γ ` p[A] -> q[B] : k

Γ ` p[A] -> B : k ⊕ lj . k[A] : ⊕B〈lj〉
bLT|SEL-Se

– Case η ∈ {(req), (del), (del-s), (del-r)}. These cases are similar to the two
above.

• Case bC|STARTe. The case is:

η = p[A] start q̃[B] : a(k)

C = η;C1
η−→ (νk, q̃) C1 = C ′

bC|STARTe

Since C is well-typed we know that, for Γ = Γ′′, a :G〈A|B̃|B̃〉:

Γ′′, a :G〈A|B̃|B̃〉,Γ′ ` C1 . ∆,∆′ (Γ′,∆′) = init(p[A], q̃[B], k,G) q̃ 6∈ Γ′′

Γ′′, a :G〈A|B̃|B̃〉 ` p[A] start q̃[B] : a(k);C1 . ∆
bT|STARTe

Let q̃ = q1, . . . , qn. Since q̃ 6∈ Γ′′, we can easily obtain the thesis by applying
bT|RESPROCe n times. Formally:

Γ,Γ′ ` C1 . ∆,∆′.... b
T|RESPROCe n times

Γ ` (νq̃) C1 . ∆,∆′

Γ ` (νk, q̃) C1 . ∆
bT|RESLINe

• Cases bC|COMe, bC|COM-Se, bC|COM-Re, bC|BRANCHe. These cases are similar to that of bC|ACTe.

• Case bC|SYNCe. The case is:

C1
λ1−−→ C ′1 C2

λ2−−→ C ′2

C = C1 | C2
λ1◦λ2−−−−→ C ′1 | C ′2 = C ′

bC|SYNCe

Since C is well-typed we know that:

Γi ` Ci . ∆i pco(∆1,∆2)

Γ1 ◦ Γ2 ` C1 | C2 . ∆1,∆2

bT|PARe
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where Γ = Γ1 ◦Γ2 and ∆ = ∆1 ◦∆2. Hence, we can apply the induction hypothesis
and obtain:

∆1
α1−−→ ∆′1 such that Γ1 ` λ1 . α1

∆2
α2−−→ ∆′2 such that Γ2 ` λ2 . α2

The proof proceeds now by cases on λ1 and λ2. Since we know that λ1◦λ2 is defined
(the two labels are one the co-action of the other), the cases are all similar. We report
the case for λ1 = p[A] -> B : k〈v〉 and λ2 = A -> q[B] : k〈v〉; we know that the
roles specified in the labels are compatible because λ = λ1 ◦ λ2 is defined. Since
Γ1 ` λ1 . α1 we know that:

Γ ` p[A] -> B : k ` v :S1

Γ ` λ1 . k[A] :!B〈S1〉
bLT|COM-Se

Analogously, from Γ2 ` λ2 . α2 we know that:

Γ ` p[A] -> B : k ` v :S2

Γ ` λ2 . k[B] :?A〈S2〉
bLT|COM-Re

From pco(∆1,∆2), we know that S1 = S2 = S. Therefore, we can choose α =
α1 ◦ α2, ∆ = ∆1,∆2, and prove the thesis with the following derivation:

∆1
α1−−→ ∆′1 ∆2

α2−−→ ∆′2

∆1,∆2
α1◦α2−−−−→ ∆′1,∆

′
2

bL|SYNCe

• Case bC|CONDe. The case is:

i = 1 if e ↓ true, i = 2 otherwise

C = if e@p thenC1 elseC2
τ@p−−−→ Ci

bC|CONDe

Since C is well-typed, we know that:

Γ ` e@p :bool Γ ` Ci . ∆

Γ ` if e@p thenC1 elseC2 . ∆
bT|CONDe

The thesis follows immediately from the premises of the typing derivation above, for
both the cases C ′ = C1 and C ′ = C2.

• Cases bC|RESe, bC|CTXe, bC|PARe. These cases follow easily by induction hypothesis.

• Case bC|EQe.

R ∈ {'C ,≡} C1RC ′1 C ′1
λ−→ C ′2 C ′2RC2

C1
λ−→ C2

bC|EQe

We have two subcases. For R ='C , we conclude by Lemma B.4 and the induction
hypothesis. Otherwise, for R =≡, we conclude by Lemma B.3 and the induction
hypothesis.

• Case bC|P-STARTe. This case is similar to case bC|SYNCe.

• Case bC|ASYNCe. This case is similar to case bC|ASYNCe in the proof of Theorem A.1.1.
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B.3 Endpoint Projection

B.3.1 Process Projection

We report the complete definition of process projection in Figure B.4. It follows the same
intuition described in § 3.5.1. Partial terms are projected as they are for their respective
processes. Observe that procedures get renamed by suffixing them with the name of the
process that we are projecting: we will make use of this aspect later for proving that process
projections are still well-typed.

B.3.2 Proof of Theorem 3.5.2

Minimal Typing. We start by defining the minimal typing system `min, by proceeding
as in § 2.4.5 for the Choreography Calculus.

First, we define subtyping relations for local and global types by set inclusion of
branching labels. As in [31], we need to distinguish between the subtyping of branch-
ing types when we are typing complete or partial terms (in [31], this corresponds to typing
choreographies or endpoint terms). To this end, we introduce the annotation • for branching
local types, i.e., we write &•A{l̃ : T} when typing a branching implemented by complete
terms.

Definition B.3.1 (Subtyping). The subtyping T << T ′ is the smallest relation over closed
and unfolded local types satisfying the rules reported in Figure B.5. The subtypingG << G′

is the smallest relation over closed and unfolded local types satisfying the rules reported
in Figure B.6. We extend both subtyping relations to set inclusion and point-wise to the
typing of shared names and sessions, respectively. Given two types G and G′, we denote
their least upper bound (lub) wrt << with GOG′ (the same for local types).

Our definition of subtyping for local types follows [31], whereas that for global types
is similar to that presented in § 2.4.5.

Building on subtyping, we define the minimal typing system `min. The rules for typing
complete terms are reported in Figure B.7, and the rules for typing partial terms are given
in Figure B.8.

Remark B.3.2 (Comparison with minimal typing for the Choreography Calculus). Here, we
abuse the term “minimal typing” to refer to using the minimal global and local types for
typing sessions and shared names such that the projection of a choreography is still typable.
In 2.4.5 we had a stronger objective, i.e., building the minimal typing environments for
typing a choreography. Since we do not need such property for our presentation here, the
rules do not require so many modifications and remain more similar to the runtime typing
rules presented before for Compositional Choreographies. We refer the reader to [75] for
a discussion on the type inference of global types from local types (which is not our aim
here).

Typing Projection. Since EPP projects recursive definitions at each different process
from its own point of view, such projected procedures will have different types. To deal
with this aspect, we define the projection of unrestricted environments.



188 Appendix B. Compositional Choreographies: Additional Material

[[p[A] start q̃[B] : a(k);C]]r =


p[A] req B̃ : a(k); [[C]]r if r = p

acc r[C] : a(k); [[C]]r if r[C] ∈ q̃[B]
[[C]]r otherwise

[[acc q̃[A] : a(k);C]]r =

{
acc r[C] : a(k); [[C]]r if r[C] ∈ q̃[A]
[[C]]r otherwise

[[p[A].e -> q[B].x : k;C]]r =


p[A].e -> B : k; [[C]]r if r = p
A -> q[B].x : k; [[C]]r if r = q
[[C]]r otherwise

[[p[A] -> q[B] : k[l];C]]r =


p[A] -> B : k ⊕ l; [[C]]r if r = p
A -> q[B] : k&{l : [[C]]r} if r = q
[[C]]r otherwise

[[p[A] -> q[B] : k〈k′[C]〉;C]]r =


p[A] -> B : k〈k′[C]〉; [[C]]r if r = p
A -> q[B] : k(k′[C]); [[C]]r if r = q
[[C]]r otherwise

[[η;C]]r =


η; [[C]]r if η ∈

{
(req), (com-s), (com-r),
(del-s), (del-r), (sel-s)

}
and {r} = pn(η)

[[C]]r otherwise

[[if e@p thenC1 elseC2]]r =

{
if e@p then [[C1]]r else [[C2]]r if r = p
[[C1]]r t [[C2]]r otherwise

[[A -> q[B] : k&{li :Ci}i∈I ]]r =

{
A -> q[B] : k&{li : [[Ci]]r}i∈I if r = q⊔
i∈I [[Ci]]r otherwise

[[def X(D̃) = C ′ inC]]r =


def Xr(Di) = [[C ′]]r in [[C]]r

if r = pi and 1 ≤ i ≤ n
[[C]]r otherwise

(D̃ = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n))

[[X〈Ẽ〉]]r =

{
Xr〈Ei〉 if r = pi and 1 ≤ i ≤ n
0 otherwise

(Ẽ = p1(ẽ1, k̃1), . . . , pn(ẽn, k̃n))

[[C1 | C2]]r = [[C1]]r | [[C2]]r

[[0]]r = 0

(no rule for (νr) C)

Figure B.4: Compositional Choreographies, process projection.
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S << S
bSUBL|VALe

T << T ′ U << U ′

!A〈U〉;T << !A〈U ′〉;T ′
bSUBL|SENDe T << T ′ U ′ << U

?A〈U〉;T << ?A〈U ′〉;T ′
bSUBL|RECVe

I ⊆ J ∀i ∈ I. Ti << T ′i
&A{li : Ti}i∈I << &A{li : T ′i}i∈J

bSUBL|BRANCHe

J ⊆ I ∀i ∈ J. Ti << T ′i
&•A{li : Ti}i∈I << &•A{li : T ′i}i∈J

bSUBL|GBRANCHe

J ⊆ I ∀i ∈ J. Ti << T ′i
⊕A{li : Ti}i∈I << ⊕A{li : T ′i}i∈J

bSUBL|SELe

(T ≈ T ′ ∨ T 'G T ′ ) T << T ′′

T ′ << T ′′
bSUBL|EQe end ≈ T

end << T
bSUBL|ENDe

Figure B.5: Local Types, subtyping.

I ⊆ J ∀i ∈ I.Gi << G′i
A -> B : {li : Gi}i∈I << A -> B : {li : G′i}i∈J

bSUBG|BRANCHe

U << U ′ G2 << G′2
A -> B : 〈U〉;G2 << A -> B : 〈U ′〉;G′2

bSUBG|COMe

(G ≈ G′ ∨ G 'G G′ ) G << G′′

G′ << G′′
bSUBG|EQe end ≈ G

end << G
bSUBG|ENDe

Figure B.6: Global Types, subtyping.
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Γ,Γ′ `min C . ∆,∆′ (Γ′,∆′) = init(p[A], q̃[B], k,G) q̃ 6∈ Γ

Γ, a :G〈A|B̃|B̃〉 `min p[A] start q̃[B] : a(k);C . ∆
bMIN|START1e

Γ, a :G〈A|B̃|B̃〉,Γ′ `min C . ∆,∆′ (Γ′,∆′) = init(p[A], q̃[B], k,G′) q̃ 6∈ Γ

Γ, a : (GOG′)〈A|B̃|B̃〉 `min p[A] start q̃[B] : a(k);C . ∆
bMIN|START2e

Γ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S `min C . ∆, k[A] :T, k[B] :T ′

Γ `min p[A].e -> q[B].x : k;C . ∆, k[A] :!B〈S〉;T, k[B] :?A〈S〉;T ′
bMIN|COMe

Γ ` p[A] -> q[B] : k Γ, q :k′[C] `min C . ∆, k[A] :T, k[B] :T ′, k′[C] :T ′′

Γ, p :k′[C] `min p[A] -> q[B] : k〈k′[C]〉;C . ∆, k[A] :!B〈T ′′〉;T, k[B] :?A〈T ′′〉;T ′, k′[C] :T ′′
bMIN|DELe

Γ ` p[A] -> q[B] : k Γ `min C . ∆, k[A] :T, k[B] :T ′

Γ `min p[A] -> q[B] : k[l];C . ∆, k[A] : ⊕B{l : T}, k[B] : &•A{l : T ′}
bMIN|SELe

Γ = Γ1OΓ2 Γ ` e@p :bool Γi `min Ci . ∆

Γ `min if e@p thenC1 elseC2 . ∆1O∆2

bMIN|CONDe
cosha(Γ) ∆ end only

Γ `min 0 . ∆
bMIN|ENDe

Γ, a :G〈A|B̃|B̃〉 `min C . ∆

Γ `min (νa) C . ∆
bMIN|RESSHAe

end(∆) Γ′′ ` xij@pi : Sij Γ ` eij@pi : Sij Γ′ ⊆ Γ

D = p1(x̃1, k̃1), . . . , pn(x̃n, k̃n) E = p1(ẽ1, k̃1), . . . , pn(ẽn, k̃n)

Γ, X(D̃) : (Γ′,Γ′′; ∆′) `min X〈Ẽ〉 . ∆,∆′
bMIN|CALLe

Γ, X(D̃) : (Γ′; ∆′) `min C . ∆

Γ′, X(D̃) : (Γ′; ∆′) `min C′ . ∆′ Γ′|sha ⊆ Γ

ΓOΓ′ `min def X(D̃) = C′ inC . ∆
bMIN|DEFe

Γ `min C . ∆ co(∆, k)

Γ \ k `min (νk) C . ∆ \ k
bMIN|RESLINe

Γ `min C . ∆

Γ \ p `min (νp) C . ∆
bMIN|RESPROCe

Figure B.7: Compositional Choreographies, minimal typing rules for complete terms.
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Γ ` a :G〈A|B̃|∅〉 Γ, p :k[A] `min C . ∆, k[A] : [[G]]A

Γ `min p[A] req B̃ : a(k);C . ∆
bMIN|REQ1e

Γ ` x@p :G〈A|B̃|∅〉 Γ, p :k[A] `min C . ∆, k[A] : [[G]]A

Γ `min p[A] req B̃ : x(k);C . ∆
bMIN|REQ2e

Γ, a :G〈D|B̃|∅〉,Γ′ `min C . ∆,∆′′ (Γ′,∆′) = init(q̃[A], k,G) ∆′′ << ∆′ q̃ 6∈ Γ

Γ, a :G〈D|B̃|Ã〉 `min acc q̃[A] : a(k);C . ∆
bMIN|ACCe

Γ ` e@p :S Γ ` p[A] -> B : k Γ `min C . ∆, k[A] :T q :k[B] 6∈ Γ

Γ `min p[A].e -> B : k;C . ∆, k[A] :!B〈S〉;T
bMIN|COM-Se

Γ ` A -> q[B] : k Γ, x@p :S `min C . ∆, k[B] :T p :k[A] 6∈ Γ

Γ `min A -> q[B].x : k;C . ∆, k[A] :?B〈S〉;T
bMIN|COM-Re

Γ ` p[A] -> B : k Γ `min C . ∆, k[A] :T q :k[B] 6∈ Γ

Γ, p :k′[C] `min p[A] -> B : k〈k′[C]〉;C . ∆, k[A] :!B〈T ′′〉;T, k′[C] :T ′′
bMIN|DEL-Se

Γ ` A -> q[B] : k p :k[A] 6∈ Γ

Γ, q :k′[C] `min C . ∆, k[B] :T ′, k′[C] :T ′′

Γ `min A -> q[B] : k(k′[C]);C . ∆, k[B] :?A〈T ′′〉;T ′
bMIN|DEL-Re

Γ ` p[A] -> B : k j ∈ I Γ `min C . ∆, k[A] :Tj q :k[B] 6∈ Γ

Γ `min p[A] -> B : k ⊕ lj ;C . ∆, k[A] : ⊕B{li : Ti}i∈I
bMIN|SEL-Se

Γ ` A -> q[B] : k Γ `min Ci . ∆, k[A] :Ti p :k[A] 6∈ Γ

Γ `min A -> q[B] : k&{li :Ci}i∈I . ∆, k[B] : &A{li : Ti}i∈I
bMIN|BRANCHe

Γi `min Ci . ∆i pco(∆1,∆2)

Γ1 ◦ Γ2 `min C1 | C2 . ∆1,∆2

bMIN|PARe

Figure B.8: Compositional Choreographies, minimal typing rules for partial terms.
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Definition B.3.3 (Typing Projection). Let Γ = Γ′′,Γdef , where Γ′′ does not contain defini-
tion typings (X(D̃) : (Γ; ∆)) and Γdef contains only definition typings; then, the projection
of Γ, written [[Γ]] is defined as:

[[Γ]] = Γ′′, {[[Γdef ]]p | p s.t. X(D̃) ∈ Γdef and p ∈ D̃}

where

[[Γdef ]]p =


Xp(p(x̃, k̃)) : ([[Γ′]]p; ∆′|

k̃[A]
) |

X(D̃) : (Γ′; ∆′) ∈ Γdef and p(x̃, k̃) ∈ D̃
and k̃[A] = {k[A]|k ∈ k̃ and p :k[A] ∈ Γ′}


We introduce now some auxiliary lemmas, which will be useful in the proofs of our

theorems.

Lemma C.1 (EPP Free Names). Let C be a choreography. Then, fn(C) = fn([[C]]).

Proof. Immediate, from the definition of EPP.

Lemma C.2 (EPP Substitution Lemma). [[C[v/x@p]]]p = [[C]]p[v/x@p].

Proof. Immediate from the definition of process projection.

Lemma C.3 (EPP Substitution Locality). Let C ≡ (νã, k̃, p̃)Cf , where Cf is restriction-
free, and p ∈ fn(C). Then,

[[C[v/x@p]]] = (νã)

(
(νk̃, p̃)

(
[[Cf [v/x@p]]]p |

∏
p∈fn(Cf )

[[Cf ]]p

)
|
∏
a,A

( ⊔
p∈bCf caA

[[Cf ]]p

))

Proof. Immediate from the definition of EPP and Lemma C.2.

Lemma C.4 (EPP Swap Invariance). Let C 'C C ′. Then, [[C]] = [[C ′]].

Sketch. The main part of the proof is to show that process projection is invariant under
the rules for the swapping relation 'C , reported in Figure 3.4. bSW|ETA-ETAe is a trivial case.
For bSW|ETA-CONDe, we have to check that the projections of the processes in the swapped
interaction η do not change. This follows immediately from the definition of EPP for
(cond) terms, since merging of the same η is the identity. The other cases follow by similar
reasoning on the merging operator.

Lemma C.5 (Weakening). Let Γ `min C . ∆ and a be a shared name such that a /∈ Γ;
then, Γ, a :G〈A|B̃|∅〉 `min C . ∆ for any G, A, B̃.

Lemma C.6 (Composability of typing projections). Let Γ ◦ Γ′ = Γ′′; then, [[Γ]] ◦ [[Γ′]] =
[[Γ′′]].

We can finally prove Theorem 3.5.2.

Theorem C.4 (EPP Type Preservation). Let Γ `min C . ∆. Then, [[Γ]] `min [[C]] . ∆.
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Proof. Without any loss of generality, we assume that C is restriction-free (the case in
which C contains restriction follows easily from this proof). We proceed by induction on
the typing derivation Γ `min C . ∆. The proof is fundamentally similar to that presented
in [31]. However, differently from [31], here we also have to deal with partial terms that
may appear inside C. We report the most interesting cases.

• Case bMIN|START1e. In this case we have that:

Γ′′,Γ′ `min C′ . ∆,∆′ (Γ′,∆′) = init(p[A], q̃[B], k,G) q̃ 6∈ Γ′′

Γ′′, a :G〈A|B̃|B̃〉 `min p[A] start q̃[B] : a(k);C′ . ∆
bMIN|START1e

From the definition of EPP we have that:

[[C]] ≡ Cact | Cenv

Cact = p[A] req B̃ : a(k); [[C ′]]p |
∏

r[C]∈q̃[B]
acc r[C] : a(k); [[C ′]]r

Cenv =
∏

r∈fn(C′)\p[[C ′]]r |
∏
a′ 6=a,C

(⊔
p∈bC′ca′C

[[C ′]]p

)
From the induction hypothesis, we know [[Γ′′,Γ′]] `min [[C ′]] . ∆,∆′. From the
definition of EPP we have that:

[[C ′]] ≡ C ′act | Cenv

C ′act = [[C ′]]p |
∏

r[C]∈q̃[B]
[[C ′]]r

Let [[Γ′′,Γ′]] = Γp ◦ Γq̃ ◦ Γenv, q̃[B] = q1[B1], . . . , qn[Bn], and q̃′ = q̃ \ q1. Since
[[C ′]] is well-typed, and applications of rule bMIN|PARe are commutable, we know that:

Γp `min [[C′]]p . ∆p

....
Γq1 `min [[C′]]q1 . ∆q1

....
Γq̃′ `min

∏
r∈q̃′ [[C

′]]r . ∆q̃′

Γq1 ◦ Γq̃′ `min

∏
r[C]∈q̃[B][[C

′]]r . ∆q1 ,∆q̃′
bMIN|PARe

Γp ◦ Γq̃ `min C′act . ∆p,∆q̃

bMIN|PARe

Now we distribute a :G〈A|B̃|B̃〉 as:

a :G〈A|B̃|B̃〉 = a :G〈A|B̃|∅〉 ◦ a :G〈A|B̃|B1〉 ◦ . . . ◦ a :G〈A|B̃|Bn〉

and use the previous typing derivation to obtain the following derivations, for p:

Γp `min [[C′]]p . ∆p

Γp \ k, a :G〈A|B̃|∅〉 `min p[A] req B̃ : a(k); [[C′]]p . ∆p \ k
bMIN|REQ1e

and for all qi ∈ q̃:

Γqi `min [[C′]]qi . ∆qi

Γqi \ (k, qi), a :G〈A|B̃|Bi〉 `min acc qi[Bi] : a(k); [[C′]]p . ∆qi \ k
bMIN|ACCe

The thesis follows now by applying rule bMIN|PARe to type [[C]] from the derivations
above.
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• Case bMIN|COMe. We know that

Γ ` p[A] -> q[B] : k Γ ` e@p :S Γ, x@q :S `min C′ . ∆′, k[A] :T, k[B] :T ′

Γ `min p[A].e -> q[B].x : k;C′ . ∆′, k[A] :!B〈S〉;T, k[B] :?A〈S〉;T ′
bMIN|COMe

where C = p[A].e -> q[B].x : k;C ′. From the definition of EPP we have that:

[[C]] ≡ Cact |
∏
a,A

(⊔
p∈bC′caA

[[C ′]]p

)
Cact = p[A].e -> B : k; [[C ′]]p | A -> q[B].x : k; [[C ′]]q

|
∏

r∈fn(C′)\p,q[[C ′]]r

We can type p[A].e -> B : k; [[C ′]]p and A -> q[B].x : k; [[C ′]]q by using bMIN|COM-Se
and bMIN|COM-Re respectively, since their premises are a subset of those given in our
hypothesis to bMIN|COMe. Then, the thesis follows by induction hypothesis.

• Case bMIN|COM-Se. We know that

Γ ` e@p :S Γ ` p[A] -> B : k Γ `min C′ . ∆′, k[A] :T q :k[B] 6∈ Γ

Γ `min p[A].e -> B : k;C′ . ∆′, k[A] :!B〈S〉;T
bMIN|COM-Se

where C = p[A].e -> B : k;C ′. From the definition of EPP we have that:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cact |

∏
a,A

(⊔
p∈bC′caA

[[C ′]]p

))
Cact = p[A].e -> B : k; [[C ′]]p |

∏
r∈fn(C′)\{p}[[C

′]]r

The thesis now follows by applying bMIN|COM-Se for typing p[A].e -> B : k; [[C ′]]p and
then by applying the induction hypothesis in the reconstruction of the typing of C.

• Case bMIN|COM-Re. We know that

Γ ` A -> q[B] : k Γ, x@p :S `min C′ . ∆′, k[B] :T p :k[A] 6∈ Γ

Γ `min A -> q[B].x : k;C′ . ∆′, k[A] :?B〈S〉;T
bMIN|COM-Re

where C = A -> q[B].x : k;C ′. From the definition of EPP we have that:

[[C]] ≡ Cact |
∏
a,A

(⊔
p∈bC′caA

[[C ′]]p

)
Cact = A -> q[B].x : k; [[C ′]]q |

∏
r∈fn(C′)\{q}[[C

′]]r

The thesis now follows by applying bMIN|COM-Re for typing A -> q[B].x : k; [[C ′]]q and
then by applying the induction hypothesis.

• Case bMIN|PARe. We know that:

Γi `min Ci . ∆i pco(∆1,∆2)

Γ1 ◦ Γ2 `min C1 | C2 . ∆1,∆2

bMIN|PARe

where C = C1 | C2. The thesis follows by the induction hypothesis and Lem-
mas 3.5.2 and C.6.
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B.3.3 Proof of Theorem 3.5.3

In order to prove that our EPP procedure is correct, we need to relate the behaviour of
choreographies with that of their respective projections. Similarly to § 2.5.5, we will make
use of the notion of strict transitions, defined in the following.

Definition B.3.5 (Strict Transition). A strict transition is a transition where ν-restricted
names that are active, i.e., not under a prefix, are not renamed.

Strict transitions are the base of our main assumption in the following proofs:

Assumption B.3.6 (Transitions and Restriction). We assume that all transitions C λ−→ C ′

are strict transitions. Furthermore, we assume that rule bC|RESe is changed to the following
form:

C
λ−→ C ′

(νr) C
λ−→ (νr) C ′

bC|RESe

The assumption above allows us to observe actions of restricted names. Observe that
our assumption does not make our proofs any less general, since for every transition there
is always a corresponding strict transition (cf. [31]).

Lemma C.7 (Passive processes pruning invariance). Let C be restriction-free. Then C λ−→
C ′ implies that for every p ∈ fn(C) \ fn(λ)

[[C ′]]p ≺ [[C]]p

Proof. By case analysis on the rules defining the semantics of the Choreography Calcu-
lus. The only interesting case is bC|CONDe. In this case, the projections of the processes
receiving selections are merged. The thesis follows immediately by definition of pruning.
Observe that we can safely ignore potential swaps in C performed in its reduction, thanks
to Lemma C.4.

Lemma C.8 (Pruning Lemma). Let C be well-typed and [[C]] = ((νk̃) C ′) | C ′′ where

C ′′ =
∏
a,A

( ⊔
p∈bCcaA

[[C]]p

)

Let now C ′′′ be the process obtained from C ′′ by (i) adding some new services on new
public channels and (ii) merging the services in C ′′ with some other services:

C ′′′ =
∏
a,A

( ( ⊔
p∈bCcaA

[[C]]p
)
tRaA

)
|
∏
i∈I

!ai[Ai](ki);Pi

where for all i ∈ I , ai /∈ fn(C). Then, C ′′′ defined implies: [[C]] ≺ ((νk̃) C ′) | C ′′′

Proof (Sketch). From the well-typedness of C, we can derive that C ′ does not use any of
the new public channels ai. The same reasoning can be used for proving that all the new
branches introduced in C ′′′ are never going to be used.
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Lemma C.9 (EPP under ≡). Let C ≡ C ′. Then, [[C]] ≡ [[C ′]].

Theorem C.7 (EPP Theorem). Let C ≡ (νã, k̃, p̃) Cf , where Cf is restriction-free, be
well-typed. Then,

1. (Completeness) C λ−→ C ′ implies [[C]]
λ−→� [[C ′]].

2. (Soundness) [[C]]
λ−→ C ′ implies C λ−→ C ′′ and [[C ′′]] ≺ C ′.

We report the proofs for the two results of completeness and soundness separately.
They are essentially simpler instances of those seen in Appendix A.2, since differently
than for the Choreography Calculus from Chapter 2, with Compositional Choreographies
we can now relate the behaviour of a choreography and its EPP step by step. We also
have to deal with partial actions, but these are projected as they are in most cases by our
definition of process projection, so they add no conceptual complexity.

Proof (Completeness). We proceed by induction on the derivation of C λ−→ C ′.

• Case bC|COMe. We know that:

p[A].e -> q[B].x : k;C ′′
λ−→ C ′′[v/x@q] = C ′ (e ↓ v)

where λ = p[A] -> q[B] : k〈v〉. From the definition of EPP we have:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cact |

∏
a,A

(⊔
p∈bCf caA

[[Cf ]]p

))
Cact = p[A].e -> B : k; [[C ′′f ]]p | A -> q[B].x : k; [[C ′′f ]]q

|
∏

r∈fn(Cf )\p,q[[Cf ]]r

We can now apply rule bC|COM-Se for the sending action, rule bC|COM-Re for the receiving
action, and then rule bC|SYNCe, proving that:

Cact
λ−→ [[C ′′f ]]p | [[C ′′f ]]q[v/x@q] |

∏
r∈fn(Cf )\p,q

By the transition above and rules bC|PARe, bC|RESe and bC|EQe we can finally prove the
thesis by Lemmas C.3 and C.7.

• Case bC|ACTe. Similar to the case above.

• Case bC|STARTe. Similar to the case above.

• Case bC|COM-Se. We know that:

p[A].e -> B : k;C ′
λ−→ C ′
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where λ = p[A] -> B : k〈v〉 and e ↓ v. From the definition of EPP we have:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cact |

∏
a,A

(⊔
p∈bCf caA

[[Cf ]]p

))
Cact = p[A].e -> B : k; [[C ′f ]]p

|
∏

r∈fn(Cf )\p[[Cf ]]r

Since C is well-typed, we know that:

Γ ` e@p :S Γ ` p[A] -> B : k Γ ` C′ . ∆, k[A] :T q :k[B] 6∈ Γ

Γ ` p[A].e -> B : k;C′ . ∆, k[A] :!B〈S〉;T
bT|COM-Se

Hence, we know that the receiver for the message sent by process p is not in C and
therefore, by Theorem 3.5.2, not in [[C]]. Consequently, we can apply rule bC|COM-Se
for the sending action and rule bC|PARe for obtaining:

Cact
λ−→ [[C ′f ]]p |

∏
r∈fn(Cf )\p

By the transition above and rules bC|PARe, bC|RESe and bC|EQe we can finally prove the
thesis by applying Lemma C.7.

• Case bC|COM-Re. We know that:

A -> q[B].x : k;C ′′
λ−→ C ′′[v/x@q] = C ′

where λ = A -> q[B] : k〈v〉. From the definition of EPP we have:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cact |

∏
a,A

(⊔
p∈bCf caA

[[Cf ]]p

))
Cact = A -> q[B].x : k; [[C ′′f ]]q

|
∏

r∈fn(Cf )\q[[Cf ]]r

Since C is well-typed, we know that:

Γ ` A -> q[B] : k Γ, x@p :S ` C ′′ . ∆, k[B] :T p :k[A] 6∈ Γ

Γ ` A -> q[B].x : k;C ′′ . ∆, k[A] :?B〈S〉;T
bT|COM-Re

Hence, we know that the receiver for the message sent by process p is not in C and
therefore, by Theorem 3.5.2, not in [[C]]. Consequently, we can apply rule bC|COM-Re
for the sending action and rule bC|PARe for obtaining:

Cact
λ−→ [[C ′f ]]q |

∏
r∈fn(Cf )\q

By the transition above and rules bC|PARe, bC|RESe and bC|EQe we can finally prove the
thesis by applying Lemma C.7.
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• Case bC|BRANCHe. Similar to case bC|COM-Re.

• Case bC|SYNCe. In this case we have:

C1
λ1−−→ C ′1 C2

λ2−−→ C ′2

C = C1 | C2
λ1◦λ2−−−−→ C ′1 | C ′2 = C ′

bC|SYNCe

where λ = λ1 ◦ λ2. Using the induction hypothesis we can prove the following:

[[C1]]
λ1−−→� [[C ′1]] [[C2]]

λ2−−→� [[C ′2]]

[[C1]] | [[C2]]
λ1◦λ2−−−−→� [[C ′1]] | [[C ′2]]

bC|SYNCe

The thesis now follows by Lemma 3.5.2.

• Case bC|CONDe. Follows by similar reasoning of that for case bC|COM-Se and by the
definition of merging.

• Case bC|RESe. In this case we have:

C ′′
λ−→ C ′′′

C = (νr) C ′′
(νr) λ−−−−→ (νr) C ′′′ = C ′

bC|RESe

Using the induction hypothesis we can prove:

[[C ′′]]
λ−→� [[C ′′′]]

(νr) [[C ′′]]
(νr) λ−−−−→� (νr) [[C ′′′]]

bC|RESe

The thesis follows by definition of pruning.

• Case bC|ASYNCe. We know that:

Ca
λ−→ (ν r̃) C ′a ⇒ η;Ca

λ−→ (ν r̃) η;C ′a

 snd(η) ∈ fn(λ) r̃ = bn(λ)
rcv(η) 6∈ fc(λ) r̃ 6∈ fn(η)

η 6∈ {(start), (acc)} sdc(η, λ)


(B.1)

where C = η;Ca and C ′ = (ν r̃) η;C ′a. Let us analyse the case in which η =
p[A].e -> q[B].x : k (the other cases are similar). By the definition of EPP we have
that:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cact |

∏
a,A

(⊔
p∈bCf caA

[[Cf ]]p

))
Cact = p[A].e -> B : k; [[C ′′f ]]p | A -> q[B].x : k; [[C ′′f ]]q

|
∏

r∈fn(Cf )\p,q[[Cf ]]r

From the side conditions in B.1, we know that we can apply bC|ASYNCe to p[A].e -> B :
k; [[C ′′f ]]p. Moreover, we know that rcv(η) = k[B] 6∈ fc(λ). Therefore, we have two
possibilities for [[C]] to mimic λ: either λ is an internal action τ@p that can be
performed also by [[C ′′f ]]p, or [[C ′′f ]]p needs to interact with another process in parallel.
In both cases, the thesis follows from the induction hypothesis by case analysis on λ.
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• Case bC|EQe. For R = ≡, the thesis follows by induction hypothesis and rule bC|EQe.
Otherwise, forR ='C , the thesis follows from the induction hypothesis and Lemma C.4.

• Cases bC|CTXe, bC|PARe, bC|P-STARTe. These cases are similar to the ones discussed above.

Proof (Soundness). The proof proceeds by induction on the structure of Cf . We report the
most interesting cases.

• Case Cf = p[A].e -> q[B].x : k;Cc. From the definition of EPP we have that:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cr |

∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

))
Cr = p[A].e -> B : k; [[Cc]]p | A -> q[B].x : k; [[Cc]]q

|
∏

r∈fn(Cc)\p,q[[Cc]]r

We proceed now by case analysis on the reduction [[C]]
λ−→ C ′.

– p and q communicate through bC|SYNCe, by executing their respective prefixes
p[A].e -> B : k and A -> q[B].x : k. In this case, we obtain that:

C ′ ≡ (νã)

(
(νk̃, p̃) Cr |

∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

))
Cr = [[Cc]]p | [[Cc]]q[v/x@q] |

∏
r∈fn(Cc)\p,q[[Cc]]r

Also, we know that λ = p[A] -> q[B] : k〈v〉. Clearly, C can mimic the
transition of [[C]] by executing its prefix p[A].e -> q[B].x : k through rule

bC|COMe. We obtain that C λ−→ C ′′[v/x@q]. The thesis follows by Lemma C.3.

– p may communicate with another process r in
∏

r∈fn(Cc)\p,q. In this case, it
must be that p is executing a sending action and that the derivation for its
transition ended with an application of rule bC|ASYNCe. Therefore, it must be
case (from the premises of bC|ASYNCe) that we can apply bC|ASYNCe also for C and
mimic the transition correctly.

– p may start a new session with a service in
∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

)
. The rea-

soning for this case is similar to the one above.

– Other two processes, say r and s in fn(Cr)\p, q, may interact inside
∏

r∈fn(Cc)\p,q.
In this case, since we know that r and s are different than p and q, C can mimic
the transition by using the swapping relation bC|SWAPe.

– A process r in
∏

r∈fn(Cc)\p,q may start a new session with a service in
∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

)
.

The reasoning for this case is similar to the one above.
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• Case Cf = p[A].e -> B : k;Cc. From the definition of EPP we have that:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cr |

∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

))
Cr = p[A].e -> B : k; [[Cc]]p |

∏
r∈fn(Cc)\p[[Cc]]r

We proceed now by case analysis on the reduction [[C]]
λ−→ C ′.

– p may execute its sending action p.e -> B : k by bC|COM-Se. In this case, by rules
bC|PARe and bC|RESe we would have that λ = p[A] -> B : k〈v〉, where e ↓ v, and
that:

C ′ ≡ (νã)

(
(νk̃, p̃) Cr |

∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

))
Cr = [[Cc]]p |

∏
r∈fn(Cc)\p[[Cc]]r

The thesis follows from the definition of pruning.

– p may communicate with another process r in
∏

r∈fn(Cc)\p. In this case, it must
be that p is executing a sending action and that the derivation for its transition
ended with an application of rule bC|ASYNCe. Therefore, it must be case (from
the premises of bC|ASYNCe) that we can apply bC|ASYNCe also for C and mimic the
transition correctly.

– p may start a new session with a service in
∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

)
. The rea-

soning for this case is similar to the one above.

– Other two processes, say r and s in fn(Cr) \ p, may interact inside
∏

r∈fn(Cc)\p.
In this case, since we know that r and s are different than p, C can mimic the
transition by using the swapping relation bC|SWAPe.

– A process r in
∏

r∈fn(Cc)\p may start a new session with a service in
∏
a,A

(⊔
p∈bCccaA

[[Cc]]p

)
.

The reasoning for this case is similar to the one above.

• Case Cf = C1 | C2. From the definition of EPP we have that:

[[C]] ≡ (νã)

(
(νk̃, p̃) Cr |

∏
a,A

(⊔
p∈bCf caA

[[C1 | C2]]p

))
Cr =

∏
r∈fn(Cf )[[C1 | C2]]r
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By Lemma 3.5.2, we can rewrite the above as:

[[C]] ≡ [[C1]] | [[C2]]

[[C1]] ≡ (νã1)

(
(νk̃1, p̃1) Cr1 |

∏
a,A

(⊔
p∈bCr1caA

[[Cr1]]p

))
Cr1 =

∏
r∈fn(Cr1)[[Cr1]]r

[[C2]] ≡ (νã2)

(
(νk̃2, p̃2) Cr2 |

∏
a,A

(⊔
p∈bCr2caA

[[Cr2]]p

))
Cr2 =

∏
r∈fn(Cr2)[[Cr2]]r

where ãi, k̃i, and p̃i are respectively the free shared channel, session, and process
names in Ci where i ∈ {1, 2}. We proceed now by case analysis on the last applied

rule for the transition [[C]]
λ−→ C ′.

– Case bC|PARe. In this case, we know that:

[[C1]]
λ−→ C ′1 ( λ ∈ CAct ∨ rc(λ) 6∈ fc([[C2]])

[[C1]] | [[C2]]
λ−→ C ′1 | [[C2]]

bC|PARe

Now we have two subcases, depending on the condition respected by λ.

* If λ ∈ CAct, then the thesis follows by induction hypothesis.

* Otherwise, if λ 6∈ CAct and rc(λ) 6∈ fc([[C2]]), then from the typing rules
we know that rc(λ) does not appear in [[C1]] either. The thesis follows then
from the induction hypothesis and Lemma C.1.

– Case bC|SYNCe. In this case we know that:

[[C1]]
λ1−−→ C ′1 [[C2]]

λ2−−→ C ′2 ⇒ [[C1]] | [[C2]]
λ−→ C ′

where λ = λ1◦λ2. From the typing rules we know thatC1 andC2 have disjoint
session/role pairs. Therefore, the terms emitting the labels λ1 and λ2 cannot
be the projection of a complete action in C; rather, the two terms must have
already been separate partial actions in C. We can conclude by applying the
induction hypothesis to C1 and C2.

– Case bC|P-STARTe. This case is similar to the one above.

The other cases follow similar reasonings to the ones above.

B.4 Proof of Theorem 3.5.6

We first discuss the intuition behind our proof method. Our objective is to prove that given
a (possibly partial) well-typed choreography C that contains no (par) terms, there exists
another choreography C ′ such that the parallel composition of C and C ′ is deadlock-free.
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The idea is to transform C into a new complete choreography (|C|), obtained by “filling”
all partial terms in C with their missing participants. By well-typedness, we know that the
projection of (|C|), [[(|C|)]], will contain that of [[C]] since we will be simply adding new
processes. We will then derive the result we wish for (progress for partial choreographies)
by applying Theorems 3.5.5 and 3.5.3.

We start by defining (|C|), i.e., the transformation of a generic choreography C into a
complete choreography. Formally, (|C|) is defined as (|C|)∅, which is inductively defined by
the rules reported in Figure B.9. Completion adds the missing participants to each partial
term in a choreography1. We use the parameter Γ to remember which process has been
assigned to each role in each session, to guarantee that the completion of a well-typed
choreography is a well-typed and projectable complete choreography:

Lemma D.1 (Completion Lemma). Let C be well-typed and [[C]] be defined; then (|C|) is
a well-typed complete choreography and its projection, [[(|C|)]] is defined.

Proof. By induction on the rules reported in Figure B.9.

We can finally prove Theorem 3.5.6.

Theorem D.1 (Progress for Partial Choreographies). Let C be a choreography, be well-
typed, and contain no (par) terms. Then, there exists C ′ such that (ν r̃) (C | C ′) with
r̃ = fn(C | C ′), is well-typed and deadlock-free.

Proof. By Lemma D.1, we know that (|C|) is well-typed and that [[(|C|)]] is defined. From
the typing rules, specifically the distribution of service roles, we know that the projection
of the completion of C simply adds the partial choreographies of the missing processes in
C to [[C]]. Let C ′ be the parallel composition of such partial choreographies; then we have:

[[(|C|)]] ≡ [[C]] | C ′ (B.2)

By Theorem 3.5.2 we know that [[(|C|)]] is well-typed. Hence, by (B.2) and rule bT|PARe
we know that also C ′ is well-typed. From this and rule bT|PARe again we can conclude that
(ν r̃) (C | C ′) is well-typed.

Now, by Theorem 3.5.5 we know that (|C|) is deadlock-free since it is a complete
choreography. By Corollary 3.5.1.1, [[(|C|)]] is also deadlock-free. Finally, since [[(|C|)]] ≡
[[C]] | C ′ then by Theorem 3.5.3 we know that also (ν r̃) C | C ′ is deadlock-free since C
behaves as [[C]].

1Completion is actually defined only for choreography programs, i.e., choreographies in which all sessions
are created at runtime. We made this choice for readability, but we could easily extend completion to runtime
choreographies by adding more typing information to (||).
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(|η;C|)Γ = η; (|C|)Γ ( η is a complete term )

(|p[A].e -> B : k;C|)Γ = p[A].e -> q[B].x : k;
(|C|)Γ,x@q:S ( Γ ` q :k[B] x fresh )

(|A -> q[B].x : k;C|)Γ = p[A].v -> q[B].x : k;
(|C|)Γ ( Γ ` p :k[A], x@q :S )

(|p[A] -> B : k ⊕ l;C|)Γ = p[A] -> q[B] : k[l];
(|C|)Γ ( Γ ` q :k[B] )

(|p[A] -> B : k〈k′[C]〉;C|)Γ = p[A] -> q[B] : k〈k′[C]〉;
(|C|)Γ,q:k′[C] ( Γ ` q :k[B] )

(|A -> q[B] : k(k′[C]);C|)Γ = p[A] -> q[B] : k〈k′[C]〉;
(|C|)Γ\p:k′[C] ( Γ ` p :k[A], p :k′[C] )

(|p[A] req B̃ : a(k);C|)Γ = p[A] start q̃[B] : a(k);
(|C|)

Γ, ˜qi:k[Bi]
( q̃ fresh )

(|acc r̃[C] : a(k);C|)Γ = p[A] start q̃[B] : a(k);

(|C|)
Γ, ˜si:k[Bi]

 r̃[C] ⊆ q̃[B]
Γ ` a :G〈A|B̃|C̃〉
q̃ \ r̃ = s̃ fresh


(|A -> q[B] : k&{l :C}|)Γ = p[A] -> q[B] : k[l];

(|C|)Γ ( Γ ` p :k[A] )

(|A -> q[B] : k&{li :Ci}i∈[1,n]|)Γ =

if true@p then (|A -> q[B] : k&{l1 :C1}|)
else (|A -> q[B] : k&{li :Ci}i∈[2,n]|)Γ ( Γ ` p :k[A] n ≥ 2 )

(|if e@p thenC1 elseC2|)Γ = if e@p then (|C1|)
else (|C2|)

(|def X(D̃) = C ′ inC|)Γ = def X(D̃, D̃′)
= (|C ′|)Γ,X(D̃′)

in (|C|)Γ,X(D̃′) ( D̃′ = args(Γ)|fn(C′) )

(|X〈Ẽ〉|)Γ,X(D̃′) = X〈Ẽ, Ẽ′〉 ( Ẽ′ = vals(D̃′) )

(|0|)Γ = 0

Figure B.9: Compositional Choreographies, completion.
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In this Appendix we report all our proof transformations that justify our commuting conver-
sions, β-reductions and αγ-rules. For presentational convenience, we report LCL proofs
with their respective proof terms (which are highlighted).
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Commuting Conn with &C pag. 243
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C.1 Commuting Conversions

Commuting Scope with Conn

[Scope/Conn/L] (νy) (P |x Q) ≡ (νy) P |x Q
(
y 6∈ fn(Q )

)

Case 1:
P . Ψ | ∆1 ` y : •D | ∆2, y : •D ` T ′ | ∆ ` x : A Q . Ψ′ | ∆′, x : A ` T

P |x Q . Ψ | Ψ′ | ∆1 ` y : •D | ∆2, y : •D ` T ′ | ∆ ` x : •A | ∆′, x : •A ` T
Conn

(νy) (P |x Q) . Ψ | Ψ′ | ∆1,∆2 ` T ′ | ∆ ` x : •A | ∆′, x : •A ` T
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` y : •D | ∆2, y : •D ` T ′ | ∆ ` x : A

(νy) P . Ψ | ∆1,∆2 ` T ′ | ∆ ` x : A
Scope

Q . Ψ′ | ∆′, x : A ` T

(νy) P |x Q . Ψ | Ψ′ | ∆1,∆2 ` T ′ | ∆ ` x : •A | ∆′, x : •A ` T
Conn

Case 2:
P . Ψ | ∆1 ` y : •D | ∆, y : •D ` x : A Q . Ψ′ | ∆′, x : A ` T

P |x Q . Ψ | Ψ′ | ∆1 ` y : •D | ∆, y : •D ` x : •A | ∆′, x : •A ` T
Conn

(νy) (P |x Q) . Ψ | Ψ′ | ∆1,∆ ` x : •A | ∆′, x : •A ` T
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` y : •D | ∆, y : •D ` x : A

(νy) P . Ψ | ∆1,∆ ` x : A
Scope

Q . Ψ′ | ∆′, x : A ` T

(νy) P |x Q . Ψ | Ψ′ | ∆1,∆ ` x : •A | ∆′, x : •A ` T
Conn

[Scope/Conn/R] (νy) (P |x Q) ≡ P |x (νy)Q
(
y 6∈ fn(P )

)
Case 1:

P . Ψ | ∆ ` x : A Q . Ψ′ | ∆1 ` y : •D | ∆2, y : •D ` T ′ | ∆′, x : A ` T

P |x Q . Ψ | Ψ′ | ∆1 ` y : •D | ∆2, y : •D ` T ′ | ∆ ` x : •A | ∆′, x : •A ` T
Conn

(νy) (P |x Q) . Ψ | Ψ′ | ∆1,∆2 ` T ′ | ∆ ` x : •A | ∆′, x : •A ` T
Scope

is equivalent to (≡)

P . Ψ | ∆ ` x : A

Q . Ψ′ | ∆1 ` y : •D | ∆2, y : •D ` T ′ | ∆′, x : A ` T

(νy)Q . Ψ′ | ∆1,∆2 ` T ′ | ∆′, x : A ` T
Scope

P |x (νy)Q . Ψ | Ψ′ | ∆1,∆2 ` T ′ | ∆ ` x : •A | ∆′, x : •A ` T
Conn
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Case 2:
P . Ψ | ∆ ` x : A Q . Ψ′ | ∆1 ` y : •D | ∆′, y : •D, x : A ` T

P |x Q . Ψ | Ψ′ | ∆1 ` y : •D | ∆ ` x : •A | ∆′, y : •D, x : •A ` T
Conn

(νy) (P |x Q) . Ψ | Ψ′ | ∆ ` x : •A | ∆1,∆
′, x : •A ` T

Scope

is equivalent to (≡)

P . Ψ | ∆ ` A

Q . Ψ′ | ∆1 ` y : •D | ∆′, y : •D, x : A ` T

(νy)Q . Ψ′ | ∆1,∆
′, x : A ` T

Scope

P |x (νy)Q . Ψ | Ψ′ | ∆ ` x : •A | ∆1,∆
′, x : •A ` T

Conn

Case 3:
P . Ψ | ∆ ` x : A Q . Ψ′ | ∆1, x : A ` y : •D | ∆′, y : •D ` T

P |x Q . Ψ | Ψ′ | ∆1, x : •A ` y : •D | ∆ ` x : •A | ∆′, y : •D ` T
Conn

(νy) (P |x Q) . Ψ | Ψ′ | ∆ ` x : •A | ∆1,∆
′, x : •A ` T

Scope

is equivalent to (≡)

P . Ψ | ∆ ` A

Q . Ψ′ | ∆1, x : A ` y : •D | ∆′, y : •D ` T

(νy)Q . Ψ′ | ∆1,∆
′, x : A ` T

Scope

P |x (νy)Q . Ψ | Ψ′ | ∆ ` x : •A | ∆1,∆
′, x : •A ` T

Conn

Commuting Scope with Scope

[Scope/Scope] (νy) (νx) P ≡ (νx) (νy) P

Case 1:
P . Ψ | ∆1 ` y : •A | ∆2, y : •A ` T ′′ | ∆3 ` x : •B | ∆4, x : •B ` T ′

(νx) P . Ψ | ∆1 ` y : •A | ∆2, y : •A ` T ′′ | ∆3,∆4 ` T ′
Scope

(νy) (νx) P . Ψ | ∆1,∆2 ` T ′′ | ∆3,∆4 ` T ′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` y : •A | ∆2, y : •A ` T ′′ | ∆3 ` x : •B | ∆4, x : •B ` T ′

(νy) P . Ψ | ∆1,∆2 ` T ′′ | ∆3 ` x : •B | ∆4, x : •B ` T ′
Scope

(νx) (νy) P . Ψ | ∆1,∆2 ` T ′′ | ∆3,∆4 ` T ′
Scope

Case 2:
P . Ψ | ∆1 ` y : •A | ∆3, y : •A ` x : •B | ∆4, x : •B ` T ′

(νx) P . Ψ | ∆1 ` y : •A | ∆3,∆4, y : •A ` T ′
Scope

(νy) (νx) P . Ψ | ∆1,∆3,∆4 ` T ′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` y : •A | ∆3, y : •A ` x : •B | ∆4, x : •B ` T ′

(νy) P . Ψ | ∆1,∆3 ` x : •B | ∆4, x : •B ` T ′
Scope

(νx) (νy) P . Ψ | ∆1,∆3,∆4 ` T ′
Scope
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Case 3:
P . Ψ | ∆1 ` y : •A | ∆3 ` x : •B | ∆4, y : •A, x : •B ` T ′

(νx) P . Ψ | ∆1 ` y : •A | ∆3,∆4, y : •A ` T ′
Scope

(νy) (νx) P . Ψ | ∆1,∆3,∆4 ` T ′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` y : •A | ∆3 ` x : •B | ∆4, y : •A, x : •B ` T ′

(νy) P . Ψ | ∆3 ` x : •B | ∆1,∆4, x : •B ` T ′
Scope

(νx) (νy) P . Ψ | ∆1,∆3,∆4 ` T ′
Scope

Commuting Scope with 1L (no case for 1R)

[Scope/1L] (νx) wait[y];P ≡ wait[y]; (νx) P

Case 1:
P . Ψ | ∆1 ` x : •C | ∆2, x : •C ` T | ∆ ` T ′

wait[y];P . Ψ | ∆1 ` x : •C | ∆2, x :•C ` T | ∆, y : 1 ` T ′
1L

(νx) wait[y];P . Ψ | ∆1,∆2 ` T | ∆, y : 1 ` T ′
Scope

is equivalent to (≡)
P . Ψ | ∆1 ` x : •C | ∆2, x : •C ` T | ∆ ` T ′

(νx) P . Ψ | ∆1,∆2 ` T | ∆ ` T ′
Scope

wait[y]; (νx) P . Ψ | ∆1,∆2 ` T | ∆, y : 1 ` T ′
1L

Case 2:
P . Ψ | ∆1 ` x : •C | ∆, x : •C ` T ′

wait[y];P . Ψ | ∆1 ` x : •C | ∆, x : •C, y : 1 ` T ′
1L

(νx) wait[y];P . Ψ | ∆1,∆, y : 1 ` T ′
Scope

is equivalent to (≡)
P . Ψ | ∆1 ` x : •C | ∆, x : •C ` T ′

(νx) P . Ψ | ∆1,∆ ` T ′
Scope

wait[y]; (νx) P . Ψ | ∆1,∆, y : 1 ` T ′
1L

Case 3:
P . Ψ | ∆ ` x : •C | ∆2, x : •C ` T

wait[y];P . Ψ | ∆, y : 1 ` x : •C | ∆2, x : •C ` T
1L

(νx) wait[y];P . Ψ | ∆2,∆, y : 1 ` T
Scope

is equivalent to (≡)
P . Ψ | ∆ ` x : •C | ∆2, x : •C ` T

(νx) P . Ψ | ∆2,∆ ` T
Scope

wait[y]; (νx) P . Ψ | ∆2,∆, y : 1 ` T
1L
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Commuting Scope with ⊗R and ⊗L

[Scope/⊗ R/L] (νw) x(y); (P | Q) ≡ x(y); ((νw) P | Q)
(
w 6∈ fn(Q )

)
Case 1:

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` y : A Q . Ψ′ | ∆′ ` x : B

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆,∆′ ` x : A⊗ B
⊗R

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′ ` x : A⊗ B
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` y : A

(νw) P . Ψ | ∆1,∆2 ` T | ∆ ` y : A
Scope

Q . Ψ′ | ∆′ ` x : B

x(y); ((νw) P | Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′ ` x : A⊗ B
⊗R

Case 2:
P . Ψ | ∆1 ` w : •C | ∆, w : •C ` y : A Q . Ψ′ | ∆′ ` x : B

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •C | ∆,∆′, w : •C ` x : A⊗ B
⊗R

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆,∆
′ ` x : A⊗ B

Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆, w : •C ` y : A

(νw) P . Ψ | ∆1,∆ ` y : A
Scope

Q . Ψ′ | ∆′ ` x : B

x(y); ((νw) P |Q) . Ψ | Ψ′ | ∆1,∆,∆
′ ` x : A⊗ B

⊗R

[Scope/⊗ R/R] (νw) x(y); (P | Q) ≡ x(y); (P | (νw)Q)
(
w 6∈ fn(P )

)
Case 1:

P . Ψ | ∆ ` y : A Q . Ψ′ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆′ ` x : B

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆,∆′ ` x : A⊗ B
⊗R

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′ ` x : A⊗ B
Scope

is equivalent to (≡)

. P Ψ | ∆ ` y : A

Q . Ψ′ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆′ ` x : B

(νw)Q . Ψ′ | ∆1,∆2 ` T | ∆′ ` x : B
Scope

x(y); (P | (νw)Q) . Ψ | Ψ′ | ∆1,∆2 ` A | ∆,∆′ ` x : A⊗ B
⊗R
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Case 2:
P . Ψ | ∆ ` y : A Q . Ψ′ | ∆1 ` w : •C | ∆′, w : •C ` x : B

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •C | ∆,∆′, w : •C ` x : A⊗ B
⊗R

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆,∆
′ ` x : A⊗ B

Scope

is equivalent to (≡)

P . Ψ | ∆ ` y : A

Q . Ψ′ | ∆1 ` w : •C | ∆′, w : •C ` x : B

(νw)Q . Ψ′ | ∆1,∆
′ ` x : B

Scope

x(y); (P | (νw)Q) . Ψ | Ψ′ | ∆1,∆,∆
′ ` x : A⊗ B

⊗R

[Scope/⊗ L] (νw) x(y);P ≡ x(y); (νw) P

Case 1:
P . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, y : A, x : B ` T ′′

x(y);P . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, x : A⊗ B ` T ′′
⊗L

(νw) x(y);P . Ψ | ∆1,∆2 ` T | ∆, x : A⊗ B ` T ′′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, y : A, x : B ` T ′′

(νw) P . Ψ | ∆1,∆2 ` T | ∆, y : A, x : B ` T ′′
Scope

x(y); (νw) P . Ψ | ∆1,∆2 ` T | ∆, x : A⊗ B ` T ′′
⊗L

Case 2:
P . Ψ | ∆1 ` w : •D | ∆, w : •D, y : A, x : B ` T ′′

x(y);P . Ψ | ∆1 ` w : •D | ∆, w : •D, x : A⊗ B ` T ′′
⊗L

(νw) x(y);P . Ψ | ∆1,∆, x : A⊗ B ` T ′′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •D | ∆, w : •D, y : A, x : B ` T ′′

(νw) P . Ψ | ∆1,∆, y : A, x : B ` T ′′
Scope

x(y); (νw) P . Ψ | ∆1,∆, x : A⊗ B ` T ′′
⊗L

Commuting Scope with( R and( L

[Scope/( R] (νw) x(y);P ≡ x(y); (νw) P
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Case 1:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, y : A ` x : B

x(y);P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A ( B
( R

(νw) x(y);P . Ψ | ∆1,∆2 ` T | ∆ ` x : A ( B
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, y : A ` x : B

(νw) P . Ψ | ∆1,∆2 ` T | ∆, y : A ` x : B
Scope

x(y); (νw) P . Ψ | ∆1,∆2 ` T | ∆ ` x : A ( B
( R

Case 2:
P . Ψ | ∆1 ` w : •C | ∆, w : •C, y : A ` x : B

x(y);P . Ψ | ∆1 ` w : •C | ∆, w : •C ` x : A ( B
( R

(νw) x(y);P . Ψ | ∆1,∆ ` x : A ( B
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆, w : •C, y : A ` x : B

(νw) P . Ψ | ∆1,∆, y : A ` x : B
Scope

x(y)(νw) P . Ψ | ∆1,∆ ` x : A ( B
( R

[Scope/( L/L] (νw) x(y); (P | Q) ≡ x(y); ((νw) P | Q)
(
w 6∈ fn(Q )

)
Case 1:

P . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆ ` y : A Q . Ψ′ | ∆′, x : B ` T ′′

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆,∆′, x : A ( B ` T ′′
( L

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′, x : A ( B ` T ′′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆ ` y : A

(νw) P . Ψ | ∆1,∆2 ` T | ∆ ` y : A
Scope

Q . Ψ′ | ∆′, x : B ` T ′′

x(y); ((νw) P |Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′, x : A ( B ` T ′′
( L

Case 2:
P . Ψ | ∆1 ` w : •D | ∆, w : •D ` y : A Q . Ψ′ | ∆′, x : B ` T ′′

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •D | ∆,∆′, w : •D, x : A ( B ` T ′′
( L

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆,∆
′, x : A ( B ` T ′′

Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •D | ∆, w : •D ` y : A

(νw) P . Ψ | ∆1,∆ ` y : A
Scope

Q . Ψ′ | ∆′, x : B ` T ′′

x(y); ((νw) P | Q) . Ψ | Ψ′ | ∆1,∆,∆
′, x : A ( B ` T ′′

( L
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[Scope/( L/R] (νw) x(y); (P | Q) ≡ x(y); (P | (νw)Q)
(
w 6∈ fn(P )

)

Case 1:

P . Ψ | ∆ ` y : A Q . Ψ′ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆′, x : B ` T ′′

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆,∆′, x : A ( B ` T ′′
( L

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′, x : A ( B ` T ′′
Scope

is equivalent to (≡)

P . Ψ | ∆ ` y : A

Q . Ψ′ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆′, x : B ` T ′′

(νw)Q . Ψ′ | ∆1,∆2 ` T | ∆′, x : B ` T ′′
Scope

x(y); (P | (νw)Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′, x : A ( B ` T ′′
( L

Case 2:
P . Ψ | ∆ ` y : A Q . Ψ′ | ∆1 ` w : •D | ∆′, w : •D, x : B ` T ′′

x(y); (P |Q) . Ψ | Ψ′ | ∆1 ` w : •D | ∆,∆′, w : •D, x : A ( B ` T ′′
( L

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆,∆
′, x : A ( B ` T ′′

Scope

is equivalent to (≡)

P . Ψ | ∆ ` y : A

Q . Ψ′ | ∆1 ` w : •D | ∆′, w : •D, x : B ` T ′′

(νw)Q . Ψ′ | ∆1,∆
′, x : B ` T ′′

Scope

x(y); (P | (νw)Q) . Ψ | Ψ′ | ∆1,∆,∆
′, x : A ( B ` T ′′

( L

Case 3:
P . Ψ | ∆ ` y : A Q . Ψ′ | ∆1, x : B ` w : •D | ∆′, w : •D ` T ′′

x(y); (P |Q) . Ψ | Ψ′ | ∆1, x : A ( B ` w : •D | ∆,∆′, w : •D ` T ′′
( L

(νw) x(y); (P |Q) . Ψ | Ψ′ | ∆1,∆,∆
′, x : A ( B ` T ′′

Scope

is equivalent to (≡)

P . Ψ | ∆ ` y : A

Q . Ψ′ | ∆1, x : B ` w : •D | ∆′, w : •D ` T ′′

(νw)Q . Ψ′ | ∆1,∆
′, x : B ` T ′′

Scope

x(y); (P | (νw)Q) . Ψ | Ψ′ | ∆1,∆,∆
′, x : A ( B ` T ′′

( L
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Commuting Scope with ⊕R and ⊕L

[Scope/⊕ R1] (νw) x.inl;P ≡ x.inl; (νw) P

Case 1:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A

x.inl;P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A⊕ B
⊕R1

(νw) x.inl;P . Ψ | ∆1,∆2 ` T | ∆ ` x : A⊕ B
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A

(νw) P . Ψ | ∆1,∆2 ` T | ∆ ` x : A
Scope

x.inl; (νw) P . Ψ | ∆1,∆2 ` T | ∆ ` x : A⊕ B
⊕R1

Case 2:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : A

x.inl;P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : A⊕ B
⊕R1

(νw) x.inl;P . Ψ | ∆1,∆2 ` x : A⊕ B
Scope

is equivalent to (≡)
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : A

(νw) P . Ψ | ∆1,∆2 ` x : A
Scope

x.inl; (νw) P . Ψ | ∆1,∆2 ` x : A⊕ B
⊕R1

[Scope/⊕ R2] (νw) x.inr;P ≡ x.inr; (νw) P

Case 1:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : B

x.inr;P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A⊕ B
⊕R2

(νw) x.inr;P . Ψ | ∆1,∆2 ` T | ∆ ` x : A⊕ B
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : B

(νw) P . Ψ | ∆1,∆2 ` T | ∆ ` x : B
Scope

x.inr; (νw) P . Ψ | ∆1,∆2 ` T | ∆ ` x : A⊕ B
⊕R2

Case 2:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : B

x.inr;P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : A⊕ B
⊕R2

(νw) x.inr;P . Ψ | ∆1,∆2 ` x : A⊕ B
Scope

is equivalent to (≡)
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : B

(νw) P . Ψ | ∆1,∆2 ` x : B
Scope

x.inr; (νw) P . Ψ | ∆1,∆2 ` x : A⊕ B
⊕R2
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[Scope/⊕ L] (νw) x.case(P,Q) ≡ x.case((νw) P , (νw)Q)

Case 1:

P . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, x : A ` T ′ Q . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, x : B ` T ′

x.case(P,Q) . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, x : A⊕ B ` T ′
⊕L

(νw) x.case(P,Q) . Ψ | ∆1,∆2 ` T | ∆, x : A⊕ B ` T ′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, x : A ` T ′

(νw) P . Ψ | ∆1,∆2 ` T | ∆, x : A ` T ′
Scope

Q . Ψ | ∆1 ` w : •D | ∆2, w : •D ` T | ∆, x : B ` T ′

(νw)Q . Ψ | ∆1,∆2 ` T | ∆, x : B ` T ′
Scope

x.case((νw) P , (νw)Q) . Ψ | Ψ′ | ∆1,∆2 ` T | ∆,∆′, x : A⊕ B ` T ′′
⊕L

Case 2:

P . Ψ | ∆1, x : A ` w : •D | ∆2, w : •D ` T Q . Ψ | ∆1, x : B ` w : •D | ∆2, w : •D ` T

x.case(P,Q) . Ψ | ∆1, x : A⊕ B ` w : •D | ∆2, w : •D ` T
⊕L

(νw) x.case(P,Q) . Ψ | ∆1,∆2, x : A⊕ B ` T
Scope

is equivalent to (≡)

P . Ψ | ∆1, x : A ` w : •D | ∆2, w : •D ` T

(νw) P . Ψ | ∆1,∆2, x : A ` T
Scope

Q . Ψ | ∆1, x : B ` w : •D | ∆2, w : •D ` T

(νw)Q . Ψ | ∆1,∆2, x : B ` T
Scope

x.case((νw) P , (νw)Q) . Ψ | Ψ′ | ∆1,∆2, x : A⊕ B ` T
⊕L

Case 3:

P . Ψ | ∆1 ` w : •D | ∆2, x : A,w : •D ` T Q . Ψ | ∆1 ` w : •D | ∆2, x : B,w : •D ` T

x.case(P,Q) . Ψ | ∆1 ` w : •D | ∆2, x : A⊕ B,w : •D ` T
⊕L

(νw) x.case(P,Q) . Ψ | ∆1,∆2, x : A⊕ B ` T
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •D | ∆2, x : A,w : •D ` T

(νw) P . Ψ | ∆1,∆2, x : A ` T
Scope

Q . Ψ | ∆1 ` w : •D | ∆2, x : B,w : •D ` T

(νw)Q . Ψ | ∆1,∆2, x : B ` T
Scope

x.case((νw) P , (νw)Q) . Ψ | Ψ′ | ∆1,∆2, x : A⊕ B ` T
⊕L
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Commuting Scope with &R and &L

[Scope/&R] (νw) x.case(P,Q) ≡ x.case((νw) P, (νw)Q)

Case 1:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A Q . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : B

x.case(P,Q) . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A&B
&R

(νw) x.case(P,Q) . Ψ | ∆1,∆2 ` T | ∆ ` x : A&B
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : A

(νw) P . Ψ | ∆1,∆2 ` T | ∆ ` x : A
Scope

Q . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` x : B

(νw)Q . Ψ | ∆1,∆2 ` T | ∆ ` x : B
Scope

x.case((νw) P, (νw)Q) . Ψ | ∆1,∆2 ` T | ∆ ` x : A&B
&R

Case 2:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : A Q . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : B

x.case(P,Q) . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : A&B
&R

(νw) x.case(P,Q) . Ψ | ∆1,∆2 ` x : A&B
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : A

(νw) P . Ψ | ∆1,∆2 ` x : A
Scope

Q . Ψ | ∆1 ` w : •C | ∆2, w : •C ` x : B

(νw)Q . Ψ | ∆1,∆2 ` x : B
Scope

x.case((νw) P, (νw)Q) . Ψ | ∆1,∆2 ` x : A&B
&R

[Scope/&L1] (νw) x.inl;P ≡ x.inl; (νw) P

Case 1:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, x : A ` T ′

x.inl;P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, x : A&B ` T ′
&L1

(νw) x.inl;P . Ψ | ∆1,∆2 ` T | ∆, x : A&B ` T ′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, x : A ` T ′

(νw) P . Ψ | ∆1,∆2 ` T | ∆, x : A ` T ′
Scope

x.inl; (νw) P . Ψ | ∆1,∆2 ` T | ∆, x : A&B ` T ′
&L1

Case 2:
P . Ψ | ∆1, x : A ` w : •C | ∆2, w : •C ` T

x.inl;P . Ψ | ∆1, x : A&B ` w : •C | ∆2, w : •C ` T
&L1

(νw) x.inl;P . Ψ | ∆1,∆2, x : A&B ` T
Scope
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is equivalent to (≡)
P . Ψ | ∆1, x : A ` w : •C | ∆2, w : •C ` T

(νw) P . Ψ | ∆1,∆2, x : A ` T
Scope

x.inl; (νw) P . Ψ | ∆1,∆2, x : A&B ` T
&L1

Case 3:
P . Ψ | ∆1 ` w : •C | ∆2, x : A,w : •C ` T

x.inl;P . Ψ | ∆1 ` w : •C | ∆2, x : A&B,w : •C ` T
&L1

(νw) x.inl;P . Ψ | ∆1,∆2, x : A&B ` T
Scope

is equivalent to (≡)
P . Ψ | ∆1 ` w : •C | ∆2, x : A,w : •C ` T

(νw) P . Ψ | ∆1,∆2, x : A ` T
Scope

x.inl; (νw) P . Ψ | ∆1,∆2, x : A&B ` T
&L1

[Scope/&L2] (νw) x.inr;P ≡ x.inr; (νw) P

Case 1:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, x : B ` T ′

x.inr;P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, x : A&B ` T ′
&L2

(νw) x.inr;P . Ψ | ∆1,∆2 ` T | ∆, x : A&B ` T ′
Scope

is equivalent to (≡)
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆, x : B ` T ′

(νw) P . Ψ | ∆1,∆2 ` T | ∆, x : B ` T ′
Scope

x.inr; (νw) P . Ψ | ∆1,∆2 ` T | ∆, x : A&B ` T ′
&L2

Case 2:
P . Ψ | ∆1, x : B ` w : •C | ∆2, w : •C ` T

x.inr;P . Ψ | ∆1, x : A&B ` w : •C | ∆2, w : •C ` T
&L2

(νw) x.inr;P . Ψ | ∆1,∆2, x : A&B ` T
Scope

is equivalent to (≡)
P . Ψ | ∆1, x : B ` w : •C | ∆2, w : •C ` T

(νw) P . Ψ | ∆1,∆2, x : B ` T
Scope

x.inr; (νw) P . Ψ | ∆1,∆2, x : A&B ` T
&L2

Case 3:
P . Ψ | ∆1 ` w : •C | ∆2, x : B,w : •C ` T

x.inr;P . Ψ | ∆1 ` w : •C | ∆2, x : A&B,w : •C ` T
&L2

(νw) x.inr;P . Ψ | ∆1,∆2, x : A&B ` T
Scope

is equivalent to (≡)
P . Ψ | ∆1 ` w : •C | ∆2, x : B,w : •C ` T

(νw) P . Ψ | ∆1,∆2, x : B ` T
Scope

x.inr; (νw) P . Ψ | ∆1,∆2, x : A&B ` T
&L2
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Commuting Scope with 1C

[Scope/1C] (νw)
−→

close[x];P ≡
−→

close[x]; (νw) P

Case 1:

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` T ′

−→
close[x];P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | · ` x : •1 | ∆, x : •1 ` T ′

1C

(νw)
−→

close[x];P . Ψ | ∆1,∆2 ` T | · ` x : •1 | ∆, x : •1 ` T ′
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T | ∆ ` T ′

(νw) P . Ψ | ∆1∆2 ` T | ∆ ` T ′
Scope

−→
close[x]; (νw) P . Ψ | ∆1,∆2 ` T | · ` x : •1 | ∆, x : •1 ` T ′

1C

Case 2:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T

−→
close[x];P . Ψ | · ` x : •1 | ∆1, x : •1 ` w : •C | ∆2, w : •C ` T |

1C

(νw)
−→

close[x];P . Ψ | · ` x : •1 | ∆1,∆2, x : •1 ` T

Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T

(νw) P . Ψ | ∆1,∆2 ` T
Scope

−→
close[x]; (νw) P . Ψ | · ` x : •1 | ∆1,∆2, x : •1 ` T

1C

Case 3:
P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T

−→
close[x];P . Ψ | · ` x : •1 | ∆1 ` w : •C | ∆2, x : •1, w : •C ` T |

1C

(νw)
−→

close[x];P . Ψ | · ` x : •1 | ∆1,∆2, x : •1 ` T

Scope

is equivalent to (≡)

P . Ψ | ∆1 ` w : •C | ∆2, w : •C ` T

(νw) P . Ψ | ∆1,∆2 ` T
Scope

−→
close[x]; (νw) P . Ψ | · ` x : •1 | ∆1,∆2, x : •1 ` T

1C



218 Appendix C. Round-Trip Choreographic Programming: Additional Material

Commuting Scope with ⊗C

[Scope/⊗ C] (νw)
−→
x(y);P ≡

−→
x(y); (νw) P

Case 1:

P . Ψ | ∆4 ` w : •D | ∆5, w : •D ` T | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T ′′

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆5, w : •D ` T | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

(νw)
−→
x(y);P . Ψ | ∆4,∆5 ` T | ∆1,∆2 ` •A⊗ Bx | ∆3, •A⊗ Bx ` T ′′

Scope

is equivalent to (≡)

P . Ψ | ∆4 ` w : •D | ∆5, w : •D ` T | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T ′′

(νw) P . Ψ | ∆4,∆5 ` T | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T ′′
Scope

−→
x(y); (νw) P . Ψ | ∆4,∆5 ` T | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

Case 2:

P . Ψ | ∆4 ` w : •D | ∆1, w : •D ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T ′′

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆1,∆2, w : •D ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

(νw)
−→
x(y);P . Ψ | ∆1,∆2,∆4 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

Scope

is equivalent to (≡)

P . Ψ | ∆4 ` w : •D | ∆1, w : •D ` x : •Bx | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T ′′

(νw) P . Ψ | ∆1,∆4 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T ′′
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2,∆4 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

Case 3:

P . Ψ | ∆4 ` w : •D | ∆1 ` x : •B | ∆2, w : •D ` y : •A | ∆3, y : •A, x : •B ` T ′′

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆1,∆2, w : •D ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

(νw)
−→
x(y);P . Ψ | ∆1,∆2,∆4 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

Scope

is equivalent to (≡)

P . Ψ | ∆4 ` w : •D | ∆1 ` x : •B | ∆2, w : •D ` y : •A | ∆3, y : •A, x : •B ` T ′′

(νw) P . Ψ | ∆1 ` x : •B | ∆2,∆4 ` y : •A | ∆3, y : •A, x : •B ` T ′′
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2,∆4 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

Case 4:

P . Ψ | ∆4 ` w : •D | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, w : •D, y : •A, x : •B ` T ′′

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆1,∆2 ` x : •A⊗ B | ∆3, •D, x : •A⊗ B ` T ′′

⊗C

(νw)
−→
x(y);P . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3,∆4, x : •A⊗ B ` T ′′

Scope
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is equivalent to (≡)

P . Ψ | ∆4 ` w : •D | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, w : •D, y : •A, x : •B ` T ′′

(νw) P . Ψ | ∆1 ` x : •B | ∆2 ` y : •A | ∆3,∆4, y : •A, x : •B ` T ′′
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3,∆4, x : •A⊗ B ` T ′′

⊗C

Case 5:

P . Ψ | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` w : •D | ∆4, w : •D ` T ′′

−→
x(y);P . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` w : •D | ∆4, w : •D ` T ′′

⊗C

(νw)
−→
x(y);P . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3,∆4, x : •A⊗ B ` T ′′

Scope

is equivalent to (≡)

P . Ψ | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` w : •D | ∆4, w : •D ` T ′′

(νw) P . Ψ | ∆1 ` x : •B | ∆2 ` y : •A | ∆3,∆4, y : •A, x : •B ` T ′′
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3,∆4, x : •A⊗ B ` T ′′

⊗C

Commuting Scope with(C

[Scope/( C] (νw)
−→
x(y);P ≡

−→
x(y); (νw) P

Case 1:

P . Ψ | ∆4 ` w : •D | ∆5, w : •D ` T ′ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆5, w : •D ` T ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

(νw)
−→
x(y);P . Ψ | ∆4,∆5 ` T ′ | ∆1,∆2, x : •A ( Bx ` T ′′ | ∆3 ` x : •A ( B

Scope

is equivalent to (≡)

P . Ψ | ∆4 ` w : •D | ∆5, w : •D ` T ′ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B

(νw) P . Ψ | Ψ | ∆4,∆5 ` T ′ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B
Scope

−→
x(y); (νw) P . Ψ | ∆4,∆5 ` T ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

Case 2:

P . Ψ | ∆4 ` w : •D | ∆1, w : •D ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆1,∆2, w : •D, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

(νw)
−→
x(y);P . Ψ | ∆1,∆2,∆4, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

Scope
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is equivalent to (≡)

P . Ψ | ∆4 ` w : •D | ∆1, w : •D ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B

(νw) P . Ψ | Ψ | ∆1,∆4 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2,∆4, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

Case 3:

P . Ψ | ∆4 ` w : •D | ∆1 ` y : •A | ∆2, w : •D, x : •B ` T ′′ | ∆3, y : •A ` x : •B

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆1,∆2, w : •D, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

(νw)
−→
x(y);P . Ψ | ∆1,∆2,∆4, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

Scope

is equivalent to

P . Ψ | ∆4 ` w : •D | ∆1 ` y : •A | ∆2, w : •D, x : •B ` T ′′ | ∆3, y : •A ` x : •B

(νw) P . Ψ | Ψ | ∆4,∆5 ` T ′ | ∆1 ` y : •A | ∆2,∆4, x : •B ` T ′′ | ∆3, y : •A ` x : •B
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2,∆4, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

Case 4:

P . Ψ | ∆4 ` w : •D | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, w : •D, y : •A ` x : •B

−→
x(y);P . Ψ | ∆4 ` w : •D | ∆1,∆2, x : •A ( B ` T ′′ | ∆3, w : •D ` x : •A ( B

( C

(νw)
−→
x(y);P . Ψ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3,∆4 ` x : •A ( B

Scope

is equivalent to (≡)

P . Ψ | ∆4 ` w : •D | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, w : •D, y : •A ` x : •B

(νw) P . Ψ | Ψ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3,∆4, y : •A ` x : •B
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3,∆4 ` x : •A ( B

( C

Case 5:

P . Ψ | ∆4, w : •D ` T ′ | ∆1 ` y : •A | ∆2, x : •B ` w : •D | ∆3, y : •A ` x : •B

−→
x(y);P . Ψ | ∆4, w : •D ` T ′ | ∆1,∆2, x : •A ( B ` w : •D | ∆3 ` x : •A ( B

( C

(νw)
−→
x(y);P . Ψ | ∆1,∆2,∆4, x : •A ( B ` T ′ | ∆3 ` x : •A ( B

Scope

is equivalent to (≡)

P . Ψ | ∆4, w : •D ` T ′ | ∆1 ` y : •A | ∆2, x : •Bx ` w : •D | ∆3, y : •A ` x : •B

(νw) P . Ψ | Ψ | ∆1 ` y : •A | ∆2,∆4, x : •B ` T ′ | ∆3, y : •A ` x : •B
Scope

−→
x(y); (νw) P . Ψ | ∆1,∆2,∆4, x : •A ( B ` T ′ | ∆3 ` x : •A ( B

( C
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Commuting Scope with ⊕C1 and ⊕C2

[Scope/⊕ C1/L] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw) P,Q)

(
w 6∈ fn(Q )

)
Case 1:

P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′ Q . Ψ′ | ∆2, x : B ` T

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

⊕C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

Scope

is equivalent to (≡)

P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

(νw) P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T | ∆,∆′ ` T ′
Scope

Q . Ψ′ | ∆2, x : B ` T

−→
x.l ((νw) P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

⊕C1

Case 2:
P . Ψ | Ψ′ | ∆1, w : •C ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C Q . Ψ′ | ∆2, x : B ` T

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1, w : •C ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆ ` w : •C

⊕C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆,∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T

Scope

is equivalent to (≡)

P . Ψ | Ψ′ | ∆1, w : •C ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C

(νw) P . Ψ | Ψ′ | ∆,∆1 ` x : •A | ∆2, x : •A ` T
Scope

Q . Ψ′ | ∆2, x : B ` T

−→
x.l ((νw) P,Q) . Ψ | Ψ′ | ∆,∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T

⊕C1

[Scope/⊕ C1/L/R] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw) P, (νw)Q)

(
w ∈ fn(Q )

)
Case 1:

P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, x : •A ` T
| ∆ ` w : •C | ∆′, w : •C ` T ′

Q .
Ψ′ | ∆2, x : B ` T

| ∆ ` w : •C | ∆′, w : •C ` T ′

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

⊕C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

Scope

is equivalent to (≡)

P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, x : •A ` T
| ∆ ` w : •C | ∆′, w : •C ` T ′

(νw) P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, x : •A ` T
| ∆,∆′ ` T ′

Scope
Q .

Ψ′ | ∆2, x : B ` T
| ∆ ` w : •C | ∆′, w : •C ` T ′

(νw)Q . Ψ′ | ∆2, x : B ` T | ∆,∆′ ` T ′
Scope

−→
x.l ((νw) P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

⊕C1
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Case 2:

P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, w : •C, x : •A ` T
| ∆ ` w : •C

Q . Ψ′ | ∆2, w : •C, x : B ` T | ∆ ` w : •C

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, w : •C, x : •A⊕ B ` T | ∆ ` w : •C

⊕C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆,∆2, x : •A⊕ B ` T

Scope

is equivalent to (≡)

P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, w : •C, x : •A ` T
| ∆ ` w : •C

(νw) P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆,∆2, x : •A ` T

Scope
Q .

Ψ′ | ∆2, w : •C, x : B ` T
| ∆ ` w : •C

(νw)Q . Ψ′ | ∆,∆2, x : B ` T
Scope

−→
x.l ((νw) P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆,∆2, x : •A⊕ B ` T

⊕C1

Case 3:
P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` w : •C | ∆′, w : •C ` T ′ Q . Ψ′ | ∆2, x : B ` w : •C | ∆′, w : •C ` T ′

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` w : •C | ∆′, w : •C ` T ′

⊕C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆′,∆2, x : •A⊕ B ` T ′

Scope

is equivalent to (≡)

P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, x : •A ` w : •C
| ∆′, w : •C ` T ′

(νw) P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2,∆
′, x : •A ` T ′

Scope
Q . Ψ′ | ∆2, x : B ` w : •C | ∆′, w : •C ` T ′

(νw)Q . Ψ′ | ∆2,∆
′, x : B ` T ′

Scope

−→
x.l ((νw) P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆′,∆2, x : •A⊕ B ` T ′

⊕C1

[Scope/⊕ C2/R] (νw)
−→
x.r (P,Q) ≡ −→x.r (P, (νw)Q)

(
w 6∈ fn(P ), w 6= x

)
Case 1:

P . Ψ′ | ∆2, x : A ` T Q . Ψ | Ψ′ | ∆1 ` x : •B | ∆2, x : •B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

⊕C2

(νw)
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

Scope

is equivalent to (≡)

P . Ψ′ | ∆2, x : A ` T

Q . Ψ | Ψ′ | ∆1 ` x : •B | ∆2, x : •B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

(νw)Q . Ψ | Ψ′ | ∆1 ` x : •B | ∆2, x : •B ` T | ∆,∆′ ` T ′
Scope

−→
x.r (P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

⊕C2

Case 2:
P . Ψ′ | ∆2, x : A ` T Q . Ψ | Ψ′ | ∆1, w : •C ` x : •B | ∆2, x : •B ` T | ∆ ` w : •C

−→
x.r (P,Q) . Ψ | Ψ′ | ∆1, w : •C ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆ ` w : •C

⊕C2

(νw)
−→
x.r (P,Q) . Ψ | Ψ′ | ∆,∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T

Scope
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is equivalent to (≡)

P . Ψ′ | ∆2, x : A ` T

Q . Ψ | Ψ′ | ∆1, w : •C ` x : •B | ∆2, x : •B ` T | ∆ ` w : •C

(νw)Q . Ψ | Ψ′ | ∆,∆1 ` x : •B | ∆2, x : •B ` T
Scope

−→
x.r (P, (νw)Q) . Ψ | Ψ′ | ∆,∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T

⊕C2

[Scope/⊕ C2/L/R] (νw)
−→
x.r (P,Q) ≡ −→x.r ((νw) P, (νw)Q)

(
w ∈ fn(P )

)
Case 1:

P . Ψ′ | ∆2, x : A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′ Q .
Ψ | Ψ′

| ∆1 ` x : •B | ∆2, x : •B ` T
| ∆ ` w : •C | ∆′, w : •C ` T ′

−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

⊕C2

(νw)
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

Scope

is equivalent to (≡)

P .
Ψ′ | ∆2, x : A ` T

| ∆ ` w : •C | ∆′, w : •C ` T ′

(νw) P . Ψ′ | ∆2, x : A ` T | ∆,∆′ ` T ′
Scope

Q .
Ψ | Ψ′

| ∆1 ` x : •B | ∆2, x : •B ` T
| ∆ ` w : •C | ∆′, w : •C ` T ′

(νw)Q .
Ψ | Ψ′

| ∆1 ` x : •B | ∆2, x : •B ` T
| ∆,∆′ ` T ′

Scope

−→
x.r ((νw) P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T | ∆,∆′ ` T ′

⊕C2

Case 2:

P . Ψ′ | ∆2, w : •C, x : A ` T | ∆ ` w : •C Q .
Ψ | Ψ′

| ∆1 ` x : •B | ∆2, w : •C, x : •B ` T
| ∆ ` w : •C

−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, w : •C, x : •A⊕ B ` T | ∆ ` w : •C

⊕C2

(νw)
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆,∆2, x : •A⊕ B ` T

Scope

is equivalent to (≡)

P .
Ψ′ | ∆2, x : A ` T

| ∆ ` w : •C | ∆′, w : •C ` T ′

(νw) P . Ψ′ | ∆2, x : A ` T | ∆,∆′ ` T ′
Scope

Q .
Ψ | Ψ′

| ∆1 ` x : •B | ∆2, w : •C, x : •B ` T
| ∆ ` w : •C

(νw)Q .
Ψ | Ψ′ |

| ∆1 ` x : •B | ∆,∆2, x : •B ` T

Scope

−→
x.r ((νw) P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆,∆2, x : •A⊕ B ` T

⊕C2

Case 3:

P . Ψ′ | ∆2, x : A ` w : •C | ∆′, w : •C ` T ′ Q .
Ψ | Ψ′

| ∆1 ` x : •B
| ∆2, x : •B ` w : •C | ∆′, w : •C ` T ′

−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` w : •C | ∆′, w : •C ` T ′

⊕C2

(νw)
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2,∆

′, x : •A⊕ B ` T ′
Scope
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is equivalent to (≡)

P .
Ψ′ | ∆2, x : A ` w : •C

| ∆′, w : •C ` T ′

(νw) P . Ψ′ | ∆′,∆2, x : A ` T ′
Scope

Q .
Ψ | Ψ′

| ∆1 ` x : •B | ∆2, x : •B ` w : •C
| ∆′, w : •C ` T ′

(νw)Q .
Ψ | Ψ′

| ∆1 ` x : •B | ∆′,∆2, x : •B ` T ′

Scope

−→
x.r ((νw) P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆′,∆2, x : •A⊕ B ` T ′

⊕C2

Commuting Scope with &C1 and &C2

[Scope/&C1/L] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw) P,Q)

(
w 6∈ fn(Q )

)
Case 1:

P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′ Q . Ψ′ | ∆1 ` x : B

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

&C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆,∆′ ` T ′

Scope

is equivalent to (≡)
P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

(νw) P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T | ∆,∆′ ` T ′
Scope

Q . Ψ′ | ∆1 ` x : B

−→
x.l ((νw) P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆,∆′ ` T ′

&C1

Case 2:
P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, w : •C, x : •A ` T | ∆ ` w : •C Q . Ψ′ | ∆1 ` x : B

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, w : •C, x : •A&B ` T | ∆ ` w : •C

&C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆,∆2, x : •A&B ` T

Scope

is equivalent to (≡)
P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, w : •C, x : •A ` T | ∆ ` w : •C

(νw) P . Ψ | Ψ′ | ∆1 ` x : •A | ∆,∆2, x : •A ` T
Scope

Q . Ψ′ | ∆1 ` x : B

−→
x.l ((νw) P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆,∆2, x : •A&B ` T

&C1

Case 3:
P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` w : •C | ∆′, w : •C ` T ′ Q . Ψ′ | ∆1 ` x : B

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` w : •C | ∆′, w : •C ` T ′

&C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆′,∆2, x : •A&B ` T ′

Scope

is equivalent to (≡)
P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` w : •C | ∆′, w : •C ` T ′

(νw) P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2,∆
′, x : •A ` T ′

Scope
Q . Ψ′ | ∆1 ` x : B

−→
x.l ((νw) P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆′,∆2, x : •A&B ` T ′

&C1
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[Scope/&C1/L/R] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw) P, (νw)Q)

(
w ∈ fn(Q )

)
Case 1:

P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, x : •A ` T
| ∆ ` w : •C | ∆′, w : •C ` T ′

Q .
Ψ′ | ∆1 ` x : B

| ∆ ` w : •C | ∆′, w : •C ` T ′

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

&C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆,∆′ ` T ′

Scope

is equivalent to (≡)

P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, x : •A ` T
| ∆ ` w : •C | ∆′, w : •C ` T ′

(νw) P .
Ψ | Ψ′

| ∆1 ` x : •A | ∆2, x : •A ` T
| ∆,∆′ ` T ′

Scope
Q .

Ψ′ | ∆1 ` x : B
| ∆ ` w : •C | ∆′, w : •C ` T ′

(νw)Q . Ψ′ | ∆1 ` x : B | ∆,∆′ ` T ′
Scope

−→
x.l ((νw) P, (νw)Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆,∆′ ` T ′

&C1

Case 2:
P . Ψ | Ψ′ | ∆1, w : •C ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C Q . Ψ′ | ∆1, w : •C ` x : B | ∆ ` w : •C

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1, w : •C ` x : •A&B | ∆2, x : •A&B ` T | ∆ ` w : •C

&C1

(νw)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆,∆1 ` x : •A&B | ∆2, x : •A&B ` T

Scope

is equivalent to (≡)

P . Ψ | Ψ′ | ∆1, w : •C ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C

(νw) P . Ψ | Ψ′ | ∆,∆1 ` x : •A | ∆2, x : •A ` T
Scope

Q . Ψ′ | ∆1, w : •C ` x : B | ∆ ` w : •C

−→
x.l ((νw) P,Q) . Ψ | Ψ′ | ∆,∆1 ` x : •A&B | ∆2, x : •A&B ` T

&C1

[Scope/&C2/R] (νw)
−→
x.r (P,Q) ≡ −→x.r (P, (νw)Q)

(
w 6∈ fn(P )

)
Similar to [Scope/⊕ C2/R]

[Scope/&C2/L/R] (νw)
−→
x.r (P,Q) ≡ −→x.r ((νw) P, (νw)Q)

(
w ∈ fn(P )

)
Similar to [Scope/⊕ C2/R]
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Commuting Conn with Conn

[Conn/Conn] (P |y Q) |x R ≡ P |y (Q |x R)

Case 1:
P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆2, y : A ` T | ∆3 ` x : B

P |y Q . Ψ1 | Ψ2 | ∆1 ` y : •A | ∆2, y : •A ` T | ∆3 ` x : B
Conn

R . Ψ3 | ∆4, x : B ` T ′

(P |y Q) |x R . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y : •A | ∆2, y : •A ` T | ∆3 ` x : •B | ∆4, x : •B ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` y : A

Q . Ψ2 | ∆2, y : A ` T | ∆3 ` x : B R . Ψ3 | ∆4, x : B ` T ′

Q |x R . Ψ2 | Ψ3 | ∆2, y : A ` T | ∆3 ` x : •B | ∆4, x : •B ` T ′
Conn

P |y (Q |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y : •A | ∆2, y : •A ` T | ∆3 ` x : •B | ∆4, x : •B ` T ′
Conn

Case 2:
P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆3, y : A ` x : B

P |y Q . Ψ1 | Ψ2 | ∆1 ` y : •A | ∆3, y : •A ` x : B
Conn

R . Ψ3 | ∆4, x : B ` T ′

(P |y Q) |x R . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y : •A | ∆3, y : •A ` x : •B | ∆4, x : •B ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` y : A

Q . Ψ2 | ∆3, y : A ` x : B R . Ψ3 | ∆4, x : B ` T ′

Q |x R . Ψ2 | Ψ3 | ∆3, y : A ` x : •B | ∆4, x : •B ` T ′
Conn

P |y (Q |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y : •A | ∆3, y : • ` x : •B | ∆4, x : •B ` T ′
Conn

Commuting Conn with 1L (no case for 1R)

[Conn/1L/L] wait[x];P |y Q ≡ wait[x]; (P |y Q)

Case 1:
P . Ψ1 | ∆ ` T ′ | ∆1 ` y : A

wait[x];P . Ψ1 | ∆, x : 1 ` T ′ | ∆1 ` y : A
1L

Q . Ψ2 | ∆2, y : A ` T

wait[x];P |y Q . Ψ1 | Ψ2 | ∆, x : 1 ` T ′ | ∆1 ` y : •A | ∆2, y : •A ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` T ′ | ∆1 ` y : A Q . Ψ2 | ∆2, y : A ` T

P |y Q . Ψ1 | Ψ2 | ∆ ` T ′ | ∆1 ` y : •A | ∆2, y : •A ` T
Conn

wait[x]; (P |y Q) . Ψ1 | Ψ2 | ∆, x : 1 ` T ′ | ∆1 ` y : •A | ∆2, y : •A ` T
1L
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Case 2:
P . Ψ1 | ∆1 ` y : A

wait[x];P . Ψ1 | ∆1, x : 1 ` y : A
1L

Q . Ψ2 | ∆2, y : A ` T

wait[x];P |y Q . Ψ1 | Ψ2 | ∆1, x : 1 ` y : •A | ∆2, y : •A ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆2, y : A ` T

P |y Q . Ψ1 | Ψ2 | ∆1 ` y : •A | ∆2, y : •A ` T
Conn

wait[x]; (P |y Q) . Ψ1 | Ψ2 | ∆1, x : 1 ` y : •A | ∆2, y : •A ` T
1L

[Conn/1L/R] P |y wait[x];Q ≡ wait[x]; (P |y Q)

Case 1:

P . Ψ1 | ∆1 ` y : A

Q . Ψ2 | ∆ ` T ′ | ∆2, y : A ` T

wait[x];Q . Ψ1 | ∆, x : 1 ` T ′ | ∆2, y : A ` T
1L

wait[x];P |y Q . Ψ1 | Ψ2 | ∆, x : 1 ` T ′ | ∆1 ` y : •A | ∆2, y : •A ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆ ` T ′ | ∆2, y : A ` T

P |y Q . Ψ1 | Ψ2 | ∆ ` T ′ | ∆1 ` y : •A | ∆2, y : •A ` T
Conn

wait[x]; (P |y Q) . Ψ1 | Ψ2 | ∆, x : 1 ` T ′ | ∆1 ` y : •A | ∆2, y : •A ` T
1L

Case 2:

P . Ψ1 | ∆1 ` y : A

Q . Ψ2 | ∆2, y : A ` T

wait[x];Q . Ψ1 | ∆2, x : 1, y : A ` T
1L

wait[x];P |y Q . Ψ1 | Ψ2 | ∆1 ` y : •A | ∆2, x : 1, y : •A ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆2, y : A ` T

P |y Q . Ψ1 | Ψ2 | ∆1 ` y : •A | ∆2, y : •A ` T
Conn

wait[x]; (P |y Q) . Ψ1 | Ψ2 | ∆1 ` y : •A | ∆2, x : 1, y : •A ` T
1L

Commuting Conn with ⊗R and ⊗L

[Conn/⊗ R/R/L] P |w x(y); (Q | R) ≡ x(y); ((P |w Q) | R)
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Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1 ` y : A | ∆′, w : C ` T R . Ψ3 | ∆2 ` x : B

x(y); (Q |R) . Ψ2 | Ψ1 | ∆1,∆2 ` x : A⊗ B | ∆′, w : C ` T
⊗R

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x : A⊗ B | ∆ ` w : •C | ∆′, w : •C ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T | ∆1 ` y : A

P |w Q . Ψ1 | Ψ2 | ∆1 ` y : A | ∆ ` w : •C | ∆′, w : •C ` T
Conn

R . Ψ3 | ∆2 ` x : B

x(y); ((P |w Q) | R) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x : A⊗ B | ∆ ` w : •C | ∆′, w : •C ` T
⊗R

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1, w : C ` y : A R . Ψ3 | ∆2 ` x : B

x(y); (Q |R) . Ψ2 | Ψ1 | ∆1,∆2, w : C ` x : A⊗ B
⊗R

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C ` x : A⊗ B
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆1, w : C ` y : A

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C ` y : A
Conn

R . Ψ3 | ∆2 ` x : B

x(y); ((P |w Q) | R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C ` x : A⊗ B
⊗R

[Conn/⊗ R/R/R] P |w x(y); (Q | R) ≡ x(y); (Q | (P |w R))

Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1 ` y : A R . Ψ3 | ∆2 ` x : B | ∆′, w : C ` T

x(y); (Q |R) . Ψ2 | Ψ1 | ∆1,∆2 ` x : A⊗ B | ∆′, w : C ` T
⊗R

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x : A⊗ B | ∆ ` w : •C | ∆′, w : •C ` T
Conn

is equivalent to (≡)

Q . Ψ2 | ∆1 ` y : A

P . Ψ1 | ∆ ` w : C R . Ψ3 | ∆2 ` x : B | ∆′, w : C ` T

P |w R . Ψ1 | Ψ3 | ∆ ` w : •C | ∆′, w : •C ` T | ∆2 ` x : B
Conn

x(y); (Q | (P |w R) ) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x : A⊗ B | ∆ ` w : •C | ∆′, w : •C ` T
⊗R

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1 ` y : A R . Ψ3 | ∆2, w : C ` x : B

x(y); (Q |R) . Ψ2 | Ψ1 | ∆1,∆2, w : C ` x : A⊗ B
⊗R

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C ` x : A⊗ B
Conn

is equivalent to (≡)

Q . Ψ2 | ∆1 ` y : A

P . Ψ1 | ∆ ` w : C R . Ψ3 | ∆2, w : C ` x : B

P |w R . Ψ1 | Ψ3 | ∆ ` w : •C | ∆2, w : •C ` x : B
Conn

x(y); (Q | (P |w R) ) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C ` x : A⊗ B
⊗R
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[Conn/⊗ L/L] x(y);P |w Q ≡ x(y); (P |w Q)

Case 1:
P . Ψ1 | ∆1, y : A, x : B ` T | ∆2 ` w : C

x(y);P . Ψ1 | ∆1, x : A⊗ B ` T | ∆2 ` w : C
⊗L

Q . Ψ2 | ∆3, w : C ` T ′

x(y);P |w Q . Ψ1 | Ψ2 | ∆1, x : A⊗ B ` T | ∆2 ` w : •C | ∆3, w : •C ` T ′
Conn

is equivalent to (≡)
P . Ψ1 | ∆1, y : A, x : B ` T | ∆2 ` w : C Q . Ψ2 | ∆3, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆1, y : A, x : B ` T | ∆2 ` w : •C | ∆3, w : •C ` T ′
Conn

x(y); (P |w Q) . Ψ1 | Ψ2 | ∆1, x : A⊗ B ` T | ∆2 ` w : C | ∆3, w : C ` T ′
⊗L

Case 2:
P . Ψ1 | ∆1, y : A, x : B ` w : C

x(y);P . Ψ1 | ∆1, x : A⊗ B ` w : C
⊗L

Q . Ψ2 | ∆3, w : C ` T ′

x(y);P |w Q . Ψ1 | Ψ2 | ∆1, x : A⊗ B ` w : •C | ∆3, w : •C ` T ′
Conn

is equivalent to (≡)
P . Ψ1 | ∆1, y : A, x : B ` w : C Q . Ψ2 | ∆3, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆1, y : A, x : B ` w : •C | ∆3, w : •C ` T ′
Conn

x(y); (P |w Q) . Ψ1 | Ψ2 | ∆1, x : A⊗ B ` w : •C | ∆3, w : C ` T ′
⊗L

[Conn/⊗ L/R] P |w x(y);Q ≡ x(y); (P |w Q)

Case 1:

P . Ψ1 | ∆1 ` w : C

Q . Ψ2 | ∆2, y : A, x : B ` T | ∆3, w : C ` T ′

x(y);Q . Ψ2 | ∆2, x : A⊗ B ` T | ∆3, w : C ` T ′
⊗L

P |w x(y);Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, x : A⊗ B ` T | ∆3, w : •C ` T ′
Conn

is equivalent to (≡)
P . Ψ1 | ∆1 ` w : C Q . Ψ2 | ∆2, y : A, x : B ` T | ∆3, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, y : A, x : B ` T | ∆3, w : •C ` T ′
Conn

x(y); (P |w Q) . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, x : A⊗ B ` T | ∆3, w : •C ` T ′
⊗L

Case 2:

P . Ψ1 | ∆1 ` w : C

Q . Ψ2 | ∆2, w : C, y : A, x : B ` T

x(y);Q . Ψ2 | ∆2, w : C, x : A⊗ B ` T
⊗L

P |w x(y);Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, w : •Cx : A⊗ B ` T
Conn

is equivalent to (≡)
P . Ψ1 | ∆1 ` w : C Q . Ψ2 | ∆2, w : C, y : A, x : B ` T

P |w Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, w : •C, y : A, x : B ` T
Conn

x(y); (P |w Q) . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, w : •C, x : A⊗ B ` T
⊗L
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Commuting Conn with( R and( L

[Conn/( R/R] P |w x(y);Q ≡ x(y); (P |w Q)

Case 1:

P . Ψ1 | ∆1 ` w : C

Q . Ψ2 | ∆2, y : A ` x : B | ∆3, w : C ` T

x(y);Q . Ψ2 | ∆2 ` x : A ( B | ∆3, w : C ` T
( R

P |w x(y);Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2 ` x : A ( B | ∆3, w : •C ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` w : C Q . Ψ2 | ∆2, y : A ` x : B | ∆3, w : C ` T

P |w Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, y : A ` x : B | ∆3, w : •C ` T
Conn

x(y); (P |w Q) . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2 ` x : A ( B | ∆3, w : •C ` T
( R

Case 2:

P . Ψ1 | ∆1 ` w : C

Q . Ψ2 | ∆2, w : C, y : A ` x : B

x(y);Q . Ψ2 | ∆2, w : C ` x : A ( B
( R

P |w x(y);Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, w : •C ` x : A ( B
Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` w : C Q . Ψ2 | ∆2, w : C, y : A ` x : B

P |w Q . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, w : •C, y : A ` x : B
Conn

x(y); (P |w Q) . Ψ1 | Ψ2 | ∆1 ` w : •C | ∆2, w : •C ` x : A ( B
( R

[Conn/( L/L/R] x(y); (P | Q) |w R ≡ x(y); (P | (Q |w R))

Case 1:
P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆2, x : B ` T | ∆ ` w : C

x(y); (P |Q) . Ψ1 | Ψ2 | ∆1,∆2, x : A ( B ` T | ∆ ` w : C
( L

R . Ψ3 | ∆′, w : C ` T ′

x(y); (P |Q) |w R . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2, x : A ( B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

is equivalent (≡)

P . Ψ1 | ∆1 ` y : A

Q . Ψ2 | ∆2, x : B ` T | ∆ ` w : C R . Ψ3 | ∆′, w : C ` T ′

Q |w R . Ψ2 | Ψ3 | ∆2, x : B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

x(y); (P | (Q |w R)) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2, x : A ( B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
( L

Case 2:
P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆2, x : B ` w : C

x(y); (P |Q) . Ψ1 | Ψ2 | ∆1,∆2, x : A ( B ` w : C
( L

R . Ψ3 | ∆′, w : C ` T ′

x(y); (P |Q) |w R . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2, x : A ( B ` w : •C | ∆′, w : •C ` T ′
Conn
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is equivalent (≡)

P . Ψ1 | ∆1 ` y : A

Q . Ψ2 | ∆2, x : B ` w : C R . Ψ3 | ∆′, w : C ` T ′

Q |w R . Ψ2 | Ψ3 | ∆2, x : B ` w : •C | ∆′, w : •C ` T ′
Conn

x(y); (P | (Q |w R)) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2, x : A ( B ` w : •C | ∆′, w : •C ` T ′
( L

[Conn/( L/R/L] P |w x(y); (Q | R) ≡ x(y); (P |w Q) | R)

Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1 ` y : A | ∆′, w : C ` T R . Ψ3 | ∆2, x : B ` T ′

x(y); (Q |R) . Ψ2 | Ψ3 | ∆1,∆2, x : A ( B ` T ′ | ∆′, w : C ` T
( L

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, x : A ( B ` T ′ | ∆′, w : •C ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆1 ` y : A | ∆′, w : C ` T

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1 ` y : A | ∆′, w : •C ` T
Conn

R . Ψ3 | ∆2, x : B ` T ′

x(y); (P |w Q) | R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, x : A ( B ` T ′ | ∆′, w : •C ` T
( L

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1, w : C ` y : A R . Ψ3 | ∆2, x : B ` T ′

x(y); (Q |R) . Ψ2 | Ψ3 | ∆1,∆2, w : C, x : A ( B ` T ′
( L

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C, x : A ( B ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆1, w : C ` y : A

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C ` y : A
Conn

R . Ψ3 | ∆2, x : B ` T ′

x(y); (P |w Q) | R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C, x : A ( B ` T ′
( L

[Conn/( L/R/R] P |w x(y); (Q | R) ≡ x(y); (Q | (P |w R) )

Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1 ` y : A R . Ψ3 | ∆2, x : B ` T ′ | ∆′, w : C ` T

x(y); (Q |R) . Ψ2 | Ψ3 | ∆1,∆2, x : A ( B ` T ′ | ∆′, w : C ` T
( L

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, x : A ( B ` T ′ | ∆′, w : •C ` T
Conn

is equivalent to (≡)

Q . Ψ2 | ∆1 ` y : A

P . Ψ1 | ∆ ` w : C R . Ψ3 | ∆2, x : B ` T ′ | ∆′, w : C ` T

P |w R . Ψ1 | Ψ3 | ∆ ` w : •C | ∆2, x : B ` T ′ | ∆′, w : •C ` T
Conn

x(y); (Q | (P |w R) ) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, x : A ( B ` T ′ | ∆′, w : •C ` T
( L
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Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1 ` y : A R . Ψ3 | ∆2, w : C, x : B ` T ′

x(y); (Q |R) . Ψ2 | Ψ3 | ∆1,∆2, w : C, x : A ( B ` T ′
( L

P |w x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C, x : A ( B ` T ′
Conn

is equivalent to (≡)

Q . Ψ2 | ∆1 ` y : A

P . Ψ1 | ∆ ` w : C R . Ψ3 | ∆2, w : C, x : B ` T ′

P |w R . Ψ1 | Ψ3 | ∆ ` w : •C | ∆2, w : •C, x : B ` T ′
Conn

x(y); (Q | (P |w R)) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w : •C | ∆1,∆2, w : •C, x : A ( B ` T ′
( L

Commuting Conn with ⊕R and ⊕L

[Conn/⊕ R1/R] P |w x.inl;Q ≡ x.inl; (P |w Q)

Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆′, w : C ` T | ∆1 ` x : A

x.inl;Q . Ψ2 | ∆′, w : C ` T | ∆1 ` x : A⊕ B
⊕R1

P |w x.inl;Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1 ` x : A⊕ B
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T | ∆1 ` x : A

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1 ` x : A
Conn

x.inl; (P |w Q) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1 ` x : A⊕ B
Conn

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1, w : C ` x : A

x.inl;Q . Ψ2 | ∆1, w : C ` x : A⊕ B
⊕R1

P |w x.inl;Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C ` x : A⊕ B
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆1, w : C ` x : A

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C ` x : A
Conn

x.inl; (P |w Q) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C ` x : A⊕ B
Conn

[Conn/⊕ R2/R] P |w x.inr;Q ≡ x.inr; (P |w Q)

Similar to [Conn/⊕ R1/R]
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[Conn/⊕ L/L] x.case(P,Q) |w R ≡ x.case(P |w R , Q |w R)

Case 1:
P . Ψ1 | ∆1, x : A ` T | ∆ ` w : C Q . Ψ1 | ∆1, x : B ` T | ∆ ` w : C

x.case(P,Q) . Ψ1 | ∆1, x : A⊕ B ` T | ∆ ` w : C
⊕L

R . Ψ2 | ∆′, w : C ` T ′

x.case(P,Q) |w R . Ψ1 | Ψ2 | ∆1, x : A⊕ B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆1, x : A ` T∆ ` w : C R . Ψ2 | ∆2, w : C ` T

P |w R . Ψ1 | Ψ2 | ∆1, x : A ` | ∆ ` w : •C | ∆2, w : •C ` T
Conn

Q . Ψ1 | ∆1, x : B ` T | ∆ ` w : C R . Ψ2 | ∆′, w : C ` T

Q |w R . Ψ1 | Ψ2 | ∆1, x : B ` T | ∆ ` w : •C | ∆′, w : •C ` T
Conn

x.case(P |w R , Q |w R) . Ψ1 | Ψ2 | ∆1, x : A⊕ B ` T | ∆ ` w : •C | ∆2, w : •C ` T
⊕L

Case 2:
P . Ψ1 | ∆1, x : A ` w : C Q . Ψ1 | ∆1, x : B ` w : C

x.case(P,Q) . Ψ1 | ∆1, x : A⊕ B ` w : C
⊕L

R . Ψ2 | ∆2, w : C ` T

x.case(P,Q) |w R . Ψ1 | Ψ2 | ∆1, x : A⊕ B ` w : •C | ∆2, w : •C ` T
Conn

is equivalent to (≡)

P . Ψ1 | ∆1, x : A ` w : C R . Ψ2 | ∆2, w : C ` T

P |w R . Ψ1 | Ψ2 | ∆1, x : A ` w : •C | ∆2, w : •C ` T
Conn

Q . Ψ1 | ∆1, x : B ` w : C R . Ψ2 | ∆2, w : C ` T

Q |w R . Ψ1 | Ψ2 | ∆1, x : B ` w : •C | ∆2, w : •C ` T
Conn

x.case(P |w R , Q |w R) . Ψ1 | Ψ2 | ∆1, x : A⊕ B ` w : •C | ∆2, w : •C ` T
⊕L

[Conn/⊕ L/R] P |w x.case(Q,R) ≡ x.case(P |w Q , P |w R)

Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆′, w : C ` T | ∆1, x : A ` T ′ R . Ψ2 | ∆′, w : C ` T | ∆1, x : B ` T ′

x.case(Q,R) . Ψ2 | ∆′, w : C ` T | ∆1, x : A⊕ B ` T ′
⊕L

P |w x.case(Q,R) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1, x : A⊕ B ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T | ∆1, x : A ` T ′

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1, x : A ` T ′
Conn

P . Ψ1 | ∆ ` w : C R . Ψ2 | ∆′, w : C ` T | ∆1, x : B ` T ′

P |w R . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1, x : B ` T ′
Conn

x.case(P |w Q , P |w R) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1, x : A⊕ B ` T ′
⊕L

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1, w : C, x : A ` T ′ R . Ψ2 | ∆1, w : C, x : B ` T ′

x.case(Q,R) . Ψ2 | ∆1, w : C, x : A⊕ B ` T ′
⊕L

P |w x.case(Q,R) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C, x : A⊕ B ` T ′
Conn
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is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆1, w : C, x : A ` T ′

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C, x : A ` T ′
Conn

P . Ψ1 | ∆ ` w : C R . Ψ2 | ∆1, w : C, x : B ` T ′

P |w R . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C, x : B ` T ′
Conn

x.case(P |w Q , P |w R) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C, x : A⊕ B ` T ′
⊕L

Commuting Conn with &R and &L

[Conn/&R/R] P |w x.case(Q,R) ≡ x.case((P |w Q) , (P |w R))

Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆′, w : C ` T | ∆1 ` x : A R . Ψ2 | ∆′, w : C ` T | ∆1 ` x : B

x.case(Q,R) . Ψ2 | ∆′, w : C ` T | ∆1 ` x : A&B
&R

P |w x.case(Q,R) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1 ` x : A&B
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T | ∆1 ` x : A

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1 ` x : A
Conn

P . Ψ1 | ∆ ` w : C R . Ψ2 | ∆′, w : C ` T | ∆1 ` x : B

P |w R . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1 ` x : B
Conn

x.case((P |w Q) , (P |w R)) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1 ` x : A&B
&R

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆′, w : C ` x : A R . Ψ2 | ∆′, w : C ` x : B

x.case(Q,R) . Ψ2 | ∆′, w : C ` x : A&B
&R

P |w x.case(Q,R) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` x : A&B
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` x : A

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` x : A
Conn

P . Ψ1 | ∆ ` w : C R . Ψ2 | ∆′, w : C ` x : B

P |w R . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` x : B
Conn

x.case((P |w Q) , (P |w R)) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` x : A&B
&R

[Conn/&L1/L] x.inl;P |w Q ≡ x.inl; (P |w Q)

Case 1:
P . Ψ1 | ∆1, x : A ` T | ∆ ` w : C

x.inl;P . Ψ1 | ∆1, x : A&B ` T | ∆ ` w : C
&L1

Q . Ψ2 | ∆′, w : C ` T ′

x.inl;P |w Q . Ψ1 | Ψ2 | ∆1, x : A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn
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is equivalent to (≡)

P . Ψ1 | ∆1, x : A ` T | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆1, x : A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

x.inl; (P |w Q) . Ψ1 | Ψ2 | ∆1, x : A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
&L1

Case 2:
P . Ψ1 | ∆1, x : A ` w : C

x.inl;P . Ψ1 | ∆1, x : A&B ` w : C
&L1

Q . Ψ2 | ∆′, w : C ` T ′

x.inl;P |w Q . Ψ1 | Ψ2 | ∆1, x : A&B ` w : •C | ∆′, w : •C ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆1, x : A ` w : C Q . Ψ2 | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆1, x : A ` w : •C | ∆′, w : •C ` T ′
Conn

x.inl; (P |w Q) . Ψ1 | Ψ2 | ∆1, x : A&B ` w : •C | ∆′, w : •C ` T ′
&L1

[Conn/&L1/R] P |w x.inl;Q ≡ x.inl; (P |w Q)

Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆′, w : C ` T | ∆1, x : A ` T ′

x.inl;Q . Ψ2 | ∆′, w : C ` T | ∆1, x : A&B ` T ′
&L1

P |w x.inl;Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1, x : A&B ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T | ∆1, x : A ` T ′

P |w x.inl;Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1, x : A ` T ′
Conn

x.inl; (P |w Q) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T | ∆1, x : A&B ` T ′
&L1

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1, w : C, x : A ` T ′

x.inl;Q . Ψ2 | ∆1, w : C, x : A&B ` T ′
&L1

P |w x.inl;Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C, x : A&B ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆1, w : C, x : A ` T ′

P |w x.inl;Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C, x : A ` T ′
Conn

x.inl; (P |w Q) . Ψ1 | Ψ2 | ∆ ` w : •C | ∆1, w : •C, x : A&B ` T ′
&L1

[Conn/&L2/L] x.inr;P |w Q ≡ x.inr; (P |w Q)

Similar to [Conn/&L1/L].
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[Conn/&L2/R] P |w x.inr;Q ≡ x.inr; (P |w Q)

Similar to [Conn/&L1/R].

Commuting Conn with 1C

Conn/1C/L]
−→

close[x];P |w Q ≡
−→

close[x]; (P |w Q)

Case 1:
P . Ψ1 | ∆1 ` T | ∆ ` w : C

−→
close[x];P . Ψ1 | · ` x : •1 | ∆1, x : •1 ` T | ∆ ` w : C

1C

Q . Ψ2 | ∆′, w : C ` T ′

−→
close[x];P |w Q . Ψ1 | Ψ2 | · ` x : •1 | ∆1, x : •1 ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ1 | ∆1 ` T | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆1 ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

−→
close[x]; (P |w Q) . Ψ1 | Ψ2 | · ` x : •1 | ∆1, x : •1 ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

Conn

Case 2:
P . Ψ1 | ∆ ` w : C

−→
close[x];P . Ψ1 | · ` x : •1 | ∆, x : •1 ` w : C

1C

Q . Ψ2 | ∆′, w : C ` T ′

−→
close[x];P |w Q . Ψ1 | Ψ2 | · ` x : •1 | ∆, x : •1 ` w : •C | ∆′, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

−→
close[x]; (P |w Q) . Ψ1 | Ψ2 | · ` x : •1 | ∆, x : •1 ` w : •C | ∆′, w : •C ` T ′

Conn

Conn/1C/R] P |w
−→

close[x];Q ≡
−→

close[x]; (P |w Q)
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Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆1 ` T | ∆′, w : C ` T ′

−→
close[x];Q . Ψ2 | · ` x : •1 | ∆1, x : •1 ` T | ∆′, w : C ` T ′

1C

P |w
−→

close[x];Q . Ψ1 | Ψ2 | · ` x : •1 | ∆1, x : •1 ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆1 ` T | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆1 ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

−→
close[x]; (P |w Q) . Ψ1 | Ψ2 | · ` x : •1 | ∆1, x : •1 ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

Conn

Case 2:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | ∆′, w : C ` T ′

−→
close[x];Q . Ψ2 | · ` x : •1 | ∆′, x : •1, w : C ` T ′

1C

P |w
−→

close[x];Q . Ψ1 | Ψ2 | · ` x : •1 | ∆ ` w : •C | ∆′, x : •1, w : •C ` T ′
Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

−→
close[x]; (P |w Q) . Ψ1 | Ψ2 | · ` x : •1 | ∆ ` w : •C | ∆′, x : •1, w : •C ` T ′

Conn

Commuting Conn with ⊗C

[Conn/⊗ C/L]
−→
x(y);P |w Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(Q )

)
Case 1:

P . Ψ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′ | ∆4 ` w : C

−→
x(y);P . Ψ | ∆1,∆2 ` •x : A⊗ B | ∆3, •x : A⊗ B ` T ′′ | ∆4 ` w : C

⊗C

Q . Ψ′ | ∆5, w : C ` T ′

−→
x(y);P |w Q . Ψ | Ψ′ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′ | ∆4 ` w : •C | ∆5, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′ | ∆4 ` w : C Q . Ψ′ | ∆5, w : C ` T ′

P |w Q . Ψ | Ψ′ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •Ay, x : •B ` T ′′ | ∆4 ` w : •C | ∆5, w : •C ` T ′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2 ` x : •A⊗ B | ∆3, •x : A⊗ B ` T ′′ | ∆4 ` w : •C | ∆5, w : •C ` T ′

⊗C

Case 2:
P . Ψ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` w : C

−→
x(y);P . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` w : C

⊗C

Q . Ψ′ | ∆5, w : C ` T ′

−→
x(y);P |w Q . Ψ | Ψ′ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` w : •C | ∆5, w : •C ` T ′

Conn
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is equivalent to (≡)

P |w Q

P . Ψ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` w : D Q . Ψ′ | ∆5, w : D ` T ′

. Ψ | Ψ′ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` w : •C | ∆5, w : •C ` T ′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` w : •C | ∆5, w : •C ` T ′

⊗C

[Conn/⊗C/R] P |w
−→
x(y);Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(P )

)
Case 1:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆4, w : C ` T ′ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′

−→
x(y);Q . Ψ | ∆4, w : C ` T ′ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆4, w : •C ` T ′ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

Conn

is equivalent to (≡)

P . Ψ′ | ∆5 ` w : C Q . Ψ | ∆4, w : C ` T ′ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′

P |w Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆4, w : •C ` T ′ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆5 ` w : •C | ∆4, w : •C ` T ′ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

Case 2:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆1, w : C ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′

−→
x(y);Q . Ψ | ∆1,∆2, w : C ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆1,∆2, w : •C ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

Conn

is equivalent to (≡)

P . Ψ′ | ∆5 ` w : C Q . Ψ | ∆1, w : C ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′

P |w Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆1, w : •C ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T ′′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆5 ` w : •C | ∆1,∆2, w : •C ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

Case 3:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆1 ` y : •A | ∆2, w : C ` x : •B | ∆3, y : •A, x : •B ` T ′′

−→
x(y);Q . Ψ | ∆1,∆2, w : C ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆1,∆2, w : • ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

Conn

is equivalent to (≡)

P . Ψ′ | ∆5 ` w : C Q . Ψ | ∆1 ` y : •A | ∆2, w : C ` x : •B | ∆3, y : •A, x : •B ` T ′′

P |w Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆1 ` y : •A | ∆2, w : •C ` x : •B | ∆3, y : •A, x : •B ` T ′′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆5 ` w : •C | ∆1,∆2, w : •C ` x : •A⊗ B | ∆3, x : •A⊗ B ` T ′′

⊗C
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Case 4:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, w : C, y : •A, x : •B ` T ′′

−→
x(y);Q . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3, w : C, x : •A⊗ B ` T ′′

⊗C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆1,∆2 ` x : •A⊗ B | ∆3, w : •C, x : •A⊗ B ` T ′′

Conn

is equivalent to (≡)

P . Ψ′ | ∆5 ` D Q . Ψ | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, w : C, y : •A, x : •B ` T ′′

P |w Q . Ψ | Ψ′ | ∆5 ` w : •C | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, w : •C, y : •A, x : •B ` T ′′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆5 ` w : •C | ∆1,∆2 ` x : •A⊗ B | ∆3, w : •C, x : •A⊗ B ` T ′′

⊗C

Commuting Conn with( C

[Conn/(C/L]
−→
x(y);P |w Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(Q )

)
Case 1:

P . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆4 ` w : C

−→
x(y);P . Ψ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆4 ` w : C

( C

Q . Ψ′ | ∆5, w : C ` T ′

−→
x(y);P |w Q . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆4 ` w : •C | ∆5, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆4 ` w : C Q . Ψ′ | ∆5, w : C ` T ′

P |w Q . Ψ | Ψ′ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆4 ` w : •C | ∆5, w : •C ` T ′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆4 ` w : •C | ∆5, w : •C ` T ′

( C

Case 2

P . Ψ | ∆1 ` y : •A | ∆2, x : •B ` D | ∆3, y : •A ` x : •B

−→
x(y);P . Ψ | ∆1,∆2, x : •A ( B ` w : C | ∆3 ` x : •A ( B

( C

Q . Ψ′ | ∆5, w : C ` T ′

−→
x(y);P |w Q . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` w : •C | ∆3 ` x : •A ( B | ∆5, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ | ∆1 ` y : •A | ∆2, x : •B ` w : C | ∆3, y : •A ` x : •B Q . Ψ′ | ∆5, w;C ` T ′

P |w Q . Ψ | Ψ′ | ∆1 ` y : •A | ∆2, x : •B ` w : •C | ∆3, y : •A ` x : •B | ∆5, w : •C ` T ′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` w : •C | ∆3 ` x : •A ( B | ∆5, w : •C ` T ′

( C
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[Conn/(C/R] P |w
−→
x(y);Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(P )

)
Case 1:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆4, w : C ` T ′

−→
x(y);Q . Ψ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆4, w : C ` T ′

( C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆5 ` w : •C | ∆4, w : •C ` T ′

Conn

is equivalent to (≡)
P . Ψ′ | ∆5 ` w : C Q . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆4, w : C ` T ′

P |w Q . Ψ | Ψ′ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆4 ` w : •C | ∆5, w : •C ` T ′
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆5 ` w : •C | ∆4, w : •C ` T ′

( C

Case 2:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆1, w : C ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B

−→
x(y);Q . Ψ | ∆1,∆2, w : C, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆1,∆2, w : •C, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆5 ` w : •C

Conn

is equivalent to (≡)
P . Ψ′ | ∆5 ` w : C Q . Ψ | ∆1, w : C ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B

P |w Q . Ψ | Ψ′ | ∆1, w : •C ` y : •A | ∆2, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆5 ` w : C
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2, w : •C, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆5 ` w : •C

( C

Case 3:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆1 ` y : •A | ∆2, w : C, x : •B ` T ′′ | ∆3, y : •A ` x : •B

−→
x(y);Q . Ψ | ∆1,∆2, w : C, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B

( C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆1,∆2, w : •C, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆5 ` w : •C

Conn

is equivalent to (≡)
P . Ψ′ | ∆5 ` w : C Q . Ψ | ∆1 ` y : •A | ∆2, w : C, x : •B ` T ′′ | ∆3, y : •A ` x : •B

P |w Q . Ψ | Ψ′ | ∆1 ` y : •A | ∆2, w : •C, x : •B ` T ′′ | ∆3, y : •A ` x : •B | ∆5 ` w : •C
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2, w : •C, x : •A ( B ` T ′′ | ∆3 ` x : •A ( B | ∆5 ` w : •C

( C

Case 4:

P . Ψ′ | ∆5 ` w : C

Q . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, w : C, y : •A ` x : •B

−→
x(y);Q . Ψ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3, w : C ` x : •A ( B

( C

P |w
−→
x(y);Q . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3, w : •C ` x : •A ( B | ∆5 ` w : •C

Conn

is equivalent to (≡)
P . Ψ′ | ∆5 ` w : C Q . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, w;C, y : •A ` x : •B

P |w Q . Ψ | Ψ′ | ∆1 ` y : •A | ∆2, x : •B ` T ′′ | ∆3, w : •C, y : •A ` x : •B | ∆5 ` w : •C
Conn

−→
x(y); (P |w Q) . Ψ | Ψ′ | ∆1,∆2, x : •A ( B ` T ′′ | ∆3, w : •C ` x : •A ( B | ∆5 ` w : •C

( C
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Commuting Conn with ⊕C

[Conn/⊕ C1/L]
−→
x.l (P,Q) |w R ≡

−→
x.l ((P |w R) , (Q |w R))

(
w ∈ fn(P ) ∩ fn(Q )

)
Case 1:

P . Ψ1 | Ψ2 | ∆1 ` x : A | ∆2, x : A ` T | ∆ ` w : C Q . Ψ2 | ∆2, x : B ` T | ∆ ` w : C

−→
x.l (P,Q) . Ψ1 | Ψ2 | ∆1 ` x : A⊕ B | ∆2, x : A⊕ B ` T | ∆ ` w : C

⊕C1

R . Ψ3 | ∆′, w : C ` T ′

−→
x.l (P,Q) |w R . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : A⊕ B | ∆2, x : A⊕ B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ1 | Ψ2 | ∆1 ` x : A | ∆2, x : A ` T | ∆ ` w : C R . Ψ3 | ∆′, w : C ` T ′

P |wR . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : A | ∆2, x : A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

Q . Ψ2 | ∆2, x : B ` T | ∆ ` w : C R . Ψ3 | ∆′, w : C ` T ′

Q|wR . Ψ2 | Ψ3 | ∆2, x : B ` T | ∆ ` w : •C∆′, w : •C ` T ′
Conn

−→
x.l ((P |wR) , (Q|wR)) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : A⊕ B | ∆2, x : A⊕ B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

⊕C1

The other case is similar.

[Conn/⊕ C1/R] P |w
−→
x.l (Q,R) ≡

−→
x.l ((P |w Q) , (P |w R))

(
w ∈ fn(Q ) ∩ fn(R )

)
Case 1:

P . Ψ1 | ∆ ` w :D

Q . Ψ2 | Ψ3 | ∆1 ` x :•A | ∆2, x :•A ` T | ∆′, w :D ` T ′ R . Ψ3 | ∆2, x :B ` T | ∆′, w :D ` T ′

−→
x.l (Q,R) . Ψ2 | Ψ3 | ∆1 ` x :•A⊕ B | ∆2, x :•A⊕ B ` T | ∆′, w :D ` T ′

⊕C1

P |w
−→
x.l (Q,R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x :•A⊕ B | ∆2, x :•A⊕ B ` T | ∆ ` w :•D | ∆′, w :•D ` T ′

Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w :D Q . Ψ2 | Ψ3 | ∆′, w :D ` T ′ | ∆1 ` x :•A | ∆2, x :•A ` T

P |w Q . Ψ1 | Ψ2 | Ψ3 | ∆ ` w :•D | ∆′, w :•D ` T ′ | ∆1 ` x :•A | ∆2, x :•A ` T
Conn

P . Ψ1 | ∆ ` w :D R . Ψ3 | ∆2, x :B ` T | ∆′, w :D ` T ′

P |w R . Ψ1 | Ψ3 | ∆ ` w :•D | ∆′, w :•D ` T ′ | ∆2, x :B ` T
Conn

−→
x.l ((P |w Q) , (P |w R)) . Ψ1 | Ψ2 | Ψ3 | ∆ ` w :•D | ∆′, w :•D ` T ′ | ∆1 ` x :•A⊕ B | ∆2, x :•A⊕ B ` T

⊕C1

The other cases are similar.
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[Conn/⊕ C1/R/L] P |w
−→
x.l (Q,R) ≡

−→
x.l ((P |w Q) , R)

(
w ∈ fn(Q ), w 6∈ fn(R )

)
Case 1:

P . Ψ′′ | ∆4 ` w :D

Q . Ψ | Ψ′ | ∆3, w :D ` T ′ | ∆1 ` x :•A | ∆2, x :•A ` T R . Ψ′ | ∆2, x :B ` T

−→
x.l (Q,R) . Ψ | Ψ′ | ∆3, w :D ` T ′ | ∆1 ` x :•A⊕ B | ∆2, x :•A⊕ B ` T

⊕C1

P |w
−→
x.l (Q,R) . Ψ | Ψ′ | Ψ′′ | ∆4 ` w :•D | ∆3, w :•D ` T ′ | ∆1 ` x :•A⊕ B | ∆2, x :•A⊕ B ` T

Conn

is equivalent to (≡)

P . Ψ′′ | ∆4 ` w :D Q . Ψ | Ψ′ | ∆3, w :D ` T ′ | ∆1 ` x :•A | ∆2, x :•A ` T

P |w Q . Ψ | Ψ′ | Ψ′′ | ∆4 ` w :•D | ∆3, w :•D ` T ′ | ∆1 ` x :•A | ∆2, x :•A ` T
Conn

R . Ψ′ | ∆2, x :B ` T

−→
x.l ((P |w Q) , R) . Ψ | Ψ′ | Ψ′′ | ∆4 ` w :•D | ∆3, w :•D ` T ′ | ∆1 ` x :•A⊕ B | ∆2, x :•A⊕ B ` T

⊕C1

The other cases are similar.

[Conn/⊕ C2/L]
−→
x.r (P,Q) |w R ≡

−→
x.r ((P |w R) , (Q |w R))

(
w ∈ fn(P ) ∩ fn(Q )

)
Similar to [Conn/⊕ C1/L].

[Conn/⊕ C2/R] P |w
−→
x.r (Q,R) ≡ −→x.r ((P |w Q) , (P |w R))

(
w ∈ fn(Q ) ∩ fn(R )

)

Similar to [Conn/⊕ C1/R].

[Conn/⊕ C2/R/R] P |w
−→
x.r (Q,R) ≡ −→x.r (Q , (P |w R))

(
w 6∈ fn(Q ), w ∈ fn(R )

)
Similar to [Conn/⊕ C1/R/L].
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Commuting Conn with &C

[Conn/&C1/L]
−→
x.l (P,Q) |w R ≡

−→
x.l ((P |w R), Q)

(
w ∈ fn(P ), w 6∈ fn(Q )

)
P . Ψ1 | Ψ2 | ∆1 ` x : •A | ∆2, x : •A ` w : C Q . Ψ2 | ∆1 ` x : •B

−→
x.l (P,Q) . Ψ1 | Ψ2 | ∆1 ` x : •A&B | ∆2, x : •A&B ` w : C

&C1

R . Ψ3 | ∆, w : C ` T

−→
x.l (P,Q) |w R . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` w : •C | ∆, w : •C ` T

Conn

is equivalent to (≡)

P . Ψ1 | Ψ2 | ∆1 ` x : •A | ∆2, x : •A ` w : C R . Ψ3 | ∆, w : C ` T

P |w R . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A | ∆2, x : •A ` w : •C | ∆, w : •C ` T
Conn

Q . Ψ2 | ∆1 ` x : •B

−→
x.l ((P |w R), Q) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` w : •C | ∆, w : •C ` T

&C1

[Conn/&C1/R] P |w
−→
x.l (Q,R) ≡

−→
x.l (P |w Q,P |w R)

(
w ∈ fn(Q ) ∩ fn(R )

)
Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | Ψ3 | ∆1 ` x : •A | ∆2, x : •A ` T | ∆′, w : C ` T ′ R . Ψ3 | ∆1 ` x : B | ∆′, w : C ` T ′

−→
x.l (Q,R) . Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆′, w : C ` T ′

&C1

P |w
−→
x.l (Q,R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | Ψ3 | ∆1 ` x : •A | ∆2, x : •A ` T | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

P . Ψ1 | ∆ ` w : C R . Ψ3 | ∆1 ` x : B | ∆′, w : C ` T ′

P |w R . Ψ1 | Ψ3 | ∆1 ` x : B | ∆ ` w : •C∆′, w : •C ` T ′
Conn

−→
x.l ((P |w Q) , (P |w R)) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

⊕C1

The other cases are similar.

[Conn/&C1/R/L] P |w
−→
x.l (Q,R) ≡

−→
x.l ((P |w Q) , R)

(
w ∈ fn(Q ), w 6∈ fn(R )

)
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Case 1:

P . Ψ1 | ∆ ` w : C

Q . Ψ2 | Ψ3 | ∆1 ` x : •A | ∆2, x : •A ` T | ∆′, w : C ` T ′ R . Ψ3 | ∆1 ` x : B |

−→
x.l (Q,R) . Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆′, w : C ` T ′

&C1

P |w
−→
x.l (Q,R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

Conn

is equivalent to (≡)

P . Ψ1 | ∆ ` w : C Q . Ψ2 | Ψ3 | ∆1 ` x : •A | ∆2, x : •A ` T | ∆′, w : C ` T ′

P |w Q . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A | ∆2, x : •A ` T | ∆ ` w : •C | ∆′, w : •C ` T ′
Conn

R . Ψ3 | ∆1 ` x : B

−→
x.l ((P |w Q) , R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A&B | ∆2, x : •A&B ` T | ∆ ` w : •C | ∆′, w : •C ` T ′

⊕C1

The other cases are similar.

[Conn/&C2/L]
−→
x.r (P,Q) |w R ≡

−→
x.r (P , (Q |w R))

(
w 6∈ fn(P ), w ∈ fn(Q )

)
Similar to [Conn/&C1/L].

[Conn/&C2/R] P |w
−→
x.r (Q,R) ≡ −→x.r (P |w Q,P |w R)

(
w ∈ fn(Q ) ∩ fn(R )

)
Similar to [Conn/&C1/R].

[Conn/&C2/R/L] P |w
−→
x.r (Q,R) ≡ −→x.r (P , (Q |w R) )

(
w 6∈ fn(Q ), w ∈ fn(Q )

)
Similar to [Conn/&C1/R/L].
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C.2 Reductions

Reductions for the Action Fragment

[β1] (νx) (close[x] |x wait[x];Q)
x−→ Q

close[x] . · ` 1
1R

Q . Ψ | ∆ ` T

wait[x];Q . Ψ | ∆, 1 ` T
1L

close[x] |x wait[x];Q . Ψ | · ` x : •1 | ∆, x : •1 ` T
Connx

(νx) (close[x] |x wait[x];Q) . Ψ | ∆ ` T
Scopex

x−−→

Q . Ψ | ∆ ` T

[β⊗] (νx) (x(y); (P | Q) |x x(y);R)
x−→ (νy) (νx)

(
P |y (Q |x R)

)
P . Ψ1 | ∆1 ` y : A Q . Ψ2 | ∆2 ` x : B

x(y); (P |Q) . Ψ1 | Ψ2 | ∆1,∆2 ` x : A⊗ B
⊗R

R . Ψ3 | ∆3, y : A, x : B ` T

x(y);R . Ψ3 | ∆3, x : A⊗ B ` T
⊗L

x(y); (P |Q) |x x(y);R . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T
Connx

(νx) (x(y); (P |Q) |x x(y);R) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T
Scopex

x−−→

P . Ψ1 | ∆1 ` y : A

Q . Ψ2 | ∆2 ` x : B R . Ψ3 | ∆3, y : A, x : B ` T

Q |x R . Ψ2 | Ψ3 | ∆2 ` x : •B | ∆3, y : A, x : •B ` T
Connx

P |y (Q |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y : •A | ∆2 ` x : •B | ∆3, y : •A, x : •B ` T
Conny

(νx)
(
P |y (Q |x R)

)
. Ψ1 | Ψ2 | Ψ3 | ∆1 ` y : •A | ∆2,∆3, y : •A ` T

Scopex

(νy) (νx)
(
P |y (Q |x R)

)
. Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T

Scopey

[β(] (νx) (x(y);P |x x(y); (Q | R))
x−→ (νx) (νy)

(
(Q |y P ) |x R)
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P . Ψ1 | ∆1, y : A ` x : B

x(y);P . Ψ1 | ∆1 ` x : A ( B
( R

Q . Ψ2 | ∆2 ` y : A R . Ψ3 | ∆3, x : B ` T

x(y); (Q |R) . Ψ2 | Ψ3 | ∆2,∆3, x : A ( B ` T
( L

x(y);P |x x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆1, x : •A ( B ` T | ∆2,∆3 ` x : •A ( B
Connx

(νx) (x(y);P |x x(y); (Q |R)) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T
Scopex

x−−→

Q . Ψ2 | ∆2 ` y : A P . Ψ1 | ∆1, y : A ` x : B

Q |y P . Ψ1 | Ψ2 | ∆2 ` y : •A | ∆1, y : •A ` x : B
Conny

R . Ψ3 | ∆3, x : B ` T

(Q |y P ) |x R . Ψ1 | Ψ2 | Ψ3 | ∆2 ` y : •A | ∆1, y : •A ` x : •B | ∆3, x : •B ` T
Connx

(νy)
(
(Q |y P ) |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x : •B | ∆3, x : •B ` T

Scopey

(νx) (νy)
(
(Q |y P ) |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2,∆3 ` T

Scopex

[β&1 ] (νx) (x.case(P,Q) |x x.inl;R)
x−→ (νx) (P |x R)

P . Ψ | ∆ ` x : A Q . Ψ | ∆ ` x : B

x.case(P,Q) . Ψ | ∆ ` x : A&B
&R

R . Ψ′ | ∆′, x : A ` T

x.inl;R . Ψ′ | ∆′, x : A&B ` T
&L1

x.case(P,Q) |x x.inl;R . Ψ | Ψ′ | ∆ ` x : •A&B | ∆′, x : •A&B ` T
Connx

(νx) (x.case(P,Q) |x x.inl;R) . Ψ | Ψ′ | ∆,∆′ ` T
Scopex

x−−→

P . Ψ | ∆ ` x : A R . Ψ′ | ∆′, x : A ` T

P |x R . Ψ | Ψ′ | ∆ ` x : •A | ∆′, x : •A ` T
Connx

(νx) (P |x R) Ψ | Ψ′ | ∆,∆′ ` T
Scopex

[β&2 ] (νx) (x.case(P,Q) |x x.inr;R)
x−→ (νx) (Q |x R)

P . Ψ | ∆ ` x : A Q . Ψ | ∆ ` x : B

x.case(P,Q) . Ψ | ∆ ` x : A&B
&R

R . Ψ′ | ∆′, x : B ` T

x.inr;R . Ψ′ | ∆′, x : A&B ` T
&L2

x.case(P,Q) |x x.inr;R . Ψ | Ψ′ | ∆ ` x : •A&B | ∆′, x : •A&B ` T
Connx

(νx) (x.case(P,Q) |x x.inr;R) . Ψ | Ψ′ | ∆,∆′ ` T
Scopex

x−−→

Q . Ψ | ∆ ` x : B R . Ψ′ | ∆′, x : B ` T

Q |x R . Ψ | Ψ′ | ∆ ` x : •B | ∆′, x : •B ` T
Connx

(νx) (Q |x R) . Ψ | Ψ′ | ∆,∆′ ` T
Scopex
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[β⊕1 ] (νx) (x.inl;P |x x.case(Q,R))
x−→ (νx) (P |w Q)

P . Ψ | ∆ ` x : A

x.inl;P . Ψ | ∆ ` x : A⊕ B
⊕R1

Q . Ψ′ | ∆′, x : A ` T R . Ψ′ | ∆′, x : B ` T

x.case(Q,R) . Ψ′ | ∆′, x : A⊕ B ` T
⊕L

x.inl;P |x x.case(Q,R) . Ψ | Ψ′ | ∆ ` x : •A⊕ B | ∆′, x : •A⊕ B ` T
Connx

(νx) (x.inl;P |x x.case(Q,R)) . Ψ | Ψ′ | ∆,∆′ ` T
Scopex

x−−→

P . Ψ | ∆ ` x : A Q . Ψ′ | ∆′, x : A ` T

P |w Q . Ψ | Ψ′ | ∆ ` x : •A | ∆′, x : •A ` T
Connx

(νx) (P |w Q) . Ψ | Ψ′ | ∆,∆′ ` T
Scopex

[β⊕2 ] (νx) (x.inr;P |x x.case(Q,R))
x−→ (νx) (P |x R)

x.inr;P

P . Ψ | ∆ ` x : B

.Ψ | ∆ ` x : A⊕ B
⊕R2

Q . Ψ′ | ∆′, x : A ` T R . Ψ′ | ∆′, x : B ` T

x.case(Q,R) . Ψ′ | ∆′, x : A⊕ B ` T
⊕L

x.inr;P |x x.case(Q,R) . Ψ | Ψ′ | ∆ ` x : •A⊕ B | ∆′, x : •A⊕ B ` T
Connx

(νx) (x.inr;P |x x.case(Q,R)) . Ψ | Ψ′ | ∆,∆′ ` T
Scopex

x−−→

P . Ψ | ∆ ` x : B R . Ψ′ | ∆′, x : B ` T

P |x R . Ψ | Ψ′ | ∆ ` x : •B | ∆′, x : •B ` T
Connx

(νx) (P |x R) . Ψ | Ψ′ | ∆,∆′ ` T
Scopex

Reductions for the Interaction Fragment

[β1C] (νx)
−→

close[x];P
•x−−→ P

P . Ψ | ∆ ` T

−→
close[x];P . Ψ | · ` x : •1 | ∆, x : •1 ` T

1Cx

(νx)
−→

close[x];P . Ψ | ∆ ` T

Scopex

•x−−−→ P . Ψ | ∆ ` T

[β⊗C] (νx)
−→
x(y);P

•x−−→ (νy) (νx) P
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P . Ψ | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T

−→
x(y);P . Ψ | ∆1,∆2 ` x : •A⊗ B | ∆3, x : •A⊗ B ` T

⊗Cx

(νx)
−→
x(y);P . Ψ | ∆1,∆2,∆3 ` T

Scopex

•x−−−→

P . Ψ | ∆1 ` x : •B | ∆2 ` y : •A | ∆3, y : •A, x : •B ` T

(νx) P . Ψ | ∆2 ` y : •A | ∆1,∆3, y : •A ` T
Scopex

(νy) (νx) P . Ψ | ∆1,∆2,∆3 ` T
Scopey

[β(C] (νx)
−→
x(y);P

•x−−→ (νy) (νx) P

P . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T | ∆3, y : •A ` x : •B

−→
x(y);P . Ψ | ∆1,∆2, x : •A ( B ` T | ∆3 ` x : •A ( B

( Cx

(νx)
−→
x(y);P . Ψ | ∆1,∆2,∆3 ` T

Scopex

•x−−−→

P . Ψ | ∆1 ` y : •A | ∆2, x : •B ` T | ∆3, y : •A ` x : •B

(νx) P . Ψ | ∆1 ` y : •A | ∆2,∆3, y : •A ` T
Scopex

(νy) (νx) P . Ψ | ∆1,∆2,∆3 ` T
Scopey

[β&C1 ] (νx)
−→
x.l (P,Q)

•x−−→ (νx) P

P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T Q . Ψ′ | ∆1 ` x : B

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T

&Cx
1

(νx)
−→
x.l (P,Q) . Ψ | Ψ′ | ∆1,∆2 ` T

Scopex

•x−−−→

P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T

(νx) P . Ψ | Ψ′ | ∆1,∆2 ` T
Scopex

[β&C2 ] (νx)
−→
x.r (P,Q)

x−→ (νx)Q

P . Ψ | ∆1 ` x : A Q . Ψ | Ψ′ | ∆1 ` x : •B | ∆2, x : •B ` T

−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A&B | ∆2, x : •A&B ` T

&Cx
2

(νx)
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1,∆2 ` T

Scopex

•x−−−→

Q . Ψ | Ψ′ | ∆1 ` x : •B | ∆2, x : •B ` T

(νx)Q . Ψ | Ψ′ | ∆1,∆2 ` T
Scopex
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[β⊕C1 ] (νx)
−→
x.l (P,Q)

x−→ (νx) P

P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T Q . Ψ′ | ∆2, x : B ` T

−→
x.l (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T

⊕Cx
1

(νx) (
−→
x.l (P,Q)) . Ψ | Ψ′ | ∆1,∆2 ` T

Scopex

•x−−−→

P . Ψ | Ψ′ | ∆1 ` x : •A | ∆2, x : •A ` T

(νx) P . Ψ | Ψ′ | ∆1,∆2 ` T
Scopex

[β⊕C2 ] (νx)
−→
x.r (P,Q)

x−→ (νx)Q

P . Ψ | ∆2, x : A ` T Q . Ψ | Ψ′ | ∆1 ` x : •B | ∆2, x : •B ` T

−→
x.r (P,Q) . Ψ | Ψ′ | ∆1 ` x : •A⊕ B | ∆2, x : •A⊕ B ` T

⊕Cx
2

(νx)
−→
x.r (P,Q) . Ψ | Ψ′ | ∆1,∆2 ` T

Scopex

•x−−−→

Q . Ψ | Ψ′ | ∆1 ` x : •B | ∆2, x : •B ` T

(νx)Q . Ψ | Ψ′ | ∆1,∆2 ` T
Scopex
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C.3 Abstraction and Concretisation

[αγ1] close[x] |x wait[x];P
x
99K −→

close[x];P

close[x] . · ` x :1
1R

P . Ψ | ∆ ` T

wait[x];P . Ψ | ∆, x :1 ` T
1L

close[x] |x wait[x];P . Ψ | · ` x :•1 | ∆, x :•1 ` T
Conn

x
99K

P . Ψ | ∆ ` T

−→
close[x];P . Ψ | · ` x :•1 | ∆, x :•1 ` T

1C

[αγ⊗] x(y); (P | Q) |x x(y);R
x
99K −→

x(y);
(
P |y (Q |x R))

P . Ψ1 | ∆1 ` y :A Q . Ψ2 | ∆2 ` x :B

x(y); (P |Q) . Ψ1 | Ψ2 | ∆1,∆2 ` x :A⊗ B
⊗R

R . Ψ3 | ∆3, y :A, x :B ` T

x(y);R . ∆3, x :A⊗ B ` T
⊗L

x(y); (P |Q) |x x(y);R . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•A⊗ B | ∆3, x :•A⊗ B ` T
Conn

x
99K

P . Ψ1 | ∆1 ` y :A

Q . Ψ2 | ∆2 ` x :B R . Ψ3 | ∆3, y :A, x :B ` T

Q |x R . Ψ2 | Ψ3 | ∆2 ` x :•B | ∆3, y :A, x :•B ` T
Connx

P |y (Q |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T
Conny

−→
x(y);

(
P |y (Q |x R)) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•A⊗ B | ∆3, x :•A⊗ B ` T

⊗Cx

[αγ(] x(y);P |x x(y); (Q | R)
x
99K −→

x(y);
(
(Q |y P ) |x R

)
P . Ψ1 | ∆1, y : A ` x : B

x(y);P . Ψ1 | ∆1 ` x : A(B
( R

Q . Ψ2 | ∆2 ` y : A R . Ψ3 | ∆3, x : B ` T

x(y); (Q |R) . Ψ2 | Ψ3 | ∆2,∆3, x : A ( B ` T
( L

x(y);P |x x(y); (Q |R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` x : •A ( B | ∆2,∆3, x : •A ( B ` T
Connx

x
99K

Q . Ψ2 | ∆2 ` y : A P . Ψ1 | ∆1, y : A ` x : B

Q |y P . Ψ1 | Ψ2 | ∆2 ` y : •A | ∆1, y : •A ` x : B
Conny

R . Ψ3 | ∆3, x : B ` T

(Q |y P ) |x R . Ψ1 | Ψ2 | Ψ3 | ∆2 ` y : •A | ∆1, y : •A ` x : •B | ∆3, x : •B ` T
Connx

−→
x(y);

(
(Q |y P ) |x R

)
. Ψ1 | Ψ2 | Ψ3 | ∆2 ` x : •A ( B | ∆1,∆3, x : •A ( B ` T

( Cx
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[αγ&1 ] x.case(P,Q) |x x.inl;R
x
99K −→

x.l ((P |x R), Q)

P . Ψ | ∆ ` x : A Q . Ψ | ∆ ` x : B

x.case(P,Q) . Ψ | ∆ ` x : A&B
&R

R . Ψ′ | ∆′, x : A ` T

x.inl;R . Ψ′ | ∆′, x : A&B ` T
&L1

x.case(P,Q) |x x.inl;R . Ψ | Ψ′ | ∆ ` x : •A&B | ∆′, x : •A&B ` T
Connx

x
99K

P . Ψ | ∆ ` x : A R . Ψ′ | ∆′, x : A ` T

P |x R . Ψ | Ψ′ | ∆ ` x : •A | ∆′, x : •A ` T
Connx

Q . Ψ | ∆ ` x : B

−→
x.l ((P |x R), Q) . Ψ | Ψ′ | ∆ ` x : •A&B | ∆′, x : •A&B ` T

&Cx
1

[αγ&2 ] x.case(P,Q) |x x.inr;R
x
99K −→

x.r (P , Q |x R)

P . Ψ | ∆ ` x : A . Q Ψ | ∆ ` x : B

x.case(P,Q) . Ψ | ∆ ` x : A&B
&R

R . Ψ′ | ∆′, x : B ` T

x.inr;R . Ψ′ | ∆′, x : A&B ` T
&L2

x.case(P,Q) |x x.inr;R . Ψ | Ψ′ | ∆ ` x : •A&B | ∆′, x : •A&B ` T
Connx

x
99K

P . Ψ | ∆ ` x : A

Q . Ψ | ∆ ` x : B R . Ψ′ | ∆′, x : B ` T

Q |x R . Ψ | Ψ′ | ∆ ` x : •B | ∆′, x : •B ` T
Connx

−→
x.r (P , (Q |x R)) . Ψ | Ψ′ | ∆ ` •x : A&B | ∆′, •x : A&B ` T

&Cx
2

[αγ⊕1 ] x.inl;P |x x.case(Q,R)
x
99K −→

x.l ((P |x Q) , R)

P . Ψ | ∆ ` x : A

x.inl;P . Ψ | ∆ ` x : A⊕ B
⊕R1

Q . Ψ′ | ∆′, x : A ` T R . Ψ′ | ∆′, x : B ` T

x.case(Q,R) . Ψ′ | ∆′, x : A⊕ B ` T
⊕L

x.inl;P |x x.case(Q,R) . Ψ | Ψ′ | ∆ ` x : •A⊕ B | ∆′, x : •A⊕ B ` T
Connx

x
99K

P . Ψ | ∆ ` x : A Q . Ψ′ | ∆′, x : A ` T

P |x Q . Ψ | Ψ′ | ∆ ` x : •A | ∆′, x : •A ` T
Connx

R . Ψ′ | ∆′, x : B ` T

−→
x.l ((P |x Q) , R) . Ψ | Ψ′ | ∆ ` x : •A⊕ B | ∆′, x : •A⊕ B ` T

⊕Cx
1
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[αγ⊕2 ] x.inr;P |x x.case(Q,R)
x
99K −→

x.r (Q , (P |x R))

P . Ψ | ∆ ` x : B

x.inr;P . Ψ | ∆ ` x : A⊕ B
⊕R2

Q . Ψ′ | ∆′, x : A ` T R . Ψ′ | ∆′, x : B ` T

x.case(Q,R) . Ψ′ | ∆′, x : A⊕ B ` T
⊕L

x.inr;P |x x.case(Q,R) . Ψ | Ψ′ | ∆ ` x : •A⊕ B | ∆′, x : •A⊕ B ` T
Connx

x
99K

Q . Ψ′ | ∆′, x : A ` T

P . Ψ | ∆ ` x : B R . Ψ′ | ∆′, x : B ` T

P |x R . Ψ | Ψ′ | ∆ ` x : •B | ∆′, x : •B ` T
Connx

−→
x.r (Q , (P |x R)) . Ψ | Ψ′ | ∆ ` x : •A⊕ B | ∆′, x : •A⊕ B ` T

⊕Cx
2
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