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Abstract. Jolie is the first language for microservices and it is cur-
rently dynamically type checked. This paper considers the opportunity
to integrate dynamic and static type checking with the introduction of
refinement types, verified via SMT solver. The integration of the two as-
pects allows a scenario where the static verification of internal services
and the dynamic verification of (potentially malicious) external services
cooperates in order to reduce testing effort and enhancing security.
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1 Introduction

“Stringly typed” is a new antipattern referring to an implementation that need-
lessly relies on strings, when other options are available. The problem of “string
typing” appears often in service-oriented architecture and microservices on the
border between a service and its clients (external interfaces) due to necessity
to communicate over text-based protocols (like HTTP) and collaboration with
clients written in dynamically-typed languages (like JavaScript). The solution
to this problem can be found with refinement types, which are used to statically
(or dynamically) check compatibility of a given value and refined type by means
of predicates constraining the set of possible values. Though employment of nu-
merical refinements is well-known in programming languages, string refinements
are still rare.

In this paper, we introduce a design for extending the Jolie programming
language [24,3] and its type system. On top of previous extensions with choice
type [27] and regular expressions, we introduce here string refinement type and
we motivate the reasons for such extension. Section 2 recalls the basic of the
Jolie language and its type system while Section 3 describes the open problem
this paper attacks with clarifying examples. Section 4 discusses related work in
the context of using SMT solvers for static typing of refinement types.
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2 Jolie programming language

Jolie [24] is the first programming language based on the paradigm of microser-
vices [17]: all components are autonomous services that can be deployed inde-
pendently and operate by running parallel processes, programmed following the
workflow approach. Microservices can be composed to obtain, in turn, other mi-
croservices. The language was originally developed in the context of a major
formalization effort for workflow and services composition languages, the EU
Project SENSORIA [1], which spawned many models for reasoning on the com-
position of services (e.g., [19,20]). Jolie comes with a formally-specified seman-
tics [16,15,23]; on the more practical side it is inspired by standards for Service-
oriented Computing such as WS-BPEL [4]. The combination of theoretical and
practical aspects in Jolie enabled its usage in research on correct-by-construction
software (see, e.g., [26,9,21]).

Microservices work together by exchanging messages. In Jolie, messages are
structured as trees [23] (a variant of the structures that can be found in XML or
JSON). Communications are type checked at runtime, when messages are sent
or received. Type checking of incoming messages is especially relevant, since it
mitigates the effect of ill-behaved clients. The work in [25] presents a first attempt
at formalizing a static type checker for the core fragment of Jolie. However, for
the time being, the language is still dynamically type checked.

3 Extension of Jolie Type System

In [27], the basic type system of Jolie has been extended with type choices. The
work had been then continued with the addition of regular expression types, a
special case of refinement types [14]. In refinement types, types are decorated
with logical predicates, which further constrain the set of values described by
the type and therefore represent the specification of invariant on values. Here,
we extend this with the possibility of expressing invariants on string values in
form of regular expressions. The integration of static and dynamic analysis al-
lows considering internal services (native Jolie services) and calls from external

services (potentially developed in other languages) in a complementary way. The
first ones can be statically checked while the second ones, which could exhibit
malicious behavior, still need a runtime validation.

The key idea behind service-oriented computing, and microservices in par-
ticular, is the ability to connect services developed in different programming
languages and possibly running on different servers over standard communica-
tion protocols [17]. A common use case is the implementation of APIs for Web
and mobile applications. In such scenarios, the de-facto standard communication
protocol is HTTP(S), combined with standardized data formats (SOAP, JSON,
etc.).
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HTTP is a text-based protocol, where all data get serialized into strings4.
Moreover, clients of a service (an application or another service) may have
been developed in a language that does not support particular datatypes (e.g.,
JavaScript does not have a datatype for calendar dates or time of day), therefore
relying on string representation for internal processing too. The same issue arises
with key-value storage systems (e.g., Memcache and Redis), which support only
string keys and string values. These factors make string handling an important
part of a service application, especially at the boundary with external systems.

Not all strings are made equal. For example, GUIDs are often used to iden-
tify records in a store. GUIDs are represented as strings of hexadecimal digits
with a particular structure. Currently, developers have to manually check the
conformance of received values to the expected format.

Description of the shape of expected string data is natural with regular ex-
pressions. Adding the description of this shape to the datatype definition allows
the compiler to automatically insert the necessary dynamic checks and statically
validate the conformance. This is the extension of refinement type to string type.
The same techniques and tools used for static verification of conformance for nu-
merical refinements [18,12] can be used for strings. For the purposes of this paper
we will use Z3 SMT solver by Microsoft Research [6], which recently got support
for theory of strings and regular expressions in development branch.

3.1 Example: the news board

The approach to static checking of string refinements using Z3 SMT solver is
illustrated here by a simple example, i.e. a service using refined datatype for
GUIDs and the SMT constraints generated for it.

A news board is a simple service in charge of retrieving posts composed by a
particular user of the system. The service receives user information via HTTP
in a string format. String refinement types allow the definition of constraints
on user IDs as an alternative to the implementation of the logic checking the
constraint inside the posts retrieving operation.

1 type guid : string ( ” [A−F\\d ]{8 ,8} − [A−F\\d ]{4 ,4} − [A−F\\d ]
2 {4 ,4}− [A−F\\d ]{4 ,4} − [A−F\\d ]{12 ,12} ” )

Types for storing user and posts information are also necessary.

1 type user : void {
2 . u id : guid
3 . name : string

4 . age : int ( age>18) }
5 type po s t type : void {
6 . p id : guid

4 Jolie partially mitigates this aspect with automatic conversion of string serializations
to structured data by following the interface definition of the service [22]. However,
this does not solve the general problem addressed here.
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7 . owner : guid
8 . content : string }
9 type po s t s : void { . post ∗ : po s t type }

We leave service deployment information out of this paper due to its low
relevance to the topic, the full code example can be found in [2]. The behavioral
fragment of the news board demonstrates the post retrieval for a particular user.
To get the information the right user has to be found (find user by name) and
pass the GUID to get all users posts.

There are two definitions of the operation in the following code fragment:
all posts by user and all posts by user2. In the first one the correct data is passed
to get all users posts, i.e. user.uid ; while in the second user.name is passed.
Without string refinement a problem would here arise. The code is syntactically
correct. However, it’s semantically incorrect since no information can be retrieved
by user’s name when user’s ID is actually expected.

1 main {
2 a l l p o s t s b y u s e r (name) {
3 f ind user by name@Sel fOut (name ) ( user ) ;
4 g e t a l l u s e r s p o s t s@S e l fOu t ( user . uid ) ( po s t s ) } ;
5

6 a l l p o s t s b y u s e r 2 (name) {
7 f ind user by name@Sel fOut (name ) ( user ) ;
8 // and here we pass the wrong f i e l d !
9 g e t a l l u s e r s p o s t s@S e l fOu t ( user . name ) ( po s t s ) } ;

10

11 // f ind user by name d e f i n i t i o n
12 // g e t a l l u s e r s p o s t s d e f i n i t i o n }

Introducing string refinement allows Jolie to have both dynamic and static
checking for strings. In case of dynamic checking, the string is verified at runtime
when passed to the receiving service. The more interesting case is static checking
by means of SMT. Here we present the most essential parts of the encoding,
complete example can be found in [2].

1 ; no t i ons o f types , terms and typing r e l a t i o n
2 (declare−sort Type )
3 (declare−sort Term)
4 (declare−fun HasType (Term Type ) Bool)
5

6 ; type o f s t r i n g s o f a programming language
7 (declare−fun s t r i n g ( ) Type )
8 ; t r a n s l a t i o n from Z3 bu i l t−in S t r ing type
9 ; to our s t r i n g type and back

10 (declare−fun BoxString (String ) Term)
11 (declare−fun s t r ing−term−va l (Term) String )
12 ( assert ( f o ra l l ( ( s t r String ) )
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13 (= ( s t r ing−term−va l ( BoxString s t r ) ) s t r ) ) )
14 ( assert ( f o ra l l ( ( s String ) )
15 (HasType ( BoxString s ) s t r i n g ) ) )
16

17 ; guid type that r e f i n e s s t r i n g type
18 (declare−fun guid ( ) Type )
19 (define−fun guid−r e ( ) (RegEx String )
20 ; the c on s t r u c t i on o f the r e gu l a r expr e s s i on i s omitted
21 )
22 ; r e f inement d e f i n i t i o n f o r guid type
23 ( assert ( f o ra l l ( ( x Term) )
24 ( i f f (HasType x guid )
25 (and (HasType x s t r i n g )
26 ( s t r . in . r e ( s t r ing−term−va l x ) guid−r e ) ) ) ) )
27 ; we d e f i n e type user through i t ’ s p r o j e c t i o n s
28 (declare−fun user ( ) Type )
29 (declare−fun user . uid (Term) Term)
30 (declare−fun user . name (Term) Term)
31 (declare−fun user . age (Term) Term)
32 ; typing r u l e s f o r p r o j e c t i o n s
33 ( assert ( f o ra l l ( ( t Term) )
34 ( implies (HasType t user )
35 (and (HasType ( user . uid t ) guid )
36 (HasType ( user . name t ) s t r i n g )
37 (HasType ( user . age t ) nat ) ) ) ) )
38

39 (declare−fun f ind user by name (Term) Term)
40 ; f ind user by name : s t r i n g −> user
41 ( assert ( f o ra l l ( ( name Term) )
42 ( implies (HasType name s t r i n g )
43 (HasType ( f ind user by name name) user ) ) ) )
44

45 ; type check ing f o r a l l p o s t s b y u s e r
46 ( assert (not ( f o ra l l ( ( t Term) )
47 ( implies (HasType t s t r i n g )
48 (HasType ( user . uid ( f ind user by name t ) ) guid ) ) ) ) )
49 ; type check ing f o r a l l p o s t s b y u s e r 2
50 ( assert (not ( f o ra l l ( ( t Term) )
51 ( implies (HasType t s t r i n g )
52 (HasType ( user . name ( f ind user by name t ) ) guid ) ) ) ) )

Type checking is based on proving a theorem stating that a function is cor-
rectly typed. Technically, the opposite proposition is actually stated and the
SMT solver is put in charge of finding a counterexample. A failure in such an
attempt leads to the conclusion that the original theorem has be true (proof by
contradiction).
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The Z3 solver successfully proves the well-typedness theorem for the correct
implementation of all posts by user, and fails to disprove the incorrect imple-
mentation (all posts by user2 ). Actually, in the second case the proof never ter-
minates. This fact is due to many simplifications to the presented SMT encoding
for the sake of clarity and understandability which cause infinite (recursive) gen-
eration of Skolem terms. Employment of a more sophisticated encoding for the
actual implementation of refinement constraints may mitigate infinite recursion
and it is left as future work.

4 Related work

Within the context of functional languages, type-checking of refined types by em-
ploying SMT solvers is not new. In [7], the authors present the design and imple-
mentation of the F7 enhanced type-checker for the functional language F# that
verifies security properties of cryptographic protocols and access control mech-
anisms using Z3 [10]. The SAGE language [18] employs a hybrid approach [13]
that performs both static and dynamic type-checking. During compilation time,
the Simplify theorem prover [11] is used to check refinement types. If Simplify is
not able to decide a particular subtyping relation, a proper type cast is inserted
in the code and it is checked at runtime. If the type cast fails during runtime,
this particular subtyping relation is inserted in a database of known failed casts.
In contrast to checking syntactic subtyping as in F7 and SAGE, the authors
of [8], introduce semantic subtyping checking for a subset of the M language [5]
using the Z3 SMT solver.
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Semantic subtyping with an smt solver. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’10, pages 105–116,
New York, NY, USA, 2010. ACM.

6

http://www.sensoria-ist.eu/
https://gist.github.com/gabriel-fallen/a04c33860e2157201fa8
http://www.jolie-lang.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
https://github.com/Z3Prover/z3


9. Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In POPL, pages 263–274, 2013.

10. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proc. of
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

11. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. J. ACM, 52(3):365–473, May 2005.

12. Joshua Dunfield. A unified system of type refinements. PhD thesis, Air Force
Research Laboratory, 2007.

13. Cormac Flanagan. Hybrid type checking. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’06, pages 245–256, New York, NY, USA, 2006. ACM.

14. Tim Freeman and Frank Pfenning. Refinement types for ml. In Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Imple-
mentation, PLDI ’91, pages 268–277. ACM, 1991.

15. Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Dynamic
error handling in service oriented applications. Fundam. Inform., 95(1):73–102,
2009.

16. Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro, Nadia Busi, and Roberto
Gorrieri. Sock: a calculus for service oriented computing. In In ICSOC, volume
4294 of LNCS, pages 327–338. Springer, 2006.

17. Martin Fowler James Lewis. Microservices: a definition
of this new architectural term. Accessed February 2016.
http://martinfowler.com/articles/microservices.htm.

18. Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N Freund, and Cormac
Flanagan. Sage: Unified hybrid checking for first-class types, general refinement
types, and dynamic (extended report), 2006.

19. Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL.
J. Log. Algebr. Program., 70(1):96–118, 2007.

20. Manuel Mazzara, Faisal Abouzaid, Nicola Dragoni, and Anirban Bhattacharyya.
Toward design, modelling and analysis of dynamic workflow reconfigurations - A
process algebra perspective. In Web Services and Formal Methods - 8th Interna-
tional Workshop, WS-FM, pages 64–78, 2011.

21. Fabrizio Montesi. Choreographic Programming. Ph.D. thesis, IT University of
Copenhagen, 2013. http://fabriziomontesi.com/files/m13_phdthesis.pdf .

22. Fabrizio Montesi. Process-aware web programming with jolie. volume
abs/1410.3712, 2014.

23. Fabrizio Montesi and Marco Carbone. Programming Services with Correlation
Sets. In Proc. of Service-Oriented Computing - 9th International Conference, IC-
SOC, pages 125–141, 2011.

24. Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented pro-
gramming with jolie. In Web Services Foundations, pages 81–107. 2014.

25. J. M. Nielsen. A Type System for the Jolie Language. Master’s thesis, Technical
University of Denmark, 2013.

26. Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio
Gabbrielli. AIOCJ: A choreographic framework for safe adaptive distributed ap-
plications. In Software Language Engineering - 7th International Conference, SLE
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