arXiv:1511.02597v1 [cs.PL] 9 Nov 2015

Data-driven Workflows for Microservices

Larisa Safina*, Manuel Mazzara*, Fabrizio Montesi®
*Innopolis University, Russia
{l.safina, m.mazzara} @innopolis.ru
TUniversity of Southern Denmark
fmontesi @imada.sdu.dk

Abstract—Microservices is an architectural style inspired by
service-oriented computing that has recently started gaining
popularity. Jolie is a programming language based on the
microservices paradigm: the main building block of Jolie systems
are services, in contrast to, e.g., functions or objects. The
primitives offered by the Jolie language elicit many of the
recurring patterns found in microservices, like load balancers
and structured processes. However, Jolie still lacks some useful
constructs for dealing with message types and data manipulation
that are present in service-oriented computing. In this paper,
we focus on the possibility of expressing choices at the level
of data types, a feature well represented in standards for Web
Services, e.g., WSDL. We extend Jolie to support such type
choices and show the impact of our implementation on some of
the typical scenarios found in microservice systems. This shows
how computation can move from a process-driven to a data-
driven approach, and leads to the preliminary identification of
recurring communication patterns that can be shaped as design
patterns.

1. INTRODUCTION

The increasing complexity of modern software requires new
approaches to architectural design and system modeling. Com-
plex systems also show high level of concurrency, i.e. multiple
intertwined threads of executions, often running on different
hardware, which need to be synchronized and coordinated,
and which much share information, often through different
paradigms of communication. Therefore improving software
quality and deploying reliable services is the consequence
of an accurate use of optimal service-based architectural
styles and well-established software engineering techniques
for requirements elicitation, design, testing and verification, in
particular when it come to concurrent service-based systems.
In order to tackle these issues from the architectural viewpoint,
Microservices architecture appeared lately as a new paradigm
for programming applications by means of the composition of
small services, each running its own process and communi-
cating via light-weighted mechanisms [§]]. This approach has
been built on the concepts of Service-oriented Architectures|14]
brought from crossing-boundaries workflows to the application
level, and into the applications architectures, i.e. it Service-
oriented Architecture and Programming from the large to the
small.

Microservices architecture still shows distinctive character-
istics which blend into something unique and different from
SOA itself. The size is comparatively small versus a typical
service [8]], supporting the belief that the architectural design

of a system is highly dependent on the structural design of the
organization producing it.

In the context of microservices the Jolie programming
language [5], 6] emerged as a paradigmatic solution tuned
at getting the best out of this architectural style. Jolie is
comprehensive and capable of implementing both simple
services and complex orchestrations. Everything in Jolie is
a microservice and all these microservices can be easily
reused or composed for obtaining in turn new microservices.
This approach supports distributed architecture and guarantees
simple managing of components, which reduces maintenance
and development costs.

This work is devoted to extend the Jolie programming
language in order to support data-driven workflow, i.e. moving
the control-flow decision-making from process-driven to data-
driven. That means that control-flow can be directed at the
time of message passing according to the nature of the
message strucutre and type, instead of requiring post-reception
processing. A typical example of process-driven workflow is
presented in [10]]. In the microservice scenario this opportunity
opens to novel programming patterns. Whether the process-
driven or data-driven programming style is more suitable for an
application really depends on the specific problem domain and,
to same extent, to developers preferences and style. Data-driven
flows have been realized in Jolie by means of an extension to its
type system, which manifests as implementation of choice type.
Further extensions can be implemented in order to strengthen
further this possibility.

Two major contributions appear as a result of this work.
The first is of scientific nature, i.e., moving from process-
driven to data-driven and therefore open to new programming
patterns and styles. The second is of purely technical interest,
and stands in the re-engineering of the Jolie interpreter as
a consequence of the extended data type. This represents a
relevant case study of interpreter re-engineering, and therefore
can be valuable experience for the practitioners involved in
activities of comparable complexity.

The paper is structured as follows: in section [l a quick
overview of Jolie programming language is given in order to
intorduce the unfamiliar reader with the main concepts and
syntax. Far from being an exhaustive report, the section is
just a compendium providing the links for further study of
the topic. Section [lII| presents a case study on top of which
the major narrative of the paper is built and the contributions
are defined. In particular, two different kind of approaches

computation are described: process-driven and data-driven, and
examples of both are explained in order to understand the
differences. Sections [[V] and [V] describe the architecture of
the Jolie interpreter and the changes that were necessary in
order to extend the type system. Finally, section |VI| wraps up
final considerations regarding the contribution of this work,
and presents ideas on how future developments may be built
up on top of current achievements.

II. JOLIE LANGUAGE

In this section we brielfy recall the Jolie programming
language in order to simplify the reading of the remaining
part of the paper.

Each Jolie program is composed by two parts, a behavioral
part and a deployment part. A program can be formally
expressed as:

Program := Deployment Behavior

1) Deployment part: The deployment part contains directives
which help the Jolie program to receive and send messages and
be orchestrated among other microservices. The deployment
part is separated from the program behavioral part, so that the
same behavior may be reused later with a different deployment
configuration. Formally the deployment part is expressed as:

Deployment := Deploymentlnstruction*®

Where Deploymentlnstruction can include

o Interfaces: sets of operations equipped with information
about their request (and sometimes response) types;

e Message types: can be represented as native types, linked
types or undefined. Message types are the main subject
of this report and shall be discussed later in section [[T-A]

o Communication ports: define how communications with
other services are actually performed.

2) Behavioral part: The behavioral part contains microser-
vice implementation of the functionalities, containing both
computations and communication expressions. Examples of
expanded behavioral part utilization will be provided later in
section Formally, behavioral part can be expressed as:

Behavior z= BehaviouralBlock*
main {Process} BehaviouralBlock*
BehaviouralBlock := define id {Process}

| init {Process}

Main is a procedure which defines an entry point of execution.
Main can be followed or preceded by define procedures with
id identifier.

Init supports special procedures for initializing a service
before it makes its behaviors available. Procedures specified
with define can be used many times, while the one specified
with init is executed only once, when the service is started.

Process defines the activities to be performed by the service.
Processes can be composed in sequences, parallels and (input
guarded) non-deterministic choices [5].

3) Communication: Communication of processes can be
performed by two possible patterns: one-way (the endpoint
receives a message) and request-response (the endpoint receives
a message, and sends a response back to the caller):

Process u= ... | InputStatement
| OutputStatement
InputStatement == op(x) (One-Way)
| op(x)(y) Process (R-Response)
OutputStatement := op@OPort(x) (Notification)
| op@QOPort(x)(y) (S-Response)

One-Way is used to receive a message for operation op in
variable x. Request-Response is used to receive a message for
operation op in variable x, execute a Process and then send
back a response to the caller containing the value of variable
y. Notification and Solicit-Response are the dual of the former
ones to be used, respectively, for sending a message to a One-
Way statement or to a Request-Response one. OPort defines an
output port name of desired endpoint.

A. Jolie type system

Jolie provides a language for describing the types that are
allowed to be communicated over a network. Communications
are type checked at run-time when a message is received [13].
Message types are introduced in the deployment part of Jolie
programs:

DeploymentInstruction == ...
| type id : TypeDefinition

Where id is an identifier in order to use the message type in
other program parts and TypeDefinition can be a native type,
native type with subtypes, native type with undefined subnodes,
link type or can be undefined (means that variable is null until
a value is assigned to it):

TypeDefinition = ...
| NativeType
| NativeType { SubTypeList }
| NativeType { ? }
| id
| undefined
NativeType == int | double | string | raw | void | any

Where {?} represents untyped subnodes and undefined stands
a shortcut for any:{?}.

Except commonly-used native types as int, double or string,
Jolie also has the following types:

o raw (used for transmission of raw data streams as byte

arrays)

¢ void (is used for indicating that no value is contained by

the variable)

e any (means that any native type with which variable is

initialized will be accepted.

Untyped subnodes, expressed as {?} construction, indicate
that a node may have any kind of subtree. Already defined
types can be reused in other types definition as link types by
means of their ids.

Type may have any number of subtypes, which bnf-form is
the following:

SubTypeList == SubType
| SubType SubTypeList
SubType := .id Cardinality : TypeDefinition

Each subnode has its cardinality defined as one by default
or as following:

Cardinality == [int, int] (Range)
| [int , *] (Lower-bound)
| * (Shortcut for [0,*])
| ? (Shortcut for [0,1])
| €

III. Case Stupy

In this section we show how the extension to the Jolie type
system led to an enhanced arsenal at developers’ disposal. We
will proceed by examples. The short compendium of the Jolie
syntax as presented in the previous section, combined with the
code examples presented here, may be sufficient to grasp a
general understanding. For a more comprehensive information
the reader can refer to [[6] and [3].

Let us consider an example implementing a car rental. This
consists of three parts:

o Server, which provides the rental service;

e Client, which wants to use it;

« Interface, which declares the operations by means of which
client and server can interact with each other.

Client Service
oy
Client
Figure III.1. Client-service use-case diagram

We wil consider two possible approaches for the server to
handle clients’ requests: process-driven, implemented in Jolie
language by means of input-guarded operations, and data-driven
implemented by the newly added choice operator. We will then
add some considerations on the usage of both.

A. Process-driven approach

In this example, the Interface contains the definition of two
operations, dedicated to renting and returning the car, and
several data types:

e customer: stores customers personal information (name,
age, and driving license number) necessary to rent a car;

o car_return: holds the reference to customer’s profile who
has rent this car, the car’s identification number and the
state of the car after renting.

//Car rent interface

type customer: void {
.name: string
.age: int
.license: string

}

type car_return: void {
.car_state: string
.c?: customer
.car_id: string

}

interface CarRentlnterface {
RequestResponse:

get_car(customer)(string)

RequestResponse:

return_car(car_return)(string)

the server indicates the useage of operations defined in the
above interface. This is done by the include directive at the
beginning of the source code. The server’s deployment part
contains declaration of input port, by means of which it can
be accessed with the name and the protocol provided on the
defined location. The behavior part of the program contains
definition of two operations, get_car and return_car. They are
placed inside the square brackets "[..]", which are used in
input-guarded choice syntax. This means, that only one of the
operations can be executed at the time, while the others will
be deactivated.

// Server with input—-guarded operations
include "carRentlInterface.iol"

inputPort RentService {

Location: "socket://localhost:2001"
Protocol: sodep
Interfaces: CarRentInterface

}
execution{ concurrent }

main {
[get_car(request)(response){
response = "43535"
11

[return_car(request)(response){
if (request.car_state == "damaged")({
response = "Car is damaged!"
} else {
response =
}
11

"Thank you!"

The deployment part of the client describes how the
connection to the Rent Service works: the same interface,

protocol and Rent Service location. The behavioral part of the
client program executes the following operations:
« creating the request information
« sending this information to Rent Service to be processed
by get_car procedure
o Checking the response and printing it out

// Client . ol
include "carRentInterface.iol"
include "console.iol"

outputPort RentService {

Location: "socket://localhost:2001"
Protocol: sodep
Interfaces: CarRentlInterface
1
main {
// sending request for a car
customer .name = "John Smith";
customer.age = 32;
customer.license = "123454675";

get_car@RentService (customer)(
println@Console
("Car rent request is
println@Console
("Car id is "

response);

accepted .

")0Os
+ response)()

// returing the car
return.car_id = response;
return.car_state = "damaged";
return_car@RentService (return)(response);
println@Console

("Car is returned.

n

+ response)()

}

In order to better understand the execution, we show here the
results of running the application:

Process—driven approach
Car rent request is accepted. Car id
Car is returned. Car is damaged!

is 43535

The process-driven approach shows how, classically, the
action flows is directed via the use of input-guarded choice.
This approach is heavily influenced by the heritage of process
algebra, as described in [3]]. Input-guarded choice directed
flow is indeed the basic mechanism in, for example, the
untyped m-calculus [11]. Consequently, for this approach to be
supported and implementable the langauge does not require
to be particularly rich in term of type system and language
primitives. Jolie itself originally supported only this mechanism.

B. Data-driven approach

In this case, the choice operator allows us to use a data-driven
approach to computations.

Let’s enrich the interface syntax with the following data type
and operation:

//Car rent interface

type request: customer car_return

interface CarRentlnterface {

RequestResponse:
process (request)(string)

—_

process operation takes variable of request type, which itself
can be either of customer or car_return types

Let’s implement the new server, supporting process opera-
tion:

include "carRentInterface.iol"

inputPort RentService2 ({
Location: "socket://localhost:2002"
Protocol: sodep
Interfaces: CarRentlnterface

}
execution{ concurrent }
main {

process_user_request(request)(response){
request match {

customer { response = "43535" };
car_return {
if (request.car_state == "damaged"){
response = "Car is damaged!"
} else {
response = "Thank you!"

}
}
}
}

Please note that "match" directive is not in the stable version
of the project yet, so this example will be not compiled with
the current (1.4.1) version of the interpreter.

In this case we don’t need to separate execution of operations
by means of processes. Here it is done by means of the type
of the input request variable.

In order to test new approach, let’s change the client
program’s code:

// Client . ol

include "carRentInterface.iol"
include "console.iol"
outputPort RentService {

}

outputPort RentService2 {

Location: "socket://localhost:2002"
Protocol: sodep
Interfaces: CarRentlInterface
1
main {
// sending request for a car

println@Console ("Process—driven approach")();

// returing the car

// working with server based on data type
println@Console ("Data—driven approach")();
process@RentService2 (customer)(response);
println@Console

("Car rent request is accepted. ")();
println@Console
("Car id is " + response)();

process@RentService2 (return)(response);
println@Console
("Car is returned.

"

+ response)()

The result of the execution will be the following:

Data—driven approach
Car rent request is accepted. Car id
Car is returned. Car is damaged!

is 43535

The results are clearly the same than the process-driven
approach, showing how behaviorally the two implementations
appear undistinguishable for an external observer. However,
as we have seen, the internal computations actually differ,
and performances can differ too as long as other quality
attributes. It is beyond the scope of this paper to make any
quantitative assessment. It is enough to notice how enriched
language mechanisms offer alternative programming pattern —
and therefore desing patterns — to developers who adopt the
service-oriented paradigm. The development of specific design
guidelines is left as future work.

IV. ARCHITECTURE OF JOLIE INTERPRETER

In order to explain better the changes that were applied to
the interpreter, we have to describe how its basic components
are working together.

The Jolie interpreter is written in Java, and its architecture
is organized into several components [12], the most signifi-
cant of which regard parsing the source files, establish the
communication between components and running them.

The Parser part scans and parses the source code, transforms
and organizes it as a tree of objects with desired semantics.
As a result, parser produces OOIT (Object oriented interpre-
tation tree), which implements the execution of the semantic
rules relative to the input program. Runtime environment
instantiates other components and execute the OOIT. And
the Communication core part is in charge of performing
communication between different components abstracting from
the communication methods and protocols.

Parsing :_.. Runtime Environment &
Scanner i
Y
Parser .| Comm.
Analyzers @ Core
Transformers / \ / \

Figure IV.1. Jolie interpreter architecture

This section is dedicated to discussion of interpreter compo-
nents in more details.

A. Parser

The parsing process follows the following stages and involve
the following components:

1) Scanner reads input and create token objects based on
the ones defined in token types enumeration;

2) OLParser is a recursive descent parser, which take created
tokens, checks them by the grammar rules and generate
the corresponding syntax node in the abstract syntax tree
(AST);

3) OLParseTreeOptimizer takes ready AST and optimizes
it by reducing the number of nodes or transforming the
code to more efficient versions;

4) SemanticVerifier checks whether the code is well-formed
and semantically correct.

Both OLParserTreeOptimizer and SemanticVerifier use vis-
itor design pattern [2] to access AST (implement OLVisitor
class).

Types mentioned in section [[[-A| are expressed as nodes
of AST. They are implemented by means of descendants of
abstract class TypeDefinition:

o TypelnlineDefinition for expressing native types;
o TypeDefinitionLink for linked types;
o TypeDefinitionUndefined for undefined types.

B. Runtime environment

OOITBuilder reads the AST and produces object tree-like
data structure called object-oriented interpretation tree (OOIT),
that defines the semantics for program execution. OOIT nodes
implement Process interface, so that each node is responsible
for the semantics of a single statement.

Runtime Environment handles parallel execution by means
of native threads. Threads responsible for executing a part of
the OOIT can be of two types:

1) Session threads, which are used for handling different
sessions and retain a local state for variable values.

2) Parallel threads, which are used for handling parallel
composition and refer to their parent session thread for
state handling.

C. Communication core

Communication Core component is used for performing
communications by means of such mechanisms as messages
and channels. Channels are used for the sending and receiving
of messages, which consist of resource path, name of operation
they are dedicated for, message content and in some cases fault
name. Channels are in charge of encoding/decoding messages
using the right protocol and sending/receiving them by means
of the right communication medium.

V. TOWARDS DATA-DRIVEN WORKFLOWS FOR MICROSERVICES

Jolie still experiences lack of some data types and operations,
which could enrich its syntax and add extra flexibility, like,
for example, regular expressions or choice operator. This work
is dedicated to implementing the choice operator as the one
which is proved to be useful.

The idea of choice operator was taken from XML[7]. Choice
operator in XML allows to put several elements in choice
element declaration, but to be presented with only one of them.
For example, there is a choice element called "animal" in
example below, which can be either presented as a dog or as
a cat:

<xs:element name="animal">
<xs:complexType>
<xs:choice>
<xs:element name="cat"
<xs:element name="dog"
</xs:choice >
</xs:complexType>
</xs:element>

type="cat"/>
type="dog"/>

Despite choice element in XML allows to choose between
several types, in our implementation, this construction provides
possibility of choosing between two types only. The same
example will look in Jolie language in the following way:

type animal: cat | dog

We use pipe character ("|") for choice operator. Note, that in
this case cat and dog are linked types and need to be declared
explicitly or otherwise Jolie interpreter will raise an exception.

TypeDefinition formal grammar was enriched correspond-
ingly:

TypeDefinition := ...
| TypeDefinition | TypeDefinition

A. Architectural changes

In this section we will describe the architectural changes
necessary to implement the new data type.

1) Adding choice type to AST: In order to support possibility
of storing two types, TypeChoiceDefinition class was created
(extends TypeDefinition as TypelnlineDefinition and others).

(®TypeChoiceDefinition

Jolie lang parse ast types

of left: TypeDefinition
o right: TypeDefiniion

ecTypeGhoiceDefinil\un(ParsingCuﬂtexl String.Range, TypeDefinition, Ty peDefinition)
@ accept{OLVisitor):void

@ left():TypeDefinition

@ right(): Ty peDefinition

& containsPathterator <Pair<OL SyntaxNode, OLSyntaxNode==) bodlean

Figure V.1. TypeChoiceDefinition class diagram

The TypeChoiceDefinition class contains two attributes left
and right representing two possible types, that can be any of
TypeDefinition members. The addition of this class requires
a change in the parent TypeDefinition class and its other
descendants, as they contain several methods, that are not

applicable to choice type (like checking if a type has subtypes or
its native type), and which might raise null reference exception
while trying to access them. This is why these abstract methods
were removed.

2) Extending parser: Extension of parser requires working
on Scanner, OLParser, OLParserTreeOptimizer and Seman-
tic Verifier.

Scanner. No changes to the scanner are needed, because the
pipe-symbol ("|"), which represents choice operator, is already
in use as the parallel operator, so it is already present in the
TokenType enum. Parallel operator, placed between operands,
indicates that they are are executed concurrently.

statementA | {statementB; statementC}

However, execution relates to the behaviour part of the
program, while message types have to be defined in the
deployment part, and they are separately processed, so no
effort on pipe symbol processing redefinition is needed.

OLParser parses message types and their subtypes by means
of parseTypes and parseSubTypes methods correspondingly.
These methods check that the sequence of tokens, generated
by Scanner, is correct regarding the type definition grammar,
as presented in section [l and then generate a node in AST of
one of the TypeDefinition descendants. Since this grammar has
been enriched, parseTypes and parseSubTypes methods have
been changed correspondingly, so that they could expect "|"
token inside the type definition.

As OLParserTreeOptimizer and SemanticVerifier classes
works with AST by means of visitors, so visit method for
TypeChoiceDefinition type was added to OLVisitor class. In
this case, no specific optimization is needed, so this visitor
simply does the same actions as the other TypeDefinition class
descendants.

SemanticVerifier checks whether the types with the same
name have been already defined and checks cardinality of
types. New visit method, added to deal with objects of
TypeChoiceDefinition type, is doing the same, except that
it also invoke semantic verification on both of its types inside.

3) Extending runtime facilities: Extending runtime facilities
regards mostly building OOIT process and message types
themseleves.

Additions to building object-oriented interpretation tree pro-
cess. OOITBuilder generates object oriented interpretation tree,
based on AST produced by OLParser. It also uses visitors to
access nodes of AST. Since new TypeChoiceDefinition type was
added, corresponding visitor was created, which is in charge
of creating type object based on current TypeChoiceDefinition
object. Type objects are discussed in the next section.

Message types. As messages are being passed by means
of type objects, each of the TypeDefinition descendants in
AST should have corresponding representation in Type class
descendants (Typelmpl for TypelnlineDefinition, TypeLink for
TypeDefinitionLink).

For representing TypeChoiceDefinition, new Type descen-
dant, TypeChoice, has been created.

@ Type
olie runtime ty ping
(®TypeChoice
jolie. runtime. ty ping

Jolie type system class diagram

(@ Typelmpl (@ TypeLink
jolie.runtime. ty ping jolie.runtime. ty ping

Figure V.2.

B. Examples

1) Working with types and subtypes: Choice operator can
work with native types:

type numeric: int | long
Linked types:
type linked_type: string

type linked_choice: linked_type | void
Subtypes:
person_info: void {.id: string | int}

2) Functions genericity: One of the way of choice operator
utilization is for making functions generic. If we declare the
following choice type and function in interface

type choice: string | int
fun_choice (choice)(choice)

We can provide the same behaviour without considering
which type (string or int) was passed to the function:

fun_choice(request)(response){
response = request
}

Or imagine that we need to implement different behaviour
of the function based on the arguments passed. Let’s have an
interface with type person, able to be presented as element
with type personSSN or personCCN:

type person: personSSN |
type personSSN:void {
.ssn:int

personCCN

}

type personCCN:void {
.cen:string

}

And a function pay, which takes input argument of person
type and run the corresponding code based on particular type
(personSSN or personCCN) of the argument passed.

pay (person)(response) {
person match {
personCCN :
|
personSSN:
}
if (is_defined(person.ssn)) {
// ask the person registry
} else {
// contact the bank
}

It is also possible to use choice operator if you need two
support several versions of data structure. For example, it was
needed to process data related to Old-Software corporation,
later its title has been changed to New-Software, but some
customers can still use the old one.

type Old-Software—-Corp: void {.
name: string
address: string

}

type New-Software—-Corp:
name: void {
.firstname:
.lastname: string
address: string

phone: int

}

void {.

string

type corporation: Old—Software—-Corp
| New—Software —Corp

VI. ConcLuUSsIONS AND FUTURE WORK

Jolie is a comprehensive programming language based on the
service-oriented paradigm [5], which emerged in the context
of an extended research effort aimed at formalizing Service-
Oriented Computing on top of broadly accepted models of
concurrency in the EU Project SENSORIA (see, e.g., 3], [9]).
Due to its support for the quick prototyping of both simple
services and complex service coordination, Jolie has been
used in the development of other research projects involving
the programming and deployment of services (including [16],
[15]). However, it has been identified how the language still
lacks of data types and operations able to enrich the syntax
and add extra flexibility to program common SOA scenarios.
Regular expressions and choice operator are just examples of
this deficiency. This work has been devoted to extend the Jolie
type system in order to add the choice operator and realize the
necessary changes into the interpreter.

The major outcomes can be summarized as follows:

« Identification of data types able to support common SOA
programming scenarios

« Addition of choice operator in the syntax and semantics
of the language

o Analysis and reengineering of Jolie interpreter

This work shows how computation can move from a process-
driven to a data-driven approach. Control-flow can be now
directed at the time of message passing and according to the
nature of the message structure and type, instead of requiring
post-reception processing, hence leading to a preliminary
identification of recurring communication patterns that can
be then shaped as design patterns. In the microservice scenario
this represent a novel opportunity opening to new programming
scenario.

Future work leaves space to both theoretical investigation
and practical realization. Implementing regular expressions
is a natural step in order to further enrich the type system
and manage a broader set of programming scenarios. For what

concerns theoretical aspects, formalization of the extended type
system is considered a priority.

ACKNOWLEDGEMENTS

We would like to thank Innopolis University for logistic and
financial support. This work was also partially supported by
CRC (Choreographies for Reliable and efficient Communication
software), grant no. DFF—-4005-00304 from the Danish Council
for Independent Research. Our gratitude goes to colleagues of
the Institute of Technologies and Software Development who
participated in the discussion and the seminar, in particular
Bertrand Meyer, Victor Rivera, Daniel de Carvalho, Mohamed
Elwakil, Leonard Johard, Alexander Naumchev, Alexander
Chichigin and Rasul Tumyrkin.

REFERENCES

[1]1 Choice operator, http://www.w3schools.com/schema/el_choice.asp.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley Professional; 1
edition, 1994.

[3] C. Guidi, R. Lucchi and M. Mazzara, A Formal Framework for Web
Services Coordination, Electronic Notes in Theoretical Computer Science,
180:2 pages 55-70, 2007.

[4] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro, SOCK: A
Calculus for Service Oriented Computing., In Proceedings of ICSOC
2006, pages 327-338, 2006.

[5] F. Montesi, C. Guidi, G. Zavattaro, Service-oriented Programming with
Jolie, Book Chapter in Web Services Foundations, pages 81-107, 2014.

[6] Jolie Language Website, http://www.jolie-lang.org/.

[7]1 Jolie vision, http://www.italianasoftware.com/vision.html.

[8] J. Lewis and M. Fowler, Microservices. Common characteristics of
architectural style, http://martinfowler.com/articles/microservices.html,

[9] R. Lucchi and M. Mazzara, A pi-calculus based semantics for WS-BPEL,
Journal of Logic and Algebraic Programming, 70:1, pages 96-118, 2007.

[10] M. Mazzara, F. Abouzaid, N. Dragoni and A. Bhattacharyya Toward
Design, Modelling and Analysis of Dynamic Workflow Reconfigurations
- A Process Algebra Perspective, Web Services and Formal Methods -
8th International Workshop, WS-FM 2011, Clermont-Ferrand, France,
September 1-2, 2011, Revised Selected Papers

[11] M. Robin,Communicating and Mobile Systems: The pi-calculus, Cam-
bridge University Press, 1999.

[12] F. Montesi, Jolie: a Service-oriented Programming Language, Master’s
thesis, University of Bologna, Department of Computer Science, 2010.

[13] J. M. Nielsen, A Type System for the Jolie Language, Technical
University of Denmark Informatics and Mathematical Modelling, 2013.

[14] Service-Oriented Architecture (SOA) Definition http://www.service-
architecture.com/articles/web-services/service-oriented_architecture_-
soa_definition.html.

[15] M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, M. Gabbrielli, AIOCJ:
A Choreographic Framework for Safe Adaptive Distributed Applications,
Proc. of SLE, pages 161-170, 2014.

[16] M. Gabbrielli, S. Giallorenzo, F. Montesi, Applied Choreographies, arXiv,
http://arxiv.org/abs/1510.03637, 2015.

[17] Web Services Description Language (WSDL), Version 2.0.
http://www.w3.org/TR/wsdl20/.

http://www.w3schools.com/schema/el_choice.asp
http://www.jolie-lang.org/
http://www.italianasoftware.com/vision.html
http://martinfowler.com/articles/microservices.html
http://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
http://arxiv.org/abs/1510.03637
http://www.w3.org/TR/wsdl20/

	I Introduction
	II Jolie language
	II-1 Deployment part
	II-2 Behavioral part
	II-3 Communication

	II-A Jolie type system

	III Case Study
	III-A Process-driven approach
	III-B Data-driven approach

	IV Architecture of Jolie interpreter
	IV-A Parser
	IV-B Runtime environment
	IV-C Communication core

	V Towards data-driven Workflows for Microservices
	V-A Architectural changes
	V-A1 Adding choice type to AST
	V-A2 Extending parser
	V-A3 Extending runtime facilities

	V-B Examples
	V-B1 Working with types and subtypes
	V-B2 Functions genericity

	VI Conclusions and Future work
	References

