
From the decorator pattern to circuit breakers in microservices
Fabrizio Montesi

University of Southern Denmark
Odense, Denmark 5230
fmontesi@imada.sdu.dk

Janine Weber
Schneider Electric Denmark

Ballerup, Denmark
Janine.Weber@schneider-electric.com

University of Southern Denmark
Odense, Denmark 5230

ABSTRACT
We analyse different deployment setups for circuit breaker, a design
pattern for preventing cascading failures by guarding calls towards
a target service. Then, we define a unifying implementation strategy
in the setting of microservices, by using the Jolie programming
language. Our implementation captures all setups with a single
program, by interpreting a circuit breaker as a decorator that is
generic on the interface of its target service.

CCS CONCEPTS
• Computer systems organization → Reliability; • Software
and its engineering → Design patterns; Error handling and
recovery;

KEYWORDS
Microservices, Circuit Breaker, Decorator Pattern
ACM Reference format:
Fabrizio Montesi and Janine Weber. 2018. From the decorator pattern to
circuit breakers in microservices. In Proceedings of ACM Conference, Wash-
ington, DC, USA, July 2017 (Conference’17), 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Microservices is an emerging development paradigm where the
components of an application are autonomous services that execute
independently and communicate by message passing [7].

Dealing with communication failures is key to microservice
programming, since all interactions among services happen through
communications that, in general, may fail. Since services typically
depend on other services, an error at a servicemay cause a cascading
failure that influences a large part of a microservice system.

The circuit breaker design pattern is a specialisation of the dec-
orator pattern that mitigates cascading failures [14]. The idea is
to “fail fast”: when a service becomes unresponsive, its invokers
should stop waiting for it and assume the worst, i.e., act as if the
service has become unavailable. Thus, circuit breakers contribute to
the stability and resilience of both clients and services: clients limit
their waste of resources on trying to access unresponsive services,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and overloaded services are given a chance to recover by finishing
some of the tasks they are currently processing.

In this paper, we present a systematic analysis of the different
deployment strategies for circuit breaker. We then show how the
Jolie programming language [11] can be used to define a generic
circuit breaker implementation that can be used for all strategies,
without requiring changes to its code. Our implementation relies
on aggregation, a native feature of Jolie that allows to program dec-
orators that work over communications without requiring changes
to the code of either clients or services [6].

2 STRATEGIES AND IMPLEMENTATION
A circuit breaker intercepts and monitors calls towards a target ser-
vice. When the target service becomes too slow or replies too often
with faults, the breaker will trip and future client invocations will
be rejected with a fault. The behaviour of the pattern is determined
by a state machine. We briefly describe its states and transitions.
Closed: Requests are passed to the target service. Faults and time-
outs caused by the requests increase internal failure and timeout
counters. When these counters pass a threshold, or a critical fault
is detected, the breaker “trips” and transitions into the open state.
Open: Requests are not passed to the target service. Instead, failures
are sent to the client as replies. The circuit breaker can transition
to the half-open state after some time, possibly by using periodic
observation of the health of the target service (e.g., pinging).
Half-open: Requests are passed to the target service in limited
number. After some requests are successful, the circuit breaker
goes back into the closed state. Should any requests fail while in
this state, the circuit breaker transitions back into the open state.

Hystrix [13] is a mainstream implementation of circuit breaker,
which wraps invocation code at the client. However, we observe
that in general circuit breakers can be usefully adopted in three
different ways, depending on the scenario. We describe them below.

Client-side Circuit Breaker. Clients include a separate circuit
breaker for intercepting calls to each external service. The main
advantage of this strategy is that an open circuit breaker will pre-
vent its target service from receiving further messages. However,
this requires two strong assumptions: we can force clients to use
our circuit breakers (e.g., access to the client source code); and all
clients are not malicious (they will actually execute our code). An-
other disadvantage is that the knowledge about the availability of
a service is local to the client. To counteract this issue, all clients
might regularly ping each target service to inquire about its health
(but this functionality should then be supported by services).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Fabrizio Montesi and Janine Weber

Service-side Circuit Breaker. All client invocations received by
a service are first processed by an internal circuit breaker, which de-
cides whether the invocation should be processed or not. A benefit
is that we do not need the assumptions for client-side circuit break-
ers that we described (e.g., clients can be malicious). However, the
service now uses resources to run the circuit breaker and receive
messages even when the circuit breaker is open. An interesting
aspect is that the service can see aggregate information about its
responsiveness that encompasses requests from all clients, which
enables throttling requests based on overall performance.

Proxy Circuit Breaker. Circuit breakers are deployed in a proxy
service between clients and services. The proxy contains a circuit
breaker for every client and every service within the system. For any
request from a client to a service to be allowed to go through, the
respective circuit breakers of both client and service must be closed.
Observe that using a single proxy for multiple services introduces a
network bottleneck, which in some cases plays well with the system
(e.g., in case the proxy can be deployed at a routing point) and other
times it does not. In the latter cases, it may be desirable to have one
proxy for each target service. The proxy approach has two main
benefits. First, no invasive changes are made at either clients or
services (we simply need to update binding/discovery information).
Second, clients and services are equally protected from each other:
clients are made more resilient against faulty services, and services
are shielded against cases in which a single client sends too many
requests. This also enables using shared knowledge among the
circuit breakers, for more refined strategies.

2.1 Implementation
We sketch an implementation of a circuit breaker using Jolie. The
motivation for using Jolie is that all components in Jolie are (mi-
cro)services, and their definition is independent from their deploy-
ment. As such, our implementation can be adopted in all deploy-
ment strategies that we reported in the previous discussion, simply
by loading it appropriately where desired. Jolie services can be de-
ployed both as internal components that communicate using local
memory or as distributed over a network. Our definition is also
independent from the interface of the target service, and the trans-
port used for communicating messages (we support all transports
offered by Jolie, e.g., HTTP/JSON and the binary protocol SODEP).

The code (sketch) of our implementation is displayed in Figure 1.
We describe its functioning, and also the necessary Jolie concepts
as we encounter them. Line 1 declares an interface TargetIface,
which is to be bound at deployment time through a separate config-
uration file (see [12] for details). Our implementation is thus generic
on this interface. The outputPort TargetSrv (Lines 2–3), which
is also configured at deployment time, represents the target service
of the circuit breaker. In Lines 4–5, the inputPort CB defines the
input endpoint that will receive client messages. The Aggregates
part means that all client messages received by the circuit breaker
(on input port CB) for an operation declared by the target service
(TargetSrv) will be forwarded to the latter—with CBFault de-
clares that the circuit breaker may decide to send clients faults
of type CBFault. Lines 27–38 define a courier behaviour [6] for
decorating input port CB, which intercepts and manages messages

in transit from clients to the target service. In Lines 28–29, we in-
tercept all messages for an operation defined in the interface of our
target service (TargetIface); request is the variable that stores
the client message, and response is the variable that will be used
at the end to send the response to the client. We then implement
the circuit breaker state machine, storing the current state in vari-
able state. We use a Stats component (omitted here) to store and
compute the typical statistics used in the logic of a circuit breaker,
e.g., taking into consideration fault thresholds and rolling windows.
We describe how each state works in the following.
Closed (Line 30). We call procedure forwardMsg, defined in Lines
14–23. The procedure first calls callTimer (omitted here), which
starts a “call” timer. We then install a fault handler, which will be
executed in case invoking the target service raises an error. In case of
error, the handler would cancel the call timer and register the failure
in Stats (Line 18), and check whether we should change state by
invoking procedure checkErrorRate (Line 19). In this procedure
(Lines 8–13): if we are in a closed state, we ask Stats whether
we should trip the circuit breaker, based on the data accumulated
so far about successes, timeouts, and failures; if, instead, we are
in a half-open state, then we trip the circuit breaker immediately.
In Line 21, we forward the message from the client to the target
service. If we are successful, we register the success in Stats and
cancel the call timer (Line 22).

If the call timer expires, a message for operation callTimeout is
sent to the circuit breaker. This is handled in the main procedure of
the service, Lines 41–43, where we update the internal statistics by
registering that a timeout occurred and then check the error rate
of the service (which may trip the circuit breaker).
Open (Line 31). We do not forward client requests and instead
reply directly to clients with a message containing fault CBFault.
Half-Open (Line 32–36). We ask Stats whether the message
can pass (Line 33). If so, we proceed with forwardMsg as in the
closed state (Line 34). Otherwise, we send back to the client a fault
CBFault as in the open state (Line 35).

Procedure trip trips the circuit breaker (Line 7), and also starts
a reset timer. When this timer expires, operation resetTimeout is
invoked, triggering a transition to the half-open state (Lines 44–47).

3 RELATEDWORK AND CONCLUSIONS
Akka [9] provides a circuit breaker implementation that supports
basic configuration parameters, such as call timeout, failure thresh-
old and reset threshold. Hystrix [13], another implementation, is
currently more flexible: it supports rolling statistics, fallback mech-
anisms, resource control, and control over the states and transitions
of circuit breakers. Differently from these solutions, our circuit
breaker is non-invasive, meaning that adopting it does not require
internal code changes at clients or services. Furthermore, our im-
plementation is parametric on the interface of the target service.
Therefore, if such interface changes over time (which happens of-
ten in microservices, due to the practice of continuous integration
and deployment), then the circuit breaker can be reused without
any changes. Hystrix does not support this capability: supporting
a new operation requires writing an additional implementation of
a HystrixCommand. Importing this feature to mainstream circuit
breaker frameworks could be an interesting future development.

From the decorator pattern to circuit breakers in microservices Conference’17, July 2017, Washington, DC, USA

1 interface TargetIface

2 outputPort TargetSrv

3 { Interfaces: TargetIface }

4 inputPort CB

5 { Aggregates: TargetSrv with CBFault }

6
7 define trip { state = Open; resetTimer }

8 define checkErrorRate {

9 if (state == Closed) {

10 shouldTrip@Stats ()(shouldTrip);

11 if (shouldTrip) trip

12 } else if (state == HalfOpen) trip

13 }

14 define forwardMsg {

15 callTimer;

16 install(

17 default =>

18 cancelCallTimer; failure@Stats();

19 checkErrorRate

20);

21 forward(request)(response);

22 success@Stats(); cancelCallTimer

23 }

27 courier CB {

28 [interface TargetIface

29 (request)(response)] {

30 if (state == Closed) forwardMsg

31 else if (state == Open) throw(CBFault)

32 else if (state == HalfOpen) {

33 checkRate@Stats ()(canPass);

34 if (canPass) forwardMsg

35 else throw(CBFault)

36 }

37 }

38 }

39
40 main {

41 [callTimeout ()] {

42 timeout@Stats(); checkErrorRate

43 }

44 [resetTimeout ()] {

45 if (state == Open)

46 { reset@Stats(); state = HalfOpen }

47 }

48 }

Figure 1: Circuit Breaker Implementation (Sketch).

Looking at future research, we observe that it is not obvious
how current methods and theories for the description of interaction
protocols among services—choreographies for short—can be applied
to systems with circuit breakers. Formal methods and languages
based on choreographies have been created for different purposes,
including: system specification [15, 17]; synthesis of service im-
plementations [5, 10]; and, verification of safety properties (e.g.,
deadlock-freedom) [8, 18]. Unfortunately, circuit breaker cannot
be readily implemented in these models. The latter require exten-
sions to deal with some necessary features, e.g., timeouts, faults,
and interface parametricity. There are promising works that deal
with timeouts [1], faults [2, 3], and parametric behaviour [4, 16].
However, these works are not integrated with one another and
some still need to be applied. A coherent choreography language
that can capture circuit breakers still has to appear.

ACKNOWLEDGMENTS
This work was partially supported by the Open Data Framework
project at the University of Southern Denmark, and by the Inde-
pendent Research Fund Denmark, grant DFF-7014-00041.

REFERENCES
[1] Laura Bocchi, Julien Lange, and Nobuko Yoshida. 2015. Meeting Deadlines

Together. In CONCUR. 283–296. https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
[2] Sara Capecchi, Elena Giachino, and Nobuko Yoshida. 2016. Global escape in

multiparty sessions. Mathematical Structures in Computer Science 26, 2 (2016),
156–205. https://doi.org/10.1017/S0960129514000164

[3] Marco Carbone. 2009. Session-based Choreography with Exceptions. Electr. Notes
Theor. Comput. Sci. 241 (2009), 35–55. https://doi.org/10.1016/j.entcs.2009.06.003

[4] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip
Wadler. 2016. Coherence Generalises Duality: A Logical Explanation ofMultiparty
Session Types. In CONCUR (LIPIcs), Vol. 59. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 33:1–33:15.

[5] Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: multi-
party asynchronous global programming. In POPL. 263–274.

[6] Mila Dalla Preda, Maurizio Gabbrielli, Claudio Guidi, Jacopo Mauro, and Fabrizio
Montesi. 2012. Interface-Based Service Composition with Aggregation. In ESOCC.
48–63. https://doi.org/10.1007/978-3-642-33427-6_4

[7] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: Yester-
day, Today, and Tomorrow. In Present and Ulterior Software Engineering. Springer,
195–216.

[8] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchro-
nous Session Types. 63, 1 (2016), 9.

[9] Lightbend. 2017. Akka Circuit Creaker Pattern. http://doc.akka.io/docs. (2017).
Section 7.4.

[10] Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Thesis. IT Uni-
versity of Copenhagen. http://www.fabriziomontesi.com/files/choreographic_
programming.pdf.

[11] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. 2014. Service-Oriented
Programming with Jolie. In Web Services Foundations. Springer, 81–107.

[12] Fabrizio Montesi and Dan Sebastian Thrane. 2017. Packaging Microservices. In
DAIS (Lecture Notes in Computer Science), Vol. 10320. Springer, 131–137.

[13] Netflix. 2017. Hystrix. https://github.com/Netflix/hystrix. (2017).
[14] Michael T. Nygard. 2007. Release It!: Design and Deploy Production-Ready Software

(Pragmatic Programmers). Pragmatic Bookshelf.
[15] Object Management Group. 2011. Business Process Model and Notation. http:

//www.omg.org/spec/BPMN/2.0/. (2011).
[16] Nicolas Tabareau, Mario Südholt, and Éric Tanter. 2014. Aspectual session types.

In MODULARITY. 193–204. https://doi.org/10.1145/2577080.2577085
[17] W3C. 2004. Web Services Choreography Description Language.

https://www.w3.org/TR/ws-cdl-10/. (2004).
[18] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013.

The Scribble Protocol Language. In TGC. 22–41. https://doi.org/10.1007/
978-3-319-05119-2_3

https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.1017/S0960129514000164
https://doi.org/10.1016/j.entcs.2009.06.003
https://doi.org/10.1007/978-3-642-33427-6_4
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1145/2577080.2577085
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3

	Abstract
	1 Introduction
	2 Strategies and Implementation
	2.1 Implementation

	3 Related Work and Conclusions
	Acknowledgments
	References

