
ar
X

iv
:1

60
9.

05
83

0v
2

 [
cs

.S
E

]
 2

1
Se

p
20

16

Circuit Breakers, Discovery, and API Gateways in
Microservices

Fabrizio Montesi
Department of Mathematics and Computer

Science
University of Southern Denmark

5230 Odense M, Denmark
fmontesi@imada.sdu.dk

Janine Weber
Department of Mathematics and Computer

Science
University of Southern Denmark

5230 Odense M, Denmark
jaweb10@student.sdu.dk

ABSTRACT
We review some of the most widely used patterns for the pro-
gramming of microservices: circuit breaker, service discov-
ery, and API gateway. By systematically analysing different
deployment strategies for these patterns, we reach new in-
sight especially for the application of circuit breakers. We
also evaluate the applicability of Jolie, a language for the
programming of microservices, for these patterns and report
on other standard frameworks offering similar solutions. Fi-
nally, considerations for future developments are presented.

Keywords
Design Patterns; Microservices; SOA

1. INTRODUCTION
In the microservices architectural style [15], the components
of an application are autonomous services that execute inde-
pendently and communicate via message passing [14]. This
style is inspired by Service-Oriented Architecture (SOA).
The key difference between the two approaches lies in gran-
ularity. Even if services in SOA applications also commu-
nicate via message passing, differently from microservices
the internal components of each application are all part
of a single executable artifact, called a monolith. Con-
sider, for example, a service in an SOA that includes an
Auth(entication) and an Email component. In microser-
vices, the two components would also be external services,
each with its own database. Such services are sometimes
called microservices, to point out that they are designed us-
ing the microservices style.

Some key advantages that come from the granularity of a
microservice architecture (MSA for short) are (see [14] for a
more thorough analysis):

• Components can be deployed separate, allowing for the
independent management of their respective lifecycles.

• New versions of components can be gradually intro-
duced in a system, by deploying them side to side with
previous versions. This advantage can be incorporated
in Continuous Integration.

• Components can be more specialised, since they can
be written in different technologies – as long as these
technologies support interaction with the other tech-
nologies used in the same MSA, via message passing.

• Scaling a microservice architecture does not imply a
duplication of all its components and developers can
conveniently deploy/dispose instances of services with
respect to their load [16].

Microservices has become increasingly popular over the last
few years. Some companies, such as Netflix and Amazon,
have successfully become early adopters of microservices in
the setting of large-scale software systems.

Alas, the adoption of microservices also comes with its own
set of issues. While many of these issues are inherited di-
rectly from distributed systems, they are also exacerbated
by the high degree of distribution of an MSA and the fact
that we must take them into account even for the composi-
tion of internal components. Some key issues include:

• Interactions among microservices happen via message
passing, which introduces the possibilities of commu-
nication failures and timeouts among components.

• Services may become overloaded, because of too many
concurrent client requests or resources being kept busy
while waiting for replies from other services. This may
easily trigger disastrous cascading failures.

• Microservices are optimised for cloud computing, so
some services may be relocated at runtime.

• Microservices can use different technologies, enabling
specialisation to specific clients and tasks. Also, MSAs
are flexible and their APIs may change over time. There-
fore, MSAs should be supported by means for the rapid
publishing of new APIs of different natures.

1

http://arxiv.org/abs/1609.05830v2

The solutions to these problems come from different sources.
The first two issues can be solved with patterns from highly-
available systems, the third by using discovery and deploy-
ment mechanisms studied for SOA. Furthermore, many of
such solutions are aimed at specific applications and are pro-
vided by different vendors (e.g., the API gateways by Ama-
zon [1] and Netflix [32]). Differently, our aim in this work is
to discuss the principles behind the respective solutions for
these problems. Our main contribution is a homogeneous
overview of a set of common solutions that microservices
developers should be aware of, equipped with novel insight
related to their specific applications to microservices. We
also demonstrate how the solutions that carry novelty in the
setting of microservices can be prototyped using constructs
developed for service composition in Jolie [26], a native mi-
croservice programming language [20]. This is useful both
as a reference and as an evaluation of Jolie itself.

Structure of the paper. We start our investigation from
the pattern of circuit breaker, which deals with the first two
issues given above (§ 2). While circuit breakers are typically
employed client-side, we observe that they can be useful also
at other locations, and develop a Jolie prototype that can
be transparently reused regardless of where it is located.
We proceed by reporting on service discovery, which deals
with the third issue, and discuss briefly two main strategies:
client- and server-based discovery (§ 3). Our survey ends
with a discussion of API Gateway, a pattern for the rapid
deployment of new APIs in MSAs (§ 4). Related work is in
§ 5. We report on conclusions and future work in § 6.

2. CIRCUIT BREAKERS
Given enough incoming requests, even the most reliable of
services will eventually exhaust its capabilities and fail. Fail-
ure in an MSA is inevitable, and should be embraced with
precaution rather than ignored. What makes matters com-
plex is that, in an MSA, a failing service probably has other
services that depend on it. What happens if our failing ser-
vice becomes unresponsive? If we do not properly plan for
this event, we risk all the other services that rely on it to
become unresponsive, too. This is called a cascading failure.

The circuit breaker pattern is aimed at preventing the fail-
ure of a single component to cascade beyond its boundaries,
and thereby bring the entire system down with it. The motto
here is to fail fast: when a service becomes unresponsive, its
invokers should stop waiting for it, assume the worst, and
start dealing with the fact that the failing service may be
unavailable. Thus, circuit breakers contribute to the stabil-
ity and resilience of both clients and services: clients limit
their waste of resources on trying to access unresponsive ser-
vices, and overloaded services are given a chance to recover
by finishing some of the tasks they are currently processing.

Concretely, a circuit breaker works by wrapping calls to-
wards a target service and monitoring their failure rates.
The idea is that when the target service becomes too slow
or replies too often with faults, the circuit breaker will trip
and future invocations from the client will immediately re-
turn a fault. meeting More specifically, the pattern can be
implemented as a finite-state machine, depicted in Figure 1.
We describe these states in the following.

closed open

half-open

trip breaker
[threshold reached]

success fail
attempt
reset

fail fastsuccess

fail

Figure 1: Circuit Breaker State Diagram.

Closed: Requests are passed to the target service. Faults
caused by the requested operation such as exceptions
or timeouts increase the circuit breaker’s respective
failure and timeout counters. Should these counters
exceed a specified threshold, or should another pre-
defined criteria be met (e.g., a particular fault was
raised), the breaker is tripped and transitions into the
open state.

Open: Requests are not passed to the target service. In-
stead, a failure message is immediately given to the
client as reply. Potential fallback mechanisms can be
called to handle the failure. The circuit breaker can
transition from the open to the half-open state, either
by periodically pinging the service to check for when it
becomes responsive again, or after a specified amount
of time.

Half-Open: While in this state, a limited number of re-
quests are allowed through to the service. Provided
that the target service sends back successful replies,
the circuit breaker is reset back into the closed state,
and its failure and timeout counters are reset. Should,
however, any of the requests fail while in the half-open
state, the circuit breaker transitions back into the open
state.

The state transitions for circuit breakers are generally con-
trolled by a set of parameters, which typically includes those
described in Table 1.

Deployment.

One of the most famous implementations of circuit break-
ers is provided by the Hystrix library [30], which allows to
wrap Java code in a procedure that will be controlled by a
circuit breaker. The idea is that the circuit breaker is used
directly inside of the client. Here, we make the (novel) ob-
servation that it makes sense to deploy a circuit breaker also
in other places than just inside of clients. Specifically, circuit
breakers may also be introduced on the side of services, or
in proxies that operate between clients and services. Each
strategy has its own advantages and disadvantages. There-
fore, we envision that practical applications should combine
them. We start from the standard strategy of client-side
circuit breakers, for reference, and then move to the other
ones.

2

Parameter Example Value Explanation
callTO 20s timeout the client request after 20 seconds without a response from the server

rollingWindow 60s monitor errors over a rolling window of 60 seconds
tripThreshold 5% open the circuit if the error rate gets ≥ 5%

resetTO 30s attempt to reset the circuit after 30 seconds of opening the circuit

Table 1: Example of Circuit Breaker Parameters

Client 1
browser

CB S1

CB S2

Client 2
mobile

CB S1

CB S2

Service 1

Service 2

remoteCall

fail fast

requestS1

requestS2

Figure 2: Client-side Circuit Breakers.

Client-side Circuit Breaker. The first deployment strat-
egy is to place circuit breakers directly within clients, as de-
picted in Figure 2. In this strategy, each client includes a
separate circuit breaker for intercepting calls to each exter-
nal service that the client may call. The strongest advantage
of this strategy is that, when the circuit breaker is open, the
target service will not receive any messages from the client.
This means that the service does not need to implement any
similar protection mechanisms of its own, relieving it from
using resources for such mechanisms. However, this requires
two strong assumptions: we are able of forcing clients to use
our circuit breakers (e.g., access to the client source code);
and, we are guaranteed that all clients are not malicious
(they will actually execute our code). What if our scenario
does not satisfy these requirements? Another disadvantage
is that the knowledge about the availability of a service is lo-
cal to the client, depending on how often requests are made
to that service. For instance, in Figure 2 Client 1 is unaware
of the unavailability status of Service 2, whereas the circuit
breaker of Client 2 for the same service has been recently
blown (denoted by the red colour). To counteract this is-
sue, regular pings could be sent out to every service in order
to inquire about their health status (but this functionality
should then be supported by the services).

Service-side Circuit Breaker. Circuit breakers can also
be implemented on the side of services, as presented in Fig-
ure 3. The idea is that all client invocations received by a ser-
vice are first processed by an internal circuit breaker, which
decides whether the invocation should be processed or not.
A benefit here is that we do not make any of the assump-
tions necessary for client-side circuit breakers (in particular,
clients can be malicious). However, we have to change the
behaviour of the service (e.g., by changing its source code);
also, the service uses resources to run the circuit breaker and
receive messages even when the circuit breaker is open. An

Client 1
browser

Client 2
mobile

Service 1

Service 2

CB S1

CB S2

request

request

executeCall

fail fast

Figure 3: Service-side Circuit Breakers.

interesting aspect here is that the service can see aggregate
information about its responsiveness that encompasses re-
quests from all clients. A possible application is to develop a
circuit breaker that throttles requests to temporarily lighten
the load on the service.

Proxy Circuit Breaker. The last option that we present
for the deployment of circuit breakers is a composition of the
previous two strategies. In this strategy, circuit breakers are
deployed in a proxy service that sits between clients and ser-
vices, which handles all incoming and outgoing messages as
displayed in Figure 4. The proxy contains a circuit breaker
for every client and every service within the system.1 For
any request from a client to a service to be allowed to go
through, the respective circuit breakers of both client and
service must be closed. For instance, in the case illustrated
in Figure 4, Client 1 is allowed to send a request to Service
1, but receives an exception when trying to call Service 2.
Furthermore, Client 2 immediately gets denied any requests.
Observe that using a single proxy for multiple services intro-
duces a network bottleneck, which in some cases plays well
with the system (e.g., in case the proxy can be deployed at
a routing point) and other times it does not. In the latter
cases, it may be desirable to have one proxy for each target
service. However, we will see that a proxy aggregating mul-
tiple services makes sense in another pattern presented later
in § 4, the API Gateway.

Using proxies for deploying circuit breakers has two main
benefits. First, this architectures simply requires to con-
figure clients to point to the proxy instead of the services
directly. In many cases, this does not require access to the
client source code, but simply either a network reconfigura-
tion or passing some location parameter to clients to bind
them correctly. It is also unnecessary to modify the code
or configuration of the target services, which can be seen
as black boxes. Second, clients and services are equally

1In systems where new clients and/or services may join at
runtime, circuit breakers may have to be created dynami-
cally, but this is orthogonal to our discussion.

3

Proxy
CB S1

CB S2

CB C1

CB C2

Client 1
browser

Client 2
mobile

Service 1 Service 2

request
{S1, S2}

remoteCall

request

fail fast fail fast

Figure 4: Proxy with Circuit Breakers.

protected from each other: clients are made more resilient
against faulty services, and services are shielded against
cases in which a single client sends too many requests. This
also opens up the possibility of using shared knowledge among
the circuit breakers, for more refined strategies.

Implementation.

We sketch an implementation of a circuit breaker using Jolie,
a native programming language for microservices [26]. The
motivation for using Jolie is that all components in Jolie
are (micro)services, and their definition is independent of
their deployment. As such, our prototype can be adopted
in all deployment strategies that we reported in the pre-
vious discussion, simply by loading it appropriately where
desired. Specifically, this is because services in Jolie can
be deployed both as internal components that communicate
using local memory or as distributed over a network. Our
definition is also independent of the interface of the target
service, and the transport used for communicating messages
(we support all transports offered by Jolie, e.g., HTTP/J-
SON, HTTP/XML, and the binary protocol SODEP).

Our prototype, given in Figure 5, is simple enough that it
can be discussed without assuming prior knowledge of the
Jolie language. We describe its functioning after its code,
given in the following, and describe the necessary Jolie con-
cepts as we encounter them.

We describe the prototype. The underlying idea is simple:
our program defines a service that intercepts all calls from
a client to a target service, applying the logic of a circuit
breaker. The outputPort TargetSrv (Line 1) contains the
binding information towards the target service of the circuit
breaker. We omit its definition, since this changes depending
on the deployment of the circuit breaker. To deploy the cir-
cuit breaker client-side or in a proxy, then TargetSrv would
point to a remote location. For the service-side case, instead,
TargetSrv would point to a local memory location. In Lines
8–11, the inputPort CB deploys the input endpoint that will
receive client messages. We abstract from the location where
it is concretely deployed and the transport protocol that it
uses; these are just configuration parameters, denoted Loc

and Proto. The Aggregates part is key: it instructs Jolie
that all client messages received by the circuit breaker (on
input port CB) for an operation declared by the target ser-
vice (TargetSrv) will be forwarded to the latter. The part
with CBIfaceExt declares that the types of all operations

are augmented according to the definition of CBIfaceExt,
given in Lines 3–6. Specifically, CBIfaceExt states that all
operations can now also throw the fault CBFault, which we
will use to notify clients of failures generated by the circuit
breaker. Jolie allows us to write arbitrary code to process
the messages intercepted from clients to the target service,
called a courier behaviour. We define this code in Lines
32–47. In Line 33, we state that we want to intercept all
messages for an operation defined in the interface of our
target service (TargetIface); request is the variable that
stores the client message, and response is the variable that
will be used at the end to send the response to the client.
We then implement the circuit breaker state machine, using
the (global) variable state to store our state. We assume
that there exists an internal Stats component that stores
and computes the statistics used in the logic of a circuit
breaker, configured accordingly to the tripThreshold and
rollingWindow parameters (from Table 1). We report the
different cases depending on the current state.

Closed (Line 35) We call procedure forwardMsg, defined
in Lines 24–31. The procedure starts by calling an-
other procedure callTO (omitted here), which starts
a timer with duration set by the callTO parameter.
We then install a fault handler, which will be exe-
cuted in case invoking the target services raises an
error. In case of error, the handler would cancel the
call timer (Line 27), register the failure in Stats, and
check whether we should change state by invoking pro-
cedure checkErrorRate. The latter is a simple pro-
cedure (Lines 15–22), which if we are currently in a
closed state asks Stats whether we should trip the
circuit breaker, based on the data accumulated so far
about successes, timeouts, and failures. In Line 29,
we forward the message from the client to the target
service. If we are successful, we register the success in
Stats and cancel the call timer (Line 30).

What if the call timer expires before it is cancelled
(either by a success or an error raised by the forward

statement)? In this case, a message for operation callTO

will be sent to our circuit breaker. This is handled in
the main procedure of the service, Lines 49–59, where
if we receive a message for callTO we update the in-
ternal statistics by registering that a timeout occurred
and then check the error rate of the service (which may
cause the circuit breaker to trip).

Open (Line 37) While in this state, the circuit breaker
does not forward client requests and instead replies
directly with a message containing fault CBFault.

Half-Open (Lines 39-44) In this state, we ask Stats whether
the message can pass (Line 39). If so, we proceed with
forwardMsg as in the open state. Otherwise, we send
back to the client a fault CBFault as in the open state.

The procedure used to trip the circuit breaker is trip (Line
13), which also starts a reset timer. When this timer expires,
operation resetTO will be invoked and make the transition
to the half-open state (Line 56).

4

1 outputPort TargetSrv { ... }

2
3 interface extender CBIfaceExt {

4 RequestResponse :

5 *(void)(void) throws CBFault

6 }

7
8 inputPort CB {

9 Location : Loc Protocol : Proto

10 Aggregates : TargetSrv with CBIfaceExt

11 }

12
13 define trip { state = Open ; resetTO }

14
15 define checkErrorRate {

16 if (state == Closed) {

17 shouldTrip@Stats ()(shouldTrip);

18 if (shouldTrip) { trip }

19 } else if (state == HalfOpen) {

20 trip

21 }

22 }

23
24 define forwardMsg {

25 callTO;

26 install (default =>

27 cancelCallTO ; failure@Stats ();

28 checkErrorRate);

29 forward (request)(response);

30 success@Stats (); cancelCallTO

31 }

32 courier CB {

33 [TargetIface (request)(response)] {

34 if (state == Closed) {

35 forwardMsg

36 } else if (state == Open) {

37 throw(CBFault)

38 } else if (state == HalfOpen) {

39 checkRate@Stats ()(canPass);

40 if (canPass) {

41 forwardMsg

42 } else {

43 throw(CBFault)

44 }

45 }

46 }

47 }

48
49 main {

50 [callTO ()] {

51 timeout@Stats (); checkErrorRate

52 }

53
54 [resetTO ()] {

55 if (state == Open) {

56 reset@Stats (); state = HalfOpen

57 }

58 }

59 }

Figure 5: Circuit Breaker Implementation in Jolie.

3. SERVICE DISCOVERY
In practice, the location of a microservice may not be stat-
ically known at design time. This is because microservices
may be deployed in a cloud-based system, which could repli-
cate and relocate services at runtime. Therefore, a partic-
ipant in an MSA may need to employ a service discovery
mechanism. This is typically achieved with the same idea
adopted for Service-Oriented Architecture (SOA), i.e., by
using a service registry. A service registry is a service that
can be used by other components to retrieve binding infor-
mation about other components. Microservices talk to the
registry in order to publish their locations (or that of other
services), whereas clients address the registry to discover
registered services.

In principle, there is no difference between using a service
registry in an SOA or in an MSA. However, in practice,
service discovery for SOA is often implemented as part of
an Enterprise Service Bus (ESB), which acts as a central
coordination point for service communications. Instead, in
microservices, there are still no standards but rather various
custom implementations (e.g., Eureka [29] and AWS Elastic
Load Balancing [2]). Nevertheless, we can distinguish be-
tween two main implementation strategies: client-side and
server-side discovery.

In the client-side discovery pattern, depicted in Figure 6,

the client is aware that services do not have fixed locations.
It thus queries the service registry for the location of all
the services that it needs. Thereafter, the client contacts
the target services directly. This architecture is simple, but
it requires that clients are designed to follow this method-
ology. The implementation of clients thus becomes more
complex, since it has to implement the discovery logic. This
logic needs to be replicated for each programming language
and/or framework used for the implementation of clients.

In the alternative server-side discovery pattern, displayed
in Figure 7, we delegate the discovery logic to a dedicated
router service. The client exclusively talks to the router re-
sponsible for the services, which is set at a fixed location.
Upon receiving a request, the router talks to the service reg-
istry to discover the requested service, and then forwards the
client request to the latter. Contrary to client-side discov-
ery, this pattern does not require clients to be aware of the
fluid deployment of microservices. However, the program-
mer needs to deploy an additional service (the router) that
will consume resources.

Often, both patterns are present within large-scale applica-
tions. A server-side discovery structure exposes the public
services to the outside world, whereas the client-side discov-
ery pattern handles server- or cluster-internal interactions.

5

Service
Client

registry-
aware
Client

Service
Registry

Service 1

Service 2

getRegistry
register

remoteCall

Figure 6: Client-side Service Discovery.

Service
Client

Router

Service
Registry

Service 1

Service 2

request

getRegistry

register

remote
Call

Figure 7: Server-side Service Discovery.

4. API GATEWAYS
An MSA may need to serve different kinds of clients and
user interfaces, such as those found in web browsers and
various smart devices (e.g., smartphones). Every client may
have different needs, depending on its target usage, form
factor, and processing power. The needs of a client may even
change over time. For example, depending on the quality of
its current network connection, a device may want to use an
API that is more or less network intensive – for example,
the description of a product may include more and higher-
quality resources, like pictures or embedded instructions.

The API Gateway is a service that addresses the issue of
having clients of different natures. It is a single entry point
that provides access to many APIs (Figure 8). An API Gate-
way provides functionalities for: publishing multiple APIs,
each one dedicated to a different set of clients; and, updat-
ing the set of published APIs at runtime (since developers
may deploy new services during the lifecycle of the MSA).

Since an API Gateway is an entry point for the MSA, it is
natural to equip it with, e.g., service discovery, load balanc-
ing, monitoring, and security. Its position in the system is
also ideal for adopting the proxy circuit breaker pattern, by
equipping the API Gateway with circuit breakers for clients
and/or services. The way in which these additional features
are implemented depends on the implementation technol-
ogy. In Jolie, this would simply require to compose the
specific services developed for the respective functionalities
(e.g., our circuit breaker prototype, or a service registry).
Other technologies may need to add these features directly
inside of the codebase that implements the API Gateway.
Observe that for service discovery, both the client-side and
server-side discovery patterns make sense here so we should
refer to their own advantages and disadvantages to choose
between them. For client-side discovery, the API Gateway

Client 1
browser

Client 2
mobile

Service 1

Service 2

API
Gateway

Figure 8: API Gateway.

1 inputPort APIGateway {

2 Location : "socket:// gateway.com:80/"

3 Protocol : http

4 Redirects :

5 MobileAPI => MobileService ,

6 DesktopAPI => DesktopService

7 }

8
9 main {

10 [deploy(request)() {

11 loadEmbeddedService@Runtime

12 (...)(...);

13 setRedirection@Runtime(...)(...)

14 }]

15 }

Figure 9: A sketch of an API Gateway in Jolie.

should provide clients with access to the service registry –
while this access would still be brokered by the gateway, it
would still be the clients that select the services that they
want (recall Figure 6). For server-side discovery, the API
Gateway would simply act as the router (recall Figure 7).

In Jolie, we can implement an API Gateway by using redi-
rections [26]. A redirection makes an API available under
a specific name at a service input port. We sketch a proto-
type in Figure 9. In Lines 1–7, we declare the input port of
the gateway (the location and protocol are just examples).
The input port provides two APIs, which can be reached re-
spectively at the URLs http://gateway.com:80/MobileAPI
and http://gateway.com:80/DesktopAPI. The service offers
a deploy operation for deploying new APIs at runtime (Lines
10–14). We omit the concrete data used in the operation.
The idea is that, upon request, the gateway will use the
Jolie standard library to embed (run an internal service) all
the necessary services for guarding the new API (e.g., cir-
cuit breakers) and set a new redirection to publish the API.
Redirection in Jolie takes care of doing the necessary trans-
formations between different communication transports, but
sometimes developers need to use special adapters to trans-
late calls using ad-hoc procedures. An advantage in this
task is the possibility to use procedures written in different
languages. Jolie supports Jolie itself, JavaScript, and Java.
For instance, if the mobile API in our redirection example
required an adapter written in JavaScript, we could use the
following embedding instruction.

1 embedded {

2 JavaScript :

6

http://gateway.com:80/MobileAPI
http://gateway.com:80/DesktopAPI

3 "mobile_adapter .js" in MobileService

4 }

5. RELATED WORK
Being essentially distributed, microservices is founded on the
well-known mechanism of message passing. However, MSAs
are much more involved than other distributed applications
where services are implemented as monoliths, because all in-
ternal components are subjects to potential communication
failures and overloads. So far, most proposals for dealing
with these problems have been produced by practitioners,
and therefore plenty of valuable information has to be found
in books and web resources. We give here an overview of
such solutions and compare to our work where appropriate.
A summary of the technologies that we mention is given in
Table 2. We make an abuse of notation by reporting Jolie
along with frameworks, even though Jolie is actually a pro-
gramming language and thus patterns must be implemented.
The idea is to point out that all such patterns are naturally
supported by Jolie via its language constructs.

Circuit Breakers. Circuit breakers have first been pop-
ularised in [35], where their role is discussed in the context
of availability (resilience) for enterprise systems.

Akka [22] provides a circuit breaker implementation that
supports basic configuration parameters, such as call time-
out, failure threshold and reset threshold. Hystrix [30] is
much more flexible and is currently one of the reference so-
lutions: it supports rolling statistics, fallback mechanisms,
resource control, and control over the states and transitions
of circuit breakers. Our circuit breaker prototype in Jolie
(Figure 5) is of course not as mature as these implementa-
tions, but it is interesting because it can be freely deployed
in any of scenarios described in § 2. Furthermore, our circuit
breaker is parametric on the interface of the target service.
This means that if such interface changes over time (as can
often happen in microservicese, e.g., by adding an opera-
tion), then the circuit breaker can be re-adopted immedi-
ately without any changes. Hystrix does not support this
capability: supporting a new operation requires writing an
additional implementation of a HystrixCommand. Importing
this feature could be an interesting future development.

Service Discovery and Load Balancing. Eureka [29]
and Ribbon [31] combined together provide client-side load
balancing and service discovery. Amazon Web Services Elas-
tic Load Balancing (AWS ELB), instead, implements bal-
ancing and discovery using a server-side solution. Therefore,
ELB is generally used to expose edge services to the pub-
lic, and Eureka to handle internal service communications.
However, this also means that ELB can become a bottle-
neck. Eureka is more resilient, as all information is cached
by clients. Discovery and load balancing can be achieved in
Jolie using the techniques described in [11, 26].

API Gateways. Both Zuul [32] and Amazon Web Services
(AWS) [1] provide roughly the same functionalities in their
implementation (e.g., security, authentication, monitoring,
and load balancing). Zuul consists of different libraries (such
as Eureka[29], Hystrix[30], and Ribbon[31]), whereas AWS
provides a single framework that may be quicker to use in the

beginning. However, since Zuul and all its dependencies are
open source, it has the advantage in customisation potential.
Redirections in Jolie as we used in § 4 do not take care of ex-
tra features such as security and monitoring by themselves.
The idea is that an API Gateway in Jolie should be com-
posed with other patterns, e.g., circuit breakers, to achieve
this extra features, keeping concerns separate. This is easy
to do since all components in Jolie are relocatable services
that must define interfaces for enabling composition.

6. CONCLUSIONS AND FUTURE WORK
We reviewed three mainstream mechanisms found in Mi-
croservice Architectures (MSAs): Circuit Breaker, Service
Discovery, and API Gateway. We discussed different strate-
gies for their implementation, and elicited the interplay be-
tween deployment topologies and circuit breakers.

These patterns are emerging as essential for the reliability,
ease of access, and flexibility of MSAs. Since microservices
is in its early development, we can expect more patterns like
these to appear in the future. It is interesting that these pat-
terns are structural, in the sense that they do not change the
operations that services provided by developers offer, which
are more custom to the specific MSA at hand. Being of this
nature, their implementations benefit from parametricity to
achieve reusability, as we have shown for circuit breakers by
using interface parametricity in Jolie. However, their adop-
tion also makes MSAs more complicated, and they influence
the communication structures that will be enacted in a sys-
tem. This suggests that methods for the programming and
verification of communications among services should keep
patterns such as these into account.

Development methodologies for service communications typ-
ically employ choreographies for the description of service
protocols. Choreographies do not require central control, a
critical feature for the scalability of MSAs. Formal meth-
ods and languages based on choreographies have been de-
veloped for various purposes, including: documenting sys-
tems using choreographies [37, 5]; synthesising service im-
plementations starting from choreographies [25, 9]; and, ver-
ifying safety properties of choreographies (e.g., deadlock-
freedom)[38, 19]. The patterns that we considered cannot
be readily implemented in these models. They require ex-
tensions to deal with some necessary features, specifically:
circuit breakers require timeouts, faults, and interface para-
metricity; service discovery requires dynamic binding (the
capability of connecting to a remote service whose loca-
tion is discovered at runtime); and, API gateways require
the capability of loading new services at runtime. There
are promising works that deal with timeouts [4], faults [7,
6], dynamic binding [28], and parametric behaviour [36, 8].
However, all these works are not integrated with one another
and a coherent choreography language that can capture, for
example, circuit breakers still has to appear. Therefore, de-
signing a model capable of capturing the patterns that we
described represents interesting future work. Useful inspi-
ration may be gained also from related work in the area of
process calculi and components, given their vicinity in the
adopted techniques, including [21, 17, 27, 12].

7

Pattern Frameworks, Libraries & Languages
API Gateway AWS[1], Netflix[32], Nginx[33], Jolie[26, 20]
Circuit Breaker Hystrix[30], Akka[22], Jolie[26, 20]

Load Balancing & Service Discovery Nginx[34], Ribbon[31], ELB[2], Eureka[29], etcd[10],
Zookeeper[3], Marathon[24], Consul[18], Jolie[20]

Monitoring & Metrics Docker[13], Hystrix[30], Lightbend[23], Marathon[24], Jolie[26,
20]

Table 2: State of the Art Microservice Frameworks, Libraries & Languages.

7. REFERENCES
[1] Amazon. Amazon Web Services API Gateway.

https://aws.amazon.com/api-gateway/.

[2] Amazon. Amazon Web Services Elastic Load
Balancing.
https://aws.amazon.com/elasticloadbalancing/.

[3] Apache. Zookeeper. https://zookeeper.apache.org.

[4] Laura Bocchi, Julien Lange, and Nobuko Yoshida.
Meeting deadlines together. In CONCUR, pages
283–296, 2015.

[5] Business Process Model and Notation. http://www.
omg.org/spec/BPMN/2.0/.

[6] Sara Capecchi, Elena Giachino, and Nobuko Yoshida.
Global escape in multiparty sessions. Mathematical
Structures in Computer Science, 26(2):156–205, 2016.

[7] Marco Carbone. Session-based choreography with
exceptions. Electr. Notes Theor. Comput. Sci.,
241:35–55, 2009.

[8] Marco Carbone, Sam Lindley, Fabrizio Montesi,
Carsten Schürmann, and Philip Wadler. Coherence
generalises duality: A logical explanation of multiparty
session types. In CONCUR, 2016. To appear.

[9] Marco Carbone and Fabrizio Montesi.
Deadlock-freedom-by-design: multiparty asynchronous
global programming. In POPL, pages 263–274, 2013.

[10] CoreOS. etcd. https://github.com/coreos/etcd.

[11] Mila Dalla Preda, Maurizio Gabbrielli, Claudio Guidi,
Jacopo Mauro, and Fabrizio Montesi. Interface-based
service composition with aggregation. In ESOCC,
pages 48–63, 2012.

[12] Ornela Dardha, Elena Giachino, and Michael
Lienhardt. A type system for components. In SEFM,
pages 167–181, 2013.

[13] Docker. Docker. https://www.docker.com/.

[14] Nicola Dragoni, Saverio Giallorenzo, Alberto
Lluch-Lafuente, Manuel Mazzara, Fabrizio Montesi,
Ruslan Mustafin, and Larisa Safina. Microservices:
yesterday, today, and tomorrow. CoRR,
abs/1606.04036, 2016.

[15] M Fowler and J Lewis. Microservices. ThoughtWorks,
2014.

[16] Maurizio Gabbrielli, Saverio Giallorenzo, Claudio
Guidi, Jacopo Mauro, and Fabrizio Montesi.
Self-reconfiguring microservices. In Theory and
Practice of Formal Methods, pages 194–210. Springer,
2016.

[17] Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and
Gianluigi Zavattaro. Dynamic error handling in
service oriented applications. Fundam. Inform.,

95(1):73–102, 2009.

[18] HashiCorp. Consul. https://www.consul.io.

[19] Kohei Honda, Nobuko Yoshida, and Marco Carbone.
Multiparty asynchronous session types. Journal of the
ACM, 63(1):9, 2016. Also: POPL, 2008, pages
273–284.

[20] Jolie. Official Website. http://www.jolie-lang.org/.

[21] Cosimo Laneve and Gianluigi Zavattaro. Foundations
of web transactions. In FOSSACS, pages 282–298,
2005.

[22] Lightbend. Akka’s Circuit Creaker Pattern.
http://doc.akka.io/docs. Section 7.4.

[23] Lightbend. Monitoring.
https://www.lightbend.com/products/monitoring.

[24] Mesophere. Marathon.
https://mesosphere.github.io/marathon.

[25] Fabrizio Montesi. Choreographic Programming. Ph.D.
thesis, IT University of Copenhagen, 2013. http://
www.fabriziomontesi.com/files/choreographic
programming.pdf.

[26] Fabrizio Montesi, Claudio Guidi, and Gianluigi
Zavattaro. Service-Oriented Programming with Jolie.
In Web Services Foundations, pages 81–107. Springer,
2014.

[27] Fabrizio Montesi and Davide Sangiorgi. A model of
evolvable components. In TGC, pages 153–171, 2010.

[28] Fabrizio Montesi and Nobuko Yoshida. Compositional
choreographies. In CONCUR, pages 425–439, 2013.

[29] Netflix. Eureka. https://github.com/Netflix/eureka.

[30] Netflix. Hystrix. https://github.com/Netflix/hystrix.

[31] Netflix. Ribbon. https://github.com/Netflix/ribbon.

[32] Netflix. Zuul. https://github.com/Netflix/zuul.

[33] Nginx. Nginx API Gateway Solution.
https://www.nginx.com/solutions/api-gateway.

[34] Nginx. Nginx Load Balancing Solution.
https://www.nginx.com/solutions/load-balancing/.

[35] Michael T. Nygard. Release It!: Design and Deploy
Production-Ready Software (Pragmatic Programmers).
Pragmatic Bookshelf, 2007.

[36] Nicolas Tabareau, Mario Südholt, and Éric Tanter.
Aspectual session types. In MODULARITY, pages
193–204, 2014.

[37] W3C. Web Services Choreography Description
Language. https://www.w3.org/TR/ws-cdl-10/.

[38] Nobuko Yoshida, Raymond Hu, Rumyana Neykova,
and Nicholas Ng. The scribble protocol language. In
TGC, pages 22–41, 2013.

8

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.jolie-lang.org/
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf

	1 Introduction
	2 Circuit Breakers
	3 Service Discovery
	4 API Gateways
	5 Related Work
	6 Conclusions and Future Work
	7 References

