
Sliceable Monolith:
Monolith First, Microservices Later

Fabrizio Montesi
University of Southern Denmark

fmontesi@imada.sdu.dk

Marco Peressotti
University of Southern Denmark

peressotti@imada.sdu.dk

Valentino Picotti
University of Southern Denmark

picotti@imada.sdu.dk

Abstract—We propose Sliceable Monolith, a new methodology
for developing microservice architectures and perform their
integration testing by leveraging most of the simplicity of a
monolith: a single codebase and a local execution environment
that simulates distribution. Then, a tool compiles a codebase for
each microservice and a cloud deployment configuration. The
key enabler of our approach is the technology-agnostic service
definition language offered by Jolie.

Index Terms—Microservices, Monolith, Jolie, Containers, Cloud
Computing.

I. INTRODUCTION

Microservices represent the prominent software paradigm
for building distributed applications that strive for scalabil-
ity, maintainability, and tight development and deployment
cycles [1]. Microservices enforce strong boundaries and interact
by message passing, leading to modular and independently
executable software components. However, they require dealing
with multiple codebases (one per microservice), making proto-
typing and testing more challenging compared to a monolith—a
standard application that consists of a single executable.

The complexity introduced by microservices can easily
outweigh their benefits and, especially when it comes to
greenfield project development, experts have mixed opinions
on whether to start with microservices or with a monolith [2–
4]. Thus we ask: Can we recover some of the simplicity of
monoliths in the development of microservices? A positive
answer would contribute to making the greenfield development
of microservice systems more approachable, which is important
because migrating monoliths to microservices is difficult [3].

In this article, we propose a new development methodology
whereby an entire microservice architecture has a single
codebase. Thus, our approach reduces drastically the complexity
of reaching a working prototype to iterate on. We depict our
methodology in Figure 1 and outline it in the following.

The main artifact in the codebase is a “sliceable monolith”:
the definition of a microservice system that looks like a mono-
lith, but where all components are enforced to be services with
clear boundaries and data models (e.g., the structures of Data
Transfer Objects). We achieve these features by using the Jolie
programming language [5]. Jolie enforces linguistically some
best practices for microservice development, e.g., interaction
among components happens necessarily through formally-
defined service interfaces. Thanks to the built-in facilities of

the Jolie interpreter, the application can then be tested locally
straight away, enabling fast refinement cycles of the prototype.

The structure of a sliceable monolith make it possible to
automatically extract the implementation of each microservice
into its own codebase. We implement this procedure with
an automatic slicer tool (called Jolie Slicer), emphasising
the fact that the sliceable monolith is cut alongside the
sharp boundaries of the microservices. Our slicer tool also
produces the necessary configuration for the containerisation
and distributed deployment of the microservice system on the
cloud. At this point, developers are free to choose between
iterating on the sliceable monolith codebase, or to start
developing some (even all) of the microservices independently.
The technology-agnostic nature of Jolie interfaces makes it
possible to mix different languages for the implementation of
each microservice (Jolie currently supports its own behavioural
language, Java, and JavaScript, with a plug-in architecture for
adding more [5]).

II. A USE CASE FROM SMART CITIES

In this section, we present our development methodology
with a running example based on (the relevant parts of) the
implementation of a use case from smart cities. We model a
scenario in which a microservice architecture manages a set
of private parking areas whose owners, in agreement with the
power grid operators, have decided to share their charging
stations in exchange for monetary incentives. The end-users
of the application are owners of electrical vehicles looking
for available charging stations near a given location. The
described scenario is borrowed from [6, 7], where microservices
interact according to the Domain Event pattern. The application
follows the CQRS pattern (Command Query Responsibility
Segregation): two services, one for querying data (QuerySide)
and the other for updating data (CommandSide) interact indirectly
through an event store service (EventStore).

A. Development and Local Testing

Service QuerySide allows clients to obtain information about
parking spaces equipped with charging stations, performing
queries based on geolocation. Service CommandSide offers an
API for updating information about parking spaces. Service
EventStore supports the coordination of the other two services
by offering an API for event-driven communication.

Local Testing

service A {
 ...
}
service B {
 ...
}
service C {
 ...
}

Monolith Development Slicing

services:
 - a:
 - build: ./A
 - b:
 - build: ./B
 - c:
 - build: ./C
networks:
...

Deployment

service C {
 execution: ...
 inputPort IP {
 ...
 }
 main {
 ...
 }
}

service B {
 execution: ...
 inputPort IP {
 ...
 }
 main {
 ...
 }
}

service A {
 execution: ...
 inputPort IP {
 ...
 }
 main {
 ...
 }
}

FROM jolielang/j
COPY A.ol .
CMD ["jolie","A.

FROM jolielang/j
COPY A.ol .
CMD ["jolie","A.

FROM jolielang/j
COPY A.ol .
CMD ["jolie","A.

Legend

Jolie Code

Container Image
Configuration

Deployment
Configuration

Jolie Slicer (our tool)

Deployment Infrastructure

Figure 1. The development methodology of Sliceable Monolith.

Following the Sliceable Monolith approach, in this sub-
section we define the interfaces (data models and APIs) and
implementations of these services in a single codebase.

We start by writing a Jolie program (smart-city.ol) that
defines a service block for each one of our services:

service QuerySide(config) { ... }
service CommandSide(config) { ... }
service EventStore(config) { ... }

Jolie

Each service is parameterised on an externally-provided con-
figuration, called config.

We show the most interesting parts of the definition of
CommandSide, which is the most involved. First, we use Jolie
data types to define the data model of the messages that the
service exchanges. These include parking area identifiers and
structures for providing information about each area: name,
the time period in which it is available, the speed supported
by the charging station in the area, and geolocation.

type PAID:long // Parking Area IDentifier
type ParkingArea {

id:PAID
info:ParkingAreaInformation

}
type ParkingAreaInformation {

name:string
availability*:TimePeriod
chargingSpeed:ChargingSpeed
geolocation:Location

}

Jolie

Using the data model, we build the API of CommandSide as a
Jolie interface that comprises three RPCs for creating, updating,
and deleting parking areas (RequestResponse is Jolie for RPC):

interface CommandSideInterface {
RequestResponse:
createParkingArea(ParkingAreaInformation)(PAID),
updateParkingArea(ParkingArea)(string),
deleteParkingArea(PAID)(string)
}

Jolie

In the definition of service CommandSide, we offer the API
that we have just defined to clients (through a Jolie inputPort)
and we declare a dependency towards the EventStore service
(through a Jolie outputPort). The locations at which these
communication ports should be deployed at are parameters that
we get from the externally-provided configuration.

/* ... data types and API definitions ... */
service CommandSide(config:Configuration) {

execution: concurrent
inputPort InputCommands {

location: config.CommandSide.location
protocol: http { format = "json" }
interfaces: CommandSideInterface

}
outputPort EventStore {

location: config.EventStore.location
protocol: http { format = "json" }
interfaces: EventStoreInterface

}
main { /* business logic implementation */ }

}

Jolie

Note that data types and APIs appear outside of the service
block that implements CommandSide. This allows us to share
these same types across the implementations of all services,
which aids in keeping the data models of interacting services
consistent. For example, we can conveniently reuse the type
ParkingArea in the data types of events that can be exchanged

through the EventStore service. This convenience comes at
zero cost: our slicer tool (next subsection) uses a dependency
analysis to produce optimised code for each microservice.

Externally-provided configurations for Jolie services can
be given as JSON files. By using a JSON file that provides
locations at the local host, we can test the entire architecture
locally, both with unit and integration tests. While the latter is
typically problematic in general, in our case it is simply a matter
of writing a few lines of Jolie code that can be run locally.
For example, the following test checks that deleting a parking
area triggers the right event notification from EventStore.

subscribe@EventStore({
location = testLocation
topics[0] = "PA_DELETED"

})(res)
deleteParkingArea@CommandSide(123L)()
notify(event)
if(event.type != "PA_DELETED" || event.id != 123L)

throw(AssertionFailed)

Jolie

B. Slicing and Deployment
To switch to a distributed architecture, we write another

configuration file (deploy.json), where locations are abstract
DNS names (resolved by Docker, in our concrete deployment).
We then run our Jolie Slicer tool with the following command.

jolie-slicer --config deploy.json smart-city.ol

This produces an output directory that contains a Docker
Compose file for cloud deployment and a subfolder for each
service. Each subfolder contains the code of its respective
service alongside a Dockerfile that instructs Docker on how
the service should be containerised, like the following.

FROM jolielang/jolie
COPY CommandSide.ol .
COPY ../deploy.json .
CMD ["jolie", "-p", "deploy.json", "CommandSide.ol"]

Dockerfile

The generated docker-compose.yml file is compatible with
Docker Swarm. It can be used as is, but the programmer can
also refine it, e.g., with the desired load balancing configuration:

services:
commandside:
build: ./commandside
deploy:

replicas: 1
...

Docker Compose

From a Docker Swarm manager node, the following com-
mand will deploy the entire architecture as a composition of
independent microservices, as expected.

docker stack deploy -c docker-compose.yml smartcity

III. CONCLUSION

When developing a new service system, developers have
to choose whether to start with a monolith or jump directly
to microservices. The first choice leads to quick prototyping,
but poses the risk of discarding the monolith entirely when
migrating to microservices [2]. The second choice gives
immediately a more flexible architecture, but at the cost of
severely slowing down early development [3, 8].

Sliceable Monolith is a new middle ground between these
approaches, which retains some of the simplicity of developing
a monolith and automates the migration to a full-fledged
distributed system of microservices.

We have omitted the business logic implementations of our
services in the example; they are not surprising, and apply
typical best practices (especially statelessness, where good
scalability is desired). Our methodology abstracts from the
technologies used for such implementations. Our tool already
supports different technologies through Jolie, which has a
plug-in architecture for implementing the business logics of
services (the “main” block) in other languages, like Java and
JavaScript [5]. Our tool currently supports Docker Swarm for
cloud deployment, but in principle our methodology applies also
to other technologies, like Kubernetes, Pulumi, or Terraform.

Our approach gives a first positive answer to the question
in the introduction. It joins multiparty languages, an emerging
class of distributed programming paradigms [9]. Interesting
future work includes the systematic study of its impact.

Acknowledgments: We thank Florian Rademacher for
useful discussions about the use case. Work partially supported
by Independent Research Fund Denmark, grant no. 0135-00219.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices:
Yesterday, today, and tomorrow,” in Present and Ulterior
Software Engineering. Springer, 2017, pp. 195–216.

[2] M. Fowler. (2015) Monolith first. [Online]. https:
//martinfowler.com/bliki/MonolithFirst.html

[3] S. Tilkov. (2015) Don’t start with a monolith. [Online].
https://martinfowler.com/articles/dont-start-monolith.html

[4] S. Newman. (2015) Microservices for green-
field? [Online]. https://samnewman.io/blog/2015/04/07/
microservices-for-greenfield/

[5] F. Montesi, C. Guidi, and G. Zavattaro, Service-Oriented
Programming with Jolie. Springer, 2014, pp. 81–107.

[6] F. Rademacher, “A language ecosystem for modeling
microservice architecture,” Ph.D. dissertation, University
of Kassel, 2021, forthcoming.

[7] (2020) Puls: Parken und laden in der stadt. [Online].
https://parken-und-laden.de/

[8] S. Newman, Building Microservices: Designing Fine-
Grained Systems, 1st ed. O’Reilly, 2015.

[9] S. Giallorenzo, F. Montesi, M. Peressotti, D. Richter, G. Sal-
vaneschi, and P. Weisenburger, “Multiparty languages: The
choreographic and multitier cases,” in ECOOP 2021, ser.
LIPIcs, vol. 194, 2021, pp. 22:1–22:27.

https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/articles/dont-start-monolith.html
https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/
https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/
https://parken-und-laden.de/

	Introduction
	A Use Case from Smart Cities
	Development and Local Testing
	Slicing and Deployment

	Conclusion

