
Process-aware web programming with Jolie

Fabrizio Montesi

Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230
Odense M, Denmark. Phone number: +4565507171

Abstract

We extend the Jolie programming language to capture the native modelling of process-
aware web information systems, i.e., web information systems based upon the execu-
tion of business processes. Our main contribution is to offer a unifying approach for the
programming of distributed architectures on the web, which can capture web servers,
stateful process execution, and the composition of services via mediation. We discuss
applications of this approach through a series of examples that cover, e.g., static content
serving, multiparty sessions, and the evolution of web systems. Finally, we present a
performance evaluation that includes a comparison of Jolie-based web systems to other
frameworks and a measurement of its scalability.

Keywords: Business Processes, Programming Languages, Sessions, Web Services

1 Introduction

A Process-Aware Information System (PAIS) is an information system based upon
the execution of business processes. These systems are required in many application
scenarios, from inter-process communication to automated business integration [24].
Processes are typically expressed as structures that determine the order in which com-
munications should be performed in a system. These structures can be complex and
of different kinds; a systematic account can be found at [11]. For this reason, many
formal methods [63, 29, 40, 22], tools [65, 35, 27, 33, 49], and standards [51, 66, 1]
have been developed to provide languages for the definition, verification, and execu-
tion of processes. In these works, compositionality plays a key role to make the de-
velopment of processes manageable. For example, in approaches based on process
calculi, complex process structures are obtained by composing simpler ones through
the usage of standard composition operators such as sequence, choice, and parallel
(see, e.g., [41]). Other approaches follow similar ideas using graphical formal models,
e.g., Petri Nets [64, 56].

In the last two decades, web applications have become increasingly process-aware.
Web processes – i.e., processes inside of a web information system – are usually im-
plemented server-side on top of sessions, which track incoming messages related to

Email address: fmontesi@imada.sdu.dk (Fabrizio Montesi)

ar
X

iv
:1

41
0.

37
12

v3
 [

cs
.D

C
]

 2
1

A
pr

 2
01

6

the same conversation. Sessions are supported by a shared memory space that lives
through different client invocations. Differently from the aforementioned approaches
for designing processes, the major languages and platforms for developing web appli-
cations (e.g., PHP, Ruby on Rails, and Java EE) do not support the explicit program-
ming of process structures. As a workaround, programmers have to simulate processes
using bookkeeping variables in the shared memory space of sessions. For example,
consider a process in a Research Information Service (RIS) where a user has to authen-
ticate through a login operation before accessing another operation, say addPub,
for registering a publication. This would be implemented by defining the login and
the addPub operations separately. The code for login would update a bookkeep-
ing variable in the session state and the implementation for addPub would check that
variable when it is invoked by the user. Although this approach is widely adopted, it
is also error-prone: since processes can assume quite complex structures, simulating
them through bookkeeping variables soon becomes cumbersome. Consequently, the
produced code may be poorly readable and hard to maintain.

The limitations described above can be avoided by adopting a multi-layered archi-
tecture. For example, it is possible to stratify an application by employing: a web server
technology (e.g., Apache Tomcat) for serving content to web browsers; a web scripting
language (e.g., PHP) for programmable request processing; a process-oriented lan-
guage (e.g., WS-BPEL [51]) for modelling the application processes; and, finally, me-
diation technologies such as proxies and ESB [23] for integrating the web application
within larger systems. Such an architecture would offer a good separation of concerns.
However, the resulting system would be highly heterogeneous, requiring a specific
know-how for handling each part. Thus, it would be hard to maintain and potentially
prone to breakage in case of modifications.

The aim of this paper is to simplify the programming of process-aware web infor-
mation systems. We build our results on top of Jolie, a general-purpose service-oriented
programming language that can handle both the structured modelling of processes and
their integration within larger distributed systems [49, 37]. Jolie is briefly introduced
in § 2.

1.1 Contributions
Our main contribution is the extension of Jolie to obtain a unifying technology

for the programming of processes, web technologies (web servers and scripting) and
mediation services (e.g., proxies), which facilitates the development of heterogeneous
information systems that involve the Web. We then investigate the applicability of this
framework, showing that our extended version of Jolie captures the different compo-
nents of web systems and their integration using a homogeneous set of concepts. We
proceed as described below.

Web processes. We extend the Jolie interpreter to support the HTTP protocol, enabling
processes written in Jolie to send and receive HTTP messages (§ 3). The integration is
seamless, meaning that the processes defined in Jolie remain abstract from the underly-
ing data formats used in the Web: data structures in Jolie are transparently transformed
to HTTP message payloads and vice versa (§ 3.1). These transformations can be con-
figured using port parameters, an extension of the Jolie language that we develop to

2

allow processes to map information from HTTP headers to application data and vice
versa (§ 3.3). Parameters support mobility: they can be transparently transmitted from
service registries to clients, allowing clients to be transparently configured at runtime
with the right binding information (§ 3.4, Example 3.3).

Web servers as processes. We develop a web server, called Leonardo (§ 4), using our
approach. The web server is given as a simple process that (i) receives the name of
the resource a client wants to access, then (ii) reads the content of such resource, and
(iii) sends the content back to the client. Leonardo is an example of the fact that, in
our framework, a web server is not a separate technology but it is instead a simple case
of process. We also show how to extend Leonardo to handle simple CRUD operations
over HTTP.

Sessions. We combine our HTTP extension for Jolie with message correlation, a mech-
anism used in service-oriented technologies to route incoming messages to their respec-
tive processes running inside of a service [51, 49]. We first show that this combination
is adequate wrt existing practice: it enables Jolie processes to use the standard method-
ology of tracking client-server web sessions using unique session identifiers (§ 5.1).
Then, we generalise such methodology to program multiparty sessions, i.e., structured
conversations among a process and multiple external participants [32] (§ 5.2).

Architectural programming. We present how to obtain separation of concerns in a web
architecture implemented with our approach, by combining HTTP with aggregation, a
Jolie primitive for programming the structure of service networks [47, 57, 49] (§ 6).
We demonstrate the usefulness of this combination by implementing a multi-layered
system that integrates different components. We also discuss how to deal with the
evolution of software architectures obtained with our approach (§ 6.2).

RESTful services. We discuss how to develop web systems based on the REST style [26]
with our framework, using URI templates to bridge resource-oriented interactions to
processes (§ 7). The standard separation of concerns between routing and business
logic can be achieved by developing a routing service that routes REST requests to
other services, which required developing a reflection library for the Jolie language
(§ 7.3). We then show how structured processes can be combined with our REST router
to obtain RESTful multiparty sessions (§ 7.4). Since, in these scenarios, requests typ-
ically have to be validated both at client- and server-side, we provide an integration
between Jolie and JavaScript to be able to run the same validation code, achieving the
same de-duplication benefits as in frameworks based on JavaScript (§ 7.5).

Performance. A performance evaluation of our approach is given (§ 8). This evalua-
tion covers two main aspects. First, our data shows that our solution has comparable
performance to that of other existing frameworks in the execution of basic tasks, such
as offering static files or templated web pages. Second, we analyse the scalability of
our approach wrt the number of services involved in the computation of responses to
clients.

3

2 Overview of Jolie

Jolie [45] is a general-purpose service-oriented programming language, released as
an open-source project [37] and formally specified as a process calculus [29, 48]. In this
section, we briefly describe some aspects of Jolie that are relevant for our discussion.
We refer the interested reader to [49] and [37] for a more comprehensive presentation
of the language. Readers who are already familiar with the Jolie language may skip
this section and resume reading from § 3.

2.1 Jolie programs
Every Jolie program defines a service and consists of two parts: behaviour and

deployment. A behaviour defines the implementation of the operations offered by the
service; it consists of communication and computation instructions, composed into a
structured process (a workflow) using constructs such as sequences, parallels, and in-
ternal/external choices. Behaviours rely on communication ports to perform communi-
cations, which are to be defined in the deployment part. The latter can also make use of
architectural primitives for handling the structure of an information system. Formally,
a Jolie program is structured as:

D main { B }

Above, D represents the deployment and B the behavior of the program.

2.2 Behaviour
We report (a selection of) the syntax of behaviours in Figure 1. A behaviour B can

use primitives for performing communications, computation, and their composition
in processes. We briefly comment the syntax. Terms (input), (output), and (input
choice) implement communications. An input η can either be a one-way or a request-
response, following the WSDL standard [9]. Statement (one-way) receives a message
for operation o and stores its content in variable x. Term (request-response) receives
a message for operation o in variable x, executes behaviour B (called the body of
the request-response input), and then sends the value of the evaluation of expression
e to the invoker. Dual to input statements, an output η can be a (notification) or a
(solicit-response). A (notification) sends a message to OP containing the value of the
evaluation of expression e. Term (solicit-response) sends a message to OP containing
the evaluation of e and then waits for a response from the invoked service, storing it
afterwards in variable y. In both (notification) and (solicit-response), OP is the name
of an output port, which acts as a reference to an external service. Output ports are
concretely defined in the deployment part of a program; we will present them in § 2.3.

Term (input choice) implements an input-guarded choice; it is similar to the pick
primitive in WS-BPEL [51]. Specifically, the construct waits for a message for any of
the inputs in η1, . . . , ηn. When a message for one of these inputs is received, say for ηi
where 1 ≤ i ≤ n, then the statement is executed as follows, in order: (i) all the other
branches in the choice (i.e., all the [ηj] { Bj } such that j 6= i) are discarded; (ii)
ηi is executed; and, finally, Bi is executed.

Terms (cond) and (while) implement, respectively, the standard conditional and
iteration constructs. Term (seq) models sequential execution and reads as: execute B,

4

B ::= η (input)
| η (output)
| [η1] { B1 } . . .[ηn] { Bn } (input choice)
| if(e) B1 else B2 (cond)
| while(e) B (while)
| B ; B′ (seq)
| B | B′ (par)
| throw(f) (throw)
| x = e (assign)
| x -> y (alias)
| nullProcess (inact)

η ::= o(x) (one-way)
| o(x)(e){ B } (request-response)

η ::= o@OP(e) (notification)
| o@OP(e)(y) (solicit-response)

Figure 1: Jolie, syntax of behaviours (selection).

wait for its termination, and then run B′. In term (par), instead, B and B′ are run in
parallel. Term (throw) throws a fault signal f, interrupting execution. If a fault signal
is thrown from inside a request-response body, the invoker of the request-response
statement is automatically notified of the fault [44]. We omit the syntax for handling
faults, which is not necessary for reading this paper.

Term (assign) stores the result of the evaluation of expression e in variable x. Term
(alias) makes variable x an alias for variable y, i.e., after its execution accessing x will
be equivalent to accessing y. Term (inact) denotes the empty behaviour (no-op).

Example 2.1 (Structured data). Jolie natively supports the manipulation of structured
data. In Jolie’s memory model the program state is a tree (possibly with arrays as
nodes, see [47]), and every variable, say x, can be a path to a node in the memory
tree. Paths are constructed through the dot “.” operator; for instance, the following
sequence of assignments

1 person.name = "John"; person.age = 42

would lead to a state containing a tree with root label person. For the reader familiar
with XML, a corresponding XML representation would be:

1 <person> <name>John</name> <age>42</age> </person>

2.3 Deployment
We introduce now (a selection of) the syntax of deployments. A deployment in-

cludes definitions of input ports, denoted by IP , and output ports, denoted by OP ,

5

IP ::= inputPort Port OP ::= outputPort Port

Port ::= id {
Location: Loc
Protocol: Proto
Interfaces: iface1, . . . , ifacen

}

Figure 2: Jolie, syntax of ports (selection).

which respectively support input and output communications with other services. In-
put and output ports are one the dual concept of the other, and their respective syntaxes
are quite similar. Both kinds of ports are based on the three basic elements of location,
protocol and interface. Their syntax is reported in Figure 2. In the syntax of ports, i.e.,
term Port, Loc is a URI (Uniform Resource Identifier) that defines the location of the
port; Proto is an identifier referring to the data protocol to use in the port, which spec-
ifies how input or output messages through the port should be respectively decoded or
encoded; the identifiers iface1, . . . , ifacen are references to the interfaces accessible
through the port.

Jolie supports several kinds of locations and protocols. For instance, a valid Loc for
accepting TCP/IP connections on TCP port 8000 would be "socket://localhost:8000".
Other supported locations are based, respectively, on Unix sockets, Bluetooth commu-
nication channels, and local in-memory channels (channels implemented using shared
memory). Some supported instances of Proto are sodep [37] (a binary protocol,
optimised for performance), soap [8], and xmlrpc [12].

The interfaces referred to by a communication port define the operations that can
be accessed through that port. Each interface defines a set of operations, along with
their respective (i) operation types, defining if an operation is to be used as a one-way
or a request-response, and (ii) types of carried messages. For example, the following
code

1 interface SumIface { RequestResponse: sum(SumT)(int) }

defines an interface named SumIface with a request-response operation, called sum,
that expects input messages of type SumT and replies with messages of type int (in-
tegers). Data types for messages follow a tree-like structure; for example, we could
define SumT as follows:

1 type SumT:void { .x:int .y:int }

We read the code above as: a message of type SumT is a tree with an empty root node
(void) and two subnodes, x and y, that have both type int.

Example 2.2 (A complete Jolie program). We give an example of how to combine
behaviour and deployment definitions, by showing a simple service defined in Jolie.
The code follows:

6

1 type SumT:void { .x:int .y:int }
2
3 interface SumIface { RequestResponse: sum(SumT)(int) }
4
5 inputPort SumInput {
6 Location: "socket://localhost:8000"
7 Protocol: soap
8 Interfaces: SumIface
9 }

10
11 main
12 {
13 sum(req)(resp) {
14 resp = req.x + req.y
15 }
16 }

Above, input port MyInput deploys the interface SumIface (and thus the sum oper-
ation) on TCP port 8000, waiting for TCP/IP socket connections by invokers using the
soap protocol. The behaviour of the service is contained in the main procedure, the
entry point of execution in Jolie. The behaviour in main defines a request-response in-
put on operation sum. In this paper, we implicitly assume that all services are deployed
with the concurrent execution modality for supporting multiple session executions,
from [47]. This means that whenever the first input of the behavioural definition of a
service receives a message from the network, Jolie will spawn a dedicated process with
a local memory state to execute the rest of the behaviour. This process will be equipped
with a local variable state and will proceed in parallel to all the others. Therefore, in
our example, whenever our service receives a request for operation sum it will spawn
a new parallel process instance. The latter will enter into the body of sum, assign to
variable resp the result of adding the subnodes x and y of the request message req,
and finally send back this result to the original invoker.

3 Extending Jolie to HTTP

We extend Jolie to support web applications by introducing a new protocol for
communication ports, named http, and by extending the language of deployments to
support configuration parameters for protocols. The protocol follows the specifications
of HTTP, and integrates the message semantics of Jolie to that of HTTP and its different
content encodings. In this section, we discuss the main aspects of our implementation.

3.1 Message transformation
The central issue to address for integrating Jolie with the HTTP protocol is estab-

lishing how to transform HTTP messages in messages for the input and output prim-
itives of Jolie and vice versa. Our objective is twofold: on the one hand, we aim at
having transparent transformations between data payloads inside of HTTP messages
(e.g., XML documents or JSON structures) and Jolie values, so that the programmer

7

does not have to deal with them; on the other hand, we also need to give Jolie pro-
grams enough low-level control on HTTP messages such that implementing standard
components found in web systems is possible (e.g., web servers or REST routers, as
we will discuss respectively in § 4 and § 7). Hereby we discuss primarily how our
implementation manages request messages; response messages are similarly handled.
The (abstract) structure of a request message in HTTP is:

Method Resource HTTP/V ersion Headers Body

Above,Method specifies the action that the client intends to perform and can be picked
by a static set of keywords, such as GET, PUT, POST, etc. Term Resource is a URI
path telling which resource the client is requesting. Term V ersion is the HTTP proto-
col version of the message. The termHeadersmay include descriptive information on
the message Body, e.g., the type of its content (Content-Type), or parameters that
influence the behaviour of the receiver, e.g., the wish to keep the underlying connection
open for future requests (Connection:keep-alive). Finally, Body contains the
content (payload) of the HTTP message.

A Jolie message consists of an operation name (the operation the message is meant
for) and a structured value (the content of the message) [47]. Hence, we need to estab-
lish where to read or write these elements in an HTTP message. For operation names,
we interpret the path part of theResource URI as the operation name. TheMethod of
an HTTP message, instead, is read and written by Jolie programs through a configura-
tion parameter of our extension, described later in § 3.3. The value of a Jolie message
is obtained from Body and the rest of the Resource URI (query and fragment parts).
We use the latter to decode querystring parameters as Jolie values.

The content of an HTTP message may be encoded in one of different formats. Our
http extension handles querystrings, form encodings (simple and multipart), XML,
JSON [4], and GWT-RPC1 [3]. Programmers can use the format parameter (§ 3.3)
to control the data format for encoding and decoding messages. Most of the times,
however, this decision is performed automatically via standard HTTP content negoti-
ation and the programmer does not need to know which format is used (format is a
fallback parameter in the case that the client does not ask for a content type). As an
example of message translation, the HTTP message:

1 GET /sum?x=2&y=3 HTTP/1.1

would be interpreted as a Jolie message for operation sum. The querystring x=2&y=3
would be translated to a structured value with subnodes x and y, containing respec-
tively the strings "2" and "3".

3.2 Automatic type casting

Querystrings and other common message formats used in web applications, such as
HTML form encodings, do not carry type information. Instead, they carry only string

1We also developed a companion GWT-RPC client library, called jolie-gwt, for a more convenient
access to web services written in Jolie by integrating with the standard GWT development tools.

8

representations of values; the information on the types that these values may have had
in the code of the sender (e.g., in Javascript) is therefore lost. However, type infor-
mation is necessary for supporting services such as the sum service in Example 2.2,
which specifically requires its input values to be integers. To handle such cases, we
introduce the mechanism of automatic type casting. Automatic type casting reads in-
coming messages that do not carry type information (such as querystrings or HTML
forms) and tries to cast their content values to the types expected by the service inter-
face for the message operation. As an example, consider the querystring x=2&y=3
that we discussed before. Since its HTTP message is a request for operation sum,
the automatic type casting mechanism would retrieve the typing for the operation and
see that nodes x and y should have type int. Therefore, it would try to re-interpret
the strings "2" and "3" as integers before giving the message to the behaviour of
the Jolie program. There are cases that type casting may fail to handle; for example, in
x=hello the string hello cannot be cast to an integer for x. In such cases, our http
protocol will send a TypeMismatch fault back to the invoker with HTTP status code
400 (Bad Request).

3.3 Configuration Parameters

We augment the deployment syntax of Jolie to support configuration parameters
for our http protocol. Specifically, these can be accessed through (assign) and (alias)
statements that can be written inside a code block immediately after declaring the http
protocol in a port. For instance, consider the following input port definition:

1 inputPort MyInput {
2 / * . . . * /
3 Protocol: http {
4 .default = "d"; .debug = true;
5 .method -> m
6 }
7 }

The code above would set the default parameter to "d", set the debug parameter
to true, and bind the method parameter to the value of variable m in the current Jolie
process instance.

We briefly describe some configuration parameters. All of them can be modified at
runtime using the standard Jolie constructs for dynamic port binding, from [47], which
we omit here. Parameter default allows to mark an operation as a special fallback
operation for receiving messages that cannot be handled by any other operation de-
fined in the interface of the enclosing input port. Parameter cookies allows to store
and retrieve data from browser cookies, by mapping cookie values in HTTP messages
to subnodes in Jolie messages. Parameter method allows to read/write the Method
field of HTTP messages. Parameter statusCode gives read/write access to HTTP
status codes (default status codes apply depending on the request method, e.g., the suc-
cessful response to a GET request containing data has status code 200). Parameter
format can be used as a default setting for the data format to use as previously dis-
cussed (e.g., json, xml). The parameter alias allows to map values inside a Jolie

9

message to resource paths in the HTTP message, to support interactions with REST
services. Parameter redirect gives access to the Location header in HTTP, al-
lowing to redirect clients to other locations. The parameter cacheControl allows to
send directives to the client on how the responses sent to it should be cached. Finally,
parameter debug allows to print the HTTP messages sent and received through the
network on screen.

3.4 Examples

We report some examples about how our http protocol implementation integrates
with some standard mechanisms of web technologies.

Example 3.1 (Access from web browsers). Let us consider a modification of the sum
service from Example 2.2, where we change the input port to use the http protocol
that we developed:

1 type SumT:void { .x:int .y:int }
2
3 interface SumIface { RequestResponse: sum(SumT)(int) }
4
5 inputPort SumInput {
6 Location: "socket://localhost:8000"
7 Protocol: http
8 Interfaces: SumIface
9 }

10
11 main
12 {
13 sum(req)(resp) {
14 resp = req.x + req.y
15 }
16 }

Now, our implementation of http allows us to access the service above in multiple
ways. The most obvious is to write a Jolie client using an output port with the http
protocol. A more interesting way is to use a web browser. For example, we can use the
service by passing parameters through a querystring; navigating to the following URL
is valid:

http://localhost:8000/sum?x=2&y=3

Accessing the URL above would show the following content on the browser:

1 <sumResponse>5</sumResponse>

The standard format used for responses is XML, as above. Responses from Jolie ser-
vices using http can of course also be themed using, e.g., HTML and Javascript (we
refer to the online documentation for more information about this aspect [37]).

Another possibility is to use HTML forms, such as the one that follows:

10

http://localhost:8000/sum?x=2&y=3

1 <form action="sum" method="GET">
2 <input type="text" name="x"/>
3 <input type="text" name="y"/>
4 <input type="submit"/>
5 </form>

The content displayed as a response in the web browser would be the same XML doc-
ument as before.

We also offer support for AJAX programming. The following Javascript snippet
calls the sum operation using jQuery [61]: first, it reads the values for x and y from
two text fields (respectively identified in the DOM by the names x and y); then, it sends
their values to the Jolie service by encoding them as a JSON structure; and, finally, it
displays the response from the server in the DOM element with id result:

1 $.ajax(
2 ’sum’, { x: $(’#x’).val(), y: $(’#y’).val() },
3 function(response) { $("#result").html(response); }
4);

Our implementation of the http protocol for Jolie auto-detects the format of mes-
sages sent by clients, so the sum service does not need to distinguish among all the
different access methods shown above: they are all handled using the same Jolie code.

Example 3.2 (Accessing REST services). We exemplify how to access REST services,
where resources are identified by URLs, using our configuration parameters. In this
example we invoke the DBLP server, which provides bibliographic information on com-
puter science articles [62]. We use DBLP to retrieve the BibTeX entry of an article,
given the dblp key of the latter (i.e., the identifier of such article in dblp). The code
follows:

1 include "console.iol"
2
3 type FetchBib:void { .dblpKey:string }
4
5 interface DBLPIface {
6 RequestResponse: fetchBib(FetchBib)(string)
7 }
8
9 outputPort DBLP {

10 Location: "socket://dblp.uni-trier.de:80/"
11 Protocol: http {
12 .osc.fetchBib.alias = "rec/bib2/%!{dblpKey}.bib";
13 .format = "html" }
14 Interfaces: DBLPIface
15 }
16
17 main

11

18 {
19 r.dblpKey = args[0];
20 fetchBib@DBLP(r)(bibtex);
21 println@Console(bibtex)()
22 }

In the example above, we start by importing the Console service from the Jolie stan-
dard library. We then declare an output port towards the DBLP server. The interesting
part here is the usage of parameter osc.fetchBib.alias, which passes to our
implementation a configuration for parameter alias for operation fetchBib (osc
stands for operation-specific configuration and is used for configuration parameters
that make sense when associated to an operation). The value of the alias for opera-
tion fetchBib specifies how to map calls for that operation to resource paths that
the DBLP server understands. The interface offered by DBLP for retrieving bibtex en-
tries is REST-based, with paths rooted at “rec/bib2/”. As an example, assume that we
wanted to retrieve the bibtex entry for the book “The C Programming Language” by
Kernighan and Ritchie [38]. Its dblp key is “books/ph/KernighanR78”; therefore, the
bibtex entry can be accessed at the URL:

http://dblp.uni-trier.de/rec/bib2/books/ph/KernighanR78.bib

In our implementation, we capture this kind of patterns for REST paths by providing a
syntax for replacing parts of paths with the value of a subnode in a request message,
based on URI templates. For instance, the term %!{dblpKey} in the alias for oper-
ation fetchBib means that that part of the path will be replaced with value of the
sub node dblpKey in messages sent for that operation on port DBLP. The behaviour
of the service is simple: we invoke operation fetchBib reading the dblp key we want
from the first command line argument that Jolie is invoked with; then, we print the
received bibtex entry on screen.

An extended version of this example is deployed as a tool at [46].

Example 3.3 (Parameter mobility). Configuration parameters for ports can be dynam-
ically transmitted and used for binding services at runtime. For example, our DBLP
client may invoke a service registry to get the correct location and parameters to invoke
the DBLP service as follows:

1 / * I n t e r f a c e i n f o r m a t i o n i s a s b e f o r e * /
2
3 outputPort DBLP {
4 Interfaces: DBLPIface
5 }
6
7 outputPort Registry { / * . . . * / }
8
9 main

10 {
11 getBinding@Registry("DBLP")(DBLP);
12 r.dblpKey = args[0];

12

13 fetchBib@DBLP(r)(bibtex);
14 println@Console(bibtex)()
15 }

In this example, the DBLP client starts by invoke an external Registry service on
operation getBinding to dynamically discover how the DBLP service can be con-
tacted. The registry is programmed to return the same data structure that was pre-
viously statically defined inside of the client. We refer the reader to [49] for a more
detailed description of dynamic binding; here, the point is to show that our extension
to configuration parameters does not lead to any additional complexity.

4 Web Servers

In Example 3.1 we have seen how to make operations in a Jolie service accessible
by invokers using HTTP (in the example, operation sum): any operation in a Jolie
service can be exposed to HTTP clients just by changing the protocol of its related
input port(s) to http. This technique covers scenarios in which the interface that we
want to expose over HTTP is statically defined as a finite set of operations, which is
the typical situation when using service-oriented technologies such as Jolie or WS-
BPEL [51]. However, web servers do not fall into this category. A web server allows
clients to access files, e.g., web pages, images, and JavaScript libraries. Since files can
be created and deleted during execution, we cannot statically map each single file to an
operation name as would be required by our methodology in § 3. In this section, we
discuss how to deal with this kind of situations by introducing default operations; these
will form the basis for our development of more structured REST-oriented routers in
§ 7.

Default operations bridge the mutating nature of dynamic resource sets that web
servers have to offer (such as parts of a filesystem) to the static operation names used
in processes. Specifically, a default operation is a special operation marked as a fallback
in case a client sends a request message for an operation that is not statically defined
by the service. In this case, the message is wrapped in the following data structure (we
omit some subnodes not relevant for this discussion):

1 type DefaultOperationHttpRequest:void {
2 .requestUri:string
3 .data:undefined
4 }

where requestUri is the URI of the resource that has been requested by the client
and data is the data content of the message.

A default operation is set through the parameter default of the http proto-
col, and can either be associated to the Method field of incoming HTTP messages or
be defined as a “catch-all” operation in case no other more specific operation can be
found (in the latter case, the method used in the message can then be retrieved as a
variable). For example, the following configuration states that requests for undefined
operations with HTTP method PUT should be handled by operation put, requests for

13

undefined operations with method GET should be handled by operation get, and all
other requests for undefined operations should be handled by operation d.

1 Protocol: http {
2 .default = "d";
3 .default.get = "get";
4 .default.put = "put"
5 }

Example 4.1 (Leonardo Web Server). Parameter default allows us to easily model
a simple web server: whenever we receive a request for the default operation, we try
to find a file in the local filesystem that has the same name as the operation originally
requested by the client. We have used this mechanism to implement Leonardo [6], a
web server implementation written in pure Jolie. For clarity, here we report a simpli-
fied version. The entire implementation of Leonardo consists of only about 80 LOCs,
showing that our language pushes many of the details of dealing with HTTP to the un-
derlying implementation; many of these details can be accessed through configuration
parameters when needed. Leonardo can be downloaded at [6].

1 / * . . . * /
2
3 interface MyInterface {
4 RequestResponse:
5 d(DefaultOperationHttpRequest)(undefined)
6 }
7
8 inputPort HTTPInput {
9 Location: "socket://localhost:80/"

10 Protocol: http { .default = "d" / * . . . * / }
11 Interfaces: MyInterface
12 }
13
14 main {
15 d(req)(resp) {
16 / * . . . * /
17 readFile@File(req.requestUri)(resp)
18 }
19 }

Above, we have set the default parameter for the http protocol in input port
HTTPInput to operation d. Therefore, when a message for an unhandled operation
is received through input port HTTPInput, it will be managed by the implementation
of operation d. The body of the latter invokes operation readFile of the File ser-
vice from the Jolie standard library, which reads the file with the same name as the
originally requested resource (req.requestUri). Finally, the data read from the
file (resp) is returned back to the client.

14

Example 4.2 (CRUD Web Servers). We extend Leonardo to a simple web server sup-
porting CRUD operations (Create, Read, Update, Delete). As usual, we map create
and update to PUT requests, read to GET, and delete to DELETE. The code follows:

1 / * . . . * /
2
3 interface MyInterface {
4 RequestResponse:
5 get(DefaultOperationHttpRequest)(undefined)
6 put(DefaultOperationHttpRequest)(void)
7 delete(DefaultOperationHttpRequest)(bool)
8 }
9

10 inputPort HTTPInput {
11 Location: "socket://localhost:80/"
12 Protocol: http {
13 .default.get = "get";
14 .default.put = "put";
15 .default.delete = "delete"
16 }
17 Interfaces: MyInterface
18 }
19
20 main {
21 [get(req)(resp) {
22 readFile@File(req.requestUri)(resp)
23 }] { nullProcess }
24
25 [put(req)() {
26 f.filename = req.requestUri;
27 f.content -> req.data;
28 writeFile@File(f)(resp)
29 }] { nullProcess }
30
31 [delete(req)(resp) {
32 delete@File(req.requestUri)(resp)
33 }] { nullProcess }
34 }

In the code above, GET requests are served by operation get, which reads the re-
quested file and replies with its content. Similarly, operation put uses the Jolie stan-
dard library to write a file with the data sent by the invoker, and operation delete
deletes a file from the filesystem.

15

5 Sessions

A main aspect of web-based information systems is the modelling of sessions,
which allow to relate different incoming messages to the same logical “conversation”.
In this section, we present how to program sessions over HTTP with our extension
of the Jolie language. A major benefit is that sessions are process-aware: the order in
which messages are sent and received over different operations is syntactically explicit,
and it is enforced without requiring bookkeeping variables.

5.1 Binary sessions
We start by addressing binary sessions, i.e., sessions with exactly two partici-

pants [34]. Consider the scenario mentioned in the Introduction about a Research
Information Service (RIS), where the RIS allows users to add a publication to a repos-
itory after having successfully logged in. This structure is expressed by the following
behaviour:

1 login(cred)(r) { checkCredentials };
2 addPub(pub)

Above, login is a request-response operation that, when invoked, checks the received
credentials by calling the subprocedure checkCredentials. If the latter does not
throw a fault, the process proceeds by making operation addPub available.

Suppose now that, e.g., two users are logged in at the same time in a service with
the behaviour above. The service would have then two separate process instances, re-
spectively dedicated to handle the two clients. When a message for operation addPub
arrives in this situation, how can we know if it is from the first user or the second? We
address this kind of issues by using correlation sets, as defined in [48]. A correlation
set declares special variables that identify an internal service process from the others.
In our example we use the following correlation set declaration:

1 cset { userKey: addPub.userKey }

Above, we used the cset keyword to declare a correlation set consisting of variable
userKey. We will use userKey to distinguish users that have logged in. Variable
userKey is associated to the subnode userKey in incoming messages for operation
addPub. This means that whenever a message for operation addPub is received
from the network, Jolie will assign the message to the internal running process with
the same value for the correlation variable userKey. We can now write a working
implementation of the service:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http
4 }
5
6 cset { userKey: addPub.userKey }
7
8 define checkCredentials { / * . . . * / }

16

9 define updateDB { / * . . . * / }
10
11 main
12 {
13 login(cred)(r) {
14 checkCredentials;
15 r.userKey = csets.userKey = new
16 };
17 addPub(pub);
18 updateDB
19 }

Our RIS allows the creation of new processes by invoking operation login. If the
procedure checkCredentials does not throw a fault, then the process creates a
fresh value for the correlation variable csets.userKey using the new keyword.
The process sends the value of csets.userKey back to the client through variable
r. Then, the process waits for an invocation of operation addPub and stores the
incoming message in variable pub. The correlation set declaration in the program
guarantees that only invocations with the same user key as that returned by operation
login will be given to this process. We finally update the internal database of the RIS
using the (unspecified) procedure updateDB.

5.1.1 Integrating cookies with correlation sets
Our implementation of the RIS requires clients to write the userKey as a subnode

in the messages they send to operation addPub. Since this may be cumbersome in the
case of many operations that require correlation, web applications typically use HTTP
cookies to store this kind of information. Our http protocol integrates cookies with
message correlation through the cookies parameter, which allows to map cookies to
subnodes in Jolie variables. We change the definition of input port RISInput to the
following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }

The parameter assignment .cookies.userKeyCookie = "userKey" instructs
our http protocol implementation to store the value of the cookie userKeyCookie
in subnode userKey for incoming messages, and vice versa for outgoing messages.

In general, our http extension allows developers to abstract from where correla-
tion data is encoded when programming a service behaviour. For instance, an important
disadvantage of using cookies to store correlation data is that this breaks the stateless-
ness constraint of REST interactions [26]. Instead of using a cookie, the web user
interface may also send the value for a correlation variable in other ways, e.g., embed-
ded a hyperlink, a JSON or XML subnode, or an element in an HTML form encoding.
Our extension transparently support these different methods without requiring changes

17

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions

As far as binary sessions are concerned, there is not much difference between stan-
dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [51], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [25]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

26 log@Logger("Accepted " + pub.bibtex);
27 updateDB
28 }
29 [reject()] {
30 log@Logger("Rejected " + pub.bibtex)
31 }
32 }

Above, we have added the output ports Logger, an external service that maintains a
log of actions that we assume the user can read, and Moderator, an external service
playing the role of the moderator in our scenario. We have also added a new correlation
set for variable modKey (moderator key), which we use to track incoming messages
from the moderator of a session. The correlation set declares also that the moderator
may use modKey to invoke operations approve and reject. In the behaviour, the
code is unchanged until after we receive an invocation for operation addPub. Now,
after we receive a request for operation addPub, we prepare a notification noti for
the moderator containing (i) the descriptor of the publication (we assume that it is
given by the user in BibTeX format), and (ii) the moderation key modKey (which is
instantiated as a fresh value with the keyword new). Then we use the parallel construct
of Jolie to concurrently send a message to, respectively, the Logger on operation
log (to log the user’s request) and the Moderator on operation notify (to notify
the moderator of the user’s request). The process now enters into an input choice
on operations approve and reject, which can be invoked only by the moderator;
this is because the correlation set declaration of variable modKey requires it to be
present for invocations of these operations, and we sent the value of modKey only to
the moderator. If approve is invoked, then we log the approval and we update the
database of publications. Otherwise, if reject is invoked, we log the rejection only.

6 Layering

In the previous sections, we focused separately on how to use our extension of Jolie
to program web servers (§ 4) and structured process-aware sessions (§ 5). Typically,
a real-world web architecture has to deal with both aspects. In this section, we show
how they can be combined in our context by building multi-layered architectures.

6.1 Aggregation
A simple way of designing a service that serves content and provides process-

aware sessions is to combine the respective operations in the same behaviour as an
input choice. Consider the following code:

1 / * . . . * /
2 main
3 {
4 [get(req)(resp) { / * . . . * / }] { nullProcess }
5 [login(cred)(r) { / * . . . * / }] { / * . . . * / }
6 }

19

Above, we assume that the ports and correlation sets are configured by merging the
configurations found in Example 4.2 and the RIS implementation in § 5.2. Then, oper-
ation get would serve HTML and JavaScript files to clients, which could also invoke
operation login to access the behaviour of the RIS.

While combining the code for a web server with that of sessions with complex
structures as done above is simple, in the long term it also leads to code that is hard to
maintain due to poor separation of concerns: all concerns are mixed in the same ser-
vice. Ideally, separate concerns should be addressed by separate services. This method-
ology, however, raises the question of how services addressing separate concerns can
be composed together as a single system that clients can access without knowing the
inner complexity of the system. We tackle this issue by integrating our http protocol
implementation with the notion of service aggregation found in Jolie [47, 49].

Aggregation is a Jolie primitive that allows a service to expose the interfaces of
other services on one of its input ports, in addition to its own interfaces. In the re-
mainder, we refer to the service using aggregation as aggregator and to the services it
aggregates as aggregated services. The semantics of aggregation is a simple general-
isation of the mechanism used in proxy services: when a message from the network
reaches an aggregator, the aggregator checks whether the message is for an operation
in (i) one of its own interfaces or (ii) the interfaces of an aggregated service. In the
first case, the message is given to the behaviour of the aggregator; in the second case,
the aggregator forwards the message to the aggregated service providing the operation
requested in the message.

Using aggregation in combination with our http protocol we can easily build a
multi-layered web architecture for our RIS scenario, where services communicate us-
ing different protocols as needed. We depict the architecture in Figure 3, where circles
represent services, rectangles represent the interfaces exposed by services, full arrows
represent dependencies from actors (users or services) to services, and dashed arrows
represent aggregations; each arrow is annotated with the protocol used for communi-
cations. We comment the architecture. Users can access the web server using a web
browser, through the http protocol. Requests for files, intended to be for the user in-
terface (e.g., HTML pages), are handled directly by the web server through operation
get. Instead, invocations of operations login and addPub are forwarded to the RIS
by aggregation. The web server and the RIS communicate using the sodep protocol,
for performance (sodep is a binary protocol). As in § 5.2, the RIS uses an additional
service, Moderator, to decide whether publications should be accepted into the system.
The RIS and the Moderator services communicate using the soap protocol. Below, we
exemplify how our architecture can be implemented. We assume that the Moderator
service is externally provided, and focus instead on the web server and the RIS.

Web server. The code of the web server follows:

1 / * . . . * /
2
3 outputPort RIS {
4 Location: "socket://www.ris-example.com:8090/"
5 Protocol: sodep

20

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an

21

autonomous service, such that important updates to it from the Leonardo project (or
any other web server project based on Jolie) can be immediately applied. In this kind
of set-up, the configuration information on which services should be aggregated by
Leonardo is kept in a separate configuration file.

RIS (Research Information Service). The code for the RIS is the same as that shown
in § 5.2, with the exception that we now use sodep as communication protocol and
that we removed the usage of the external service Logger for simplicity:

1 inputPort RISInput {
2 Location: "socket://www.ris-example.com:8090/"
3 Protocol: sodep
4 Interfaces: RISIface
5 }
6
7 outputPort Moderator {
8 Location: "socket://www.moderator-example.com:8080/"
9 Protocol: soap

10 Interfaces: ModeratorIface
11 }
12
13 cset { userKey: addPub.userKey }
14 cset { modKey: approve.modKey reject.modKey }
15
16 define checkCredentials { / * . . . * / }
17 define updateDB { / * . . . * / }
18
19 main
20 {
21 login(cred)(r) {
22 checkCredentials;
23 r.userKey = csets.userKey = new
24 };
25 addPub(pub);
26 noti.bibtex = pub.bibtex;
27 noti.modKey = csets.modKey = new;
28 notify@Moderator(noti);
29 [approve()] {
30 updateDB
31 }
32 [reject()] {
33 / * . . . * /
34 }
35 }

22

Figure 4: Architecture of the RIS scenario with DBLP importer.

6.2 Evolvability

Implementing multi-layered web architectures using our approach, i.e., combining
http with aggregation, results in systems that are robust wrt future modifications, or
their evolution. We distinguish between vertical and horizontal modifications, which
respectively represent modifications that influence an existing chain of aggregations or
new ones.

A vertical modification is a modification of an interface aggregated by another ser-
vice. In our example, changing the code of the RIS to add, remove, or change the
type of an operation in interface RISIface would be a vertical modification, because
RISIface is aggregated by the web server. Vertical modifications do not require
any intervention on the rest of the architecture, as aggregation is a parametric mecha-
nism: the web server simply needs to be restarted to read the new definition of interface
RISIface.

Horizontal modifications deal with the addition or removal of operations without
requiring an intervention on the behaviour of existing services. Assume that, as an
example, we wanted to add the possibility to import publications from the DBLP bib-
liography service to our RIS by offering a new operation called import. We could
implement this new feature by changing the code of the RIS, both its interface and
behaviour. However, in some scenarios this may not be possible, e.g., the RIS may
be a black box to which we do not have access (third-party proprietary code), or the
RIS cannot be modified due to quality or security regulations. We deal with this kind
of situations by developing the new operations we need in a new service, and then by
aggregating this service together with the RIS in the web server. The resulting situation
in our example scenario is depicted in Figure 4. The only difference between Figure 4
and our previous architecture from Figure 3 is the presence of a new service, called Im-
porter, offering operation import; the web server now aggregates Importer together
with the RIS, to make operation import accessible by users through web browsers.
We report the updated code for the web server and the importer.

23

Web server. For the web server, we simply need to add an output port towards the
importer service and aggregate it in the input port of the server. We report only the
code interested by our changes, the rest remains the same as in § 6.1.

1 / * . . . * /
2
3 outputPort Importer {
4 Location: "socket://localhost:8009/"
5 Protocol: sodep
6 Interfaces: ImporterIface
7 }
8
9 outputPort RIS { / * . . . * / }

10
11 inputPort WebServerInput {
12 / * . . . * /
13 Aggregates: RIS, Importer
14 }
15
16 / * . . . * /

By changing the web server as done above, invocations for operation import will
now be redirected to the importer service.

Observe that, by using aggregation, all the invocations from the web client to the
aggregated services pass through the web server. This implies that our programming
methodology respects the standard Same Origin Policy by design, allowing the web
application run by users to access the aggregated services regardless of where the latter
are located.

Importer service. The code for the importer service follows:

1 / * . . . * /
2
3 outputPort DBLP {
4 Location: "socket://dblp.uni-trier.de:80/"
5 Protocol: http {
6 .osc.fetchBib.alias = "rec/bib2/%!{dblpKey}.bib"
7 / * . . . * /
8 }
9 Interfaces: DBLPIface

10 }
11
12 outputPort RIS { / * . . . * / }
13
14 inputPort ImporterInput {
15 Location: "socket://localhost:8009/"
16 Protocol: sodep

24

17 Interfaces: ImporterIface
18 }
19
20 main
21 {
22 import(request);
23
24 dblpReq.dblpKey = request.dblpKey;
25 fetchBib@DBLP(dblpReq)(result);
26
27 addReq.bibtex = result;
28 addReq.userKey = request.userKey;
29
30 addPub@RIS(addReq)
31 }

The importer service offers a single operation, import, which takes as input a mes-
sage containing two subnodes: dblpKey, the dblp key of the publication to import
from DBLP, and userKey, which must be a valid user key for a session inside of
the RIS. The idea is that a user has to invoke operation login before using operation
import, thus opening a session in the RIS, and that she then invokes import with
the userKey it got as a response from login. After receiving a message for opera-
tion import, the importer service proceeds by invoking the DBLP service to retrieve
the BibTeX record stored therein for the dblp key passed by the user. Finally, after
retrieving the BibTeX record, the importer asks the RIS to add it through operation
addPub.

7 RESTful Services

So far, we have considered architectures based on the style of Web Services [13,
10], where our http extension is used to bind HTTP messages to verb-based services.
In this section, we explore how to use the Jolie-HTTP binding to follow the REpresen-
tational State Transfer architectural style (REST) [26].

7.1 REpresentational State Transfer (REST)

The REST architectural style is a collection of principles for the design and de-
velopment of web systems, based on the key abstract concept of resource [26]. These
principles are aimed at promoting the scalability and reusability of services by con-
straining how they should interact. Such constraints reduce coupling and allow for the
use of intermediary services to improve, among other aspects, performance, security,
and integration. We briefly present the principles of the REST style in the following
(see [54] for a more comprehensive overview of REST and its adoption).

1. Resource Identification. Interactions with a RESTful service happen by referring
to the resources that it exposes. Resources are globally identified by URIs [42].

25

Path Actions
GET POST PUT DELETE

/poll Get list
of polls

Create poll - -

/poll/{pid} Get poll pid - - Delete
poll pid

/poll/{pid}/vote Get votes
of poll pid

Create vote
in poll pid

- -

/poll/{pid}/vote/{vid} Get vote vid
of poll pid

- Set state
of vote vid

Delete
vote vid

Table 1: Resources offered by the poll service.

2. Uniform Interface. The operations that can be used on resources are fixed. For
example, the uniform interface offered by HTTP includes the operations (called
methods) GET, POST, PUT, and DELETE. GET retrieves a representation of the
state of a resource. POST submits some data to modify the state of a resource.
PUT creates a new resource. Dually, DELETE is used for deleting a resource.
The idea is that the uniform interface should be a small set of operations, yet
generic enough to implement all the desired functionalities in a web system.

3. Self-descriptive Messages. Each message must contain all the necessary data and
metadata for the message to be processed. For example, metadata can be used to
indicate the format used to encode the message payload, informing the receiver
of how it should be unmarshalled.

4. Hyperlinks as the engine of application state. State transitions in a RESTful
service are explicitly communicated. After the service processes a request that
causes a state transition, it sends hyperlinks in the response to inform the client
of what resources it can now use.

7.2 Routing via URI templates

We show how to program a RESTful service in our framework by implementing
a service for online polls, inspired by the reference example used in [54] to introduce
the REST style. This poll service allows clients to manage polls, where each poll has
a number of options that can be chosen from. Technically, this is achieved by offering
the resources reported in Table 1, where we also describe the semantics of each HTTP
method for a resource.

A naive but immediate solution for obtaining a RESTful service is to write a Jolie
service that implements the Uniform Interface (here we limit our discussion to the
operations GET, POST, PUT, and DELETE). We call this interface WebIface:

26

1 interface WebIface {
2 RequestResponse:
3 get(WebRequest)(undefined), post(WebRequest)(undefined),
4 put(WebRequest)(undefined), delete(WebRequest)(undefined)
5 }

Each operation receives a message of type WebReq, from § 4, and replies with a mes-
sage of type undefined, since the type of the responses depends on the resource that
the operation is applied to. We can implement the interface using our default opera-
tions:

1 inputPort WebIn {
2 Location: "socket://www.mysrv.com:80"
3 Protocol: http {
4 .default.get = "get"; .default.post = "post";
5 .default.put = "put"; .default.delete = "delete"
6 }
7 Interfaces: WebIface
8 }
9

10 main {
11 [get(request)(response) { / * . . . * / }]
12 [post(request)(response) { / * . . . * / }]
13 [put(request)(response) { / * . . . * / }]
14 [delete(request)(response) { / * . . . * / }]
15 }

In the service above, each operation implements its respective HTTP method. We
now need a way of differentiating the behaviour of each operation, e.g., get, de-
pending on the resource requested by the client. For this purpose, we use standard
URI templates [28]. Specifically, we introduce a Jolie standard library service, called
UriTemplates, that we can use to match the resource URI sent by a client to a
URI template and extract the parameters embedded in the resource URI (e.g., pid in
Table 1). As URI templates for the poll service, we use those reported in the first col-
umn of Table 1. A naive use of service UriTemplates is the following, where we
exemplify how to support GET invocations for individual polls and votes:

1 main {
2 get(request)(response) {
3 match@UriTemplates({
4 .uri = request.requestUri,
5 .template = "/poll/{pid}"
6 })(m);
7 if (m) { / / GET / p o l l /{ p i d }
8 response << global.polls.(m.pid)
9 } else { / / GET / p o l l /{ p i d } / v o t e /{ v i d }

10 match@UriTemplates({

27

Figure 5: Router architecture for RESTful Jolie services.

11 .uri = request.requestUri,
12 .template = "/poll/{pid}/vote/{vid}"
13 })(m);
14 response << global.polls.(m.pid).votes.(m.vid)
15 }
16 }
17 }

As an example, in the code above, if we receive an HTTP request targeting URI
/poll/5/vote/2, we would get a positive match in Lines 10-13 and the subnodes
pid and vid in variable m would be set to the respective values 5 and 2 from the URI.
In Line 14, we use these values to find the right vote to return to the invoker.

7.3 The Router Service

While functional, the approach we followed in programming the poll service suf-
fers from poor separation of concerns and readability. This is because the code for
determining which action we should perform, by matching URIs with URI templates,
is mixed with the code for implementing each action. We solve this problem archi-
tecturally, by introducing a standard router service that can be autonomously deployed
and therefore modularly reused in the implementation of any RESTful system. The
idea is to separate a RESTful service into two services: a router, which deals with
matching URIs to actions, and a controller, which deals with the implementations of
actions. (The same router may actually manage multiple controllers, but here we will
focus on just one.)

We depict the resulting architecture for a RESTful Jolie service in Figure 5. In the
Figure, the router service is the service that exposes the uniform interface to clients.
The implementation of actions is then delegated to the controller, which offers a cus-
tom interface defined by the programmer. We remark two operations that the router
service offers to the controller: config and makeLink. Operation config is used
to tell the router how client invocations for its uniform interface should be matched
with the user-defined operations offered by the controller. Operation makeLink, in-
stead, is used by the controller to build hyperlinks that respect the configuration of the
router, ensuring that clients receive hyperlinks that can be correctly routed in the future.
We impose no restriction on the transport between the router and the controller: it can
be anything supported by Jolie, including, e.g., shared memory communications (the

28

default, obtained using local locations [49]) or Web Services protocols (e.g., SOAP).
The architecture can be nested, allowing for the composition of RESTful and/or non-
RESTful services: the controller may be a router itself, or orchestrate operations of-
fered by other routers.

In our poll service example, the poll service is the controller. We can use the router
to rewrite the poll service as follows.

1 init {
2 config.host = "localhost:8080";
3 / / Resource p o l l
4 config.resources[0] << {
5 .name = "poll",
6 .id = "pid",
7 .template = "/poll"
8 };
9 / / v o t e sub−r e s o u r c e s o f p o l l

10 config.resources[0].resources[0] << {
11 .name = "vote",
12 .id = "vid",
13 .template = "/vote"
14 };
15 config@Router(config)()
16 }
17
18 main {
19 [poll_index()(response) { / / GET / p o l l
20 foreach(pid : global.polls) {
21 makeLink@Router({
22 .operation = "poll_show",
23 .params.pid = pid
24 })(response.href[i++])
25 }
26 }]
27
28 [poll_show(request)(response) { / / GET / p o l l /{ p i d }
29 findPoll;
30 response.options << poll.options;
31 makeLink@Router({
32 .operation = "vote_index",
33 .params.pid = request.id
34 })(response.votes.href);
35 for(i = 0, i < #poll.vote, i++) {
36 response.votes.vote[i] << poll.vote[i]
37 }
38 }]
39

29

40 [vote_index(request)(response) { / / GET / p o l l /{ p i d } / v o t e
41 findPoll;
42 response.vote -> poll.vote
43 }]
44
45 / / e t c .
46 }

In Lines 2–15, the router is configured to target the address of our controller and then
to offer poll resources and their sub-resources vote. The router will then route requests
to corresponding operations suffixed with special identifier to distinguish what HTTP
method they should receive from. These operations are provided in the main block
of the controller; we put comments to indicate what kind of calls correspond to their
invocations. For example, operation poll_index is invoked by GET requests for
resource /poll, which returns a list of hyperlinks towards existing polls. Observe that
we build hyperlinks by invoking operation makeLink, offered by the router, which
allows us to abstract from the URI templates that we are using and avoid the error-
prone manual writing of hyperlinks. The rest of the service implements the behaviour
described in Table 1.

We now move to the implementation of the router service, focusing on its most
important behaviour:

1 / * . . . * /
2
3 define route {
4 findRoute;
5 if (!found) {
6 setErrorStatusCode
7 } else {
8 / * p r e p a r e invokeReq * /
9 invokeReq.operation = found.operation;

10 invoke@Reflection(invokeReq)(response);
11 statusCode = 200;
12 / * s e t h e a d e r s and s t a t u s code * /
13 }
14 }
15
16 main
17 {
18 [get(request)(response) {
19 method = "get";
20 route
21 }]
22
23 [post(request)(response) {
24 method = "post";

30

25 route
26 }]
27
28 [makeLink(request)(response) { / * . . . * / }]
29
30 / * . . . * /
31 }

The router offers the Uniform Interface and the config and makeLink operations
(we omit code that works as in other standard frameworks, not relevant for our discus-
sion). The most important part is how messages are routed from the Uniform Interface
to the controller. For each operation in the Uniform Interface, e.g., get and post,
the route procedure is called and looks for the appropriate route for that method in
the configuration. When this is found, variable invokeReq is programmed to con-
tain the location of the controller, the data to send, and the operation to invoke (Lines
229–230). Now we need a way to invoke an operation that we do not statically know;
for this, we introduce a new Reflection service to the Jolie standard library that
supports typical reflection operations, as in Java. In Line 231, Reflection is used
to invoke the operation decided at runtime on the controller. Depending on the config-
uration and whether the operation replies with a response or a fault, the headers and
status code in the reply are set accordingly.

7.4 RESTful Processes

In our poll service example, the life cycle of resources is handled with a shared
memory space. Hereby, we describe how a more process-oriented approach can be
used by combining correlation sets with REST routing. We also report on how custom
operations (without suffixes) can be used in route configurations. The program below
is a service that manages quizzes under path /quiz. The code follows:

1 / * . . . * /
2
3 cset {
4 id: Start.id Show.id Answer.id
5 Confirm.id Giveup.id Timeout.id
6 }
7
8 init {
9 config.routes[0] << {

10 .method = "post",
11 .template = "/quiz",
12 .operation = "start"
13 };
14 config.routes[1] << {
15 .method = "get",
16 .template = "/quiz/{id}",
17 .operation = "show"

31

18 };
19 config.routes[2] << {
20 .method = "delete",
21 .template = "/quiz/{id}?reason=confirm",
22 .operation = "confirm"
23 };
24 / * o t h e r r o u t e s . . . * /
25 config@Router(config)()
26 }
27
28 main
29 {
30 start(request)(response) { / / POST / q u i z
31 csets.id = new;
32 makeLink@Router({
33 .operation = "show",
34 .params.id = "id"
35 })(response.href);
36 send@Mail(/ * send l i n k t o r e q u e s t . p l a y e r * /)();
37 quiz -> request.quiz
38 };
39 setNextTimeout@Time(TO { .message.id = csets.id });
40 provide
41 [show()(state) { / / GET / q u i z /{ i d }
42 / * r e p l y wi th q u i z t e x t and h y p e r l i n k s * /
43 }]
44 [answer(quiz.answers)] / / PUT / q u i z /{ i d } / an swer s
45 until
46 [confirm()()] / / DELETE / q u i z /{ i d }? r e a s o n = c o n f i r m
47 [giveup()()] / / DELETE / q u i z /{ i d }? r e a s o n = g i ve up
48 [timeout()]; / / Loca l memory c a l l from Time
49
50 / *
51 Send e−mai l w i th r e s u l t s t o
52 r e q u e s t . q u i z m a s t e r and r e q u e s t . p l a y e r
53 * /
54 }

The service starts with the configuration of its own correlation mechanism and that of
the router (Lines 3–26). In the main procedure (the behaviour of the service), we start
by offering to clients the possibility of creating a new quiz. A quiz creation request
must include some text (request.quiz) and the e-mail address of the player the
quiz is intended for (request.player). After the correlation token for the quiz
is created (Line 31), we send the hyperlink to access the quiz (asked to the router in
Lines 32–35) to the player (Line 36). The process now created to handle the quiz
registers a timeout (of duration TO) using the Time service from the Jolie standard

32

library. We then enter a provide-until block: the operations show and answer
are repeatedly provided to clients until either confirm, giveup, or timeout is
invoked. Each operation is commented with how it can be reached from the Web
(aside from timeout, which is local). Operation show is meant to be invoked by the
player, who received the hyperlink to access it via e-mail when the quiz was created.
Operation answer is used to create (or replace) the sub-resource answers of the quiz.
When she is satisfied, the player can either confirm her answers or giveup, using
different hyperlinks. Finally, the quizmaster and the player are notified of the outcome.

7.5 Integrating Javascript

The client input for manipulating or accessing resources typically has to be vali-
dated to check for errors (e.g., invalid syntax). This must be done both on the client
and on the server: the former is to offer rapid feedback to the user and avoid sending
wrong requests in the first place, whereas the latter is aimed at avoiding malicious client
requests. Since validation code in the client is typically written in JavaScript (unless
it is trivially supported by HTML or similar declarative mechanisms), we developed
an integration mechanism between Jolie and JavaScript to be able to reuse JavaScript
programs in Jolie services and avoid error-prone duplication of logic. The basic idea is
to enable the invocation of JavaScript programs as if they were services. We obtain this
property by extending the embedding mechanism of Jolie [49] to support the execution
of JavaScript programs as sub-services of a Jolie program.

Concretely, our extension allows to bind output ports to functions offered by a
JavaScript program via an embedded block in the deployment part of a Jolie service.
In our quiz example, assume that the JavaScript code used by the client for validat-
ing the quiz creation request is in a function called validate that resides in a file
calledscript.js. We can bind this function to an output port as follows:

1 interface JSIface {
2 RequestResponse: validate(QuizRequest)(bool) }
3 outputPort JS { Interfaces: JSIface }
4 embedded { Javascript: "script.js" in JS }

Our extension takes care of converting Jolie values to JavaScript objects and vice versa.
Now, we can invoke the validate function before Line 31 in our example:

1 validate@JS(request)(ok);
2 if (!ok) { throw(MalformedRequest) }

8 Performance

In this Section, we present the results of some representative performance experi-
ments executed with our framework. The aim of these experiments is to obtain indica-
tive information on the applicability of our work. All experiments were run on a server
machine equipped with an i5-2500k CPU and 8GB of RAM memory.

33

25 250 500 1,000 1,500 2,000

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Clients

T
hr

ou
gh

pu
t(

pp
/s

)

Jolie
Apache

GlassFish

Figure 6: Static page download experiment.

Serving static content. A central feature of any web system is serving static content,
e.g., an HTML page, an image, or a CSS file. In this experiment, we measure the
throughput (pages downloaded per second) of each framework when serving a growing
number of clients a simple web page of middle size (about 1,500 bytes). The results are
shown in Figure 6. In the graph, our solution is labelled Jolie. The other frameworks
used in the comparison are the Apache HTTP server2 and the GlassFish server3, the
reference implementation of Java EE (Enterprise Edition) by Oracle. It is clear from
the data that Jolie offers comparable performance wrt the other two frameworks.

Templated content. In this experiment, we measure the speed in serving dynamic
pages, i.e., pages whose content is computed at runtime for each request rather than
being statically stored in a file. Specifically, here the server receives the request for a
page, retrieves the main page content and then sets it inside of a template containing
a navigation menu and graphical layout4. To compute the final result for the clients in
Apache and GlassFish, we used PHP (version 5) and Java Server Pages (JSP) respec-
tively. The results, given in Figure 7, show again that the three frameworks perform
with relatively close speeds.

Scalability. In our setting, replying to a client request may involve the use of many
services (and hence many processes). It is therefore interesting to observe the impact
that the number of services involved in processing a client request has on scalability.

2https://httpd.apache.org/
3https://glassfish.java.net/
4The template used is that of the Jolie website, with a simple header and footer: http://www.

jolie-lang.org/

34

https://httpd.apache.org/
https://glassfish.java.net/
http://www.jolie-lang.org/
http://www.jolie-lang.org/

250 500 1,000 1,500 2,000

560

580

600

620

640

Clients

T
hr

ou
gh

pu
t(

pp
/s

)

Jolie
Apache/PHP

GlassFish/JSP

Figure 7: Templated page download experiment.

To this aim, we run an experiment where a client can ask a Jolie web server for a list
of news; the web server then asks a collector service to retrieve (in parallel) news from
a number of autonomous news services; finally, the aggregated list of news is returned
to the client. We measure the performance of the system (as throughput) using 20,
40, 60, and 80 news services that the collector service must contact. The results are
shown in Figure 8, where each curve represents the behaviour of the system when
continuously receiving requests from 250, 500, 750, or 1000 clients respectively. As
first observation, we note that the system scales well wrt the number of clients (as
for the templated page experiment). When we increase the number of news services,
throughput decreases more significantly. This is to be expected since each client request
requires all news services to be contacted in order to be served. However, since news
services are contacted in parallel by the collector service, performance degrades better
than directly proportional to the number of news services. (Doubling the number of
services does not halve the throughput.) More interestingly, it seems that the number
of clients does not have a strong effect on performance in the interval we considered.
To understand this better, in Figure 9 we show the result of normalising the data points
of each curve in Figure 8 wrt their maximum speed (in the interval we considered)
at 20 services. This gives us an indication of how much performance degrades in
percentage wrt the best data point at 20 services, for each client load. We observe
that all curves follow similar behaviour, confirming the impression that performance
degrades gracefully independently of the number of clients in our interval.

9 Related Work

To the best of our knowledge, our work is the first to propose a unified language for
dealing with the programming of web servers, scripting, and the architecture of service

35

20 40 60 80

300

400

500

600

700

800

News Services

T
hr

ou
gh

pu
t(

pp
/s

)

250 clients
500 clients
750 clients

1000 clients

Figure 8: Scalability experiment.

20 40 60 80

40

50

60

70

80

90

100

News Services

T
hr

ou
gh

pu
t(

%
)

250 clients
500 clients
750 clients
1000 clients

Figure 9: Scalability experiment (normalised curves).

36

systems in the Web by means of mediator services. Our development was inspired by
related work in these areas, described below.

The frameworks most similar to ours are those for modelling business processes,
such as WS-BPEL [51], WS-CDL [66], and YAWL [65]. Differently from our ap-
proach, these tools are integrated with web applications through third-party tools. Some
of the ideas presented in this paper (e.g., the default parameters for implementing
web servers) may be easily applied to WS-BPEL, making our work a potential refer-
ence.

The idea of using a router component to obtain RESTful applications is used also
in other frameworks, e.g., Ruby on Rails [7]; we can find similar methodologies also in
.NET and Java EE. The difference in our approach is that a router is a service. (In gen-
eral, in Jolie every component in Jolie is a service.) Therefore, it can be independently
configured and deployed (or even replicated, if there is a need to scale wrt requests).

Other works offer tools for supporting the development of process-aware web ap-
plications. The papers [20, 21] propose a formally-specified language, implemented in
Java, for defining processes that can transparently access resources on the web using
a fixed set of primitive operations; the language supports similar process structured
as those found in Jolie behaviours, although in our case operations are user-defined.
In [58], the authors present a process-based approach to deal with user actions through
web interfaces using EPML; like Jolie, EPML is formally specified and comes with
an execution engine. JOpera comes with an integration layer for offering REST-based
interfaces to business processes [55]. These solutions are formed by integrating sepa-
rate modules for process modelling, computation, and system integration. In contrast,
our framework addresses all these aspects using the same language. JOpera also sup-
ports the composition of RESTful services using a graphical notation [53]. EPML can
integrate with other languages to integrate user interfaces with process execution; we
are currently investigating in a similar direction (see § 10, Scaffolding of User Inter-
faces). The modelling language IFML [19] captures both processes and the modelling
of user front-ends; IFML offers an expressive behavioural model, but is focused on
modelling rather than implementation as in here, so it may be an interesting com-
plement to the implementation framework presented in this work. The S scripting
language is a domain-specific language for writing high-performance RESTful web
services [16]. S is natively based on the Uniform Interface defined in REST and the
resource abstraction. This allows for some language-based analyses and optimisations
based on the semantics of the Uniform Interface. In our case, we could implement sim-
ilar features in the router service (§ 7.3), since its configuration tells us which methods
are going to be used for accessing which operations/resources. We leave such aspects
as an interesting future work, since it may also require an analysis of state modifications
as indicated in [16]. In [52], an extension to the BPEL language is proposed to capture
the publishing and composition of resources. This is a more high-level approach than
that proposed in this paper, where we leave the modelling of resource semantics to the
programmer using our more low-level HTTP extension. We see the two approaches
as complementary: Jolie may be used as the lower layer of similar high-level abstrac-
tions, implemented via a compiler or similar techniques. Indeed, the methodology
given in [52] should be straightforward to port to a DSL based on our implementation.

Hop [60, 17] and GWT [3] are programming frameworks that deal with the pro-

37

gramming of both the user interface and the server-side application logic using a single
codebase, which gets then compiled in the code for the client interface and the services.
Differently, in this paper we do not deal with the generation of client code. Instead, we
developed an integration between existing technologies (HTML, AJAX calls, JSON,
etc.) and our services, by using our http protocol to convert the data structures han-
dled by these technologies to/from those handled by Jolie. This leaves the choice of
which framework to use for implementing the web user interface to the developer.
The client code compiled from GWT projects can be reused with our http extension,
which is able to parse GWT requests. HipHop [15] is an extension of Hop based on
the synchronous language Esterel [14], which introduces orchestration primitives to
Hop. The major difference between HipHop and our solution is that behavioural code
in Jolie is kept separated from deployment information, making it reusable in different
environments, whereas HipHop code mixes the two aspects (for example, cookies in
Hop are handled in behavioural code).

Another work that shares some of our aims is the Bigwig project, which offers a
language for the programming of session-aware web applications [18]. Our language
for behaviours is more expressive than that of Bigwig, which does not support, e.g., the
programming of processes using multiparty sessions; however, in our setting we obtain
this expressiveness by requiring the programmer to manually handle session identifiers
in processes, whereas in Bigwig these are handled automatically. Bigwig is based on
the Apache web server, whereas our approach is self-contained: web servers, services,
and service mediators (which Bigwig does not handle) are all written in Jolie.

Our default configuration parameters for http allows a service implementa-
tion to catch and reply to invocations for operations that were not known at design
time. The same aspect has been previously theoretically modelled through mobility
mechanisms for names in process calculi, e.g., in [43, 59, 30]. Our approach is less
powerful because these theoretical models elevate the received operation names at the
language level: a service may receive an operation name, store it in a variable, and
then use the latter in (input) and (output) primitives as an operation. This is not pos-
sible in our behavioural language, since operations in input and output statements are
statically defined. We chose not to support this kind of mobility, since it would make
the definitions of Jolie interfaces change at runtime. This would break the basic as-
sumption of statically defined operations used in the formal model and implementation
of the Jolie language, which goes out of the scope of this paper. It would also make
Jolie fundamentally different from other standards for web services, such as WSDL [9],
with unclear consequences on their integration. Static operation names are also used in
many formal models for the verification of concurrent programming languages (e.g.,
session types [34]), which we are interested in adopting for Jolie in the future.

10 Discussion and Future Extensions

We discuss some aspects of web programming with Jolie and future extensions
related to the work that we presented in this article.

Holystic Approach. The main motivation of this work is to lower the complexity of
programming web-based systems by offering a unified language to capture their differ-

38

ent aspects. However, the current widespread approach of having a specialised tech-
nology for each of such aspects may have an advantage when it comes to the required
knowledge to use them, as each technology can be studied in isolation. For example,
the administrator of a web server in a larger system has to learn only how to use the
web server software she uses, abstracting from the other technologies in the rest of the
system (where, e.g., WS-BPEL or ESB technologies may be present).

When dealing with only one aspect of web programming, learning how to use a
specific software to deal with such aspect may be less time consuming than learning
the Jolie language, which is more general. A possible solution for this problem could
be to develop Domain Specific Languages (DSLs), supported by Integrated Develop-
ment Environments (IDEs), that are compiled to Jolie code. The idea is that a specific
DSL would deal with one aspect of web programming, while retaining the benefits of
having a single underlying language for the different components of a web system. It
is still uncertain whether this step would really be necessary, for two reasons. The first
reason is that for simple tasks, such as serving static content, we can offer a reference
distributable implementation such as the Leonardo web server in § 4, as an alternative
to other standard implementations such as the Apache Web Server. The second reason
is that many web systems require dealing with multiple aspects of web programming.
In those cases, it can take less time to learn Jolie than learning about the available spe-
cific technologies to cover all the use cases that the work we presented can address; this
would amount to learning, at least, a web server, an orchestration (e.g., WS-BPEL), and
a service mediation technologies.

Adoption. How and when should a solution such as that proposed in this paper be
adopted in real-world software projects? We discuss an answer by distinguishing be-
tween two main cases: the development of new systems and the extension of existing
systems.

When dealing with the development of an entirely new web system, Jolie offers
a simple and unified language for dealing with the architectural aspects (layering, de-
ployment), the behavioural aspects (application logic), and the serving of static content
(web servers). Therefore, Jolie is now a candidate for the rapid prototyping of a web
system. Since Jolie integrates with other technologies, starting with our framework
does not imply that the final system must be written entirely in Jolie: different parts
may be refined later either by using Jolie or other technologies (e.g., Java, WS-BPEL).

When dealing with the extension of an existing system, or even the development of
a new system that has to integrate with other existing systems, Jolie can be considered
as a glue framework for bridging services based on different technologies. In particular,
it is convenient to use the simple syntax of Jolie for writing processes that direct the
behaviour of other services in a system. In general, the integration capabilities of Jolie
allow for its introduction in a development team by starting from a single service in a
larger system, which can be used by the team to assess whether Jolie should be adopted
in other parts of the system after seeing how it performs. We conjecture that this step-
by-step introduction of web services written in Jolie will be key for its adoption by
expert web developers. We are currently following this development methodology in
some software projects at the University of Southern Denmark, for the improvement of
the web-based tools provided to students and staff.

39

Since Jolie is a relatively new language, most programmers are still unfamiliar with
it and therefore their training must be taken into account in a project. An advantage of a
unified framework such as ours, though, is that it allows to understand multiple aspects
of web-based systems by learning a single language. With the rise of more complex
and structured web-based systems, we believe that there can be a motivation to learn
Jolie even for developers who are expert in more established technologies.

Reversibility. Reversibility techniques (see, e.g., [39]) deal with the automatic rever-
sal to previous states in a distributed system. In the context of the Web, reversibility
could play a role in allowing users to revert the effects of unsafe operations, e.g., to
”un-delete” resources. In complex sessions involving multiple parties, this requires in-
ferring which parties should be notified of such a reversal event. The formal semantics
of Jolie [48] should play an important role in enabling the formal study of such notions.

Scaffolding of User Interfaces. The explicit structure of processes written in Jolie al-
lows us to statically see the workflow that a user interface should follow when inter-
acting with a Jolie service. We could use this aspect to develop a scaffolding tool for
user interfaces, starting from the process structure of a service. Specifically, given a
behaviour in Jolie, it would be possible to automatically generate a user interface that
follows the communication structure of the behaviour. This would be in line with the
notions of duality formalised in [34, 31].

Behavioural analyses. Since our framework makes the process logic of a web appli-
cation explicit, it would be possible to develop a tool for checking that the invocations
performed by a web user interface written in, e.g., Javascript, match the structure of
their corresponding Jolie service. The techniques presented in [35, 27, 50] may offer
useful first steps towards this aim.

Declarative data validation. Our framework exploits the message data types declared
in the interfaces of a Jolie service to validate the content of incoming messages from
web user interfaces (§ 3.2). We plan to extend this declarative support for data val-
idation by introducing an assertion language for message types that can check more
complex properties (e.g., integer ranges and regular expressions).

Extensions to other web protocols. Our work lays the foundations for using Jolie as
a fully-fledged language to handle HTTP-based systems. By following the same ap-
proach, it would be possible to develop support for new emerging protocols for the
web, such as WebSockets [36] and SPDY [2].

11 Conclusions

We have presented a framework for the programming of process-aware web sys-
tems, where processes are used as a holystic approach to capture the development of
the different components of such systems, such as web servers, orchestrators, and ser-
vice mediators. Through examples, we have shown how our solution subsumes useful
web design patterns and how it captures complex scenarios involving, e.g., multiparty

40

sessions and evolvability. Our http extension is open source and is included in the
standard distribution of Jolie, along with the language additions that we introduced to
support protocol configurations [5, 37]. Our integration is seamless wrt data formats,
meaning that existing Jolie code can be ported to HTTP without having to deal explic-
itly with the typical data formats used in the Web (e.g., JSON). Since our alterations to
the Jolie language targeted only the configuration of communication ports, all the tech-
niques developed for the verification and execution of Jolie programs (as the typing
system in [48] for correlation sets) can be transparently applied to the process-aware
web application logic written in our framework.

Acknowledgements

The author thanks Claudio Guidi, Saverio Giallorenzo, and the anonymous referees
for their useful comments. This work was supported by CRC (Choreographies for
Reliable and efficient Communication software), grant no. DFF–4005-00304 from the
Danish Council for Independent Research.

References

[1] Business Process Model and Notation. http://www.omg.org/spec/
BPMN/2.0/.

[2] Google SPDY. https://developers.google.com/speed/spdy/.

[3] Google Web Toolkit. http://code.google.com/webtoolkit/.

[4] JavaScript Object Notation. http://www.json.org/.

[5] Jolie HTTP extension. https://jolie.svn.sourceforge.net/
svnroot/jolie/trunk/extensions/http.

[6] Leonardo Web Server. http://www.sourceforge.net/projects/
leonardo/.

[7] Ruby on Rails. http://rubyonrails.org/.

[8] SOAP Specifications. http://www.w3.org/TR/soap/.

[9] Web Services Description Language. http://www.w3.org/TR/wsdl.

[10] Web Services Interoperability (WS-I). http://www.ws-i.org.

[11] Workflow Patterns. http://www.workflowpatterns.com/.

[12] XML-RPC. http://www.xmlrpc.com/.

[13] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machiraju. Web Ser-
vices - Concepts, Architectures and Applications. Data-Centric Systems and Ap-
plications. Springer, 2004.

41

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://developers.google.com/speed/spdy/
http://code.google.com/webtoolkit/
http://www.json.org/
https://jolie.svn.sourceforge.net/svnroot/jolie/trunk/extensions/http
https://jolie.svn.sourceforge.net/svnroot/jolie/trunk/extensions/http
http://www.sourceforge.net/projects/leonardo/
http://www.sourceforge.net/projects/leonardo/
http://rubyonrails.org/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ws-i.org
http://www.workflowpatterns.com/
http://www.xmlrpc.com/

[14] Gérard Berry. The foundations of esterel. In Proof, Language, and Interaction,
Essays in Honour of Robin Milner, pages 425–454, 2000.

[15] Gérard Berry and Manuel Serrano. Hop and hiphop: Multitier web orchestra-
tion. In Distributed Computing and Internet Technology - 10th International
Conference, ICDCIT 2014, Bhubaneswar, India, February 6-9, 2014. Proceed-
ings, pages 1–13, 2014.

[16] Daniele Bonetta, Achille Peternier, Cesare Pautasso, and Walter Binder. S: a
scripting language for high-performance restful web services. In Proceedings of
the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPOPP 2012, New Orleans, LA, USA, February 25-29, 2012, pages
97–106, 2012.

[17] Gérard Boudol, Zhengqin Luo, Tamara Rezk, and Manuel Serrano. Reasoning
about web applications: An operational semantics for hop. ACM Trans. Program.
Lang. Syst., 34(2):10, 2012.

[18] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The ¡Bigwig¿
Project. ACM Trans. Internet Technol., 2(2):79–114, May 2002.

[19] Marco Brambilla and Piero Fraternali. Interaction Flow Modeling Language:
Model-Driven UI Engineering of Web and Mobile Apps with IFML. Morgan
Kaufmann, 2014.

[20] Mario Bravetti. File managing and program execution in web operating systems.
CoRR, abs/1005.5045, 2010.

[21] Mario Bravetti. Formalizing restful services and web-os middleware. In Web Ser-
vices and Formal Methods - 10th International Workshop, WS-FM 2013, Beijing,
China, August 2013, Revised Selected Papers, pages 48–68, 2013.

[22] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In Roberto Giacobazzi and Radhia Cousot,
editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages
263–274. ACM, 2013.

[23] David A. Chappell. Enterprise Service Bus - Theory in practice. O’Reilly, 2004.

[24] Marlon Dumas, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. Process-
Aware Information Systems: Bridging People and Software Through Process
Technology. Wiley, 2005.

[25] Elsevier. Pure. http://www.elsevier.com/online-tools/
research-intelligence/products-and-services/pure.

[26] Roy Thomas Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.

42

http://www.elsevier.com/online-tools/research-intelligence/products-and-services/pure
http://www.elsevier.com/online-tools/research-intelligence/products-and-services/pure

[27] Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert,
and Alexandre Z. Caldeira. Modular session types for distributed object-oriented
programming. In POPL, pages 299–312, 2010.

[28] Joe Gregorio, R Fielding, Marc Hadley, Mark Nottingham, and David Orchard.
URI Template. IETF RFC 6570, 2012.

[29] Claudio Guidi. Formalizing languages for Service Oriented Computing. PhD.
thesis, University of Bologna, 2007. http://www.cs.unibo.it/pub/
TR/UBLCS/2007/2007-07.pdf.

[30] Claudio Guidi and Roberto Lucchi. Formalizing mobility in service oriented
computing. JSW, 2(1):1–13, 2007.

[31] Daniel Hirschkoff, Jean-Marie Madiot, and Davide Sangiorgi. Duality and i/o-
types in the -calculus. In CONCUR, pages 302–316, 2012.

[32] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL, volume 43(1), pages 273–284. ACM, 2008.

[33] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko
Yoshida. Scribbling interactions with a formal foundation. In ICDCIT, volume
6536 of LNCS, pages 55–75. Springer, 2011.

[34] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In ESOP’98,
volume 1381 of LNCS, pages 22–138, Heidelberg, Germany, 1998. Springer-
Verlag.

[35] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei
Honda. Type-safe eventful sessions in java. In ECOOP, pages 329–353, 2010.

[36] IETF. WebSocket protocol. http://tools.ietf.org/html/rfc6455.

[37] Jolie. Programming Language. http://www.jolie-lang.org/.

[38] Brian W. Kernighan and Dennis Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[39] Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Reversing
higher-order pi. In CONCUR, pages 478–493, 2010.

[40] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A calculus for
orchestration of web services. In ESOP, pages 33–47, 2007.

[41] Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-
BPEL. J. Log. Algebr. Program., 70(1):96–118, 2007.

[42] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource identi-
fier (URI): Generic syntax. IETF RFC 3986, 2005.

43

http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf
http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf
http://tools.ietf.org/html/rfc6455
http://www.jolie-lang.org/

[43] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, I and II. Information and Computation, 100(1):1–40,41–77, September
1992.

[44] F. Montesi, C. Guidi, I. Lanese, and G. Zavattaro. Dynamic Fault Handling Mech-
anisms for Service-Oriented Applications. In ECOWS, pages 225–234, 2008.

[45] F. Montesi, C. Guidi, and G. Zavattaro. Composing Services with JOLIE. In
ECOWS, pages 13–22, 2007.

[46] Fabrizio Montesi. DBLP Tools. http://www.fabriziomontesi.com/
dblp/.

[47] Fabrizio Montesi. Jolie: a Service-oriented Programming Language. Master’s
thesis, University of Bologna, Department of Computer Science, 2010.

[48] Fabrizio Montesi and Marco Carbone. Programming services with correlation
sets. In ICSOC, pages 125–141, 2011.

[49] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented pro-
gramming with jolie. In Web Services Foundations, pages 81–107. 2014.

[50] Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In CON-
CUR 2013 - Concurrency Theory - 24th International Conference, CONCUR
2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings, pages 425–
439, 2013.

[51] OASIS. Web Services Business Process Execution Language. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[52] Cesare Pautasso. BPEL for REST. In Business Process Management, 6th Inter-
national Conference, BPM 2008, Milan, Italy, September 2-4, 2008. Proceedings,
pages 278–293, 2008.

[53] Cesare Pautasso. Composing restful services with jopera. In Software Composi-
tion, 8th International Conference, SC 2009, Zurich, Switzerland, July 2-3, 2009.
Proceedings, pages 142–159, 2009.

[54] Cesare Pautasso. Restful web services: Principles, patterns, emerging technolo-
gies. In Web Services Foundations, pages 31–51. 2014.

[55] Cesare Pautasso and Erik Wilde. Push-enabling restful business processes. In
ICSOC, pages 32–46, 2011.

[56] James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, September
1977.

[57] Mila Dalla Preda, Maurizio Gabbrielli, Claudio Guidi, Jacopo Mauro, and Fab-
rizio Montesi. Interface-based service composition with aggregation. In ESOCC,
pages 48–63, 2012.

44

http://www.fabriziomontesi.com/dblp/
http://www.fabriziomontesi.com/dblp/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[58] Davide Rossi and Elisa Turrini. Designing and architecting process-aware web
applications with epml. In SAC, pages 2409–2414, 2008.

[59] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[60] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language for pro-
gramming the web 2.0. In OOPSLA Companion, pages 975–985, 2006.

[61] The jQuery Foundation. jQuery. http://www.jquery.com/.

[62] University of Trier and Schloss Dagstuhl. dblp: computer science bibliography.
http://www.jquery.com/.

[63] Wil M. P. van der Aalst. Verification of workflow nets. In ICATPN, pages 407–
426, 1997.

[64] Wil M. P. van der Aalst. The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[65] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. Yawl: yet another work-
flow language. Inf. Syst., 30(4):245–275, 2005.

[66] W3C WS-CDL Working Group. Web services choreography description lan-
guage version 1.0. http://www.w3.org/TR/ws-cdl-10/, 2004.

45

http://www.jquery.com/
http://www.jquery.com/

	1 Introduction
	1.1 Contributions

	2 Overview of Jolie
	2.1 Jolie programs
	2.2 Behaviour
	2.3 Deployment

	3 Extending Jolie to HTTP
	3.1 Message transformation
	3.2 Automatic type casting
	3.3 Configuration Parameters
	3.4 Examples

	4 Web Servers
	5 Sessions
	5.1 Binary sessions
	5.1.1 Integrating cookies with correlation sets

	5.2 Multiparty Sessions

	6 Layering
	6.1 Aggregation
	6.2 Evolvability

	7 RESTful Services
	7.1 REpresentational State Transfer (REST)
	7.2 Routing via URI templates
	7.3 The Router Service
	7.4 RESTful Processes
	7.5 Integrating Javascript

	8 Performance
	9 Related Work
	10 Discussion and Future Extensions
	11 Conclusions

