
Process-aware Web Programming with Jolie

Fabrizio Montesi
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

fmontesi@itu.dk

ABSTRACT
We present a programming framework, based upon the Jolie
language, for the native modelling of process-aware web in-
formation systems. Our major contribution is to offer a
unifying approach for the programming of distributed archi-
tectures based on HTTP that support typical features of the
process-oriented paradigm, such as structured communica-
tion flows and multiparty sessions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; H.3.4 [Information Storage and Retrieval]:
Systems and Software—World Wide Web (WWW)

General Terms
Design, Languages

Keywords
Business Processes, Web Applications

1. INTRODUCTION
A Process-Aware Information System is an information

system based upon the execution of business processes. Since
processes can assume complex structures [4] many formal
methods [13, 5], tools [14], and standards [1] have been de-
veloped to support their writing, verification, and execution.

In web applications, processes are usually implemented
server-side on top of sessions. Sessions track incoming mes-
sages related to the same conversation, and support the lat-
ter with a local memory state that lives until it is terminated.

The major frameworks for developing web applications
(e.g., PHP, Ruby on Rails, Java EE, . . .) do not sup-
port the explicit programming of structured processes. As
a workaround, programmers simulate the latter by exploit-
ing the session-local memory state. For example, a process
where a user has to authenticate through a login operation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

before accessing another operation, say postNews (for post-
ing a news on a website), would be implemented by defining
the two operations separately. The sequentiality between
them can then be enforced by using a bookkeeping variable
in the session state. Although widely used, this approach is
error-prone, since the bookkeeping code for processes with
complex structures can be poorly readable.

The limitation described above can be tackled by adopting
a multi-layered architecture. For example, we may strat-
ify an application by employing a web server technology
for serving content to web browsers; a web scripting frame-
work (e.g., PHP) for computing dynamic response content;
a process-oriented language (e.g., WS-BPEL [11]) for mod-
elling application processes; and, finally, mediation technolo-
gies such as proxies and ESB [6] for integrating the web ap-
plication within larger systems. Such an architecture would
offer a good separation of concerns. However, the resulting
system would be highly heterogeneous, requiring a specific
know-how for handling each part. Thus, it could be hard to
maintain and prone to breakage in case of modifications.

This paper reports on an attempt to simplify the program-
ming of process-aware web information systems. Specifi-
cally, we have built a programming framework that captures
the different components of such systems and their integra-
tion using a homogeneous set of concepts. Our results are
based on Jolie [10, 2], a general-purpose service-oriented pro-
gramming language that can handle both the modelling of
processes (without bookkeeping code) and their integration
within larger distributed systems. We have extended Jolie to
support the HTTP protocol natively, and we show how this
extension can be used to program web-oriented systems.

2. WEB PROGRAMMING WITH JOLIE
We refer to [2] for a presentation of Jolie. As a rough ref-

erence, each Jolie program defines a service in a distributed
environment and is formed by two parts. The first part de-
fines the input and output ports for communicating with
the rest of the system. Each port specifies a location (e.g., a
URL), a data protocol (e.g., SOAP), and, finally, an inter-
face that defines the data types of the operations of a service
(as in WSDL [15]). The second part is enclosed in a main

procedure and defines the behaviour of the service. The lat-
ter is a composition of input and output actions, which refer
to operations (as in WS-BPEL [11]).

In this work, we have built a new data protocol for Jolie,
named http. Hereby, we discuss how to use http to cover
some useful web application patterns. The interested reader
may refer to [8] for a more comprehensive presentation.

2.1 Modelling Web Servers
We first address the programming of a web server that

provides static content (e.g., a web user interface) to clients.
The main challenge in modelling a web server is that, in

service-oriented technologies such as Jolie and WS-BPEL [11],
a service interface is a statically defined set of operations.
Differently, web servers expose a set of resources (from, e.g.,
a part of a filesystem) that can change dynamically (e.g.,
when a file is added). To deal with this problem, http fea-
tures the default configuration parameter. default points
to an operation, which will be used as a fallback when a
client sends a request message for an operation that has not
been statically declared. For instance, we can use default

to implement the following: whenever we receive a request
for the default operation, we try to find a file in the lo-
cal filesystem whose filename is as the operation originally
requested by the client. We have used this mechanism to
implement Leonardo [3], a web server in pure Jolie:

Listing 1: Leonardo Web Server (excerpt)

/∗ . . . ∗/
interface MyInterface {

RequestResponse:

d(DefaultOperationHttpRequest)

(undefined) }

inputPort HTTPInput {

Location: "socket:// localhost:80/"

Protocol: http

{ .default = "d" /∗ . . . ∗/ }

Interfaces: MyInterface }

main {

d(req)(resp) { /∗ . . . ∗/
readFile@File(req.operation)(resp)

} }

Above, the input port HTTPInput uses the http protocol,
where we have set the default parameter to operation d.
Therefore, messages for undeclared operations will be man-
aged by the implementation of operation d. The latter reads
a file with the same name as the originally requested oper-
ation (req.operation) and returns its content (resp).

2.2 Multiparty Sessions
We show an implementation sketch of the login/postNews

process-aware scenario mentioned in the Introduction. Our
http protocol accepts invocations with different formats (e.g.,
AJAX calls in JSON or HTML form encodings), so we will
leave the code for the user interface unspecified.

A critical aspect of our implementation is the modelling
of sessions. Assume that, e.g., two users are logged in the
service at the same time and, therefore, are supported by
two separate process instances in our Jolie service. When a
message for operation postNews arrives, how can we know if
it is from the first user or the second? We address this issue
by using correlation sets [11], which specify special variables
whose values can relate incoming messages to running ser-
vice processes. We combine the correlation set mechanism
offered by Jolie [9] with HTTP cookies, which are typically
employed for storing session identifiers in web browsers. Our
example will use two correlation sets consisting of one vari-
able each, respectively userSid and modSid. The first will
identify calls from the user, whereas the second will identify
messages from the moderator. Having separate correlation

sets is a fundamental aspect of multiparty sessions, such as
the one in this example, for security reasons: since we will
not make modSid known to the user, she will be unable to
(maliciously) impersonate the moderator.

We can finally show the code for our service:

Listing 2: A moderated news service

/∗ Types , I n t e r f a c e s , Output ports , . . . ∗/
inputPort MyInput { // . . .
Protocol: http {

.cookies.userSid = "userSid";

.cookies.modSid = "modSid";

.default = "d"

} }

cset { userSid: postNews.userSid }

cset { modSid:

approve.modSid reject.modSid }

main {

[d(req)(resp)] { /∗ . . . ∗/ }

[login(cred)(r) {

check@Authenticator(cred)(ok);

if (ok) {

csets.userSid = new;

r.userSid = csets.userSid

} else { throw(AuthFailed) }

}] {

postNews(news); csets.modSid = new;

{ log@Logger(cred.username)

| notify@Moderator(csets.modSid) };

[approve ()] { /∗ . . . ∗/ }

[reject ()] { /∗ . . . ∗/ }

} }

Above, we have reused the web server pattern from § 2.1 to
provide the resources for the (omitted) web user interface
to web browser clients. We combine that pattern with a
process that starts with an input on login, using an input
choice. When login is invoked, a new process is started
which immediately checks if the user’s credentials are valid
through an external Authenticator service. If they are
valid (condition ok), then we instantiate the correlation vari-
able csets.userSid (csets is a special keyword for access-
ing correlation variables in the behaviour) to a fresh value
(new); otherwise, we throw a fault AuthFailed, therefore
notifying the client and interrupting the process. We re-
turn csets.userSid to the user through the response mes-
sage for login. Due to our configuration for http, spef-
ically .cookies.userSid = "userSid", r.userSid will be
encoded as a cookie in our HTTP response to the client.
When the user’s client will call our service on operation
postNews, our cookie configuration for userSid will convert
the cookie in the HTTP request to a subnode userSid inside
the request message, which we will use for correlating with
the correct process instance. After postNews is invoked, we
instantiate the correlation variable modSid. Then, we use
the parallel compositor | to notify a Logger service and a
Moderator service in parallel. The latter is informed of the
value for modSid, which we will expect as a cookie (per our
http configuration) in incoming messages from the modera-
tor’s user interface. The cookie will be used to correlate with
our process, which is finally waiting for a decision between
the approve operation and the reject operation.

2.3 Multi-layering
In § 2.2, we have used a single service to handle both con-

tent serving and process execution. We can separate these
two aspects by using aggregation [12], a composition mech-
anism where an input port delegates the implementation of
some operations to an external service.

With aggregation, we can split the web server code and the
process code from our news service in two separate services.
The service below handles the news moderation process:

/∗ Types , I n t e r f a c e s , Output ports , . . . ∗/
inputPort MyInput {

Location: "socket:// localhost:8001/"

Protocol: soap

Interfaces: MyIface }

cset { userSid: postNews.userSid }

cset { modSid:

approve.modSid reject.modSid }

main { login(cred)(r) { /∗ . . . ∗/ } }

The code above is taken from Listing 2. We have changed
input port MyInput to be deployed on a different location
using the soap protocol and we have removed the code for
handling content serving. The rest of the service code is
unmodified (the body of input login is the same). Content
serving is moved to the following separate service:

/∗ Types , I n t e r f a c e s , Output ports , . . . ∗/
outputPort News { /∗ . . . ∗/ }

inputPort WebInput {

Location: "socket:// localhost:80/"

Protocol: http {

.cookies.userSid = "userSid";

.cookies.modSid = "modSid";

.default = "d"

} Interfaces: ContentIface

Aggregates: News }

main { d(req)(resp) { /∗ . . . ∗/ } }

Above, input port WebInput takes care of receiving HTTP
messages from web clients and aggregates the news ser-
vice through output port News (which points to input port
MyInput of the news service). When a message is received,
Jolie will check whether its operation is defined in the inter-
face of News. If so, then the message will be transparently
forwarded (converting it with the soap protocol) to the news
service and the subsequent response from the latter will be
given back to the client. Otherwise, it will be interpreted as
an invocation to be handled by the default operation d.

Our http extension can be combined with aggregation
also for modelling systems where a single web application
interacts with multiple services. For example, we may build
a web server that supports both the user interface for users
and for news moderators. Then, some web clients running
the user interfaces would need to access the processes in-
side service News while others would need to access service
Moderator. We can allow web clients to access both through
the same web server by adding Moderator to the list of ag-
gregated output ports inside the web server:

Aggregates: News , Moderator

Remarkably, since all client invocations for the aggregated
services pass through the web server, this methodology re-
spects the Same Origin Policy by design.

3. CONCLUSIONS
We have presented a framework for the programming of

process-aware web applications. Through examples, we have
shown how our solution subsumes useful web design pat-
terns and how it captures complex scenarios involving, e.g.,
multiparty sessions and the Same Origin Policy. Our http

extension is open source and is included in the standard dis-
tribution of Jolie. An important aspect of http is that the
programmer does not need to deal with the differences be-
tween the data formats employed in HTTP messages (e.g.,
form encodings, querystrings, JSON, . . .), since they will all
be translated to Jolie data structures. This also means that
the techniques developed for the verification and execution
of Jolie programs (e.g., [9]) can be transparently applied to
the programs written in our framework.

Our solution has been evaluated in the development of
industrial products and at italianaSoftware [7], a software
development company that uses Jolie as reference program-
ming language. For instance, the company’s website [7] and
Web Catalogue, a proprietary E-Commerce platform with a
codebase of more than 400 services, use the framework and
the programming patterns presented in this paper.

4. REFERENCES
[1] BPMN 2.0. http://www.omg.org/spec/BPMN/2.0/.

[2] Jolie website. http://www.jolie-lang.org/.

[3] Leonardo. http://www.sf.net/projects/leonardo/.

[4] Workflow Patterns.
http://www.workflowpatterns.com/.

[5] M. Carbone, K. Honda, and N. Yoshida. Structured
communication-centered programming for web
services. ACM Trans. Program. Lang. Syst., 34(2):8,
2012.

[6] D. A. Chappell. Enterprise Service Bus - Theory in
practice. O’Reilly, 2004.

[7] italianaSoftware s.r.l. italianaSoftware.
http://www.italianasoftware.com/.

[8] F. Montesi. Programming Process-Aware Web
Information Systems with Jolie. Draft paper, 2012.
http://www.itu.dk/~fabr/papers/jolie_web/.

[9] F. Montesi and M. Carbone. Programming services
with correlation sets. In ICSOC, pages 125–141, 2011.

[10] F. Montesi, C. Guidi, and G. Zavattaro. Composing
Services with JOLIE. In Proceedings of ECOWS 2007,
pages 13–22, 2007.

[11] OASIS. WS-BPEL Version 2.0.
http://docs.oasis-open.org/wsbpel/.

[12] M. D. Preda, M. Gabbrielli, C. Guidi, J. Mauro, and
F. Montesi. Interface-based service composition with
aggregation. In ESOCC, pages 48–63, 2012.

[13] W. M. P. van der Aalst. Verification of workflow nets.
In ICATPN, pages 407–426, 1997.

[14] W. M. P. van der Aalst and A. H. M. ter Hofstede.
Yawl: yet another workflow language. Inf. Syst.,
30(4):245–275, 2005.

[15] W3C. Web Services Description Language.
http://www.w3.org/TR/wsdl.

