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We present Hypersequent Classical Processes (HCP), a revised interpretation of the łProofs as Processesž

correspondence between linear logic and the π -calculus initially proposed by Abramsky [1994], and later

developed by Bellin and Scott [1994], Caires and Pfenning [2010], andWadler [2014], among others. HCPmends

the discrepancies between linear logic and the syntax and observable semantics of parallel composition in the π -

calculus, by conservatively extending linear logic to hyperenvironments (collections of environments, inspired

by the hypersequents by Avron [1991]). Separation of environments in hyperenvironments is internalised

by ⊗ and corresponds to parallel process behaviour. Thanks to this property, for the first time we are able

to extract a labelled transition system (lts) semantics from proof rewritings. Leveraging the information on

parallelism at the level of types, we obtain a logical reconstruction of the delayed actions that Merro and

Sangiorgi [2004] formulated to model non-blocking I/O in the π -calculus. We define a denotational semantics

for processes based on Brzozowski derivatives, and uncover that non-interference in HCP corresponds to

Fubini’s theorem of double antiderivation. Having an lts allows us to validate HCP using the standard toolbox

of behavioural theory. We instantiate bisimilarity and barbed congruence for HCP, and obtain a full abstraction

result: bisimilarity, denotational equivalence, and barbed congruence coincide.
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1 INTRODUCTION

Background. Since its introduction byGirard [1987], linear logic has been tremendously influential
in the study of concurrency. Abramsky [1994], and later Bellin and Scott [1994], kickstarted the
search for a direct correspondence between proofs in linear logic and processes in (a fragment
of) the π -calculus. This direction is appealing because it carries the hope of providing canonical
foundations for concurrency, ideally as firm as those provided by the Curry-Howard correspondence
between natural deduction and the simply-typed λ-calculus for functional programming. These
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initial efforts inspired seminal typing disciplines for the π -calculus, e.g., session types by Honda
et al. [1998] and linear types by Kobayashi et al. [1999].
Caires and Pfenning [2010] recently revitalised this research line, by developing a correspond-

ence between a variant of the session-typed π -calculus and intuitionistic linear logic: processes
correspond to proofs, session types (communication protocols) to propositions, and communication
to cut elimination. Wadler [2014] revisited the correspondence for Classical Linear Logic (CLL) and
developed the calculus of Classical Processes (CP).

The problem. Despite these recent successes, it is still unclear how we can obtain a unified founda-
tion for concurrency based on linear logic and the π -calculus. This is due to a series of discrepancies
between the two theories, both on the levels of syntax and semanticsÐultimately, we will see that
bridging these gaps leads to a reconciliation of łProofs as Processesž with the behavioural theory of
the π -calculus, in terms of a full abstraction result. As base for our investigation, we use Wadler’s
calculus CP. CP is convenient to study the discrepancies of interest, because its design is łguidedž
by linear logic: the syntax of processes in CP corresponds to the structure of the rules of linear
logic, and the semantics of these processes is extracted from the traditional steps of cut elimination.

Some discrepancies are syntactic. Parallel composition P |Q is a central construct in most process
calculi, but only appears combined with output and restriction in CP. The term for output of a
linear name in CP is x[y].(P | Q), read łsend y over x and proceed as P in parallel to Qž. Notice
that the term constructor for output here actually takes x , y, P and Q as parameters at the same
timeÐwhereas in process calculi, only one continuation is typically necessary. This discrepancy
is caused by the structure of rule ⊗ in CLL, which CP uses to type output: the typing rule checks
that the process using y (P ) and the one using x (Q) share no resources, by taking two premises
(P and Q). In general, there is no independent parallel term P | Q in the grammar of CP; Wadler
[2014] hints at the possibility of typing P | Q using rule mix by Girard [1987], but this rule does
not allow P and Q to synchronise as in the π -calculus. Synchronisation in CP is governed instead
by the restriction operator (νxy) (P | Q), which connects the names x at P and y at Q to enable
communication (this restriction term, where x and y represent the two endpoints of a bidirectional
channel, was adopted in the latest presentation of CP [Carbone et al. 2016] and was originally
introduced by Vasconcelos [2012] for the session-typed π -calculus). Again, parallel is mixed with
another operator (restriction), but now it means that P and Q will communicate.
The discrepancies carry over from syntax (and typing) to semantics. Consider the rule for

reducing an output with a compatible input in CP, below.

(νxy) (x[x ′].(P | Q) | y(y ′).R) → (νx ′y ′) (P | (νxy) (Q | R))

Notice how the rule needs to inspect the structure of the continuation of the output term (P | Q) to
produce a typable structure for the resulting network, by nesting restrictions appropriately.

An important consequence of these discrepancies is that CP is still missing a labelled transition
system (lts) semantics. Keeping with our example, it is difficult to define a transition axiom for

output, as in x[y].(P | Q)
x [y]
−−−→ P | Q , because it is not possible to type P | Q . Even if it were, we

hit another problem when attempting to recreate the reduction above using transitions. Ideally,
we would define a rule that does not inspect the structure of processes, but only their observables:

P
x [x ′]
−−−−→ P ′ Q

y′(y′)
−−−−→ Q ′

(νxy) (P | Q)
τ
−−→ (νxy) (νx ′y ′) (P ′ | Q ′)

However, this is not possible because the resulting restriction term is not typable in (nor is in the
syntax of) CP. This problem was already noticed by Caires and Pfenning [2010], whose corres-
pondence between τ -transitions and proof normalisation relies on intermediate rewritings that
are allowed in the π -calculus, but are not supported by the logic.
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Having an lts for CP would be desirable, because it would allow us to study its behavioural
theory using the solid toolbox of process calculi based on observable transitionsÐe.g., bisimilarity
(and variations thereof). Also, there is reason to believe that such a study would be interesting.
Atkey [2017] informally argued that bisimilarity would be incomplete for CP: for example, CP has
no (well-typed) context that can distinguish the processes x(x ′).y(y ′).P and y(y ′).x(x ′).P , since
typing would force x and y to be connected to different parallel processes. However, bisimilarity
would distinguish these two processes. Motivated by this informal argument, Atkey developed a
denotational semantics for processes in CP derived from the relational semantics of linear logic
[Barr 1991]. There are still no indications of how this line of work can be reconciled with the
standard observational equivalences of process calculi.

Therefore, while the foundations of CP are certainly validated from the side of logic, we are still
far from validating them from the side of process calculi.

This paper. We present Hypersequent Classical Processes (HCP), a calculus that mends the
discrepancies we discussed between linear logic and the π -calculus. The key twist from linear logic
to HCP is to generalise classical linear logic from sequents with single environments to sequents with
collections of environments, called hyperenvironments. Hyperenvironments essentially represent
independent sequents, inspired by the theory of hypersequents by [Avron 1991], thus the name of
HCP. The idea is that whenever two sequents ⊢ Γ and ⊢ ∆ can be proven separately (Γ and ∆ are
typing environments), then they can be composed as in ⊢ Γ | ∆, where Γ | ∆ is a hyperenvironment.
Intuitively, each environment in a hyperenvironment can be proven independentlyÐin parallel,
if you like. From a logical perspective, the operator ł|ž for composing hyperenvironments is
internalised by the ⊗ connective of linear logic (if ⊢ Γ,A | ∆,B, then ⊢ Γ,∆,A ⊗ B), just like ł,ž for
composing environments is internalised by the O connective (if ⊢ Γ,A,B, then ⊢ Γ,A O B). This
new symmetric treatment of ⊗ and O is the foundation of all our contributions, which we believe
represent a concrete step forward in Abramsky’s original programme of łProofs as Processesž. Our
first contributions deal with the design of HCP, whereas the others with its validation. Best comes
last: our entire development is validated by the titular result of this paper, a full abstraction result
that ties together bisimilarity, denotational equivalence, and contextual equivalence for HCP.

(1) HCP reconciles the structure of proofs with the syntax of processes. On the process calculus
side, term constructors have the expected modularity of process algebras, e.g., parallel com-
position and restriction are respectively the usual abelian monoid P | Q and the term (νxy)P

of the session-typed π -calculus [Vasconcelos 2012]. We formalise that HCP is grounded in
classical linear logic (CLL) by proving that the two systems are equally powerful: we can
internalise the new ingredient of environment composition using the connective ⊗.

(2) HCP supports sound proof rewritings that correspond to transition rules for processes, which
we use to extract an lts. Our lts mends the discrepancy we discussed about semantics, and
extends the Curry-Howard correspondence of łProofs as Processesž to the SOS style by
Plotkin [2004], by viewing proofs as states and our new proof rewritings as transitions.
Well-typed processes enjoy progress in our lts.

(3) Thanks to the fact that hyperenvironments allow us to see independence at the level of types
(the ł|ž operator for composing environments), HCP supports new proof rewritings that yield
a logical reconstruction of the lts originally studied by Merro and Sangiorgi [2004] for the
π -calculus with non-blocking I/O (delayed actions).

(4) Our lts bridges the gap between the research lines of łProofs as Processesž and of behavioural
theory for process calculi. As the first step on this bridge, we instantiate standard bisimilarity
for HCP. Bisimilarity gives us two immediate confirmations that our lts is sound: well-typed
processes that are bisimilar are also type equivalent; and bisimilarity is a congruence.
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Courtesy of delayed actions, bisimilarity relates Atkey’s problematic processes x(x ′).y(y ′).P

and y(y ′).x(x ′).P . Even further, bisimilarity characterises (coincides with) contextual equi-
valence (for HCP, this is typed barbed congruence). While the completeness of bisimilarity is
not a requirement, it is certainly desirableÐand somewhat expected, for a first-order process
calculus [Sangiorgi and Walker 2001].

(5) We define a denotational semantics for HCP, by reformulating the one for CP by Atkey
[2017]. Atkey’s denotations are inspired by the relational semantics of CLL by Barr [1991]. We
rediscover (a refinement of) these denotations from a different angle, by defining Brzozowski
derivatives [Brzozowski 1964] w.r.t. the observable actions in our lts. This has three benefits.
First, it gives a formal and direct connection between the operational and denotational
semantics of HCP. Second, it shows that the denotational semantics of HCP agrees with
a standard notion of observability. Third, it reveals that non-interference, usually a topic
of operational semantics, can be stated for HCP in denotational terms: Fubini’s theorem
of double antiderivation holds in our setting [Fubini 1907], formalising the intuition that
the order of independent actions is not discriminated. In a sense, Fubini’s theorem for HCP
explains from a denotational perspective why delayed actions are operationally sound.

(6) As we anticipated, HCP enjoys full abstraction, in the sense that all three semantic equival-
ences we present coincide: bisimilarity = denotational = contextual equivalence.

Wadler [2014] ended his presentation of Classical Processes by stating:

łAs λ-calculus provided foundations for functional programming in the last century,
may we hope for this emerging calculus to provide foundations for concurrent pro-
gramming in the coming century?ž

From the riverbank of behavioural theory for process calculi, delaying the execution of actions
seems to be an important aspect for this agenda. Better late than never.

2 HYPERSEQUENT CLASSICAL PROCESSES

We start our formal development by presenting the process syntax and proof theory of Hypersequent
Classical Processes (HCP).

2.1 Processes

In HCP, programs are processes (P ,Q ,R,. . . ) that communicate using names (x ,y,z,. . . ). A name
represents one of the two endpoints of a bidirectional channel. This style was introduced to the
session-typed π -calculus by Vasconcelos [2012], and later adopted in the latest presentation of
Classical Processes by Carbone et al. [2016]. Process terms are given by the following grammar.

P ,Q F x[y].P output y on x and continue as P
| x(y).P input y on x and continue as P
| x[].P output (empty message) on x and continue as P
| x().P input (empty message) on x and continue as P
| x ◁ inl.P select left on x and continue as P
| x ◁ inr.P select right on x and continue as P
| x ▷ {inl : P ; inr :Q} offer a binary choice between P (left) or Q (right) on x
| !x(y).P offer a service
| ?x[y].P consume a service
| ?x[x1,x2].P duplicate a service
| ?x[].P dispose of a service
| (νxy)P name restriction, łcutž
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| P | Q parallel composition of processes P and Q
| 0 terminated process
| xØy link x and y

Term x[y].P allocates a fresh name y, outputs y over x and then proceeds as P . Dually, term x(y).P

inputs a name y over x and then proceeds as P . Both output and input terms bind the transmitted
name (y) to the respective continuation P . Terms x[].P and x().P respectively model output and
input with no content. Terms x ◁ inl.P and x ◁ inr.P respectively send on x the selection of the left
or right branch of a (binary) offer available on the other end of the channel before proceeding as P .
Dually, term x ▷ {inl : P ; inr :Q} offers on x a choice between proceeding as P (left branch) orQ (right
branch). Term !x(y).P is a server that offers on x a service implemented by the replicable process
P , where y is bound in P . A server term can be used by clients any number of times. Accordingly,
we have three client terms to interact with a server. The client term ?x[y].P requests exactly one
copy of the service provided by the server on x , and then proceeds by communicating with the
service on channel y. The client term ?x[].P disposes the server on xÐthe service is used zero
times. The client term ?x[x1,x2].P requests that the server on x is duplicated in two new instances,
respectively available on the new channels x1 and x2. A restriction term (νxy)P forms a channel
by connecting and binding the two endpoints x and y in P , enabling communications from x to y
and vice versa. Restriction hides the endpoints x and y from the context. Terms P | Q and 0 are the
standard terms for the parallel composition of two processes and the terminated process. Term
xØy is a forwarding proxy: inputs on x are forwarded as outputs on y and vice versa.

In the remainder, we use π to range over term prefixes: x[y], x(y), x[], x(), x ◁ inl, x ◁ inr, !x(y),
?x[y], ?x[x1,x2], and ?x[]. Free and bound names of processes and prefixes are defined as expected,
as well as α-conversion. We write fn(P), bn(P), cn(P), for the set of free, bound, and all channel
names in P , respectively, and likewise for prefixes. We write P =α Q if P and Q are α-equivalent.

Example 2.1. We write a server that computes the logical AND of two bits, adapting an example
by Atkey et al. [2016] to HCP. We use selections to model sending bits. Since HCP is pretty low-level
as a programming language, we use the following syntactic sugar.

x[0].P ≜ x[x ′].x ′
◁ inl.x ′[].P x[1].P ≜ x[x ′].x ′

◁ inr.x ′[].P

x ▷ {0 7→ P ; 1 7→Q} ≜ x ▷ {inl : x().P ; inr : x().Q}

With these abbreviations, we can write a server that offers a service for computing logical AND.

Servery ≜ !y(y ′).y ′(p).y ′(q).p ▷

{
0 7→q ▷ {0 7→y ′[0].y ′[].0; 1 7→y ′[0].y ′[].0}

1 7→q ▷ {0 7→y ′[0].y ′[].0; 1 7→y ′[1].y ′[].0}

}

We now define a compatible client,Clientb1b2xz , which sends bits b1 and b2 (0 or 1) to a server that
accepts two bits on x (the client abstracts from the concrete operation that the server computes).
The client uses the result to decide whether to select left or right on another channel z.

Clientb1b2xz = ?x[x ′].x ′[b1].x
′[b2].x

′
▷ {0 7→x ′().z ◁ inl.z[].0; 1 7→x ′().z ◁ inr.z[].0}

Relation to other calculi. The main difference between the syntax of HCP and its predecessors in
the research line of łProofs as Processesž is that parallel composition P |Q is a term in its own right
instead of being an inseparable subcomponent of other terms, as we discussed in the Introduction.
Our restriction and output terms have the familiar arities of the π -calculus: output x[y].P has a
single continuation, and likewise restriction (νxy)P binds xy to a single process (instead of two). Of
course, designing an łexpectedž syntax for a session-typed process calculus is not hardÐotherwise,
it would not be expected! The real challenge is designing a proof theory based on linear logic where
the structures of proofs match this syntax precisely, as we will do in Section 2.2.
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Our client terms for explicit server management are inspired by Wadler [2014], who presented
them as an alternative notation for Classical Processes (CP). In CP, server duplication and disposal
do not have terms: these actions are handled by the semantics of CP by looking at the typing proofs
of processes. We chose the explicit terms for HCP because, as we will see, server duplication and
disposal are observable actions. Thus, to define an lts in the usual SOS style, it is desirable that these
observables arise from corresponding syntactic terms.
From the perspective of π -calculus, HCP is essentially a fragment of the internal π -calculus

by Sangiorgi [1996], with two differences. First, the explicit management of servers (our client
terms, which we will see correspond to the rules for the exponential connective ł?ž). Second, the
fact that channels are formed explicitly by the restriction term as proposed later by Vasconcelos
[2012], rather than implicitly by using the same name in different processes. The hallmark of the
internal π -calculus is that output always sends a fresh name, as in HCP. This makes the theory of
the calculus more convenient (output and input are symmetrical). The usual π -calculus term for
outputting a free name can be recovered as syntactic sugar by using links [Atkey et al. 2016].

x ⟨y⟩.P ≜ x[z].(yØz | P)

Similar considerations apply to polyadic communications [Sangiorgi and Walker 2001].

2.2 Typing

Types. HCP uses propositions from Classical Linear Logic (CLL) as types for (endpoint) names.
Types (A,B,C ,. . . ) are defined by the following grammar.

A,B F A ⊗ B send A, proceed as B | AO B receive A, proceed as B
| A ⊕ B select A or B | AN B offer A or B
| 1 unit for ⊗ | ⊥ unit for O
| ?A client request | !A server accept

Types on the left-hand column are for outputs and types in the right-hand column for inputs.
Connectives on the same row are respective duals, e.g., ⊗ and O are dual of each other. We
assume the standard notion of duality of CLL, writing A⊥ for the dual of A. Duality proceeds
homomorphically and replaces connectives with their duals, for example (A ⊗ B)⊥ = A⊥ O B⊥.

Environments and Hyperenvironments. Let Γ, ∆, Θ range over unordered environments, which
associate names to types.

Γ,∆,Θ ::= x1 :A1, . . . ,xn :An environment

We write • for the empty environment. Given an environment Γ = x1 : A1, . . . ,xn : An , we write
cn(Γ) for the set {x1, . . . ,xn} of names in Γ. Names in the same environment must be distinct. Two
environments can be composed only if they do not share names: whenever we write Γ,∆, this
implies cn(Γ) ∩ cn(∆) = ∅.
Environments are collected in unordered hyperenvironments, ranged over by G,H .

G,H ::= Γ1 | · · · | Γn hyperenvironment

The idea is that all environments in a hyperenvironment can be proven independently. We write ∅
for the empty hyperenvironment and cn(H) for the set of names appearing in (all the environments
in) H . As for environments, we require all names in hyperenvironments to be distinct: G | H

implies cn(G) ∩ cn(H) = ∅. Environments and hyperenvironments are equated up to exchange:
Γ,∆ = ∆, Γ and G | H = H | G.
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Structural rules

xØy ⊢ x :A⊥
,y :A

ax
P ⊢ G | Γ,x :A | ∆,y :A⊥

(νxy)P ⊢ G | Γ,∆
h-cut

P ⊢ G Q ⊢ H

P | Q ⊢ G | H
h-mix

0 ⊢ ∅
h-mix0

Logical rules

P ⊢ G | Γ,y :A | ∆,x : B

x[y].P ⊢ G | Γ,∆,x :A ⊗ B
⊗

P ⊢ G

x[].P ⊢ G | x : 1
1

P ⊢ G | Γ,y :A,x : B

x(y).P ⊢ G | Γ,x :AO B
O

P ⊢ G | Γ

x().P ⊢ G | Γ,x : ⊥
⊥

P ⊢ G | Γ,x :A

x ◁ inl.P ⊢ G | Γ,x :A ⊕ B
⊕1

P ⊢ G | Γ,x : B

x ◁ inr.P ⊢ G | Γ,x :A ⊕ B
⊕2

P ⊢ Γ,x :A Q ⊢ Γ,x : B

x ▷ {inl : P ; inr :Q} ⊢ Γ,x :AN B
N

P ⊢ ?Γ,y :A

!x(y).P ⊢ ?Γ,x : !A
!

P ⊢ G | Γ,y :A

?x[y].P ⊢ G | Γ,x : ?A
?

P ⊢ G | Γ

?x[].P ⊢ G | Γ,x : ?A
w

P ⊢ G | Γ,x ′ : ?A,x ′′ : ?A

?x[x ′,x ′′].P ⊢ G | Γ,x : ?A
c

Fig. 1. HCP, typing rules.

Judgements and Typing. Typing judgements assign processes to hyperenvironments and have
the form: P ⊢ G . The rules for deriving judgements are displayed in Figure 1. We say that a process
P is well-typed whenever there exists some G such that P ⊢ G.

Remark 2.2 (Alternative notation). An alternative notation for our judgements could be P ::
⊢ Γ1 | · · · | ⊢ Γn because, as we will show later, each sequent ⊢ Γi is always guaranteed to be
independently provable in classical linear logic. Thus, our judgements can be seen as collections of
sequents, recalling the hypersequents by Avron [1991]. This is the reason behind the name of HCP.
We chose our notation to reduce eyestrain.

Typing rules associate types to names by looking at how endpoints are used in process terms.
Rule selection is structural on the syntax of processes, in the sense that it depends only on the
outermost constructor of a process term. In rule !, we write ?Γ for an environment of the form
?A1, . . . , ?An (possibly empty).
Most of our rulesÐwith the exception of h-cut (restriction), ⊗ (output), h-mix (parallel com-

position), and h-mix0 (terminated process)Ðare exactly those presented for Classical Linear Logic
(CLL) by Girard [1987], but extended to hyperenvironments. Dual terms are typed with dual types.

The most important new rules are the structural rules h-mix and h-cut. Rule h-mix types the
parallel composition of two processes, by combining their hyperenvironments. Previous work
proposed a different rule for mixing environments, given below [Girard 1987; Wadler 2014].

P ⊢ Γ Q ⊢ ∆

P | Q ⊢ Γ,∆
mix

Notice the key difference: our rule keeps the information that the resources in the two premises
come from independent proofs. This information allows us to reformulate cut as rule h-cut, which
uses a single premise. Rule h-cut types the a restriction (νxy)P by checking that the channel is
used by parallel components (separate environments) in P in a dual way (as usual in CLL). In general,
the key novelty of HCP is that parallelism is guaranteed by separation of hyperenvironments. By
contrast, the standard cut rule of linear logic requires two separate proofs as premises, yielding
the restriction term constructor (νx) (P | Q) that we discussed in the Introduction. Rules h-mix
and h-cut and hyperenvironments form thus the key to the desired decoupling of restriction and
the parallel operator. Rule h-mix0 types 0, the unit of parallel composition for processes, as ∅, the
unit of composition for hyperenvironments.
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Our rule ⊗ is reformulated from CLL using the same intuition for rule h-cut. The original rule
requires two separate proofs for A and B respectively, whereas ours has a single premise requiring
that A and B are in separate environments. In other words, ⊗ internalises | in propositions, which
yields a logical reconstruction of the output term from the internal π -calculus [Sangiorgi 1996].
The other rules are straightforward adaptations to hyperenvironments of the rules in [Wadler

2014] for Classical Processes. Rule ax types a link (forwarder), checking that the connected endpoints
have dual types. This ensures that any message on x can be safely forwarded toy, and vice versa. All
logical rules enforce linear usage, except for client requests (typed with the exponential connective
?), for which contraction and weakening are allowed. Contraction (rule c) allows for multiple client
requests for the same server, and weakening (rule w) for not using a server.
Types are preserved under α-conversion, in the sense that whenever P =α Q , P ⊢ G iff Q ⊢ G.

Example 2.3. Define the types for sending and receiving a bit, respectively.

Bit = 1 ⊕ 1 send a bit Bit⊥ = ⊥ N ⊥ receive a bit

Then, we can type the server and client terms from Example 2.1 with dual types, as follows.

Servery ⊢ y : !(Bit⊥ O Bit⊥ O Bit ⊗ 1) Clientb1b2xz ⊢ x : ?(Bit ⊗ Bit ⊗ Bit⊥ O ⊥), z : Bit

Thus, by rules h-cut and h-mix we can type their composition for all distinct names x , y and z, and
any bits b1 and b2, e.g., to compute the logical AND of 0 and 1: (νxy)

(
Client01xz | Servery

)
⊢ z : Bit .

For some processes, there are different acceptable ways of distributing free names in hyperenvir-
onments. For example, the process x().y[].z[].0 is typed by both x : ⊥,y : 1 | z : 1 and y : 1 | x : ⊥, z : 1,
the only difference being that the name x appears in a different component (environment). In
general, given P ⊢ G, for any P and G, if we erase types from G then we obtain a partition of
the free names of P . We write ⌊G⌋ for the name partition obtained by removing types from G.
For example, ⌊x : ⊥,y : 1 | z : 1⌋ is x ,y | z (corresponding to {{x ,y}, {z}} in standard set notation).
Intuitively, name partitions describe which names are used by each parallel component of a process.
We write a judgement P ⊩ G to say that a process P supports the partitionG on the set of its free
names. The rules for deriving partitioning judgements are obtained by erasing all types (A, B, and
connectives) from the typing rules displayed in Figure 1 and replacing ł⊢ž with ł⊩ž (we omit these
rules for conciseness). Thus, name partitions are independent of typing. Computing all the possible
name partitions for a process is trivially decidable: the set of free names of a process is always finite,
giving a bound on the number of possible partitions. Any derivation for P ⊢ G is also a derivation for
P ⊩ ⌊G⌋ once we erase channel types but not vice versa: just consider P = x[].0 and G = x : 1 ⊕ 1

(thus ⌊G⌋ = x ). We write np(P) for the set {G | P ⊩ G} of name partitions induced by P .
We say that two hyperenvironments G and G′ are one the shuffling of the other, written G ⊔⊔ G′,

whenever they count the same number of non-empty environments and x :A is in G iff x :A is in G′.

Theorem 2.4. If P ⊢ G, P ⊩ ⌊G′⌋, and G ⊔⊔ G′ then, P ⊢ G′.

2.3 Relation with Classical Linear Logic

If we erase processes and names from our typing rules and judgements, we essentially get a linear
proof theory and sequents based on hyperenvironments. We write ⊢ G when working under this
erasure, abusing notation (G does not contain names in this case).

We root HCP in CLL by relating their proof theories. We start from the easier direction: all proofs
in CLL can be encoded into proofs in HCP. Intuitively, this is because all rules in CLL but cut and
⊗ are present also in HCP (taking G as empty). It is straightforward to reconstruct the missing
rules by combining h-mix with ⊗ and h-cut.
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Theorem 2.5. If ⊢ Γ in CLL then ⊢ Γ in HCP.

If we consider processes, from the proof of Theorem 2.5 we extract the expected encoding from
the latest version of Wadler’s Classical Processes (CP, which uses CLL as typing discipline) by
Carbone et al. [2016] to visually identical terms in HCP, e.g., [((νxy) (P | Q))] = (νxy) ([(P )] | [(Q)]). This
means that all well-typed processes in CP are well-typed also in HCP.

The opposite direction, from HCP to CLL, is not as straightforward because HCP supports proof
structures that do not appear in CLL. From a process perspective, there are behaviours that cannot
be translated directly from HCP to CP. For example, the process x ▷ {inl : P | Q ; inr : P ′ | Q ′}, where
x appears in Q and Q ′, is typable in HCP but cannot be written/typed in CP. The choice sent on x

will affect the choice between P and P ′, even though neither has access to x .
Instead, we will prove that HCP supports the same propositions as CLL. This is the same as

saying that HCP and CP inhabit the same types, or that the associated logical systems derive the
same theorems. We use a standard method for proving the soundness of hypersequent calculi:
hyperenvironments are internalised as propositions in CLL.
We observe that all proofs in HCP can be łdisentangledž, by moving applications of rule h-mix

deeper in the proof tree. We can use this property to rewrite any derivation to a form in which all
mixes are either attached to their respective cuts or tensors, or at the top-level. These consecutive
applications can be rewritten as rule applications of cut and ⊗ from CLL.

Lemma 2.6 (Disentanglement). If there exists a derivation ρ of ⊢ Γ1 | · · · | Γn in HCP, then there
exist derivations ρ1, . . . , ρn of ⊢ Γ1, . . . , ⊢ Γn in CLL.

We define an encoding of hyperenvironments in HCP into propositions in CLL.

O(•) = ⊥
⊗

(∅) = 1 O(Γ,A) = O(Γ) OA
⊗

(G | Γ) =
⊗

(G) ⊗
⊗

(Γ)

Lemma 2.7. If ⊢ Γ in HCP, then ⊢ O Γ in CLL.

By Lemma 2.7 and repeated applications of ⊗ in CLL, we obtain the following theorem.

Theorem 2.8. If ⊢ G in HCP, then ⊢
⊗

G in CLL.

3 OPERATIONAL SEMANTICS

HCP supports new proof rewritings w.r.t. CLL, which correspond to transition rules for processes.
We use this property to define a semantics for HCP in terms of a labelled transition system (lts).
Our semantics follows Plotkin’s SOS style [Plotkin 2004], by viewing:

• the inference rules of our type system as operations of a (sorted) signature;
• proofs as terms generated by this signature;
• (labelled) proof transformations as (labelled) transitions;
• and a specification of rules for deriving proof transformations as an SOS specification.

Then, a semantics for HCP processes in terms of an SOS specification is obtained simply by reading
off how the SOS specification of proof transformations manipulate the processes that they type.

To illustrate the intuition for transitions, consider the proof for a judgementx().P ⊢ G | Γ,x : ⊥. By
the correspondence between term constructors and typing rules, the proof has the following shape.

.

.

.

P ⊢ G | Γ

x().P ⊢ G | Γ,x : ⊥
⊥

We can view rule ⊥ as the outermost operation used in the proof. Then, the proof of P ⊢ G | Γ is
the only argument of the operation and x a parameter (operations are on proofs). This corresponds
to the term constructor x().(−) in the syntax of HCP processesÐwhich in this case takes P as
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Action labels (l , l ′, . . . )
x[] close x x() wait on x x[y] output y on x x(y) input y on x

x ◁ inl select left x ▷ inl offer left x ◁ inr select right x ▷ inr offer right

?x[y] request y on x ?x[] request dispose x ?x[x1,x2] request duplicate x xØy forward

!x(y) accept y on x !x() accept dispose x !x(x1,x2) accept duplicate x

Actions

π , ?x[], ?x[x1,x2]

π .P
π
−−→ P

π
?x[].P

?x []
−−−→ x().P

?x[x1,x2].P
?x [x1,x2]
−−−−−−−−→ x1(x2).P

x ▷ {inl : P ; inr :Q}
x ▷ inl
−−−−→ P

x ▷ {inl : P ; inr :Q}
x ▷ inr
−−−−−→ Q

xØy
xØy
−−−−−→ 0

xØy
yØx
−−−−−→ 0

fn(P) = {x ′, z1, . . . , zn }

!x(x ′).P
!x ()
−−−→ ?z1[]. · · · ?zn [].x[].0

disp

P1 = Pσ1 P2 = Pσ2 fn(P1) ∩ fn(P2) = ∅ fn(P) = {x ′, z1, . . . , zn }

!x(x ′).P
!x (x1,x2)
−−−−−−−−→ ?z1[z1σ1, z1σ2]. . . . ?zn [znσ1, znσ2].x1[x2].(!x1(x

′σ1).P1 | !x2(x
′σ2).P2)

dup

Structural

P
l

−−→ P ′ bn(l) ∩ fn(Q) = ∅

P | Q
l

−−→ P ′ | Q

par1
Q

l
−−→ Q ′ bn(l) ∩ fn(P) = ∅

P | Q
l

−−→ P | Q ′

par2 P
yØz
−−−−→ P ′

(νxy)P
τ
−−→ P ′{x/z}

axcut

P
l

−−→ P ′ Q
l ′
−−→ Q ′ bn(l) ∩ bn(l ′) = ∅

P | Q
(l ∥l ′)
−−−−→ P ′ | Q ′

syn
P

l
−−→ P ′ x ,y < cn(l) x ∗P ′ y

(νxy)P
l

−−→ (νxy)P ′
res

P =α Q Q
l

−−→ R

P
l

−−→ R

=α

Communications

P
(x [x ′] ∥y(y′))
−−−−−−−−−−−→ P ′

(νxy)P
τ
−−→ (νxy) (νx ′y′)P ′

⊗O
P

(x ◁ inl∥y ▷ inl)
−−−−−−−−−−−→ P ′

(νxy)P
τ
−−→ (νxy)P ′

⊕1N
P

(x ◁ inr∥y ▷ inr)
−−−−−−−−−−−−→ P ′

(νxy)P
τ
−−→ (νxy)P ′

⊕2N

P
(x [] ∥y())
−−−−−−−→ P ′

(νxy)P
τ
−−→ P ′

1⊥
P

(?x [x ′] ∥!y(y′))
−−−−−−−−−−−−→ P ′

(νxy)P
τ
−−→ (νx ′y′)P ′

!?
P

(?x [] ∥!y())
−−−−−−−−−→ P ′

(νxy)P
τ
−−→ (νxy)P ′

!w
P

(?x [x1,x2] ∥!y(y1,y2))
−−−−−−−−−−−−−−−−−−→ P ′

(νxy)P
τ
−−→ (νx1y1)P

′
!c

Delayed Actions and Self-synchronisations

π ∈ {x[],x ◁ inl,x ◁ inr, ?x[y]} P
l

−−→ P ′ cn(π ) ∩ cn(l) = ∅

π .P
l

−−→ π .P ′
:π1

π ∈ {x(), ?x[]} P
l

−−→ P ′ fn(P ′) , ∅

π .P
l

−−→ π .P ′
:π2

P
l

−−→ P ′ x ,x ′ < cn(l) x ∗P ′ x ′

x[x ′].P
l

−−→ x[x ′].P ′
:⊗

π ∈ {x1(x2), ?x[x1,x2]} P
l

−−→ P ′ cn(π ) ∩ cn(l) = ∅ x1 ⊛P ′ x2

π .P
l

−−→ π .P ′
:π3

π , ?x[], ?x[x1,x2] π .P
l

−−→ π .P ′ fn(π ) ∗π .P fn(l)

π .P
(π ∥l )
−−−−→ P ′

|π
?x[].P

l
−−→ ?x[].P ′ x ∗?x [].P fn(l)

?x[].P
(?x [] ∥l )
−−−−−−→ x().P ′

|w

?x[x1,x2].P
l

−−→ ?x[x1,x2].P
′ x ∗?x [x1,x2].P fn(l)

?x[x1,x2].P
(?x [x1,x2] ∥l )
−−−−−−−−−−−→ x1(x2).P

′

|c

Fig. 2. Labelled transition system of HCP processes.

argument, i.e., the term corresponding to the proof of the premise. Thus, this operation is the
proof equivalent of the term constructor x().(−) in the syntax of HCP processes, which denotes
an observable action. Term constructors like this, also called action prefixes, are typically assigned
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a transition rule in process calculi where the target (a.k.a. derivative) is the operator argument and
the label is the prefixed operation. This correspondence points at the transition rule belowÐfor

readability, we box proofs and omit proof trees above premises in the remainder.

P ⊢ G | Γ

x().P ⊢ G | Γ,x : ⊥
⊥

x () : ⊥
−−−−→ P ⊢ G | Γ

The label identifies the prefix constructor (i.e., rule name and parameter) and its syntax is inspired
by common syntax for labels of action prefixes in process calculi. By reading proof terms (processes)
off the rule above we obtain the axiom below for processes.

x().P
x ()
−−→ P

This axiom defines the expected semantics of the constructor x().(−), a promising sign!
Following this methodology for all of our typing rules, we obtain the lts on HCP processes given

by the SOS specification in Figure 2, where l ranges over transition labels (we abuse notation and
use l for the red part of transition labels when referring to processes only, and both the red and
blue parts when referring to proof transitions). We describe each transition rule in the remainder
of this section, by discussing the proof transformations that they originate from. In transitions, we
identify α-equivalent processes.

In the sequel we write x ∗P y (resp. x⊛P y) whenever there is a partitionG ∈ np(P) that separates
(resp. does not separate) x and y. We write x ∗P y1, . . . ,yn for

∧n
i=1 x ∗P yi .

3.1 Multiplicatives and Mix

We start by giving a semantics to the multiplicative fragment of HCP, which suffices to show all
the key ideas behind our lts. The multiplicative fragment of HCP is formed by the rules ⊗, O, 1
and ⊥, together with the structural rules h-mix, h-mix0 and h-cut. Observe that rules from the
first group have the łaction prefixž form described above.

Actions. The transition rules for multiplicative prefixes are those below, plus the rule for x().P
already given.

P ⊢ G | Γ,x ′ :A | ∆,x : B

x[x ′].P ⊢ G | Γ,∆,x :A ⊗ B
⊗

x [x ′] : A⊗B
−−−−−−−−→ P ⊢ G | Γ,x ′ :A | ∆,x : B

P ⊢ G | Γ,x ′ :A,x : B

x(x ′).P ⊢ G | Γ,x :AO B
O x (x ′) : AOB

−−−−−−−−−→ P ⊢ G | Γ,x ′ :A,x : B
P ⊢ G

x[].P ⊢ G | x : 1
1

x [] : 1
−−−−→ P ⊢ G

Structural rules. There are three transition rules for rule h-mix: two for executions where only one
component is transformed (rules par1 and par2) and one where both components are transformed
synchronously (rule syn). (We omit rule par2, which is symmetric to rule par1.)

P ⊢ G
l

−−→ P ′ ⊢ G′ bn(l) ∩ fn(Q) = ∅

P ⊢ G Q ⊢ H

P | Q ⊢ G | H
h-mix

l
−−→

P ′ ⊢ G′ Q ⊢ H

P ′ | Q ⊢ G′ | H
h-mix

par1

P ⊢ G
l

−−→ P ′ ⊢ G′ Q ⊢ H
l ′

−−→ Q ′ ⊢ H ′ bn(l) ∩ bn(l ′) = ∅

P ⊢ G Q ⊢ H

P | Q ⊢ G | H
h-mix

(l ∥l ′)
−−−−→

P ′ ⊢ G′ Q ′ ⊢ H ′

P ′ | Q ′ ⊢ G′ | H ′ h-mix

syn
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Rules par1 and par2 transform one of the two parallel components given that the transformation
preserves non-interference, i.e., disjointness of names. This condition follows from the requirement
of distinct names in hyperenvironments, and gives the usual side-condition for rules par1 and par2
that one would expect for the internal π -calculus (cf. [Sangiorgi 1993]). Rule syn synchronises
transformations of parallel components into a single transformation labelled with the unordered
pair of the respective labelsÐwe assume that l and l ′ are not pairs themselves, as interactions in
HCP have two parties. We write these unordered pairs of labels as (l ∥ l ′), to evoke the parallel
combination of two transformations. Formally, for all l and l ′, (l ∥ l ′) = (l ′ ∥ l). Again, the condition
on disjointness of bound names arises from the well-formedness of the resulting hyperenvironments.
There are no transitions for rule h-mix0. Indeed, its corresponding term 0 is the terminated program.

The rule below captures the standard propagation of unrestricted actions of the π -calculus. The
extracted side-condition x ∗P ′ y (which does not look at types) is induced by the name partitioning
required for typing P ′ in the target.

P ⊢ G | Γ,x :A | ∆,y :A⊥ l
−−→ P ′ ⊢ G′ | Γ′,x :A | ∆′

,y :A⊥ x ,y < cn(l) x ∗P ′ y

P ⊢ G | Γ,x :A | ∆,y :A⊥

(νxy)P ⊢ G | Γ,∆
h-cut

l
−−→

P ′ ⊢ G′ | Γ′,x :A | ∆′
,y :A⊥

(νxy)P ′ ⊢ G′ | Γ′,∆′ h-cut

res

Communication. Communication is captured by simplifying applications of rule h-cut, given by
the transformations below, one for each type of dual actions.

P ⊢ G | Γ,x : 1 | ∆,y : ⊥

y (x [] : 1∥y() : ⊥)

P ′ ⊢ G′ | Γ′

P ⊢ G | Γ,x : 1 | ∆,y : ⊥

(νxy)P ⊢ G | Γ,∆
h-cut

y τ

P ′ ⊢ G′ | Γ′

1⊥

P ⊢ G | Γ,∆,x :A ⊗ B | Θ,y :A⊥ O B⊥

y (x [x ′] : A⊗B ∥y(y′) : A⊥
OB⊥)

P ′ ⊢ G | Γ,x : B | ∆,x ′ :A | Θ,y : B⊥
,y ′ :A⊥

P ⊢ G | Γ,∆,x :A ⊗ B | Θ,y :A⊥ O B⊥

(νxy)P ⊢ G | Γ,∆,Θ
h-cut

y τ

P ′ ⊢ G | Γ,x : B | ∆,x ′ :A | Θ,y : B⊥
,y ′ :A⊥

(νx ′y ′)P ′ ⊢ G | Γ,x : B | ∆,Θ,y : B⊥
h-cut

(νxy) (νx ′y ′)P ′ ⊢ G | Γ,∆,Θ
h-cut

⊗O

These transformations do not interact with the context nor have any effect on the types of the
conclusions besides shuffling (cf. Example 3.4 and Theorem 3.9). Hence, they represent internal
actions and we label them with τ , as common for process calculi.

Example 3.1. Let P = (νxy) (x[x ′].Q | y(y ′).z().R) for some Q and R such that P is well-typed.
Then, we have the following transitions.

P
τ
−−→ (νxy) (νx ′y ′) (Q | z().R) by ⊗O, syn, and the axioms for x[y] and x(y)

z()
−−→ (νxy) (νx ′y ′) (Q | R) by res, par2, and the axiom for z().

Remark 3.2. The reader familiar with linear logic might recognise that our transition rules for
communications evoke cut reductions in CLL: the way in which types are matched and deconstruc-
ted is similar. The key difference is that we do not need to permute cuts in proofs (commuting
conversions) until they reach the rule applications that formed the types being deconstructed. This
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is because we can observe what we need from our transition labels, rather than having to inspect
the structure of the proofs for the premises of our transition rules.

Delayed actions. HCP supports the notion of łdelayed actionsž, originally introduced for the
π -calculus to formulate non-blocking I/O actions [Merro and Sangiorgi 2004]. Delayed actions
allow actions under a prefix to be executed (observed), as long as they do not interfere with the
prefix. The following rule delays an input action.

P ⊢ G | Γ,x ′ :A,x : B
l

−−→ P ′ ⊢ G′ | Γ′,x ′ :A,x : B x ,x ′
< cn(l) x ⊛P ′ x ′

P ⊢ G | Γ,x ′ :A,x : B

x(x ′).P ⊢ G | Γ,x :AO B
O l

−−→
P ′ ⊢ G′ | Γ′,x ′ :A,x : B

x(x ′).P ′ ⊢ G′ | Γ′,x :AO B
O

:O

Any transition that does not depend on or separates the parameters of rule O (names x and x ′ and
their types A and B) is propagated. This condition is verified by checking in the premise that A
and B are still available in the hyperenvironment after the transition. At the process level, this
corresponds to checking that the names x and x ′ are not in the label l and that P ′ supports a
partition that does not separate x and x ′.

HCP supports also a generalised version of self-synchronisation, originally introduced by Merro
and Sangiorgi [2004] together with delayed actions to model self-communication. This captures
that prefixes are truly non-blocking. The idea is to execute a prefix and a non-interfering action
from its continuation at the same time. This is the self-synchronisation rule for input actions.

P ⊢ G | Γ,x ′ :A,x : B
l

−−→ P ′ ⊢ G′ | Γ′,x ′ :A,x : B x ,x ′
< cn(l) x ∗P fn(l) x ⊛P ′ x ′

P ⊢ G | Γ,x ′ :A,x : B

x(x ′).P ⊢ G | Γ,x :AO B
O (l ∥x (x ′) : AOB)

−−−−−−−−−−−→ P ′ ⊢ G′ | Γ′,x ′ :A,x : B

|O

The rule is essentially a combination of the transition axiom for the input prefix and the rule for
delaying its execution.

The rules for delayed execution and self-synchronisation of the remaining prefixes are obtained
likewise, below (we omit the rules for 1). In rule :⊥, the extracted premise fn(P ′) , ∅ ensures, as a
consequence of the proof theory, that Γ′ is not empty and that P ′ is not a parallel composition of 0.

P ⊢ G | Γ
l

−−→ P ′ ⊢ G′ | Γ′ fn(P ′) , ∅

P ⊢ G | Γ

x().P ⊢ G | Γ,x : ⊥
⊥

l
−−→

P ′ ⊢ G′ | Γ′

x().P ′ ⊢ G′ | Γ′,x : ⊥
⊥

:⊥

P ⊢ G | Γ
l

−−→ P ′ ⊢ G′ x ∗x ().P fn (l)

P ⊢ G | Γ

x().P ⊢ G | Γ,x : ⊥
⊥

(l ∥x () : ⊥)
−−−−−−−→ P ′ ⊢ G′

|⊥

P ⊢ G | Γ,x ′ :A | ∆,x : B
l

−−→ P ′ ⊢ G′ | Γ′,x ′ :A | ∆′
,x : B x ,x ′

< cn(l) x ∗P ′ x ′

P ⊢ G | Γ,x ′ :A | ∆,x : B

x[x ′].P ⊢ G | Γ,∆,x :A ⊗ B
⊗

l
−−→

P ′ ⊢ G′ | Γ′,x ′ :A | ∆′
,x : B

x[x ′].P ′ ⊢ G′ | Γ′,∆′
,x :A ⊗ B

⊗

:⊗

P ⊢ G | Γ,x ′ :A | ∆,x : B
l

−−→ P ′ ⊢ G′ | Γ′,x ′ :A | ∆′
,x : B x ,x ′

< cn(l) x ∗x [x ′].P fn (l) x ∗P ′ x ′

P ⊢ G | Γ,x ′ :A | ∆,x : B

x[x ′].P ⊢ G | Γ,∆,x :A ⊗ B
⊗

(x [x ′] : A⊗B ∥l )
−−−−−−−−−−−→ P ′ ⊢ G′ | Γ′,x ′ :A | ∆′

,x : B

|⊗

Example 3.3. The lts of HCP recalls full β-reduction for the λ-calculus. Consider again the process
from Example 3.1: P = (νxy) (x[x ′].Q | y(y ′).z().R) for some Q and R such that P is well-typed.
Because of delayed actions, we might observe the action on z first. By rules res, par2 and :O, and
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the axiom for z(), we get the transition P
z()
−−→ (νxy) (x[x ′].Q | y(y ′).R) = P ′. Self-synchronisation

can give rise to self-communication. Consider the self-communicating process S = (νwz)w[].P ,

where P is as above. By 1⊥, |⊗, and the transition above we get S
τ
−−→ P ′.

Example 3.4. Consider P ⊢ v : ⊥,w : 1 | x : 1 | y : ⊥, z : 1 and P ⊢ w : 1 | v : ⊥,x : 1 | y : ⊥, z : 1 for
P = v().w[].x[].0 | y().z[].0. Both have a transition synchronising x and y (derived using rules 1⊥
and syn, and the axioms for ⊥ and 1) leading to P ′ ⊢ v : ⊥,w : 1 | z : 1 for P ′

= v().w[].0 | z[].0. Let
Q = (νxy)P . Q ⊢ v : ⊥,w : 1 | z : 1 has a τ -transition to P ′ ⊢ v : ⊥,w : 1 | z : 1 derived using rule 1⊥;
observe that types are preserved. Q ⊢ w : 1 | v : ⊥, z : 1 can also perform the same synchronisation
and reach P ′ ⊢ v : ⊥,w : 1 | z : 1; here types are preserved but v has been shuffled.

3.2 Additives

The derivation rules for selection (⊕1,⊕2) and choice (N) are given below and are obtained with the
same technique as for multiplicatives. There are left and right rules for actions, delayed actions,
and communications. They are all symmetric. We omit the right cases here.

P ⊢ G | Γ,x :A

x ◁ inl.P ⊢ G | Γ,x :A ⊕ B
⊕1

x ◁ inl : A⊕1B
−−−−−−−−−→ P ⊢ G | Γ,x :A

P ⊢ Γ,x :A Q ⊢ Γ,x : B

x ▷ {inl : P ; inr :Q} ⊢ Γ,x :AN B
N x ▷ inl : AN1B

−−−−−−−−−−→ P ⊢ Γ,x :A

P ⊢ G | Γ,x :A ⊕ B | ∆,y :A⊥ N B⊥
(x ◁ inl : A⊕1B ∥y ▷ inl : A⊥

N1B
⊥)

−−−−−−−−−−−−−−−−−−−−−−−→ P ′ ⊢ G | Γ,x :A | ∆,y :A⊥

P ⊢ G | Γ,x :A ⊗ B | ∆,y :A⊥ O B⊥

(νxy)P ⊢ G | Γ,∆
h-cut

τ
−−→

P ′ ⊢ G | Γ,x :A | ∆,y :A⊥

(νxy)P ′ ⊢ G | Γ,∆
h-cut

⊕1N

The rules for delayed and self-synchronising selection are straightforward.

P ⊢ G | Γ,x :A
l

−−→ P ′ ⊢ G′ | Γ′,x :A x < cn(l)

P ⊢ G | Γ,x :A

x ◁ inl.P ⊢ G | Γ,x :A ⊕ B
⊕1

l
−−→

P ′ ⊢ G′ | Γ′,x :A

x ◁ inl.P ′ ⊢ G′ | Γ′,x :A ⊕ B
⊕1

:⊕1

P ⊢ G | Γ,x :A
l

−−→ P ′ ⊢ G′ | Γ,x :A x < cn(l) x ∗x ◁ inl.P fn(l)

P ⊢ G | Γ,x :A

x ◁ inl.P ⊢ G | Γ,x :A ⊕ B
⊕1

(x ◁ inl : A⊕1B ∥l )
−−−−−−−−−−−−→ P ′ ⊢ G′ | Γ,x :A

|⊕1

We choose not to define rules for delayed or self-synchronising choices, since rule N does not allow
for internal independent components (G).

Remark 3.5. If we wished to allow for delayed choices, we could add the following rule. The rule
allows for delaying a choice if its two branches simultaneously undergo transformations with the
same label and to targets with no parallel components. (We omit the rule for self-synchronisation.)

Pi ⊢ Γ
′
,x :Ai

l
−−→ P ′

i ⊢ Γ
′
,x :Ai x < cn(l) | np(P ′

i )| = 1 for i ∈ {1, 2}

P1 ⊢ Γ,x :A1 P2 ⊢ Γ,x :A2

x ▷ {inl : P1; inr : P2} ⊢ Γ,x :A1 NA2
N l

−−→
P ′ ⊢ Γ

′
,x :A1 Q ′ ⊢ Γ

′
,x :A2

x ▷
{
inl : P ′

1; inr : P
′
2

}
⊢ Γ,x :A1 NA2

N
:N0
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Remark 3.6. Keeping the analogy with full β-reduction (Example 3.1), we could add the following
transition rule for lifting internal actions by a choice branch (we omit the symmetric rule).

P ⊢ Γ,x :A
τ
−−→ P ′ ⊢ Γ,x :A

P ⊢ Γ,x :A Q ⊢ Γ,x : B

x ▷ {inl : P ; inr :Q} ⊢ Γ,x :AN B
N τ

−−→
P ′ ⊢ Γ,x :A Q ⊢ Γ,x : B

x ▷ {inl : P ′; inr :Q} ⊢ Γ,x :AN B
N

:N1

We choose not to, purely because it is unintuitive that a branch may perform any kind of computa-
tion before it is selected. Moreover, the rule does not change the expressiveness of HCP and its
behavioural theory (our semantic equivalences abstract from internal actions, cf. Section 4).

3.3 Links

There are two transitions for ax and are given by the (symmetric) axioms below.

xØy ⊢ x :A⊥
,y :A

ax
xØy : axA
−−−−−−−−→ 0 ⊢ ∅

xØy ⊢ x :A⊥
,y :A

ax
yØx : axA⊥

−−−−−−−−−→ 0 ⊢ ∅

The two transitions differ only for the order of names in the label to capture the symmetry of the
link. Rule axcut below corresponds to the cut of rule ax.

P ⊢ G | Γ,x :A⊥
,y :A | ∆, z :A⊥

xØy : axA
−−−−−−−−→ P ′ ⊢ G′ | Γ′, z :A⊥

P ⊢ G | Γ,x :A⊥
,y :A | ∆, z :A⊥

(νyz)P ⊢ G | Γ,∆,x :A⊥
h-cut

τ
−−→ P ′{x/z} ⊢ G′ | Γ′,x :A⊥

axcut

3.4 Exponentials

In HCP, clients can interact with servers in three ways: requesting an instance of the service
provided by the server, duplicating a server, or disposing of a server.

Requesting an instance. Client requests for server instances are modelled by the following rules,
for the prefixes and their communication.

P ⊢ G | Γ,x ′ :A

?x[x ′].P ⊢ G | Γ,x : ?A
?

?x [x ′] : ?A
−−−−−−−→ P ⊢ G | Γ,x ′ :A

P ⊢ ?Γ,x ′ :A

!x(x ′).P ⊢ ?Γ,x : !A
!

!x (x ′) : !A
−−−−−−−→ P ⊢ ?Γ,x ′ :A

P ⊢ G | Γ,x : ?A | ∆,y : !A⊥
(?x [x ′] : ?A∥!y(y′) : !A⊥)
−−−−−−−−−−−−−−−−−−→ P ′ ⊢ G | Γ,x ′ :A | ∆,y ′ :A⊥

P ⊢ G | Γ,x : ?A | ∆,y : !A⊥

(νxy)P ⊢ G | Γ,∆
h-cut

τ
−−→

P ′ ⊢ G | Γ,x ′ :A | ∆,y ′ :A⊥

(νx ′y ′)P ′ ⊢ G | Γ,∆
h-cut

!?

Instance requests can be delayed and self-synchronise as follows.

P ⊢ G | Γ,x ′ :A
l

−−→ P ′ ⊢ G′ | Γ,x ′ :A x ,x ′
< cn(l)

P ⊢ G | Γ,x ′ :A

?x[x ′].P ⊢ G | Γ,x : ?A
?

l
−−→

P ′ ⊢ G′ | Γ,x ′ :A

?x[x ′].P ′ ⊢ G′ | ∆,x : ?A
?

:?

P ⊢ G | Γ,x ′ :A
l

−−→ P ′ ⊢ G′ | Γ,x ′ :A x ,x ′
< cn(l) x ∗?x [x ′].P fn(l)

P ⊢ G | Γ,x ′ :A

?x[x ′].P ⊢ G | Γ,x : ?A
?

(?x [x ′] : ?A∥l )
−−−−−−−−−−→ P ′ ⊢ G′ | Γ,x ′ :A

|?
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Server duplication. Server duplication is captured by the following axioms and synchronisation
rule. Since servers might contain dependencies, i.e., client terms (all names of ?Γ in rule !), their
duplication must be propagated to their dependencies before the new copies can be used. We write
Pσ , Γσ , and xσ for the application of a name substitution σ to a process, environment, and name.

P ⊢ G | Γ,x1 : ?A,x2 : ?A

?x[x1,x2].P ⊢ G | Γ,x : ?A
c

?x [x1,x2] : ?cA
−−−−−−−−−−−→

P ⊢ G | Γ,x1 : ?A,x2 : ?A

x1(x2).P ⊢ G | Γ,x1 : ?AO ?A
O

Pi = Pσi Γi = Γσi fn(P) = {x ′
, z1, . . . , zn} for i ∈ {1, 2}

P ⊢ !Γ,x ′ :A

!x(x ′).P ⊢ ?Γ,x : !A
!

y !x (x1,x2) : !cA

P1 ⊢ ?Γ1,x
′σ1 :A

!x1(x
′σ1).P1 ⊢ ?Γ1,x1 : !A

!
P2 ⊢ ?Γ2,x

′σ2 :A

!x2(x
′σ2).P2 ⊢ ?Γ2,x2 : !A

!

!x1(x
′σ1).P1 | !x2(x

′σ2).P2 ⊢ ?Γ1,x1 : !A | ?Γ2,x2 : !A
h-mix

x1[x2].(!x1(x
′σ1).P | !x2(x

′σ2).P) ⊢ ?Γ1, ?Γ2,x1 : !A ⊗ !A
⊗

?z1[z1σ1, z1σ2]. . . . ?zn[znσ1, znσ2].x1[x2].(!x1(x
′σ1).P1 | !x2(x

′σ2).P2) ⊢ ?Γ,x1 : !A ⊗ !A
c

P ⊢ G | Γ,x : ?A | ?∆,y : !A⊥
(?x [x1,x2] : ?cA∥!y(y1,y2) : !cA

⊥)
−−−−−−−−−−−−−−−−−−−−−−−−→ P ′ ⊢ G | Γ,x1 : ?AO ?A | ?∆,y1 : !A

⊥ ⊗ !A⊥

P ⊢ G | Γ,x : ?A | ?∆,y : !A⊥

(νxy)P ⊢ G | Γ, ?∆
h-cut

τ
−−→

P ′ ⊢ G | Γ,x1 : ?AO ?A | ?∆,y1 : !A
⊥ ⊗ !A⊥

(νx1y1)P
′ ⊢ G | Γ, ?∆

h-cut

!c

Server duplication is done slightly differently compared to HCP’s predecessor, Classical Processes
(CP) [Wadler 2014]. Because in CP rules c and w lack proof terms (they can be applied łsilentlyž),
the duplication of all the resources that a server needs to introduce a new copy is not visible at the
process level, whereas it is in HCP. Our semantics has thus a clearer computational interpretation.
Also, the duplication of a server in CP is handled by the synchronisation rule for cut of rule ! with
rule c ([Wadler 2014, Fig. 3]), whereas our semantics respects locality: the new servers appears
exactly where the original server was, and our transition rule is independent of the presence of
any cut in the context.

Another difference with CP’s server duplication is the exchange following a duplication request
(terms y1(y2) and y1[y2] in the targets of the transitions). This exchange is suggested by the typing:
server copies must be in parallel components (they might be used concurrently) whereas rule c
assumes copies are in the same environment. We could do away with these exchanges by adding
external contraction to our proof theory, a variant of rule c where the two names to appear in
separate environments [Avron 1991]. We chose not to, for simplicity of our proof theory. Because
the exchange can only take place after the server sends all requests to duplicate its dependencies and
because server copies can only be used after the exchange has been done, it has a clear operational
interpretation: it is an acknowledgement.
Duplication requests can be delayed and self-synchronise.

P ⊢ G | Γ,x1 : ?A,x2 : ?A
l

−−→ P ′ ⊢ G′ | Γ′,x1 : ?A,x2 : ?A x ,x1,x2 < cn(l) x1 ⊛P ′ x2

P ⊢ G | Γ,x1 : ?A,x2 : ?A

?x[x1,x2].P ⊢ G | Γ,x : ?A
c

l
−−→

P ′ ⊢ G′ | Γ′,x1 : ?A,x2 : ?A

?x[x1,x2].P
′ ⊢ G′ | Γ′,x : ?A

c

:c
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P ⊢ G | Γ,x1 : ?A,x2 : ?A
l

−−→ P ′ ⊢ G′ | Γ′,x1 : ?A,x2 : ?A x ,x1,x2 <cn(l) x1⊛P ′x2 x ∗?x [x1,x2].P fn(l)

P ⊢ G | Γ,x1 : ?A,x2 : ?A

?x[x1,x2].P ⊢ G | Γ,x : ?A
c

(?x [x1,x2] : ?cA∥l )
−−−−−−−−−−−−−→

P ′ ⊢ G′ | Γ′,x1 : ?A,x2 : ?A

x1(x2).P
′ ⊢ G′ | Γ′,x1 : ?AO ?A

O
|c

Duplication requests by a server being duplicated cannot be delayed after the operation acknow-
ledgement: y1[y2] will always be the last operation before the new instances become available.

Example 3.7. Continuing Example 2.3, we can formally observe that using different clients that
send different bits yields different results.

(νxy)
(
Client01xz | Servery

) τ
−−→ · · ·

τ
−−→

z ◁ inl
−−−−→

z[]
−−→ 0 | 0

(νxy)
(
Client11xz | Servery

) τ
−−→ · · ·

τ
−−→

z ◁ inr
−−−−→

z[]
−−→ 0 | 0

We can use the service multiple times by duplicating it.

(νxy)
(
?x[x1,x2].

(
Client01x1z1 | Client

11
x2z2

)
| Servery

) τ
−−→ · · ·

τ
−−→

z1 ◁ inl
−−−−→

z2 ◁ inr
−−−−−→

z1[]
−−−→

z2[]
−−−→ 0 | 0 | 0 | 0

Remark 3.8. In connection to Remark 3.6, we could add the following transition rule for lifting
internal actions by servers.

P ⊢ ?Γ,x ′ :A
τ
−−→ P ′ ⊢ ?Γ′,x ′ :A

P ⊢ ?Γ,x ′ :A

!x(x ′).P ⊢ ?Γ,x : !A
!

τ
−−→

P ⊢ ?Γ′,x ′ :A

!x(x ′).P ′ ⊢ ?Γ′,x : !A
!

:!

We choose to exclude it because it might be surprising that a server performs any kind of computa-
tion before it is triggered. However, in general, the rule might be interesting to allow servers to
łoptimisež themselves before being run.

Server disposal. Server disposal is captured by the following rules, again for the dual prefixes and
their communication. Since servers might contain dependencies, their disposal must be propagated
before the operation is acknowledged to the client.

P ⊢ G | Γ

?x[].P ⊢ G | Γ,x : ?A
w

y ?x [] : ?cA

P ⊢ G | Γ

x().P ⊢ G | Γ,x : ⊥
⊥

fn(P) = {x ′
, z1, . . . , zn}

P ⊢ ?Γ,x ′ :A

!x(x ′).P ⊢ ?Γ,x : !A
!

!x () : !cA
−−−−−−→

0 ⊢ ∅
h-mix0

x[].0 ⊢ x : 1
1

?z1[]. . . . ?zn[].x[].0 ⊢ ?Γ,x : 1
w

P ⊢ G | Γ,x : ?A | ?∆,y : !A⊥
(?x [] : ?cA∥!y() : !cA

⊥)
−−−−−−−−−−−−−−−−→ P ⊢ G | Γ,x : ⊥ | !∆,y : 1

P ⊢ G | Γ,x : ?A | ?∆,y : !A⊥

(νxy)P ⊢ G | Γ, ?∆
h-cut

τ
−−→

P ⊢ G | Γ,x : ⊥ | ?∆,y : 1

(νxy)P ′ ⊢ G | Γ, ?∆
h-cut

!w

As for instance requests, disposal requests can be delayed and self-synchronise (we omit the proof
transformations). Akin to duplication, disposal requests by a server being disposed cannot be
delayed after the operation acknowledgement: x() will always be the last operation.
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3.5 Subject Reduction and Progress

All transition rules are derived from proof transformations that preserve provability. Rules for
τ -transitions preserve also types: the types in (the judgement in) the conclusion remain unchanged.
Thus, we immediately obtain the theorem below. Given a proof transition label l , we write ⌊l⌋ for
the same label where the logical part (the blue part) is stripped, e.g. ⌊x[] : 1⌋ = x[].

Theorem 3.9 (Subject reduction). Let P and Q be well-typed. Then:

• If P ⊢ G
l

−−→ Q ⊢ H then, P
⌊l ⌋
−−→ Q and G ⊔⊔ H iff l = τ .

• If P ⊢ G and P
l

−−→ Q , then P ⊢ G
l ′

−−→ Q ⊢ H for someH and l ′ such that l = ⌊l ′⌋.

Theorem 3.9 formalises that τ -transitions of a process P have no dependencies on the con-
text, since they do not influence the types of P . This matches the intuition of lts semantics for
the π -calculus, where τ -transitions capture internal łunobservablež moves. In HCP, performing
unobservable moves coincides with type-preserving proof transitions.

The next results use łsaturatedž transitions (Milner’s double arrow). Formally, ==⇒ is the smallest

relation such that: P
τ
==⇒ P for all P ; and if P

τ
==⇒ P ′, P ′ l

−−→ Q ′ and Q ′ τ
==⇒ Q , then P

l
==⇒ Q .

We write lx to range over labels that denote actions on a name x : x[], x(), x[y], x(y), etc. Actions
typed by separate environments can always be observed in parallel.

Lemma 3.10. If P ⊢ G | Γ,x :A | ∆,y : B, P
lx
==⇒ P ′, and P

ly
==⇒ P ′′, then there exists Q such that

P
(lx ∥ly )
=====⇒ Q (up to α-renaming).

Well-typed processes enjoy a notion of readiness on their free channels, captured by the separation

of environments. Assume that P ⊢ G | Γ. Then, there is always a name x in cn(Γ) such that P
lx
==⇒ P ′.

In other words, every environment in the hyperenvironment used to type a process contains at
least one name where the process can perform an action (possibly after τ -transitions).

Theorem 3.11 (Readiness). Let P ⊢ Γ1 | · · · | Γn . For every i ∈ [1,n], there exist x ∈ cn(Γi ), lx , and

P ′ such that P
lx
==⇒ P ′.

As a corollary of Theorem 3.11, we get that well-typed processes that are not terminated can
always progress, because the hyperenvironment used to type a process P . 0 can never be empty.

Corollary 3.12 (Progress). If P is well-typed and P . 0, then P
l

−−→ P ′ for some l and P ′.

4 BEHAVIOURAL THEORY

We study the behavioural theory of HCP under the lenses of two classical notions of behavioural
equivalence: bisimulation and barbed congruence. The first has emerged as a powerful operational
method for proving equivalence of programs in various kinds of languages, due to the associated
coinductive proof method. The second is the equivalent of contextual equivalence in concurrency.

Bisimilarity. The standard notion of strong bisimilarity can be instantiated on the lts of HCP.

Definition 4.1 (Strong bisimilarity). A symmetric relation R on processes is a strong bisimulation

if P R Q implies that if P
l

−−→ P ′ then Q
l

−−→ Q ′ for some Q ′ such that P ′ R Q ′. Strong bisimilarity
is the largest relation ∼ that is a strong bisimulation.

Strong bisimilarity can discriminate processes whose behaviours differs only by τ -transitions.
For instance, (νxy) (x[].0 | y().z[].0) and z[].0 are not bisimilar exclusively because the first has a
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τ -transition. Instead, no HCP process composed in parallel with either of them would be able to
tell the difference: τ -transitions have no effect on or interaction with the context. This deficiency
of strong bisimilarity is well-known and has been widely studied since Milner’s seminal works on
CCS [Milner 1989]. The solution is to define bisimilarity on the saturated transition relation ==⇒.

Definition 4.2 (Bisimilarity). A symmetric relation R on processes is a bisimulation if P R Q

implies that if P
l
==⇒ P ′ then Q

l
==⇒ Q ′ for some Q ′ such that P ′ R Q ′. Bisimilarity is the largest

relation ≈ that is a bisimulation.

It follows from the inclusion of rule =α in the specification of the lts of HCP that =α ⊊ ∼. Also,
from the definition of saturation it follows that ∼ ⊊ ≈, as usual for saturation-based behavioural
equivalences [Brengos et al. 2015].

Fact 4.3. Assume processes are well-typed. As in standard process algebras, parallel composition
and 0 obey the laws of an abelian monoid under (strong) bisimilarity. Formally, for any P , Q , and R:

P ∼ P | 0 P | Q ∼ Q | P P | (Q | R) ∼ (P | Q) | R

Restriction distributes over actions, parallel composition, and restriction, provided that they do not
depend on the restricted channel. For x ,y < (fn(R) ∪ cn(π ) ∪ {x ′

,y ′}):

(νxy) (P | R) ∼ (νxy) (P) | R (νxy)π .P ∼ π .(νxy)P (νxy) (νx ′y ′)P ∼ (νx ′y ′) (νxy)P

Closing a channel is non-blocking: x[].P ∼ x[].0 | P . Links are symmetric: xØy ∼ yØx .

Bisimilarity and strong bisimilarity are congruences, in the sense that they are preserved by all
syntactic operators of HCP.

Theorem 4.4 (Congruence). For ≍ ∈ {∼,≈}, if P ≍ Q , then
(1) P | R ≍ Q | R for any R (and the symmetric);
(2) π .P ≍ π .Q for any prefix π ;
(3) x ▷ {inl : R; inr : P} ≍ x ▷ {inl : R; inr :Q} for any x and R (and the symmetric);
(4) (νxy)P ≍ (νxy)Q for any x , y.

Bisimilarity implies type equivalence on well-typed processes.

Proposition 4.5. If P and Q are well-typed and P ≈ Q , then P ⊢ G iff Q ⊢ G.

Barbed congruence. Contextual equivalence defines as equivalent all programs that łbehave in
the same mannerž in any given łcontextž [Morris 1968]. In typed languages, a context is a typed
program C with a typed łholež □ where we can plug a program P and obtain the program C[P]. In
HCP this instantiates to the following.

Definition 4.6 (Typed context). A context C is a (G/H )-context if C ⊢ H is valid when the hole □
of C is considered as a process and the following rule is added to the theory of HCP:

□ ⊢ G

In concurrency, behaviours are characterised in terms of the observable interactions between a
process and its execution environment. We start by borrowing the notion of observability used by
the π -calculus.

Definition 4.7 (Observability predicates). Given a name x , the observability predicate P⇓x holds iff

P
l
==⇒ Q for some Q and l such that x ∈ fn(l).

Example 4.8. Consider Q1 = x(x ′).y(y ′).P and Q2 = y(y
′).x(x ′).P from the Introduction. In HCP

they exhibit exactly the same observations: Q1⇓x , Q1⇓y , Q2⇓x , and Q2⇓y .
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Atkey [2017] argues that a suitable notion of observational equivalence must discriminate clients
that use non-linear resources in the environment in different quantities. This requires some care in
the definition of barbed congruence for HCP. We illustrate the reason below.

Example 4.9. Consider type equivalent processes that consume a different number of instances
of the same server: P0 = ?x[].Q0, P1 = ?x[x ′].Q1, P2 = ?x[x1,x2].?x1[x

′].?x2[x
′′].Q2, and P3 =

?x[x1,x2].?x1[].?x2[x
′′].Q3. The observability predicate does not distinguish these processes, since

⇓x holds for all of them. Thus, distinguishing them requires using a process context. Due to typing,
this context can only connect x to a server, and the only way that a server has to relay information
to an external observer is via client requests. Thus, we end up in the same problem we started from.
Consider the context (νxy) (□ | !y(y ′).?u[].?v[].?z[w].y ′

Øw). For any i ∈ {0, 1, 2}, C[Pi ]⇓u and
C[Pi ]⇓v . (For the case of P0, recall that disposing of a server triggers the disposal of its dependencies.)

This kind of deficiency of the standard observability predicate is not new for session-typed
calculi: Yoshida et al. [2007] faced it for selections and choices. Likewise, we introduce predicates
for observing how a program may use or dispose of a non-linear resource from the context.

Definition 4.10 (Non-linear observability predicates). For x a name and t a binary tree with leaves
in {⋄, †} (for use and dispose, respectively), the non-linear observability predicate ⇓tx (read łx is used
as in tž) holds on P whenever any of the following holds:

• t = ⟨†⟩, P
l

−−→ Q , ?x[] occurs in l , and x < fn(P);

• t = ⟨⋄⟩, P
l

−−→ Q , ?x[x ′] occurs in l for some x ′, and x < fn(P);

• t = ⟨t1, t2⟩, P
l

−−→ Q , ?x[x1,x2] occurs in l for some x1 and x2, Q⇓
t1
x1

and Q⇓t2x2 ;

• P
l

−−→ Q , ?x[], ?x[x ′], and ?x[x1,x2] do not occur in l , and Q⇓tx .

Example 4.11. Consider processes P0, P1, and P2 from Example 4.9. Then, P0⇓
t
x iff t = ⟨†⟩, P1⇓

t
x

iff t = ⟨⋄⟩, P2⇓
t
x iff t = ⟨⟨⋄⟩, ⟨⋄⟩⟩, P3⇓

t
x iff t = ⟨⟨†⟩, ⟨⋄⟩⟩.

When Yoshida et al. [2007] faced a similar problem for selections, they extended observability to

observe the payload of selections (left or right): the new predicates ⇓inlx and ⇓inrx hold on P whenever
P sends on x a left or a right selection, respectively. In HCP, we do not need this extension because
we can subsume these predicates using our non-linear observability predicates and appropriate
contexts, as we exemplify below.

Example 4.12. Consider a pair of processes that differ exclusively for the selection they make,
Pl = x ◁ inl.Q and Pr = x ◁ inr.Q . There is no direct observation that distinguishes them: for
any w and t , Pl⇓w iff Pr⇓w and Pl⇓

t
w iff Pr⇓

t
w . However, we can make an indirect observation

using any context that offers a choice between two observationally distinct branches: for C =
(νxy) (□ | y ▷ {inl : ?w[].yØz; inr : ?w[w ′].w ′().yØz}), C[P0]⇓

t
w iff t = ⟨†⟩ and C[P1]⇓

t
w iff t = ⟨⋄⟩.

Definition 4.13 (Barbed congruence). Barbed congruence is the largest symmetric relation ≊ on
well-typed HCP processes that is

• typed (P ≊ Q implies P ⊢ G iff Q ⊢ G);
• context-closed (i.e. if P ≊ Q then C[P] ≊ C[Q] for any typed context);
• barb preserving (i.e. if P ≊ Q and P⇓x then Q⇓x ; if P ≊ Q and P⇓tx then Q⇓tx ).

On well-typed processes, bisimilarity implies typed barbed congruence.

Theorem 4.14. ≈ ⊆ ≊.

We anticipate that also the converse of Theorem 4.14 holds but we do not prove it directly.
Instead, we show in Section 6 that this holds by comparison with the denotational semantics.
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5 DENOTATIONAL SEMANTICS

Inspired by the relational semantics for proofs in linear logic by Barr [1996], Atkey [2017] developed
a denotational semantics for CP that interprets well-typed processes as sets of possible observable
interactions on each of their free channels. In this section, we show that a similar denotational
semantics can be also developed for HCP.
The main novelty, besides extending denotations to hyperenvironments, is that we rediscover

denotations from a very different angle, based on HCP’s notion of observable actions. Specifically,
inspired by Brzozowski derivatives of regular expressions [Brzozowski 1964], we introduce łde-
rivatives of denotationsž w.r.t. HCP actions. As the derivative of a set of strings w.r.t. a character
is the set of strings that can can follow that character, the derivative of a denotation w.r.t. an
action is the denotation that can follow that action. This approach allows us to abstract from the
syntax of HCP and study actions and interactions solely in terms of denotations. For instance, we
characterise non-interference, usually a topic of operational semantics, as Fubini’s equality for
double antiderivatives [Fubini 1907].
Atkey’s denotations do not distinguish outputs from inputs. For instance, x ◁ inl.x[].0 ⊢ 1 ⊕ 1

and x ▷ {inl : x[].0; inr : x[].0} ⊢ 1 N 1 are given the same denotation. To characterise observational
equivalence, Atkey resorts to the intersection of type equivalence with denotational equivalence:
two processes are observationally equivalent if they have the same types and denotations. Differ-
ently, our denotations distinguish inputs from outputs, and our notion of denotational equivalence
does not require type equivalence.

Interpretation of types. We define the domain of denotations for a name by recursion on the
structure of its type. We tag denotations with natural numbers and use these identifiers in certain
denotations to describe dependencies with other channels:

• in the denotations of ⊗, we use identifiers to specify which observations must be in which of
two parallel components merged by a tensor;

• in the denotations of N and !, we use identifiers to specify which observations are blocked
until a choice is performed or a server is used, respectivelyÐwhich are the only constructs in
HCP without delayed actions.

We use ◁ and ▷ to distinguish between outputs and inputs. We write ℘f for the finite powerset.
We interpret multiplicative units as singletons because they are the types that characterise the

empty output and input, respectively.

⦃1⦄ = {◁} × N × {∗} ⦃⊥⦄ = {▷} × N × {∗}

We interpret multiplicatives as cartesian products pairing denotations of their components.

⦃A ⊗ B⦄ = {◁} × N × (℘f N × ⦃A⦄ × ℘f N × ⦃B⦄) ⦃AO B⦄ = {▷} × N × (⦃A⦄ × ⦃B⦄)

We interpret additives as coproducts and represent them as dependent pairs indexed over {inl, inr}.

⦃A ⊕ B⦄ = {◁} × N × (⦃A⦄ + ⦃B⦄) ⦃AN B⦄ = {▷} × N × ℘f N × (⦃A⦄ + ⦃B⦄)

We interpret exponentials as sets of binary trees of denotations (written T ) since they characterise
both unbounded (but finite) interactions of a given type and resource allocation (duplication via
branchings and disposal via leaves).

⦃?A⦄ = {◁} × N × (T (⦃A⦄ + {†})) ⦃!A⦄ = {▷} × N × ℘f N × (T (⦃A⦄ + {†}))

If we ignore identifiers in denotations, we can turn a ∈ ⦃A⦄ into an element of ⦃A⊥⦄ by simultan-
eously replacing ▷with ◁ and vice versa. We extend the notion of duality from types to their interpret-
ation and write a ◁▷ b whenever a ∈ ⦃A⦄, b ∈ ⦃A⊥⦄, and reversing the direction of triangles in a

yields b up to differences in identifiersÐsometimes, we abuse the terminology and call a and b dual.
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Example 5.1. Consider (◁,n, ∗) ∈ ⦃1⦄, (▷,n′, ∗) ∈ ⦃⊥⦄ and write a and b for them, respectively.
We have that a ◁▷ b, for any n,n′ ∈ N. Also, (◁,m, inl,a) ◁▷ (▷,m′

,M, inl,b) for anym,m′ ∈ N and
M ∈ ℘f N.

We sometimes use the wildcard _ when pattern matching denotations, e.g., we write (▷, _, ∗) = a

instead of (▷,n, ∗) = a if binding n is superfluous.
We define the denotation domain of an environment as the set of all assignments that take each

name to observations of its associated type. We write ⟨x1 7→ a1, . . . ,xn 7→ an⟩ for the assignment
taking each name xi of type Ai to its denotation ai ∈ ⦃Ai⦄. As usual, we work up to exchange and
hence we interpret ł,ž as the cartesian product and assignments as tuples.

⦃•⦄ = {⟨⟩} ⦃Γ,x :A⦄ = ⦃Γ⦄ × {⟨x 7→ a⟩ | a ∈ ⦃A⦄}

Likewise, we interpret hyperenvironments as collections of assignments from the domains of their
environments and map ł|ž to the cartesian product. We use γ , δ to range over elements of ⦃Γ⦄.

⦃∅⦄ = {⟨⟩} ⦃G | Γ⦄ = ⦃G⦄ × {⟨γ ⟩ | γ ∈ ⦃Γ⦄}

We write id(a) for the outermost identifier in a and ids(a) for the set of all identifiers in a (excluding
dependencies used in the interpretations of ⊗, N, and !), and extend these notations to the inter-
pretations of environments and hyperenvironments (id(γ ) is the set of all outermost identifiers in γ
and ids(γ ) is the set of all identifiers in γ ).
Since we are using numeric identifiers to encode dependencies, it is natural to assume that

identifiers are unique within a denotation and that dependencies in the interpretations of ⊗, N,
and ! are limited to the same environment and have no cycles. We refer to denotations that respect
this simple identifier discipline as well-formed.

• We call a ∈ ⦃A⦄ well-formed if its identifiers are unique and decrease along its structure
(e.g., if a = (◁,n, inl,a′), then n > ids(a′)).

• We call γ = ⟨x1 7→ a1, . . . ,xk 7→ ak ⟩ ∈ ⦃x1 : A1, . . . ,xk : Ak⦄ well-formed if its identifiers
are unique and for every i ∈ {1, . . . ,k}:

(1) ai is well-formed;
(2) if Ai = B1 ⊗ B2, then N1,N2 ⊆ ids(γ ) and n > N1,N2, where ai = (◁,n,N1, _,N2, _);
(3) if Ai = B1 N B2 or Ai = !B, then N ⊆ ids(γ ) and n > N , where ai = (◁,n,N , _, _) or

ai = (◁,n,N , _).
• We call д = ⟨γ1, . . . ,γk ⟩ well-formed if γ1, . . . , γk are well-formed and its identifiers are
unique.

From now on, unless otherwise specified, we assume that denotations are well-formed.

Derivatives andAntiderivatives. Recall from [Brzozowski 1964] that the derivativew.r.t. a character
l of a set of strings D is the set {a | la ∈ D} of strings a that can follow l to yield a string la in D. In
particular, if we consider the language accepted by a state p of a deterministic automaton and take
its derivative w.r.t. an input symbol l , then we obtain the accepted language for the state reached by
the automaton if we input l while inp. In light of this correspondence, Brzozowski derivatives define
an automaton on accepted languages, not any automaton, but the one that is final in the coalgebraic
sense thus marrying denotational and observational equivalence of automata [Bonchi et al. 2014].
Inspired by Brzozowski derivatives, we define the derivative of a set of denotations D w.r.t.

to an action l as the set of the denotations that can follow l . For instance, derivation w.r.t. x[]
takes ⟨⟨x 7→ (◁,n, ∗)⟩⟩ ∈ ⦃x : 1⦄ to ⟨⟩ ∈ ⦃∅⦄ since there are no actions left; derivation w.r.t.
x[y] takes ⟨⟨x 7→ (◁,n, ∅,a, ∅,b)⟩⟩ ∈ ⦃x : A ⊗ B⦄ to ⟨⟨x 7→ b⟩, ⟨y 7→ a⟩⟩ ∈ ⦃x : B | y : A⦄ since
after y is output on x the two have separate behaviours. Below, we write a\n for the denotation
where n is removed from all interpretations of ⊗ in a, e.g., (▷,m, {n},a)\n = (▷,m, {n},a\n) and
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(◁,m, {n},a, ∅,a′)\n = (◁,m, ∅,a\n, ∅,a′\n)); likewise for environments.Wewrite·for juxtaposition,
e.g., ⟨⟨x 7→ a⟩⟩ · ⟨⟨y 7→ a′, z 7→ a′′⟩⟩ is ⟨⟨x 7→ a⟩, ⟨y 7→ a′, z 7→ a′′⟩⟩ from ⦃x :A | y :A′

, z :A′′⦄.

Definition 5.2 (Derivatives). For D a set of denotations, the derivative d
l
D of D w.r.t. an action l

is the set defined by:

d
x []
D = {д | д · ⟨⟨x 7→ (◁, _, ∗)⟩⟩ ∈ D}

d
x ()
D = {д · ⟨γ\n⟩ | д · ⟨γ · ⟨x 7→ (▷,n, ∗)⟩⟩ ∈ D}

d
x [y]

D =

{
д · ⟨γ\n,N ′ · ⟨x 7→ b⟩,δ\n,N · ⟨y 7→ a⟩⟩

����
д · ⟨γ ·δ · ⟨x 7→ (◁,n,N ,a,N ′

,b)⟩⟩ ∈ D,
N ⊆ ids(γ ),N ′ ⊆ ids(δ )

}

d
x (y)

D = {д · ⟨γ\n · ⟨x 7→ b,y 7→ a⟩⟩ | д · ⟨γ · ⟨x 7→ (▷,n,a,b)⟩⟩ ∈ D}

d
x ◁ inl

D = {д · ⟨γ\n · ⟨x 7→ a⟩⟩ | д · ⟨γ · ⟨x 7→ (◁,n, inl,a)⟩⟩ ∈ D}

d
x ▷ inl

D = {д · ⟨γ\n · ⟨x 7→ a⟩⟩ | д · ⟨γ · ⟨x 7→ (▷,n, _, inl,a)⟩⟩ ∈ D}

dx ◁ inrD = {д · ⟨γ\n · ⟨x 7→ b⟩⟩ | д · ⟨γ · ⟨x 7→ (◁,n, inr,b)⟩⟩ ∈ D}

dx ▷ inrD = {д · ⟨γ\n · ⟨x 7→ b⟩⟩ | д · ⟨γ · ⟨x 7→ (▷,n, _, inr,b)⟩⟩ ∈ D}

d
?x [y]

D = {д · ⟨γ\n · ⟨x 7→ a⟩⟩ | д · ⟨γ · ⟨x 7→ (◁,n, ⟨a⟩)⟩⟩ ∈ D, a , †}

d
!x (y)

D = {д · ⟨γ\n · ⟨x 7→ a⟩⟩ | д · ⟨γ · ⟨x 7→ (▷,n, _, ⟨a⟩)⟩⟩ ∈ D, a , †}

d
?x []

D = {д · ⟨γ · ⟨x 7→ (▷,n, ∗)⟩⟩ | д · ⟨γ · ⟨x 7→ (◁,n, ⟨†⟩)⟩⟩ ∈ D}

d
!x ()

D = {д · ⟨γ · ⟨x 7→ (◁,n, ∗)⟩⟩ | д · ⟨γ · ⟨x 7→ (▷,n, _, ⟨†⟩)⟩⟩ ∈ D}

d
?x [x1,x2]

D = {д · ⟨γ · ⟨x1 7→ (▷,n,a1,a2)⟩⟩ | д · ⟨γ · ⟨x 7→ (◁,n, ⟨a1,a2⟩)⟩⟩ ∈ D}

d
!x (x1,x2)

D =

{
д · ⟨γ · ⟨x1 7→ (◁,n,N1,a1,N2,a2)⟩⟩

����
д · ⟨γ · ⟨x 7→ (▷,n,N , ⟨a1,a2⟩)⟩⟩ ∈ D,

Ni = {id(bi ) | (◁,m, ⟨b1,b2⟩) ∈ γ ,m ∈ N }

}

dxØyD = {д | д · ⟨⟨x 7→ a,y 7→ a′⟩⟩ ∈ D,a ◁▷ a′}

d
(l ∥l ′)

D =
{
д′ ·h′

��д ·h ∈ D, д′ ∈ d
l
{д}, and h′ ∈ d

l ′
{h}

}

dτD = D

Likewise, we define antiderivation reversing the reasoning above.

Definition 5.3 (Antiderivatives). For D a set of denotations, the antiderivative
∫
l
D of D w.r.t. an

action l is the set defined by:
∫
x []
D = {д · ⟨⟨x 7→ (◁,n, ∗)⟩⟩ | д ∈ D}

∫
x ()
D = {д · ⟨γ · ⟨x 7→ (▷,n, ∗)⟩⟩ | д · ⟨γ ⟩ ∈ D}

∫
x [y]

D = {д · ⟨γ ·δ · ⟨x 7→ (◁,n, ids(γ ),a, ids(δ ),b)⟩⟩ | д · ⟨γ · ⟨x 7→ b⟩,δ · ⟨y 7→ a⟩⟩ ∈ D}
∫
x (y)

D = {д · ⟨γ · ⟨x 7→ (▷,n,a,b)⟩⟩ | д · ⟨γ · ⟨x 7→ b,y 7→ a⟩⟩ ∈ D}
∫
x ◁ inl

D = {д · ⟨γ · ⟨x 7→ (◁,n, inl,a)⟩⟩ | д · ⟨γ · ⟨x 7→ a⟩⟩ ∈ D}∫
x ▷ inl

D = {д · ⟨γ · ⟨x 7→ (▷,n, id(γ ), inl,a)⟩⟩ | д · ⟨γ · ⟨x 7→ a⟩⟩ ∈ D}∫
x ◁ inr

D = {д · ⟨γ · ⟨x 7→ (◁,n, inr,b)⟩⟩ | д · ⟨γ · ⟨x 7→ b⟩⟩ ∈ D}∫
x ▷ inr

D = {д · ⟨γ · ⟨x 7→ (▷,n, id(γ ), inr,b)⟩⟩ | ⟨γ · ⟨x 7→ b⟩⟩ ∈ D}∫
?x [y]

D = {д · ⟨γ · ⟨x 7→ (◁,n, ⟨a⟩)⟩ | д · ⟨γ · ⟨x 7→ a⟩⟩⟩ ∈ D}
∫
!x (y)

D = {д · ⟨γ · ⟨x 7→ (▷,n, id(γ ), ⟨a⟩)⟩⟩ | д · ⟨γ · ⟨x 7→ a⟩⟩⟩ ∈ D}
∫
?x []

D = {д · ⟨γ · ⟨x 7→ (◁,n, ⟨†⟩)⟩⟩ | д · ⟨γ · ⟨x 7→ (▷,n, ∗)⟩⟩ ∈ D}
∫
!x ()

D = {д · ⟨γ · ⟨x 7→ (▷,n, id(γ ), ⟨†⟩)⟩⟩ | д · ⟨γ · ⟨x 7→ (◁,n, ∗)⟩⟩ ∈ D}
∫
?x [x1,x2]

D = {д · ⟨γ · ⟨x 7→ (◁,n, ⟨a1,a2⟩)⟩⟩ | д · ⟨γ · ⟨x1 7→ (▷,n,a1,a2)⟩⟩ ∈ D}
∫
!x (x1,x2)

D = {д · ⟨γ · ⟨x 7→ (▷,n, id(γ ), ⟨a1,a2⟩)⟩⟩ | д · ⟨γ · ⟨x1 7→ (◁,n,N1,a1,N2,a2)⟩⟩ ∈ D}
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∫
xØy

D =
{
д · ⟨⟨x 7→ a,y 7→ a⊥⟩⟩

��д ∈ D
}

∫
(l ∥l ′)

D =
{
д ·h

���д′ ·h′ ∈ D, д ∈
∫
l
{д′}, and h ∈

∫
l ′
{h′}

}

∫
τ
D = D

Interpretation of typed processes. We use sets of denotations for hyperenvironments (D) as de-
notations for well-typed processes. We define the denotational semantics of a well-typed process P
as the subset JPK of ⋃P⊢G⦃G⦄ given below by recursion on the structure of P .

Denotations for links are all pairs of dual name denotations.

JxØyK = {⟨⟨x 7→ a,y 7→ a′⟩⟩ | a ◁▷ a′}

Denotations for restriction are obtained by removing the restricted names and requiring that their
observations are dual of each other.

J(νxy)PK = {д · ⟨γ ·δ⟩ | д · ⟨γ · ⟨x 7→ a⟩,δ · ⟨y 7→ a′⟩⟩ ∈ JPK and a ◁▷ a′}

Denotations for parallel composition reflect the denotation domain construction; they are given by
cartesian product (restricted to pairs with disjoint identifiers since we assume well-formedness)
and its unit, respectively.

JP | QK = JPK × JQK J0 ⊢ ∅K = {⟨⟩}

Denotations for choice are the antiderivatives of denotations for each branch.

Jx ▷ {inl : P ; inr :Q}K =
∫
x ▷ inl

JPK +
∫
x ▷ inr

JQK

All remaining terms are action prefixes. For those, denotations are given by the associated anti-
derivatives of the denotation of the continuationÐwith some care for the cases of ?x[], ?x[x1,x2],
!x(x ′), which have additional operations for managing server dependencies. For conciseness, let π
range over prefixes except ?x[], ?x[x1,x2], !x(x

′) in the following definitions.

Jπ .PK =
∫
π
JPK J?x[].PK =

∫
?x []

Jx().PK J?x[x1,x2].PK =
∫
?x [x1,x2]

Jx1(x2).PK

Servers are the only prefix with more than one axiom yielding three cases.

J!x(x ′).PK =
∫
!x (x ′)

JPK +
∫
!x ()

J?z1[]. · · · ?zn[].x[].0K+
+

∫
!x (x1,x2)

J?z1[z1σ1, z1σ2]. . . . ?zn[znσ1, znσ2].x1[x2].(!x1(x ′σ1).P1 | !x2(x
′σ2).P2)K

for {x ′
, z1, . . . , zn} = fn(P) and any P1 and P2 such that P1 = Pσ1, P2 = Pσ2, and fn(P1) ∩ fn(P2) = ∅.

Antiderivation also serves as a sanity check for the rule giving the denotations of links:

JxØyK =
∫
xØy

J0K.

Definition 5.4 (Denotational equivalence). Denotational equivalence ≏ is the relation on well-
typed processes s.t. P ≏ Q whenever JPK = JQK.

Denotational equivalence implies type equivalence.

Proposition 5.5. If P ≏ Q , then P ⊢ G iff Q ⊢ G.

Discussion. In general, our antiderivatives respect Fubini’s theorem for double antiderivation
[Fubini 1907]. This formalises the intuition that the order of independent actions is not discriminated.

Theorem 5.6 (Order-invariance). For lx , ly , and P s.t. x ∗P y
∫
lx

∫
ly

JPK =
∫
ly

∫
lx

JPK =
∫
(lx ∥ly )

JPK.
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Example 5.7. Consider the processes described in Example 2.1. The type of bits is 1 ⊕ 1. The
terms introduced for bit transmission have the following denotations, parametric in those of P and
Q (we omit types, since they do not matter for our argument here).

Jx[0].PK =
∫
x [y]

∫
y ◁ inl

∫
y[]

JPK = {д · ⟨γ · ⟨x 7→ (◁, _, (◁, _, inl, (◁, _, ∗)),a)⟩⟩ | д · ⟨γ · ⟨x 7→ a⟩⟩ ∈ JPK}
Jx[1].PK =

∫
x [y]

∫
y ◁ inr

∫
y[]

JPK = {д · ⟨γ · ⟨x 7→ (◁, _, (◁, _, inr, (◁, _, ∗),a))⟩⟩ | д · ⟨γ · ⟨x 7→ a⟩⟩ ∈ JPK}
Jx ▷ {0 7→ P ; 1 7→Q}K =

∫
x ◁ inl

JPK +
∫
x ◁ inr

JQK

Below is the semantics of a client sending 0 and 1:

q
Client01xz

y
=

{ 〈〈
z 7→ (◁,n,b, (◁, ∗)), x 7→ (◁, _, ⟨(◁, _, (◁, _, inl, (◁, ∗)),
(◁, _, (◁, _, inr, (◁, ∗)), (▷, _, {n},b, (▷, ∗))))⟩)

〉〉 ����b ∈ {inl, inr}

}

Observe how the order of transmission of each bit is preserved in the structure of the denotation
for x , that the reply b appears in the denotations of both x and z, and that the semantics includes
all possible replies the client may receive. As a consequence, the semantics captures the fact that
the client echoes the server reply, whatever that may be.

Remark 5.8. Consider P1 = ?x[x1,x2].?x1[].?x2[x
′].Q and P2 = ?x[x1,x2].?x1[x

′].?x2[].Q . Our
behavioural equivalences (bisimilarity, barbed congruence, and denotational equivalence) discrim-
inate these two processes, because we can observe how each copy (x1 and x2) is used. We could have
a coarser behavioural theory where copies of the same server are not distinguished, by adopting
the following transition rules that non-deterministically assign the names x1 and x2 to the copies.

{x1,x2} = {y1,y2}

?x[x1,x2].P
?x [y1,y2]
−−−−−−−→ y1(y2).P

?x[x1,x2].P
l

−−→ y1(y2).P
′ {x1,x2} = {y1,y2} x ∗?x [x1,x2].P fn(l)

?x[x1,x2].P
(?x [y1,y2] ∥l )
−−−−−−−−−−→ y1(y2).P

′

Likewise, it suffices to adopt trees with unordered branching in non-linear observability predic-
ates and interpretations of exponentials in the denotational semanticsÐjust regard ⟨a1,a2⟩ as an
unordered pair.

Remark 5.9. Atkey [2017] proposed a denotational semantics for Classical Processes (CP) [Wadler
2014] that is coarser than ours when it comes to observing client requests. We give a representative
example. Consider the processes P1 = ?x[x ′].Q and P2 = ?x[x1,x2].?x1[].?x2[x

′].Q . The difference
is that P1 uses a single instance of the server at x , whereas P2 first duplicates the server at x
and then uses only one of the two copies (x2), discarding the other copy. In [Atkey 2017], P1 and
P2 are observationally and denotationally equivalent. This makes sense because weakening and
contraction do not have corresponding terms in CP (so P1 and P2 would essentially be syntactically
equivalent). Differently, our explicit terms and their semantics clearly show that P2 makes the
context (the server) łwork morež in HCP, which motivates the distinction between P1 and P2. If
we wished for the same coarse equivalence as in [Atkey 2017], we could exploit delayed actions
for cancelling out unnecessary duplications whenever the continuation would dispose of one of
the copies, as in the following rules. These would align bisimilarity and barbed congruence with
Atkey’s interpretation of exponentials (at the cost of a more complex lts).

P
?y[]
−−−→ P ′ y ∈ {x1,x2}

?x[x1,x2].P
τ
−−→ P ′

c1
P ̸

?yi []
−−−→ {y1,y2} = {x1,x2}

?x[x1,x2].P
?x [y1,y2]
−−−−−−−→ y1(y2).P

c2
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6 FULL ABSTRACTION

Barbed congruence implies denotational equivalence: given the element д of JPK, there is a family of
contexts C with the property that д ∈ JQK whenever C[P] and C[Q] satisfy the same observability
predicates for every C ∈ C.

Theorem 6.1. ≊ ⊆ ≏.

Recall from Section 5 that taking derivatives of denotations with respect to an observable yields
the denotations that can follow that actions. This interpretation suggests to define a labelled
transition system on process denotations where transitions correspond to derivation.

Definition 6.2. The lts of denotations has as state-space the image of J−K and as transition relation

the relation D
l

−−→ d
l
D.

There is an operational correspondence between the lts of processes and that of denotations.

Lemma 6.3. Let P be well-typed. Then:

• If P
l

−−→ P ′, then JPK l
−−→ JP ′K.

• If JPK l
−−→ JQK, then P

l
==⇒ P ′ for some P ′ ≏ Q .

As a consequence, a process and its denotation are bisimilar and hence denotationally equivalent
processes are bisimilar.

Theorem 6.4. ≏ ⊆ ≈.

By Theorems 4.14, 6.1 and 6.4, all three observational equivalences agree on well-typed programs.

Theorem 6.5 (Full abstraction). For well-typed processes, ≈ = ≊ = ≏.

7 RELATED WORK

HCP stands on the shoulders of the prior work by Wadler [2014] on Classical Processes (CP), which
built on the works by Caires and Pfenning [2010], Abramsky [1994], and Bellin and Scott [1994] on
łProofs as Processesž. We have already discussed the distinctive points of HCP in the Introduction.

Pérez et al. [2014] introduced typed context bisimilarity as an observational equivalence for
processes typed with intuitionistic linear logic [Caires and Pfenning 2010]. The idea is to name one
of the free channels of a process as łthež representative channel and the others as łrequirementsž.
Then, typed context bisimilarity equates two processes if they perform the same actions on the
representative channel once all their requirements are provided (using contexts). By contrast, our
bisimilarity is standard: it does not require types or any distinction of the roles of channels, and it
does not require reasoning on contexts. Also, we validated it with full abstraction.
Atkey [2017] explored the first notion of observation for CP. To cope with the lack of an lts,

his contexts for contextual equivalence are not processes, but rather special configuration terms
designed to make communication reductions visible. Our approach is simpler, because we can just
look at transitions with observable actions using our lts. Studying the behavioural theory of HCP
does not require configurations, and we showed how a fully-abstract denotational semantics can
be formulated based on delayed actions.
In the original presentation of delayed actions by Merro and Sangiorgi [2004], normal (non-

delayed) action prefixes are syntactically distinguished from delayed action prefixes (using the
prefixing symbol ł:ž instead of ł.ž). The same distinction could be introduced to HCP, adding extra
machinery on top of our proof theory to preserve full abstraction. Namely, we would need to
support enforcing sequentiality between independent channels at the same process. This could be
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done by extending HCP with safe circular dependencies, e.g., following the studies by [Carbone
et al. 2017] and [Dardha and Gay 2018]. We chose our formulation for economy of the calculus.

In connection to our delayed actions, Bellin and Scott [1994] formulated syntactic permutations
of independent actions to match permutations of rule applications in linear logic. Later, DeYoung
et al. [2012] proposed to leverage commuting conversions in intuitionistic linear logic by assigning
asynchronous process terms to proofs, but this makes terms even more compoundÐtheir term for
output (corresponding to rule ⊗), in our syntax, is x[y] | P | Q , denoting that continuations may
perform some actions before x[y] is executed.

8 CONCLUSIONS AND FUTURE WORK

The keystone of process algebras is the parallel operator P | Q , but up to this work the connection
between parallel and linear logic was indirectÐno proof-theoretical inference rule was a straight
match for parallel composition, but rather included parallel as part of more complex terms. The
consequence for the agenda of łProofs as Processesž [Abramsky 1994]: either accept that processes
have sound structures and equivalences that cannot be captured by the proof theory, as done by
Caires and Pfenning [2010], or give up on parallel as an independent operator, as done by Wadler
[2014]. HCP cuts the head off the snake by using hyperenvironments to represent parallelism in
sequents, internalised by the connective ⊗. We can now have our cake and eat it too: the semantics
of well-typed processes is completely captured by a proof theory rooted in linear logic, and P | Q

is an operator in its own right respecting the expected equational laws. As a first step in taking
advantage of this unification, we linked the ideas developed by Atkey [2017] for a denotational
semantics for Classical Processes (CP) [Wadler 2014] to the standard theory of bisimilarity.

The design of HCP focused on the basic features of CP. In the future, we intend to study principled
extensions that allow for capturing more behaviours.

Lindley and Morris [2016] extended CP with recursive types and their accompanying reductions.
Adding the corresponding transitions to our lts seems straightforward, and our approach with
derivatives to the definition of denotations might offer insight in how the denotational semantics
of HCP can be extended to capture recursion. Similar considerations apply for non-determinism,
introduced to intuitionistic linear logic by Caires and Pérez [2017].
Another interesting feature would be process mobility, i.e. the ability to communicate code.

Toninho et al. [2013] obtained this for intuitionistic linear logic using a monadic integration with a
functional programming model. Montesi [2018] extended CP with higher-order communications
directly, by using environments as types for process variables. Thus, the obvious starting point
to extend HCP to process mobility would be to type process variables with hyperenvironments.
Historically, constructing tractable and characteristic behavioural equivalences for higher-order
process calculi has been nontrivial in general [Sangiorgi et al. 2011]. The lts of HCP (extended to
higher-order communications) might be helpful in this regard, because we can adapt bisimilarity
notions from studies on session types [Kouzapas et al. 2017].
One of the most important extensions of session types is Multiparty Session Types, by Honda

et al. [2016]. Carbone et al. [2017] showed that multiparty session types can be captured in CP
by generalising the notion of duality to coherence, which checks for the compatibility of multiple
types. This yields a generalised cut rule that can compose many processes instead of two. In HCP,
this would correspond to extending rule h-cut to the cutting of multiple environments.
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