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Process calculi based on logic, such as πDILL and CP, provide a foundation for deadlock-free con-

current programming. However, in previous work, there is a mismatch between the rules for con-

structing proofs and the term constructors of the π-calculus: the fundamental operator for parallel

composition does not correspond to any rule of linear logic.

Kokke et al. [12] introduced Hypersequent Classical Processes (HCP), which addresses this mis-

match using hypersequents (collections of sequents) to register parallelism in the typing judgements.

However, the step from CP to HCP is a big one. As of yet, HCP does not have reduction semantics,

and the addition of delayed actions means that CP processes interpreted as HCP processes do not

behave as they would in CP.

We introduce HCP−, a variant of HCP with reduction semantics and without delayed actions.

We prove progress, preservation, and termination, and show that HCP− supports the same commu-

nication protocols as CP.

1 Introduction

Classical Processes (CP) [19] is a process calculus inspired by the correspondence between the session-

typed π-calculus and linear logic [5], where processes correspond to proofs, session types (communica-

tion protocols) to propositions, and communication to cut elimination. This correspondence allows for

exchanging methods between the two fields. For example, the proof theory of linear logic can be used to

guarantee progress for processes [5, 19].

The main attraction of CP is that its semantics are prescribed by the cut elimination procedure of

Classical Linear Logic (CLL). This permits us to reuse the metatheory of linear logic “as is” to reason

about the behaviour of processes. However, there is a mismatch between the structure of the proof terms

of CLL and the term constructs of the standard π-calculus [16, 17]. For instance, the term for output

of a linear name is x[y].(P | Q), which is read “send y over x and proceed as P in parallel to Q”. Note

that this is a single term constructor, which takes all four arguments at the same time. This is caused by

directly adopting the (⊗)-rule from CLL as the process calculus construct for sending: the (⊗)-rule has

two premises (corresponding to P and Q in the output term), and checks that they share no resources (in

the output term, y can be used only by P, and x can be used only by Q).

There is no independent parallel term (P | Q) in the grammar of CP terms. Instead, parallel compos-

ition shows up in any term which corresponds to a typing rule which splits the context. Even if we were

to add an independent parallel composition via the MIX-rule, as suggested in the original presentation

of CP [19], there would be no way to allow the composed process P and Q to communicate as in the

standard π-calculus, as there is no independent name restriction either! Instead, synchronisation is gov-

erned by the “cut” operator (νx)(P | Q), which composes P and Q, enabling them to communicate along

x. Worse, if we naively add an independent parallel composition as well as a name restriction, using the
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rules shown below, we lose cut elimination, and therefore deadlock-freedom!

P ⊢ Γ Q ⊢ ∆
MIX

P | Q ⊢ Γ,∆

P ⊢ Γ,x : A,y : A⊥

“CUT”
(νxy)P ⊢ Γ

This syntactic mismatch has an effect on the semantics as well. For instance, the β -reduction for

output and input in CP is (νx)(x[y].(P | Q) | x(y).R) =⇒ (νy)(P | (νx)(Q | R)). Here, the parallel com-

position (P | Q) is of no relevance to this communication, yet the rule needs to inspect it to be able to

nest the name restrictions appropriately in the resulting term.

Kokke et al. [12] introduced Hypersequent Classical Processes (HCP), which addresses this mis-

match. The key insight is to register parallelism in the typing judgements using hypersequents [2], a

technique from logic which generalises judgements from one sequent to many. This allows us to take

apart the term constructs used in Classical Processes (CP) to more closely match those of the standard

π-calculus. HCP has labelled transition semantics with delayed actions [15] and a full abstraction result:

bisimilarity, denotational equivalence, and barbed congruence coincide.

However, the step from CP to HCP is a big one. As of yet, HCP does not have reduction semantics,

and the addition of delayed actions means that CP processes interpreted as HCP processes do not behave

as they would in CP.

In this paper, we address these issues by introducing HCP−, a variant of HCP with reduction se-

mantics and without delayed actions. We proceed as follows. We start by introducing CP (Section 2).

Then, we introduce our variant of HCP− and prove it enjoys subject reduction and progress (Section 3).

We prove that every CP process is an HCP− process, relate processes in HCP− back to CP, and prove

that HCP− supports the same communication protocols as CP (Section 4). Finally, we discuss related

work (Section 5).

2 Classical Processes

In this section, we introduce CP. In order to keep the discussion of HCP− in Section 3 simple, we restrict

ourselves to the multiplicative-additive subset of CP. We foresee no problems in extending the proofs in

Section 3 to cover the remaining features of CP (polymophism and the exponentials).

2.1 Terms

The term language of CP is a variant of the π-calculus. The variables x, y, and z range over channel

names. The construct x↔y links two channels [4, 18], forwarding messages received on x to y and vice

versa. The construct (νx)(P | Q) creates a new channel x, and composes two processes, P and Q, which

communicate on x, in parallel. Therefore, in (νx)(P | Q) the name x is bound in both P and Q. In x(y).P
and x[y].(P | Q), round brackets denote input, square brackets denote output. CP uses bound output [18],

meaning that both input and output bind a new name. In x(y).P the new name y is bound in P. In

x[y].(P | Q), the new name y is only bound in P, while x is only bound in Q.

Definition 2.1 (Terms). Process terms are given by the following grammar:

P,Q,R::= x↔y link | (νx)(P | Q) parallel composition, “cut”

| x[y].(P | Q) output | x(y).P input

| x[].0 halt | x().P wait

| x⊳inl.P select left choice | x⊳inr.P select right choice

| x⊲{inl : P;inr : Q} offer binary choice | x⊲{} offer nullary choice



92 Taking Linear Logic Apart

Terms in CP are identified up to structural congruence, which states that links are symmetric, and parallel

compositions (νx)(P | Q) are associative and commutative.

Definition 2.2 (Structural congruence). The structural congruence ≡ is the congruence closure over

terms which satisfies the following additional axioms:

(↔-sym) x↔y ≡ y↔x

(ν-comm) (νx)(P | Q) ≡ (νx)(Q | P)
(ν-assoc) (νx)(P | (νy)(Q | R)) ≡ (νy)((νx)(P | Q) | R) if x 6∈ R and y 6∈ P

The reduction semantics presented here are a variant of those presented by Lindley and Morris [13], who

showed that reduction in CP can be decomposed in two phases: one in which all β-reduction happens,

and one in which an arbitrary action, blocked on an external communication, is moved to the top of

the term using commuting conversions. We choose to stop after the first phase, and do away with the

commuting conversions.

Reductions relate processes with their reduced forms e.g., a reduction P =⇒ Q denotes that the

process P can reduce to the process Q in a single step.

Definition 2.3 (Reduction). Reductions are described by the smallest relation =⇒ on process terms

closed under rules below.

(↔) (νx)(w↔x | P) =⇒ P{w/x}
(β⊗O) (νx)(x[y].(P | Q) | x(y).R) =⇒ (νy)(P | (νx)(Q | R))
(β1⊥) (νx)(x[].0 | x().P) =⇒ P

(β⊕N1) (νx)(x⊳inl.P | x⊲{inl : Q;inr : R}) =⇒ (νx)(P | Q)
(β⊕N2) (νx)(x⊳inr.P | x⊲{inl : Q;inr : R}) =⇒ (νx)(P | R)

P =⇒ P′
(γν)

(νx)(P | Q) =⇒ (νx)(P′ | Q)

P ≡ Q Q =⇒ Q′ Q′ ≡ P′

(γ≡)
P =⇒ P′

Relations =⇒+ and =⇒⋆ are the transitive, and the reflexive, transitive closures of =⇒, respectively.

Note that we do not need to add a side condition to (β⊗O) to restrict its usage to the case where y is

bound in P and x is bound in Q, as this is required by the definition of the send construct x[y].(P | Q).

2.2 Types

Channels in CP are typed using a session type system which corresponds to classical linear logic.

Definition 2.4 (Types).

A,B,C::= A⊗B pair of independent processes | 1 unit for ⊗
| A OB pair of interdependent processes | ⊥ unit for O
| A⊕B internal choice | 0 unit for ⊕
| A NB external choice | ⊤ unit for N

A channel of type A⊗B represents a pair of channels, which communicate with two independent

processes—that is to say, two processes who share no channels. A process acting on a channel of type

A⊗B will send one endpoint of a fresh channel, and then split into a pair of independent processes. One

of these processes will be responsible for an interaction of type A over the fresh channel, while the other

process continues to interact as B.
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A channel of type AOB represents a pair of interdependent channels, which are used within a single

process. A process acting on a channel of type A O B will receive a channel to act on, and communicate

on its channels in whatever order it pleases. This means that the usage of one channel can depend on that

of another—e.g., the interaction of type B could depend on the result of the interaction of type A, or vise

versa, and if A and B are complex types, their interactions could likewise interweave in complex ways.

A process acting on a channel of type A⊕B either sends the value inl to select an interaction of type

A or the value inr to select one of type B. A process acting on a channel of type A N B receives such a

value, and then offers an interaction of either type A or B, correspondingly.

Duality plays a crucial role in both linear logic and session types. In CP, the two endpoints of a

channel are assigned dual types. This ensures that, for instance, whenever a process sends across a

channel, the process on the other end of that channel is waiting to receive. Each type A has a dual,

written A⊥. Duality is an involutive function i.e., (A⊥)⊥ = A.

Definition 2.5 (Duality).

(A⊗B)⊥ = A⊥ OB⊥ 1⊥ = ⊥ (A OB)⊥ = A⊥⊗B⊥ ⊥⊥ = 1

(A⊕B)⊥ = A⊥ NB⊥ 0⊥ = ⊤ (A NB)⊥ = A⊥⊕B⊥ ⊤⊥ = 0

An environment associates channels with types. Names in environments must be unique, and two envir-

onments Γ and ∆ can only be combined as Γ,∆ if fv(Γ)∩ fv(∆) =∅.

Definition 2.6 (Environments). Γ,∆,Θ ::= · | Γ,x : A

A typing judgement associates a process with collections of typed channels.

Definition 2.7 (Typing judgements). A typing judgement P ⊢ x1 : A1, . . . ,xn : An denotes that the process

P communicates along channels x1, . . . , xn following protocols A1, . . . , An. Typing judgements are

derived using rules below.

Structural rules

AX
x↔y ⊢ x : A,y : A⊥

P ⊢ Γ,x : A Q ⊢ ∆,x : A⊥

CUT
(νx)(P | Q) ⊢ Γ,∆

Logical rules

P ⊢ Γ,y : A Q ⊢ ∆,x : B
(⊗)

x[y].(P | Q) ⊢ Γ,∆,x : A⊗B

P ⊢ Γ,y : A,x : B
(O)

x(y).P ⊢ Γ,x : A OB

P ⊢ Γ (⊥)
x().P ⊢ Γ,x : ⊥

(1)
x[].0 ⊢ x : 1

P ⊢ Γ,x : A
(⊕1)

x⊳inl.P ⊢ Γ,x : A⊕B

P ⊢ Γ,x : B
(⊕2)

x⊳inr.P ⊢ Γ,x : A⊕B

P ⊢ Γ,x : A Q ⊢ Γ,x : B
(N)

x⊲{inl : P;inr : Q} ⊢ Γ,x : A NB

(no rule for 0) (⊤)
x⊲{} ⊢ Γ,x : ⊤
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2.3 Metatheory

CP enjoys subject reduction, termination, and progress [13, 19].

Lemma 2.8 (Preservation for ≡). If P ≡ Q, then P ⊢ Γ iff Q ⊢ Γ.

Proof. By induction on the derivation of P ≡ Q.

Theorem 2.9 (Preservation). If P ⊢ Γ and P =⇒ Q, then Q ⊢ Γ.

Proof. By induction on the derivation of P =⇒ Q.

Definition 2.10 (Actions). A process P acts on x whenever x is free in the outermost term constructor of

P, e.g., x[y].(P | Q) acts on x but not on y, and x↔y acts on both x and y. A process P is an action if it

acts on some channel x.

Definition 2.11 (Canonical forms). A process P is in canonical form if

P ≡ (νx1)(P1 | . . . (νxn)(Pn | Pn+1) . . .),

such that: no process Pi is a cut; no process Pi is a link acting on a bound channel xi; and no two

processes Pi and Pj are acting on the same bound channel xi.

Corollary 2.12. If a process P is in canonical form, then it is blocked on an external communication.

Proof. We have

P ≡ (νx1)(P1 | . . . (νxn)(Pn | Pn+1) . . .)

such that no Pi is a cut or a link, and no two processes Pi and Pj are acting on the same bound channel.

The prefix of cuts introduces n channels, and n+1 processes. Therefore, at least one of the processes Pi

must be acting on a free channel, i.e., blocked on an external communication.

Theorem 2.13 (Progress). If P ⊢ Γ, then either P is in canonical form, or there exists a process Q such

that P =⇒ Q.

Proof. We consider the maximum prefix of cuts of P such that P ≡ (νx1)(P1 | . . .(νxn)(Pn | Pn+1) . . .)
and no Pi is a cut. If any process Pi is a link, we reduce by (↔). If any two processes Pi and Pj are

acting on the same channel xi, we rewrite by ≡ and reduce by the appropriate β -rule. Otherwise, P is in

canonical form.

Theorem 2.14 (Termination). If P ⊢ Γ, then there are no infinite =⇒-reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However, each of these cuts is

smaller, measured in the size of the cut formula. Furthermore, each instance of the structural congruence

preserves the size of the cut. Therefore, there cannot be an infinite =⇒-reduction sequence.
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3 Hypersequent Classical Processes

In this section, we introduce our variant of Hypersequent Classical Processes (HCP−), itself a variant

of CP which registers parallelism in the typing judgements using hypersequents, allowing us to take

apart the monolithic term constructors of CP (e.g., x[y].(P | Q)) into the corresponding π-calculus term

constructs.

The crucial difference between HCP− as described here and HCP as described by Kokke et al. [12] is

in the absence of delayed actions. However, removing delayed actions introduces self-locking processes,

which we rule out using an extra restriction in the type system (see Section 3.2). Furthermore, we follow

CP in using the same name for both endpoints of a channel, writing, e.g., (νx)(x[].0 | x().P) as opposed

to (νxy)(x[].0 | y().P).

3.1 Terms

The term language of HCP− is a variant of CP where the term constructs have been taken apart into

primitives which more closely resemble the π-calculus primitives.

Definition 3.1 (Terms).

P,Q,R::= x↔y link | 0 terminated process

| (νx)P name restriction, “cut” | (P | Q) parallel composition, “mix”

| x[y].P output | x(y).P input

| x[].P halt | x().P wait

| x⊳inl.P select left choice | x⊳inr.P select right choice

| x⊲{inl : P;inr : Q} offer binary choice | x⊲{} offer nullary choice

A pleasant effect of our updated syntax is that it makes our structural congruence much more standard: it

has associativity, commutativity, and a unit for parallel composition, commutativity of name restrictions,

and scope extrusion.

Definition 3.2 (Structural congruence). The structural congruence ≡ is the congruence closure over

terms which satisfies the following additional axioms:

(↔-sym) x↔y ≡ y↔x (halt) P | 0 ≡ P

(|-comm) P | Q ≡ Q | P (|-assoc) P | (Q | R) ≡ (P | Q) | R

(ν-comm) (νx)(νy)P ≡ (νy)(νx)P (scope-ext) (νx)(P | Q) ≡ P | (νx)Q if x 6∈ P

There are two changes to the reduction system. First, since x[y].P and x[].P are now terms in their

own right, the (β⊗O) and (β1⊥) rules are simpler. Second, since we decomposed (νx)(P | Q) into an

independent name restriction and parallel composition, the relevant γ-rule all decompose as well.

Definition 3.3 (Reduction). Reductions are described by the smallest relation =⇒ on process terms

closed under the rules below:

(↔) (νx)(w↔x | P) =⇒ P{w/x}
(β⊗O) (νx)(x[y].P | x(y).R) =⇒ (νx)(νy)(P | R)
(β1⊥) (νx)(x[].P | x().Q) =⇒ P | Q

(β⊕N1) (νx)(x⊳inl.P | x⊲{inl : Q;inr : R}) =⇒ (νx)(P | Q)
(β⊕N2) (νx)(x⊳inr.P | x⊲{inl : Q;inr : R}) =⇒ (νx)(P | R)
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P =⇒ P′
(γν)

(νx)P =⇒ (νx)P′
P =⇒ P′

(γ |)
P | Q =⇒ P′ | Q

P ≡ Q Q =⇒ Q′ Q′ ≡ P′

(γ≡)
P =⇒ P′

Relations =⇒+ and =⇒⋆ are the transitive, and the reflexive, transitive closures of =⇒, respectively.

3.2 Types

We use the same definitions for types and environments for HCP− as we used for CP. However, we

introduce a new layer on top of sequents: hypersequents. As CP is a one-sided logic, and it uses the

left-hand side of the turnstile to write the process, the traditional hypersequent notation can look con-

fusing: “P ⊢ Γ1 | . . . | ⊢ Γn” seems to claim that P acts according to protocol Γ1. What are all the

other Γs doing there? Are they typing empty processes? Therefore, we opt to leave out the repeated

turnstile, and instead work with the notion of “hyper-environments”. However, we will still refer to our

system as a hypersequent system. A hyper-environment is either empty, or consist of a series of typing

environments, separated by vertical bars. A hyper-environment Γ1 | . . . | Γn types a series of n entangled,

but independent processes.

Definition 3.4 (Hyper-environments). G ,H ::=∅ | G | Γ

A hyper-environment is a multiset of environments. While names within environments must be unique,

names may be shared between multiple environments in a hyper-environment. We write G | H to com-

bine two hyper-environments.

Typing judgements in HCP− associate processes with hyper-environments. H-MIX composes two

processes in parallel, but remembers that they are independent in the sequent. H-CUT and (⊗) take

as their premise a process which consists of at least two independent processes, and connects them,

eliminating the vertical bar. Each logical rule has the side condition that x 6∈ G , which can be read

as “you cannot act on one end-point of x if you are also holding its other end-point”. This prevents

self-locking processes, e.g., x().x[].0.

Definition 3.5 (Typing judgements). A typing judgement P ⊢ Γ1 | . . . | Γn denotes that the process P

consists of n independent, but potentially entangled processes, each of which communicates according

to its own protocol Γi. Typing judgements can be constructed using the inference rules below.

Structural rules

AX
x↔y ⊢ x : A,y : A⊥

P ⊢ G | Γ,x : A | ∆,x : A⊥

CUT
(νx)P ⊢ G | Γ,∆

P ⊢ G Q ⊢ H
H-MIX

P | Q ⊢ G | H
H-MIX0

0 ⊢ ∅

Logical rules

P ⊢ G | Γ,y : A | ∆,x : B
⊗

x[y].P ⊢ G | Γ,∆,x : A⊗B

P ⊢ G | Γ,y : A,x : B
(O)

x(y).P ⊢ G | Γ,x : A OB

P ⊢ G
1

x[].P ⊢ G | x : 1

P ⊢ G | Γ
(⊥)

x().P ⊢ G | Γ,x : ⊥

P ⊢ G | Γ,x : A
(⊕1)

x⊳inl.P ⊢ G | Γ,x : A⊕B

P ⊢ G | Γ,x : B
(⊕2)

x⊳inr.P ⊢ G | Γ,x : A⊕B

P ⊢ Γ,x : A Q ⊢ Γ,x : B
(N)

x⊲{inl : P;inr : Q} ⊢ Γ,x : A NB
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(no rule for 0) (⊤)
x⊲{} ⊢ Γ,x : ⊤

Furthermore, each logical rule has the side condition that x 6∈ G .

Note that the rules (N) and (⊤) disallow hyperenvironments. Allowing hyperenvironments in (N)
would allow us to derive processes which are stuck. For instance, the following process would be well-

typed, but is stuck—even in the presence of delayed actions:

(νx1N1)(νy⊥⊕⊥)









x⊲

{

inl : (y⊳inl.y().z[].0 | x[].0);
inr : (y⊳inr.y().z[].0 | x[].0)

}

|

y⊲

{

inl : (x⊳inl.x().w[].0 | y[].0);
inr : (x⊳inr.x().w[].0 | y[].0)

}









⊢ z : 1 | w : 1

Allowing hypersequents in (⊤) would lead to problems with Lemma 4.7. Intuitively, if we allowed the

derivation x⊲{} ⊢ G | Γ,x : ⊤, we would claim that x⊲{} “consistst of n independent, but potentially

entangled processes”, which is clearly false.

3.3 Metatheory

HCP− enjoys subject reduction, termination, and progress.

Lemma 3.6 (Preservation for ≡). If P ≡ Q, then P ⊢ G iff Q ⊢ G .

Proof. By induction on the derivation of P ≡ Q.

Theorem 3.7 (Preservation). If P ⊢ G and P =⇒ Q, then Q ⊢ G .

Proof. By induction on the derivation of P =⇒ Q.

Definition 3.8 (Actions). A process P acts on x whenever x is free in the outermost term constructor of

P, e.g., x[y].(P | Q) acts on x but not on y, and x↔y acts on both x and y. A process P is an action if it

acts on some channel x.

Definition 3.9 (Canonical forms). A process P is in canonical form if

P ≡ (νx1) . . . (νxn)(P1 | · · · | Pn+m+1),

such that: no process Pi is a cut or a mix; no process Pi is a link acting on a bound channel xi; and no

two processes Pi and Pj are acting on the same bound channel xi.

Note that we have added the restriction “acting on a bound channel” to the case for links. This was

not necessary for CP, as all links in CP act on at least one bound channel. Consequently, processes such

as x↔y and (x↔y | z↔w) are considered to be in canonical form. This is a generalisation of CP, where

x↔y is considered to be in canonical form. If this is objectionable, the reduction system can be extended

with identity expansion, expanding, e.g., the process x⊥↔y to x().y[].0.

Corollary 3.10. If a process P is in canonical form, then it is blocked on an external communication.

Proof. We have

P ≡ (νx1) . . . (νxn)(P1 | . . . | Pn+m+1),

such that no Pi is a cut or a link acting on a bound channel, and no two processes Pi and Pj are acting

on the same bound channel. The prefix of cuts and mixes introduces n channels. Each application of cut

requires an application of mix, so the prefix introduces n+m+1 processes. Therefore, at least m+1 of

the processes Pi must be acting on a free channel, i.e., blocked on an external communication.
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Theorem 3.11 (Progress). If P ⊢ Γ, then either P is in canonical form, or there exists a process Q such

that P =⇒ Q.

Proof. We consider the maximum prefix of cuts and mixes of P such that

P ≡ (νx1) . . . (νxn)(P1 | . . . | Pn+m+1),

and no Pi is a cut. If any process Pi is a link, we reduce by (↔). If any two processes Pi and Pj are

acting on the same channel xi, we rewrite by ≡ and reduce by the appropriate β -rule. Otherwise, P is in

canonical form.

Theorem 3.12 (Termination). If P ⊢ G , then there are no infinite =⇒-reduction sequences.

Proof. As Theorem 2.14.

4 Relation between CP and HCP−

In this section, we discuss the relationship between CP and HCP−. We prove two important theorems:

every CP process is an HCP− process; and HCP− supports the same protocols as CP. We define a

translation from terms in CP to terms in HCP− which breaks down the term constructs in CP into their

more atomic constructs in HCP−.

Definition 4.1.

Jx↔yK := x↔y J(νx)(P | Q)K := (νx)(JPK | JQK)
Jx[y].(P | Q)K := x[y].(JPK | JQK) Jx(y).PK := x(y).JPK
Jx[].0K := x[].0 Jx().PK := x().JPK
Jx⊳inl.PK := x⊳inl.JPK Jx⊳inr.PK := x⊳inr.JPK
Jx⊲{inl : P;inr : Q}K := x⊲{inl : JPK;inr : JQK} Jx⊲{}K := x⊲{}

We use this relation in the first proof, and its analogue for derivations in the second.

4.1 Every CP process is an HCP− process

First, we prove that each CP process can be translated by this trivial translation to an HCP− process, and

that this translation respects structural congruence and reduction. Reductions from CP can be trivially

translated to reductions in HCP−.

Theorem 4.2. If P ⊢ Γ in CP, then JPK ⊢ Γ in HCP−.

Proof. By induction on the derivation of P ⊢ Γ. We show the interesting cases:

• Case CUT. We rewrite as follows:

P ⊢ Γ,x : A Q ⊢ ∆,x : A⊥

CUT
(νx)(P | Q) ⊢ Γ,∆

⇒

JPK ⊢ Γ,x : A JQK ⊢ ∆,x : A⊥

H-MIX
JPK | JQK ⊢ Γ,x : A | ∆,x : A⊥

H-CUT
(νx)(JPK | JQK) ⊢ Γ,∆

• Case (⊗). We rewrite as follows:

P ⊢ Γ,y : A Q ⊢ ∆,x : B
⊗

x[y].(P | Q) ⊢ Γ,∆,x : A⊗B
⇒

JPK ⊢ Γ,y : A JQK ⊢ ∆,x : B
H-MIX

JPK | JQK ⊢ Γ,y : A | ∆,x : B
⊗

x[y].(JPK | JQK) ⊢ Γ,∆,x : A⊗B



W. Kokke, F. Montesi, and M. Peressotti 99

• Case (1). We rewrite as follows:

1
x[].0 ⊢ x : 1 ⇒

H-MIX0
0 ⊢ ∅

1
x[].0 ⊢ x : 1

Theorem 4.3. If P ≡ Q in CP, then JPK ≡ JQK in HCP−.

Proof. By induction on the derivation of P ≡ Q.

Theorem 4.4. If P =⇒ Q in CP, then JPK =⇒ JQK in HCP−.

Proof. By induction on the the derivation of P =⇒ Q.

Theorem 4.5. If JPK =⇒ R in HCP−, then there is a Q such that P =⇒ Q in CP and R ≡ JQK in HCP−.

Proof. By induction on the derivation of JPK =⇒ R.

4.2 HCP− supports the same communication protocols as CP

In this section, we prove that HCP− supports the same communication protocols as CP. This is the same

as saying that it inhabits the same session types, or that the associated logical systems derive the same

theorems. We show this by proving that we can internalise the hyper-environments as formulas in the

logic. This is a standard method for proving the soundness of a hypersequent calculus.

We start off by defining a relation on derivations of HCP−, which we call “disentanglement”. This

relation allows us to move applications of H-MIX downwards in the proof tree. We can use this relation

to rewrite any derivation to a form in which all mixes are either attached to their respective cuts or tensors,

or at the top-level.

Definition 4.6. Disentanglement is described by the smallest relation on processes closed under the

rules in Figure 1, plus the structural congruence ≡. The relation  ⋆ is the reflexive, transitive closure

of .

We named this relation “disentanglement” to reflect the intuition that proof in HCP− represent multiple

entangled CP proofs, which we can disentangle.

Disentanglement is terminating, and confluent up to the associativity and commutativity of mixes.

Lemma 4.7 (Disentangle). If P ⊢ Γ1 | . . . | Γn in HCP−, then there exist processes P1, . . . ,Pn in CP such

that P1 ⊢ Γ1, . . . ,Pn ⊢ Γn and

P ⊢ Γ1 | . . . | Γn  
⋆ JP1K ⊢ Γ1 . . . JPnK ⊢ Γn

H-MIX
⋆

(JP1K | . . . | JPnK) ⊢ Γ1 | . . . | Γn

Proof. We repeatedly apply the  -rules to the derivation ρ to move the mixes downwards. There are

three cases: a) if a mix gets stuck above a cut, it forms a CP cut; b) if a mix gets stuck above a (⊗), it

forms a CP (⊗); c) otherwise, it moves all the way to the bottom. All applications of (1) are followed by

an application of H-MIX0, forming a CP (1).

An environment can be internalised as a type by collapsing it as a series of pars.
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P ⊢ G | Γ,x : A | ∆,x : A⊥ Q ⊢ H
H-MIX

(P | Q) ⊢ G | H | Γ,x : A | ∆,x : A⊥

H-CUT
(νx)(P | Q) ⊢ G | H | Γ,∆

 

P ⊢ G | Γ,x : A | ∆,x : A⊥

H-CUT
(νx)P ⊢ G | Γ,∆ Q ⊢ H

H-MIX
((νx)P | Q) ⊢ G | H | Γ,∆

P ⊢ G | Γ,y : A | ∆,x : B Q ⊢ H
H-MIX

(P | Q) ⊢ G | H | Γ,y : A | ∆,x : B
⊗

x[y].(P | Q) ⊢ G | H | Γ,∆,x : A⊗B

 

P ⊢ G | Γ,y : A | ∆,x : B
⊗

x[y].P ⊢ G | Γ,∆,x : A⊗B Q ⊢ H
H-MIX

(x[y].P | Q) ⊢ G | H | Γ,∆,x : A⊗B

P ⊢ G | Γ,y : A,x : B Q ⊢ H
H-MIX

(P | Q) ⊢ G | H | Γ,y : A,x : B
O

(x(y).(P | Q)) ⊢ G | H | Γ,x : A OB

 

P ⊢ G | Γ,y : A,x : B
O

x(y).P ⊢ G | H | Γ,x : A OB Q ⊢ H
H-MIX

(x(y).P | Q) ⊢ G | H | Γ,x : A OB

P ⊢ G
1

x[].P ⊢ G | x : 1
 

H-MIX0
0 ⊢ ∅

1
x[].0 ⊢ x : 1 P ⊢ G

H-MIX
(x[].0 | P) ⊢ G | x : 1

P ⊢ G | Γ Q ⊢ H
H-MIX

(P | Q) ⊢ G | H | Γ
⊥

x().(P | Q) ⊢ G | H | Γ,x : ⊥

 

P ⊢ G | Γ
⊥

x().P ⊢ G | Γ,x : ⊥ Q ⊢ H
H-MIX

(x().P | Q) ⊢ G | H | Γ,x : ⊥

P ⊢ G | Γ,x : A Q ⊢ H
H-MIX

(P | Q) ⊢ G | H | Γ,x : A
⊕1

x⊳inl.(P | Q) ⊢ G | H | Γ,x : A⊕B

 

P ⊢ G | Γ,x : A
⊕1

x⊳inl.P ⊢ G | Γ,x : A⊕B Q ⊢ H
H-MIX

(x⊳inl.P | Q) ⊢ G | H | Γ,x : A⊕B

Figure 1: The disentanglement relation for HCP−.
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Definition 4.8.

O( ·) = ⊥

O(x1 : A1, . . . ,xn : An) = A1 O · · ·O An if n ≥ 1

Lemma 4.9. If ⊢ Γ in CP, then ⊢ OΓ in CP.

Proof. By repeated application of (O).

Furthermore, a hyper-environment can be internalised as a type by collapsing it as a series of tensors,

where each constituent environment is internalised using O. The empty hyper-environment ∅ is intern-

alised as the unit of tensor.

Definition 4.10.

⊗(∅) = 1

⊗(Γ1 | . . . | Γn) = OΓ1 ⊗ . . .⊗OΓn if n ≥ 1

Theorem 4.11. If ⊢ G in HCP−, then ⊢ ⊗G in CP.

Proof. By case analysis on the structure of the hyper-environment G . If G = ∅, we apply (1). If

G = Γ1 | . . . | Γn, we apply Lemma 4.7 to obtain proofs of ⊢ Γ1, . . . , ⊢ Γn in CP, then we apply

Lemma 4.9 to each of those proofs to obtain proofs of ⊢ OΓ1, . . . , ⊢ OΓn, and join them using (⊗)
to obtain a single proof of ⊢ ⊗G in CP.

5 Related Work

Since its inception, linear logic has been described as the logic of concurrency [9]. Correspondences

between the proof theory of linear logic and variants of the π-calculus emerged soon afterwards [1, 3],

by interpreting linear propositions as types for channels. Linearity inspired also the seminal theories of

linear types for the π-calculus [11] and session types [10]. Even though the two theories do not have a

direct correspondence with linear logic, the link is still strong enough that session types can be encoded

into linear types [7].

It took more than ten years for a formal correspondence between linear logic and (a variant of) session

types to emerge, with the seminal paper by Caires and Pfenning [5]. This inspired the development of

Classical Processes by Wadler [19].

The idea of using hypersequents to capture parallelism in linear logic judgements is not novel: Car-

bone et al. [6] extended the multiplicative-additive fragment of intuitionistic linear logic with hyper-

sequents to type global descriptions of process communications known as choreographies. This work is

distinct from our approach in that HCP− is based on classical linear logic and manipulates hypersequents

differently: in Carbone et al. [6], hypersequents can be formed only when sequents share resources (cf.,

H-MIX), and resource sharing is then tracked using an additional connection modality (which is not

present in HCP−).
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6 Conclusions and Future Work

In this paper, we introduced HCP−, a variant of HCP which sits in between CP and HCP. It has reduction

semantics, and does not allow for delayed actions, like CP, but registers parallelism using hypersequents,

like HCP. This results in a calculus which structurally resembles HCP, but which is behaviourally much

more like CP: all CP processes can be translated to HCP− processes, and this translation preserves the

reduction behaviour of the process. The key insight to making this calculus work is to add a side condition

to the logical rules in the type system which rules out self-locking processes—processes which act on

both endpoints of a channel, e.g., x().x[].0.

HCP− focuses on the basic features of CP, corresponding to multiplicative applicative linear logic.

In the future, we intend to study the full version of HCP−, which includes exponentials and quantifiers.

Furthermore, we intend to study extensions to HCP− which capture more behaviours, such as recursive

types [14] and access points [8]. Separately, we would like to extend the reduction semantics of HCP−

to cover all of HCP by adding delayed actions.
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