
From Infinity to Choreographies
Extraction for Unbounded Systems⋆

Bjørn Angel Kjær, Luís Cruz-Filipe[0000−0002−7866−7484], and Fabrizio
Montesi[0000−0003−4666−901X]

Department of Mathematics and Computer Science, University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark

bjoernak@gmail.com,{lcfilipe,fmontesi}@imada.sdu.dk

Abstract. Choreographies are formal descriptions of distributed sys-
tems, which focus on the way in which participants communicate. While
they are useful for analysing protocols, in practice systems are written
directly by specifying each participant’s behaviour. This created the need
for choreography extraction: the process of obtaining a choreography that
faithfully describes the collective behaviour of all participants in a dis-
tributed protocol.
Previous works have addressed this problem for systems with a prede-
fined, finite number of participants. In this work, we show how to extract
choreographies from system descriptions where the total number of par-
ticipants is unknown and unbounded, due to the ability of spawning new
processes at runtime. This extension is challenging, since previous algo-
rithms relied heavily on the set of possible states of the network during
execution being finite.

Keywords: Choreography · Extraction · Concurrency · Message passing

1 Introduction

Choreographies are coordination plans for concurrent and distributed systems,
which describe the expected interactions that system participants should en-
act [5,14]. Languages for expressing choreographies (choreographic languages)
are widely used for documentation and specification purposes, some notable ex-
amples being Message Sequence Charts [7], UML Sequence Diagrams [16], and
choreographies in the Business Process Modelling Notation (BPMN) [15]. More
recently, such languages have also been used for programming and verification,
e.g., as in choreographic programming [13] and multiparty session types [6] re-
spectively.

In practice, many system implementations do not come with a choreography
yet. Choreography extraction (extraction for short) is the synthesis of a choreog-
raphy that faithfully represents the specification of a system based on message
passing (if it exists) [1,3,11,12]. Extraction is helpful because it gives developers

⋆ Partially supported by Villum Fonden, grant no. 29518.

a global overview of how the processes (abstractions of endpoints) of a system
interact, making it easier to check that they collaborate as intended. In general,
though, it is undecidable whether such a choreography exists, making extraction
a challenging problem.

Current methods for extraction cannot analyse systems that spawn new pro-
cesses at runtime: they can only deal with systems where the number of partic-
ipants is finite and statically known. This is an important limitation, because
many modern distributed systems dynamically create processes for several rea-
sons, such as scalability. The aim of this article is to address this shortcoming.

As an example of a system that cannot be analysed by previous work, consider
a simple implementation of a serverless architecture (Example 1).

Example 1. A simple serverless architecture, written in pseudocode (we will for-
malise this example later in the article). A client sends a request to an entry-
point, which then spawns a temporary process to handle the client. The spawned
process computes the response to the request. Then it offers the client to make
another request, in which case a new process is spawned to handle that, since
the new request may require a different service.

client:
send init to server;
loop {

server presents worker; receive result from worker;
if finished

then request termination from worker; terminate;
else request next from worker; server:=worker;

}

server:
receive init from client; Handle(server);

procedure Handle(parent) {
spawn worker with {

parent presents client; ComputeResult();
send result to client; receive request from client;
switch request {

next: Handle(worker);
termination: terminate;

}
}
introduce worker and client; terminate;

}

Example 1 illustrates the usefulness of extraction: a human could manually go
through the code and check that the two processes will interact as intended;
however, despite it being a greatly simplified example, it is not immediately
obvious whether the processes will communicate correctly or not.

2

Previous methods for extraction use graphs to represent the possible (sym-
bolic) execution space of the system under consideration. The challenge pre-
sented by code as in Example 1 is that these graphs are not guaranteed to be
finite anymore, because of the possibility of spawning new processes at runtime.

In this article we introduce the first method for extracting choreographies
that supports process spawning, i.e., the capability of creating new processes
at runtime. Our main contribution consists of a theory and implementation of
extraction that use name substitutions to obtain finite representations of infi-
nite symbolic execution graphs. Systems with process spawning have a dynamic
topology, which further complicates extraction: new processes can appear at run-
time, and can then be connected to other processes to enable communication.
We extend the languages used for extraction in previous work with primitives
for capturing these features, and show that our method can deal with them.

Structure of the paper. In Section 2, we recap the basic theory of extraction.
In Section 3, we introduce the languages for representing systems (as networks
of processes) and choreographies. Section 4 reports our method for extracting
networks with an unbounded number of processes (due to spawning), its imple-
mentation and limitations. We conclude in Section 5.

Related work. We have already mentioned most of the relevant related work in
this section. Choreography extraction has been explored for languages that in-
clude internal computation [3], process terms that correspond to proofs in linear
logic [1], and session types (abstract terms without internal computation) [11,12].
Our method deals with the first case (the most general among those cited). Our
primitives for modelling process spawning are inspired by [4].

2 Background

This section summarizes the framework for choreography extraction that we
extend [2,3,8,17]. The remainder of the article expands upon this work to extend
the capabilities of extraction, and to bring it closer to real systems.

2.1 Networks

Distributed systems are modelled as networks, which consist of several partici-
pants executing in parallel. Each participant is called a process, and the sequence
of actions it executes is called a behaviour. Each process also includes a set of
procedures, consisting of a name and associated behaviour.

Behaviours are formally defined by the grammar given below.

B ::= 0 | X | p!m;B | p?;B | p⊕ ℓ;B | p&{ℓ1 : B1, . . . , ℓn : Bn}
| if e then B1 else B2

Term 0 designates a terminated process. Term X invokes the procedure named X.
Invoking a procedure must be the last action on a behaviour – in other words, we

3

only allow tail recursion. Term p!m;B describes a behaviour where the executing
process evaluates message m and sends the corresponding value to process p,
then continues as B. The dual term p?;B describes receiving a message from p,
storing it locally and continuing as B. Behaviour p⊕ ℓ;B sends the selection of
label ℓ to process p then continues as B, while the dual p&{ℓ1 : B1, . . . , ℓn : Bn}
offers the behaviours B1, . . . , Bn to p, which can be selected by the corresponding
labels ℓ1, . . . , ℓn. Finally, if e then B1 else B2 is the conditional term: if the
Boolean expression e evaluates to true, it continues as B1, otherwise, it continues
as B2.

The syntax

p {
def X1 { B1 }
...
def Xn { Bn }
main { B }

}

describes a process named p with local procedures X1, . . . , Xn defined respec-
tively as B1, . . . , Bn, intending to execute behaviour B.

A network is specified as a sequence of processes, all with distinct names,
separated by vertical bars (|). Example 2 defines a valid network, which we use
as running example throughout this section to explain the existing extraction
algorithm.

Example 2. This network describes the protocol for an online store. The cus-
tomer sends in items to purchase, then asks the store to proceed to checkout, or
continue browsing.

Once the customer proceeds to checkout, they send their payment informa-
tion to the store. The store then verifies that information, and either completes
the transaction, or asks the client to re-send payment information if there where
a problem.

customer {
def browse{ store!item; if checkout

then store⊕buy; purchase;
else store⊕more; browse }

def purchase{ store!payment; store&{accept: 0, reject: purchase} }
main{ browse }

} |
store {

def offer{ customer?; customer&{buy: payment, more: offer} }
def payment{ customer?; if accepted

then customer⊕accept; 0
else customer⊕reject; payment }

main { offer }
}

4

2.2 Choreographies

Global descriptions of distributed systems, specifying interactions between par-
ticipants rather than their individual actions, are called choreographies. Similar
to processes in networks, a choreography contains a set of procedure definitions,
and a main body. The terms of choreography bodies are defined by the grammar
below and closely correspond to the actions in process behaviours.

C ::= 0 | X | p.m -> q;C | p -> q[ℓ];C | if p.e then C1 else C2

Term 0 denotes a choreography body where all processes are terminated. Term
X invokes the procedure with name X. In the communication p.m -> q;C, pro-
cess p sends message m to q, which stores the result, and the system continues
as described by choreography body C. Likewise, in label selection p -> q[ℓ];C,
process p selects an action in q by sending the label ℓ, and the system continues
as C. In the conditional if p.e then C1 else C2, process p starts by evalu-
ating the Boolean expression e; if this resolves to true, then the choreography
continues as C1, otherwise it continues as C2.

Example 3. The protocol described by the network in Example 2 can be written
as the following choreography.

def Buy {
customer.item -> store; if customer.checkout

then customer -> store[buy]; Pay
else customer -> store[more]; Buy

}
def Pay {

customer.payment -> store; if store.accepted
then store -> customer[accept]; 0
else store -> customer[reject]; Pay

}
main {Buy}

2.3 Extraction algorithm

The extraction algorithm from [2,3] consists of two steps. The first step is build-
ing a graph that represents a symbolic execution of the network. The second is
to traverse this graph, using its edges to build the extracted choreography.

Graph generation. The first step in extracting a choreography from a network
is building a Symbolic Execution Graph (SEG) from the network. A SEG is
a directed graph representing an abstraction of the possible evolutions of the
network over time. It abstracts from the concrete semantics by ignoring the
concrete values being communicated and considering both possible outcomes

5

for every conditional. Nodes contain possible states of the network, and edges
connect nodes that are related by execution of one action (the label of the edge).1

Edges in the SEG are labeled by transition labels, which represent the possi-
ble actions executable by the network: value communications (matching a send
action with the corresponding receive), label selection (matching selection and
offer), and conditionals. For the last there are two labels, representing the two
possible outcomes (the “then” and “else” branch, respectively).

λ ::= p.e -> q | p -> q[ℓ] | p.e then | p.e else

As an example, we show how to build the SEG for the network in Example 2
(see Fig. 1). The main behaviours of the two processes are procedure invocations
(node on top). Expanding the corresponding definitions, we find out that the first
action by customer is sending to store, while store’s first action is receiving from
customer. These actions match, so the network can execute an action reducing
both store and customer. This results in a new network, which is placed in a new
node, and we connect both nodes by the transition label describing the executed
action.

The next action by customer is receiving a label from store, but store needs
to evaluate a conditional expression to decide which label to send. There are two
possible outcomes for these evaluation, so we create two new nodes and label
the edges towards them with the corresponding possibilities (then or else).
Continuing to expand the else branch leads to a network that is already in the
SEG, so we simply add an edge to the node containing that network. The then
branch evolves in two steps into a second conditional, whose else branch again
creates a loop, while its then branch evolves into a network where all processes
has terminated. This concludes the construction of the SEG.

In this example SEG generation went flawlessly, but that is not always the
case. We saw that a process trying to send a message must wait for the receiving
process to be able to execute a matching receive; this can lead to situations where
the network is deadlocked – no terms can be executed. In that case, the behaviour
of the network cannot be described by a choreography, and the network cannot
be extracted.

This algorithm also relies on the fact that network execution is confluent:
the success of extraction does not depend on which action is chosen when con-
structing the SEG, in case several are possible. (This can affect the algorithm’s
performance, though.) Furthermore, guaranteeing that all possible evolutions of
the network are captured requires some care when closing loops: all processes
must reduce in every cycle in the SEG. This is achieved by marking processes
in the network and checking that every loop contains a node where all processes
are marked. These aspects are orthogonal to the current development, and we
refer the interested reader to [3] for details.

Choreography construction. The main idea for generating a choreography
from a SEG is that edges correspond to choreography actions, so the chore-
1 The formal details can be found in [2,3].

6

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

Fig. 1. The SEG of the network from Example 2.

ography essentially describes all paths in the SEG. The choreographic way of
representing loops is by means of procedures, so each loop in the SEG should
become a procedure definition. To achieve this, we first unroll the graph by
splitting every loop node – the nodes that close a loop2 – into two: a exit node,
which is the target of all edges previously pointing to the loop node, and a entry
node, which is the source of all edges previously pointing from the loop node.
Entry nodes are given distinct procedure names, and exit nodes are associated
with the corresponding procedure calls. The unrolled SEG is now a forest with
each tree representing a procedure, as shown in Fig. 2.

2 Formally, every node with at least two incoming edges – plus the starting node, if it
has any incoming edges

7

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

store
customer

Procedure

Procedure

Fig. 2. The unrolling of the graph of Fig. 1 resulting in two trees, each corresponding
to a procedure in the SEG to be extracted. For readibility, the exit node corresponding
to the invocation of X2 is depicted twice.

Since transition labels are similar to the choreography body terms, it is simple
to read choreography bodies directly from each tree of the unrolled graph. This
is done recursively, starting from the root of each tree and proceeding as follows:
when encountering a node with no outgoing edges, then either all processes have
terminated, in which case we return 0, or the node is an exit node, in which

8

case we return the corresponding procedure invocation. If there is one outgoing
edge, that edge represents an interaction, so we return the choreography body
that starts with the transition label for that edge and continues as the result of
the recursive invocation on the edge’s target. If there are two outgoing edges,
then we return a conditional choreography body whose two continuations are
the results of the recursive calls targets of the two edges, as dictated by those
edges’ labels.

Example 4. By reading the trees in Fig. 2 in the manner described, we obtain
the choreography given earlier in Example 3, where procedures Buy and Pay
are now called X1 and X2, respectively.

3 Networks and Choreographies with Process Spawning

In this section, we extend the theories of networks and choreographies with
support for spawning new processes at runtime.

We start by adding three primitives to the language of behaviours, following
ideas from [4].

1. Spawning of processes. The language of behaviours is extended with the
construct spawn q with Bq continue B, which adds a new process to the
network with a new, unique name. The new process gets main behaviour
Bq, and inherits its parent’s set of procedures, while the parent continues
executing B. This term also binds q (a process variable) in B.

2. Advertising processes. Since names of newly spawned processes are only
known to their parents, we need terms for communicating process names.
Process p can “introduce” q and r to each other (send each of them the
other’s name) by executing term q <-> r;B, while q and r execute the dual
actions p?t; Bq and p?t; Br. Here t is again a variable, which is bound in
the continuations Bq and Br.

3. Parameterised procedures. To be able to use processes spawned at runtime
in procedures, their syntax is changed so that they can take process names
as parameters.

We do not distinguish process names from process variables syntactically, as
this simplifies the semantics. We assume as usual that all binders in the same
term bind distinct variables, and work up to α-renaming. However, we allow a
variable to occur both free and bound in the same term – this is essential for
our algorithm.

As previously, the semantics includes a state function σ, mapping each pro-
cess to a value (its memory state). The new ingredient is a graph of connections G
between processes, connecting pairs of process that are allowed to communicate.
The choice of the initial graph allows for modelling different network topologies.
We use the notation p ↔ q ∈ G to denote that p and q are connected in G, and
G ∪ {p ↔ q} to denote the graph obtained from G by adding an edge between p
and q.

9

Fig. 3 includes some representative rules of this extended semantics.3

p ↔ q ∈ G e ↓σp v

p ▷ q!e;B1 | q ▷ p?;B2, σ,G
p.v -> q−−−−→ p ▷ B1 | q ▷ B2, σ[q 7→ v],G

N|Com

p ↔ q ∈ G p ↔ r ∈ G
p ▷ q <-> r;Bp | q ▷ p?r;Bq | r ▷ p?q;Br, σ,G

p.q<-> r−−−−−→
p ▷ Bp | q ▷ Bq | r ▷ Br, σ,G ∪ {q ↔ r}

N|Intro

p ▷ spawn q with Bq continue B, σ,G
p spawns q−−−−−−→

p ▷ B | q ▷ Bq, σ,G ∪ {p ↔ q}

N|Spawn

Fig. 3. New semantics of networks, selected rules.

Rule N|Com describes a communication. Process p wants to send the result
of evaluating e to process q, and q is expecting to receive from p. These processes
can communicate, and the result v of evaluating e at p is sent and stored in q
(premise e ↓σp v). The difference from the previous semantics is the presence of
the additional premise p ↔ q ∈ G, which checks that these two processes are
allowed to communicate.

Rule N|Intro is similar, but process names are communicated instead, and
the communication graph is updated. For simplicity, instead of explicitly sub-
stituting variables for process names, we assume that the behaviours of q and r
have previous been α-renamed appropriately (this kind of simplifications based
on α-renaming are standard in process calculi [18]).

Rule N|Spawn creates a new process q into the network with a unique name,
and adds an edge between it and its parent to the network. Note that q is distinct
from other process names in the network.

Choreographies get two corresponding actions: p spawns q; C and p.q <-> r; C.
Procedures also become parameterized. At the choreography level we do not re-
quire process variables except in procedure definitions (which are replaced by
process names when called); we assume that all names of spawned processes are
unique (again treating spawn actions as binders and α-renaming in procedure
bodies when needed at invocation time).

The corresponding rules for the semantics are given in Fig. 4.

Example 5. We illustrate a network with process spawning by writing Example 1
in our language. The client sends a request to an entry-point, which then spawns
an instance to handle the request, which gets introduced to the client. The

3 For the complete semantics, see the technical report [9].

10

p ↔ q ∈ G e ↓σp v

p.e -> q;C, σ,G p.v -> q−−−−→ C, σ[q 7→ v],G
C|Com

p ↔ q ∈ G p ↔ r ∈ G

p.q <-> r;C, σ,G p.q<-> r−−−−−→ C, σ,G ∪ {q ↔ r}
C|Intro

p spawns q;C, σ,G p spawns q−−−−−−→ C, σ,G ∪ {p ↔ q}
C|Spawn

Fig. 4. New semantics of choreographies, selected rules.

instance sends the client the result, and the client either makes another request
or terminates the connection. Additional requests spawn new instances, since
requests may differ in kind – this is handled by the previous instance to reduce
load on the entry-point.

client {
def X(s){

s?w; w?; if more
then w⊕next; X(w)
else w⊕end; 0

}
main{ entry!req; X(entry) }

}

| entry {
def X(this){

spawn worker with
this?client; client!res;

client&{ next: X
(worker), end: 0 }

continue worker <-> client; 0
}
main{ client?; X(entry) }

}

After the initial communication and procedure call, variable w in client needs
to be renamed to worker in order for the next communication to reduce.

4 Extraction with process spawning

In the presence of spawning, the intuitive process of extraction described earlier
no longer works: since a network can generate an unbounded number of new
processes, there is no guarantee that the SEG is finite and, as a consequence,
that the procedure terminates.

However, we observe that since networks are finite and can only reduce to
networks built from their subterms, there is only a finite number of possible
behaviours for processes that are spawned at runtime. Therefore we can keep
SEGs finite if we allow renaming processes when connecting nodes. This intuition
is key to our development.

Example 6. Consider the network from Example 5 and its SEG, shown in Fig. 5.
The dotted part shows the network that would be generated by symbolic execu-
tion as described earlier. By allowing renaming of processes, we can close a loop

11

by applying the mapping {client 7→ client, entry/worker0 7→ entry}. The parame-
ters w and worker are both variables mapping to entry/worker0, and since entry
has terminated, the remapping makes the dotted node equivalent to the second
node of the SEG, as shown by the loop. For simplicity we only show the process
variables that are changed by the mapping, i.e., we omit client 7→ client.

entry
client

entry
client

entry
client

entry/worker0

entry
client

entry/worker0

entry
client

entry/worker0

entry
client

entry/worker0

entry
client

entry/worker0

entry
client

entry/worker0
entry

client
entry/worker0

Fig. 5. The SEG of the network in Example 5.

4.1 Generating SEGs

Formally, we define an abstract semantics for networks that makes two changes
with respect to the concrete semantics given above. First, we remove all in-
formation about states σ (and as a consequence about the actual values being
communicated), as in [2]. Secondly, we now treat all process names as variables,
and replace the communication graph G by a partial function γ mapping pairs
of a process name and a process variable to process names: intuitively, γ(p, q)

12

returns the name of the actual process that p locally identifies as q. If γ(p, q)
is undefined, then p does not know who to communicate with. We assume that
initially γ(p, p) = p for all p, and that, for all p and q, either γ(p, q) = q (mean-
ing that p knows q’s name and is allowed to communicate with it) or γ(p, q) is
undefined (meaning that p is not connected to q and cannot communicate with
it) – this allows us to model different initial network topologies. Fig. 6 shows the
abstract versions of the rules previously shown.

r ↓γp q s ↓γq p

p ▷ r!e;B1 | q ▷ s?;B2, γ
p.e-> q−−−−→ p ▷ B1 | q ▷ B2, γ

N|Com

s ↓γp q t ↓γp r u ↓γq p v ↓γr p

p ▷ s <-> t;Bp | q ▷ u?w;Bq | r ▷ v?x;Br, γ
p.q<-> r−−−−−→

p ▷ Bp | q ▷ Bq | r ▷ Br, γ[⟨q,w⟩ 7→ r][⟨r, x⟩ 7→ u]

N|Intro

p ▷ spawn q with Bq continue B, γ
p spawns q−−−−−−→

p ▷ B | r ▷ Bq, γ[⟨p, q⟩ 7→ r][⟨r, p⟩ 7→ p]

N|Spawn

Fig. 6. Abstract semantics of networks, selected rules

Example 7. It is easy to check that the SEG shown in Fig. 5 follows the rules in
Fig. 6. Initially, the variable mapping is the identity, and this remains unchanged
after the first communication.

γ entry client worker w
entry entry client — —
client entry client — —

When entry spawns the new process entry/worker0, this name is associated to
entry’s local variable worker according to rule N|Spawn. So the variable mapping
is now given by the following table.

γ entry client worker w
entry entry client entry/worker0 —
client entry client — —

entry/worker0 entry — — —

Next, entry introduces entry/worker0 and client to each other; client uses the
local name w for the new process. According to rule N|Intro, the variable
mapping is now the following.

13

γ entry client worker w
entry entry client entry/worker0 —
client entry client — entry/worker0

entry/worker0 entry client — —

To determine whether we can close a loop in the SEG, we need the following
definitions.

Definition 1. Two networks N and N ′ are equivalent if there exists a total
bijective mapping M from processes in N to processes in N ′, such that, for all
processes p:

– if p has main behaviour B, then M(p) has main behaviour M(B) (where M
is extended homeomorphically to behaviours);

– if p has not terminated and X(q̃) = B is a procedure definition in p, then
X = Mq(B) is a procedure definition in M(p), where Mq maps every process
in q̃ to itself and every other process r to M(r).

To close a loop in the SEG, we also need to look at the variable mappings γ.

Definition 2. Two nodes N, γ and N ′, γ′ in a SEG are behaviourally equivalent
if:

– There exists a series of reductions λ̃ in the SEG such that N, γ
λ̃−→

∗
N ′, γ′;

– There exists a mapping function M that proves N and N ′ are equivalent.
– If M(p) = q, γ(p, a) = b, γ′(q, a) = c, and there is a reduction accessible

from N, γ that evaluates γ∗(p, a) for some intermediary γ∗, then M(b) = c.

The last point of the definition only applies to variables actually evaluated
in reductions of N . This makes extraction more efficient (as more nodes are
equivalent): a variable might have been used for a previous step in the evolution
up to N, σ, but if it remains unused thereafter it does not affect the behaviour
anymore, and can be ignored.

Lemma 1. Let N, γ and N ′, γ′ be behaviourally equivalent nodes in a SEG for
a given network. The graph obtained by redirecting all edges coming into N ′, γ′

to N, γ and removing the nodes that are no longer accessible from the root is also
a SEG for the original network.

Our implementation simply looks for a suitable N, γ when N ′, γ′ is generated,
and records the mapping M in the edge leading to N, γ.

Termination. As we mentioned at the start of this section, our algorithm
can only generate a finite number of behaviours for each process involved in the
network. This is enough to guarantee termination, following the arguments in [2],
unless the number of processes in the network is allowed to grow unboundedly.

This situation can occur if processes are spawned in a loop, faster than they
terminate, making the number of processes increase for every iteration. Such

14

networks embody a resource leak, and they cannot be extracted by our theory.
To ensure termination, our algorithm must be able to detect resource leaks, which
is an undecidable problem. We deal with it as follows: when a new candidate node
is generated, we check whether there is a surjective mapping with the properties
described above such that there are at least two process values mapped to the
same process name. If this happens, the algorithm returns failure. The interested
reader can find some examples of networks with resource leaks in the technical
report [9].

4.2 Generating the choreography

Building a choreography from a SEG is similar to the original case. The main
change deals with procedure calls: we use the variable mappings in edges that
close loops to determine their parameters and arguments.

When unrolling the SEG, each node corresponding to a procedure definition
gets a list of parameters corresponding to the process names4 that appear in
the co-domain of any variable mapping in an edge leading to that node. Each
procedure call is then appended to the reverse images of these processes by the
mapping in the edge leading to it. Note that the edges do not contain process
names that are mapped to themselves; as such, processes that are the same in all
maps will not appear as arguments to the extracted procedure. A consequence
of this is that some procedures may get an empty set of arguments.

After this transformation the choreography can again be extracted by recur-
sively traversing the resulting forest.

We formulate the correctness of our extraction procedure in terms of strong
bisimilarity [19].

Theorem 1. If C is a choreography extracted from a network N , then C ∼ N .

Example 8. We return to the network in Example 5, whose SEG was shown in
Fig. 5. The only loop node has two incoming edges, one with empty (identity)
mapping and another with {entry/worker0 7→ entry}. Therefore this node is ex-
tracted to a procedure X1 with one process variable entry. The original call
simply instantiates this parameter as itself, while the recursive call replaces it
with entry/worker0.

The choreography extracted from this SEG is thus the following.

def X1(entry) {
entry spawns entry/worker0; entry.entry/worker0 <-> client;
entry/worker0.res -> client;
if client.more

then client -> entry/worker0[next]; X1(entry/worker0)
else client -> entry/worker0[end]; 0

}
main { client.req -> entry; X1(entry) }

4 Assuming some predefined ordering of process names.

15

4.3 Implementation and limitations

The extension of the original extraction algorithm to networks with process
spawning has been implemented in Java. It can successfully extract the networks
in the examples given here, as well as a number of randomly generated tests
following the ideas from [3]. Due to space constraints, we do not report on the
details of our testing strategy, which is an extension of the strategy presented
in detail in [3], extended in the natural way to include networks with process
spawning and introduction.

Since our language only allows for tail recursion, divide-and-conquer algo-
rithms such as mergesort are currently still not extractable, and our next plan is
to extend the algorithm to deal with general recursion. This is not a straightfor-
ward extension, as our way of constructing the SEG has no way of getting past
a potentially infinite recursive subterm to its continuation.5

Another example of an unextractable network, which does not use general
recusion, is the following.

s {
def X(p, t){

if cont then spawn q with X(t, q) continue q?; p!m; 0 else p!m; 0
}
main{ X(p, s) }

} |
p{s?; stop}

Although the spawned processes behave as their parent, the entire network never
repeats itself, and extraction fails: extracting a choreography would require clos-
ing a loop where some processes did not reduce. This is essentially the same
limitation already discussed in [3], and cannot be avoided: given that the prob-
lem of determining whether a network can be represented by a choreography is in
general undecidable [2], soundness of our algorithm implies that such networks
will always exist.

5 Conclusion

We showed how the state-of-the-art algorithm for choreography extraction [2,3]
could be extended to accommodate for networks with process spawning. This
adaptation requires allowing processes names to change dynamically, so that the
total number of networks that needs to be consider remains finite. The resulting
theory captures examples including loops where processes that are spawned at
runtime take over for other processes that terminate in the meantime. This
extension also required adding parameterised procedures to the network and
choreography language, and including a form of resource leak detection to ensure
termination.

A working implementation of choreography extraction with process spawning
is available at [10].
5 This was also the reason for only including tail recursion in the original work [2].

16

References

1. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distributed
Comput. 31(1), 51–67 (2018). https://doi.org/10.1007/s00446-017-0295-1

2. Cruz-Filipe, L., Larsen, K.S., Montesi, F.: The paths to choreography extraction.
In: Esparza, J., Murawski, A.S. (eds.) Proceedings of FoSSaCS. Lecture Notes in
Computer Science, vol. 10203, pp. 424–440 (2017)

3. Cruz-Filipe, L., Larsen, K.S., Montesi, F., Safina, L.: Implementing choreography
extraction. CoRR abs/2205.02636 (2022), https://arxiv.org/abs/2205.02636,
submitted for publication.

4. Cruz-Filipe, L., Montesi, F.: Procedural choreographic programming. In: Bouaj-
jani, A., Silva, A. (eds.) Proceedings of FORTE. Lecture Notes in Computer Sci-
ence, vol. 10321, pp. 92–107. Springer (2017)

5. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. Theor.
Comput. Sci. 802, 38–66 (2020). https://doi.org/10.1016/j.tcs.2019.07.005

6. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. J.
ACM 63(1), 9 (2016). https://doi.org/10.1145/2827695

7. International Telecommunication Union: Recommendation Z.120: Message se-
quence chart (1996)

8. Kjær, B.A.: Implementing Choreography Extraction in Java. Bachelor thesis, Uni-
versity of Southern Denmark (2020)

9. Kjær, B.A., Cruz-Filipe, L., Montesi, F.: From infinity to choreographies: Extrac-
tion for unbounded systems. CoRR abs/2207.08884 (2022), https://arxiv.org/
abs/2207.08884, technical report.

10. Kjær, B.A.: Choreographic extractor (May 2022). https://doi.org/10.5281/
zenodo.6554763

11. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR 2012 - Concurrency Theory - 23rd
International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September
4-7, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7454, pp. 225–239.
Springer (2012). https://doi.org/10.1007/978-3-642-32940-1_17

12. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015. pp. 221–232. ACM
(2015). https://doi.org/10.1145/2676726.2676964

13. Montesi, F.: Choreographic Programming. Ph.D. Thesis, IT Univer-
sity of Copenhagen (2013), https://www.fabriziomontesi.com/files/
choreographic-programming.pdf

14. Montesi, F.: Introduction to Choreographies. Accepted for publication by Cam-
bridge University Press (2022)

15. Object Management Group: Business Process Model and Notation. http://www.
omg.org/spec/BPMN/2.0/ (2011)

16. Object Management Group: Unified modelling language, version 2.5.1 (2017)
17. Safina, L.: Formal Methods and Patterns for Microservices. Ph.D. thesis, University

of Southen Denmark (2019)
18. Sangiorgi, D.: Pi-i: A symmetric calculus based on internal mobility. In: Mosses,

P.D., Nielsen, M., Schwartzbach, M.I. (eds.) TAPSOFT’95: Theory and Prac-
tice of Software Development, 6th International Joint Conference CAAP/FASE,
Aarhus, Denmark, May 22-26, 1995, Proceedings. Lecture Notes in Computer

17

https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/s00446-017-0295-1
https://arxiv.org/abs/2205.02636
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://arxiv.org/abs/2207.08884
https://arxiv.org/abs/2207.08884
https://doi.org/10.5281/zenodo.6554763
https://doi.org/10.5281/zenodo.6554763
https://doi.org/10.5281/zenodo.6554763
https://doi.org/10.5281/zenodo.6554763
https://doi.org/10.1007/978-3-642-32940-1_17
https://doi.org/10.1007/978-3-642-32940-1_17
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Science, vol. 915, pp. 172–186. Springer (1995). https://doi.org/10.1007/
3-540-59293-8_194, https://doi.org/10.1007/3-540-59293-8_194

19. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press (2011). https://doi.org/10.1017/CBO9780511777110

18

https://doi.org/10.1007/3-540-59293-8_194
https://doi.org/10.1007/3-540-59293-8_194
https://doi.org/10.1007/3-540-59293-8_194
https://doi.org/10.1007/3-540-59293-8_194
https://doi.org/10.1007/3-540-59293-8_194
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1017/CBO9780511777110

	From Infinity to Choreographies

