
Multiparty Languages: The Choreographic and1

Multitier Cases2

Saverio Giallorenzo ! Ï3

Department of Computer Science and Engineering, Università di Bologna, Italy and INRIA, France4

Fabrizio Montesi !Ï5

Department of Mathematics and Computer Science, University of Southern Denmark, Denmark6

Marco Peressotti !Ï7

Department of Mathematics and Computer Science, University of Southern Denmark, Denmark8

David Richter !9

Technical University of Darmstadt, Germany10

Guido Salvaneschi !11

University of St.Gallen, Switzerland12

Pascal Weisenburger !13

Technical University of Darmstadt, Germany14

Abstract15

Choreographic languages aim to express multiparty communication protocols, by providing primitives16

that make interaction manifest. Multitier languages enable programming computation that spans17

across several tiers of a distributed system, by supporting primitives that allow computation to18

change the location of execution. Rooted into different theoretical underpinnings—respectively19

process calculi and lambda calculus—the two paradigms have been investigated independently by20

different research communities with little or no contact. As a result, the link between the two21

paradigms has remained hidden for long.22

In this paper, we show that choreographic languages and multitier languages are surprisingly23

similar. We substantiate our claim by isolating the core abstractions that differentiate the two24

approaches and by providing algorithms that translate one into the other in a straightforward way.25

We believe that this work paves the way for joint research and cross-fertilisation among the two26

communities.27

2012 ACM Subject Classification Computing methodologies→ Distributed programming languages;28

Theory of computation → Distributed computing models; Software and its engineering → Multi-29

paradigm languages; Software and its engineering → Concurrent programming languages; Software30

and its engineering → Distributed programming languages31

Keywords and phrases Distributed Programming, Choreography Programming, Multitier Program-32

ming33

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.2334

Category Pearl35

Funding Fabrizio Montesi: Villum Fonden, grant no. 29518, and Independent Research Fund36

Denmark, grant no. 0135-00219.37

Marco Peressotti: Villum Fonden, grant no. 29518, and Independent Research Fund Denmark, grant38

no. 0135-00219.39

1 Introduction40

Programming concurrent and distributed systems is notoriously hard. Among other issues, it41

requires dealing with coordination and predicting how multiple participants will interact at42

© Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guida Salvaneschi, and
Pascal Weisenburger;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saverio.giallorenzo@gmail.com
https://www.saveriogiallorenzo.com
https://orcid.org/0000-0002-3658-6395
mailto:fmontesi@imada.sdu.dk
https://www.fabriziomontesi.com
https://orcid.org/0000-0003-4666-901X
mailto:marco.peressotti@imada.sdu.dk
https://www.marcoperessotti.com
https://orcid.org/0000-0002-0243-0480
mailto:mail@example.org
mailto:mail@example.org
https://orcid.org/0000-0002-9324-8894
mailto:mail@example.org
https://orcid.org/0000-0003-1288-1485
https://doi.org/10.4230/LIPIcs.ECOOP.2021.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Multiparty Languages: The Choreographic and Multitier Cases

runtime, for which programmers do not receive adequate help from mainstream programming43

abstractions and technology [25, 21, 32].44

The quest for finding elegant languages and methodologies that can help with concurrent45

and distributed programming has been a major focus of the research community for decades,46

including the seminal actor model and calculus of communicating systems [17, 27]. In this47

work, we are interested in two kinds of languages that have been recently gaining attention:48

choreographic languages [28, 2] and multitier languages [40]. Choreographic languages49

are designed to express multiparty communication protocols, by providing primitives that50

make interaction manifest. On the other hand, multitier languages allow for programming51

computation that spans across several tiers of a distributed system, by providing primitives52

that allow computation to change location of execution.53

Both choreographic and multitier languages aim at making concurrent and distributed54

programming more effective, and have inspired several research and industrial language55

designs. However, choreographic and multitier languages stem from different ideas; they56

adopt different terminologies; they look different; they have evolved different features; and57

they have found different applications in practice. Perhaps because the design principles of58

choreographic and multitier languages come from different angles, the two communities have59

prolifically evolved independently. However, as a consequence, the commonalities and actual60

differences between the two research lines remain unclear, which impedes cross-fertilisation.61

In this paper, we offer a new perspective on the relationship between choreographic and62

multitier languages. We show that, despite their different starting points and evolutions,63

they share a strong core idea that classifies them both as what we call multiparty languages—64

languages that describe the behaviour of multiple participants. Leveraging this commonality,65

it is possible to derive choreographic programs from multitier programs, and vice versa. Our66

aim is to provide a way for each community to access the other, encouraging cross-fertilisation.67

We outline our investigation and contributions:68

In Section 2, we give an overview of the essential features of choreographic and multitier69

languages. We recap the history of the two approaches and identify their key differences,70

which lie in perspective (objective vs subjective) and in the modelling of communications71

(manifest vs non-manifest). We also pinpoint the commonality that classifies choreographic72

and multitier languages as multiparty.73

In Section 3, we present an example use case for both choreographic and multitier74

programming, which introduces the concrete choreographic and multitier programming75

languages that we will use in the rest of our development: Choral [16] and ScalaLoci [38].76

In Section 4, we introduce Mini Choral and Mini ScalaLoci, two representative but77

minimal languages for choreographic and multitier programming, respectively. Mini78

Choral and Mini ScalaLoci dispense with the features that are not essential parts of79

their respective paradigms, which allows us to study how the essential differences can be80

bridged in the next section.81

In Section 5, we define algorithms for translating programs in Mini Choral to programs in82

Mini ScalaLoci, and vice versa. The translations deal with the changes in perspective and83

manifestation of communications between the two paradigms. For example, translating84

a multitier program into a choreographic one requires synthesising a communication85

protocol that enacts the necessary communications among participants.86

Our translations are not just of inspiration to see the connection between the two87

paradigms (which we leverage in the next section), but also open a window towards the88

future sharing of theoretical and practical results. An example for each direction: by89

translating a multitier program into a choreographic one and then using a choreographic90

S. Giallorenzo et al. 23:3

compiler to generate executable code, we can know statically the pattern of communica-91

tions that will be enacted by the executable code (this property is called “Choreography92

Compliance” [16] or “EndPoint Projection Theorem” [3]); by translating a choreographic93

program into a multitier one and then using a multitier compiler to generated executable94

code, we can reuse all the machinery developed by the multitier community to generate95

code for different technologies (e.g., the code generated for one participant is in JavaScript96

for a web browser while the code for another might be code runnable on the Java Virtual97

Machine for a server).98

Our study shows that, while choreographic and multitier programming languages are99

different enough to be independently useful, they are also near enough to benefit from100

cross-fertilisation. In Section 6, we report on important features that have been developed101

separately in the choreographic and multitier research lines. We find that important102

features for the development of concurrent and distributed systems have been developed103

for one paradigm but not the other. Inspired by our newfound connection, we discuss104

how these features could be ported over to the other paradigm in the future, setting up105

future work enabled by our view.106

2 Background: Choreographic and Multitier Programming Languages107

In this section, we give some background on choreographic and multitier languages, and108

discuss their differences and similarities.109

2.1 Choreographic Languages110

Choreographic languages are inspired by the famous “Alice and Bob” notation, or security111

protocol notation [30]. The idea is to define how the different participants of a system should112

communicate (or interact)—which later inspired also message sequence charts and sequence113

diagrams [20]. Textual and graphical choreographic languages have already been adopted in114

industry as specification languages in different settings ranging from business processes, e.g.,115

the choreographic language in OMG’s Business Process Model and Notation, to web services,116

e.g., W3C’s Web Services Choreography Description Language [31, 37].117

The essence of a choreographic language is the capability of expressing explicitly data flows118

from a participant to another through communication, and of composing such communications119

into larger structures. In other words, choreographies make interaction and the structure of120

interaction protocols manifest. A communication from a participant, Alice, to another, Bob,121

is written as follows.122

123
Alice.userId -> Bob.x : ch124125

The statement above reads: Alice sends its userId (a local variable storing a user identifier)126

to Bob, which stores it in its local variable x, and the communication takes place through the127

channel ch.128

Communication statements can be composed in larger and more sophisticated protocols,129

for example using the sequential operator “;”. In the following protocol snippet: after130

interacting with Alice, Bob forwards to Charlie the user identifier that it received through a131

separate channel ch2.132

Listing 1 A simple choreography with three participants.
133

Alice.userId -> Bob.x : ch;134

Bob.x -> Charlie.y : ch2;135136

ECOOP 2021

23:4 Multiparty Languages: The Choreographic and Multitier Cases

nested subjective descriptions by n peers
Choreographic Program
objective description of n roles

Multitier Program

Projection Choreography
Compiler

Executable Program

for role A
Executable Program

for role n

. . .

Splitting Multitier
Compiler

Executable Program

for peer A
Executable Program

for peer n

. . .

I take X

I compute Y

A
B

I compute X

C

...

I take X and Y

I compute Z
...

A
B

computes X

C

sends X toA
B computes Y
B sends Y to

C computes Z
...

CA sends X to

Figure 1 Choreographic Programming.

nested subjective descriptions by n peers
Choreographic Program
objective description of n roles

Multitier Program

Projection Choreography
Compiler

Executable Program

for role A
Executable Program

for role n

. . .

Splitting Multitier
Compiler

Executable Program

for peer A
Executable Program

for peer n

. . .

I take X

I compute Y

A
B

I compute X

C

...

I take X and Y

I compute Z
...

A
B

computes X

C

sends X toA
B computes Y
B sends Y to

C computes Z
...

CA sends X to

Figure 2 Multitier Programming.

In the paradigm of choreographic programming [28], choreographic languages are full-137

fledged programming languages: developers write the implementation of an entire multiparty138

system as a choreography, and then a compiler automatically generates an executable139

program for each participant. This process is depicted in Figure 1. Choreographies resemble140

play scripts, written from an external point of view, describing the interactions among all141

participants. We call this view objective. Participants, like Alice and Bob, are typically142

referred to as roles in choreographies, and the procedure that generates the executable143

program for each role is called projection (or endpoint projection) [4, 11].144

The code in Listing 1 is valid code in the Chor language, the first implementation of145

choreographic programming [28, 4]. Chor targets microservices: given that code (with146

appropriate boilerplate), Chor would generate executable programs of microservices that147

implement Alice, Bob, and Charlie. Choreographic programming has been applied to other148

settings, e.g., information flow [22], parallel algorithms [10], cyber-physical systems [24, 23],149

runtime adaptation [11], and integration processes [15].150

2.2 Multitier Languages151

Multitier languages are inspired by one of the ideas proposed with ambient calculi [5]. In this152

kind of process calculi, terms express the place (the “ambient”) at which computation occurs.153

Computations that take place at different locations can be nested, which enables describing154

multiparty systems. It was later shown that the idea can be combined with well-known155

abstractions, by developing a variation of λ-calculus with locations called Lambda 5 [29].156

This solution prompted the development of multitier languages [36, 8, 40], which extend157

existing programming languages with locations. The term multitier comes from the fact that158

these languages were mostly developed for web programming, where tiers is used to refer to159

the typical participants of a web system (e.g., client, backend server, and database).160

The crux of a multitier language is the capability of hopping from the point of view of161

a participant to that of another—the multitier language by Serrano et al. is aptly called162

“Hop” [36]. When hopping from a participant to another, it is possible to move data163

from the participant that we are leaving to the participant that we are going to—enabling164

communication. As an example, consider a remote procedure call from a client to server. In a165

S. Giallorenzo et al. 23:5

recent incarnation of multitier programming that builds on the Scala language, ScalaLoci [38],166

this can be written as follows.1167

168
def rpc(input: String): String on Client = on[Client] {169

val result =170

on[Server].run.capture(input) {171

expensiveFunction(input)172

}.asLocal173

return result174

}175176

Participants are referred to as peer types in ScalaLoci. The method rpc above is defined177

as a block of code that starts at the client peer (on[Client]). The client stores the result178

of some computation in its local variable result, but this computation is performed at the179

server. This result is achieved by “moving” to the server with the instruction on[Server]. The180

invocation of method run, right afterwards, models some computation, and capture(input)181

means that we want to move the content of the local variable input from the peer that we are182

leaving (the client) to the one that we are going to (the server). How this move is achieved183

is left to the implementation (ScalaLoci generates a communication strategy automatically).184

The server then runs an expensive function on the input, and the execution goes back to the185

client—the code block at the server ends. The invocation of asLocal ensures that the return186

value of the code at the server is moved to the location of the enclosing scope (the client).187

We finally return the result at the client.188

Like choreographic programming languages, multitier languages come with a compiler189

that turns the multiparty view of the system into executable programs. This process is190

depicted in Figure 2. Given a multitier program, a multitier compiler generates an executable191

program for each peer type (in the case of Section 2.2, these would be client and server). The192

procedure for generating code is called splitting. The nested “dialogues” of peers inside the193

multitier program depict that a multitier program has many viewpoints, switching regularly194

from the point of view of a peer to that of another. Nevertheless, code is written with the195

viewpoint of the peer we are currently in. For this reason, we say that multitier programs196

adopt a nested subjective view.197

2.3 Towards Linking Choreographic to Multitier Languages198

The two communities of choreographic and multitier languages have prolifically evolved199

independently [2, 40]. They adopted different design principles, and they have found different200

practical applications—most notably service-oriented computing for choreographies and201

web development for multitier programming. As a result, they have also developed several202

features independently (we discuss some of the most important ones in Section 6). In203

addition, the two communities have been facing different challenges. For example, multitier204

programming languages historically tackle the problem of “impedance mismatch”: the205

necessity of handling data conversions and heterogeneous execution engines in the web206

(the Google Web Toolkit is a multitier framework that contributes to this research area).207

Instead, choreographic programming mainly aimed at achieving “choreography compliance”:208

providing the guarantee that distributed systems communicate as expected and with desirable209

properties (like liveness).210

Yet, the two paradigms are clearly linked. We drew Figure 1 and Figure 2 with the211

intention of highlighting such connection. Indeed, despite differences in both terminologies212

1 For simplicity of presentation, we omit library calls that would be necessary to deal with asynchrony.

ECOOP 2021

23:6 Multiparty Languages: The Choreographic and Multitier Cases

and methods, the strategies of choreographic and multitier programming languages share a213

similarity: both define the behaviour of a multiparty system in a single compilation unit, and214

then offer ways to synthetise executable implementations for the participants. We thus identify215

both kinds of languages as instances of the larger class of multiparty languages—leaving the216

class open to future additions. We see value in both techniques for multiparty programming.217

In choreographies protocols are manifest, which makes them easy to understand. Multitier218

programs give access to multiparty programming with a developing experience that resembles219

standard “local programming” by leveraging scoping.220

Despite both choreographic and multitier languages sharing the multiparty approach,221

they remain pretty diverse in terms of theoretical background. The theory of choreographic222

language typically stands on process calculi, whereas multitier models build on λ-calculus [18,223

4, 19, 11, 40]. This is likely an important reason why the link between choreographic and224

multitier languages has been overlooked for long. Very recently, however, it has been shown225

that object-oriented languages can be extended to capture choreographies, by generalising226

the notion of data type to data types located at multiple roles [16]. In the resulting language,227

called Choral, a choreography among a few roles can be expressed as an object. For example,228

we can write the choreography in Listing 1 in Choral as follows:229

230
1 class Example@(Alice, Bob, Charlie) { // the three roles of the protocol231

2 DiDataChannel@(Alice,Bob)<Serializable> ch; // channel from Alice to Bob232

3 DiDataChannel@(Bob,Charlie)<Serializable> ch2; // channel from Bob to Charlie233

4234

5 /* constructor omitted */235

6236

7 public UserID@Charlie run(UserID@Alice userId) { // the protocol237

8 UserID@Bob x = ch.<UserID>com(userId); // Alice.userId -> Bob.x : ch238

9 return ch2.<UserID>com(x); // Bob.x -> Charlie.y : ch2239

10 }240

11 }241242

Briefly—as we give a more detailed description of Choral programs in Section 3.2—the243

Example class declares three roles (Alice, Bob, and Charlie) and two directed channels (ch from244

Alice to Bob and ch2 from Bob to Charlie). These correspond to the roles and channels assumed245

in Listing 1. The protocol described in Listing 1 is implemented by method run that takes246

an instance of UserID located at Alice and returns one located at Charlie passing through Bob.247

Communication happens by invoking method com of the two channels.248

Choral helps in leveling the playfield with multitier programming. Indeed, we now have249

an object-oriented incarnation of choreographic programming that we can use to compare to250

object-oriented multitier languages, here represented by ScalaLoci. In the next sections, we251

leverage this common ground and take Choral and ScalaLoci as representative languages for252

their respective paradigms.253

3 Overview of Choral and ScalaLoci254

In this section, we give an overview of the representative languages for choreographic and255

multitier programming that we have chosen, Choral and ScalaLoci, by using them to deal256

with a simple yet comprehensive example of a context-aware protocol for e-mail fetching.257

3.1 A Context-Aware Email-Fetching Protocol258

Before delving into the details of the two implementations, we discuss briefly the protocol259

that we want to program. A depiction as a sequence diagram is given in Figure 3. The260

protocol defines an interaction between an Email Client and an Email Server. Specifically,261

S. Giallorenzo et al. 23:7

Email Client Email Server

User ID

Last Checkout Timestamp

List of Emails

opt

(Client is on a flat-rate connection)

List of Email IDs

List of Attachments

Figure 3 Sequence diagram for context-aware e-mail fetching.

the Client sends its identification token—here simplified as User ID—and the timestamp of262

the last e-mail checkout to the Server. The Server returns the list of e-mails received after263

the timestamp to the Client. After the above interaction, the Client and the Server enter264

an optional block. The optional block is executed depending on the context of the client,265

namely, if the connection from the Client to the Server is flat-rate, i.e., if the connection fee266

paid by the Client is independent from its usage. If that is the case, the Client sends the267

Server the list of e-mail IDs retrieved in the previous interaction to fetch their attachments.268

The Server concludes the optional part of the protocol by sending to the Client the requested269

attachments.270

3.2 A Choreographic Programming Implementation with Choral271

In Listing 2, we use Choral to implement the protocol from Figure 3. The example illustrates272

the main concepts of the choreographic programming approach and how Choral captures273

them in the object-oriented setting.274

In Choral, objects have types of the form T@(R1, ..., Rn), where T is the interface of the275

object (as usual), and R1, . . . , Rn are the roles that collaboratively implement the object.276

As we see below, Choral supports two notations for object ownership: the standard form277

@(A, ..., Z) and the contracted form @A, for objects that belong to one role (shortcut for278

@(A)). Incorporating roles in data types makes distribution manifest at the type level.279

In Listing 2, at Line 3, we define a class EmailSystem implemented by two roles: the Client280

and the Server. The method updateEmails (Line 8) implements the actual protocol from281

Figure 3. Lines 4–6 declare class-level private objects, i.e., accessible from the updateEmails282

method and other (omitted) ones within the class. Specifically, at Line 4, we have the283

MailServerDB located at the Server. At Line 5, we find the complementary MailDB of the284

Client. At Line 6, we define the object used to transfer data between the two roles: a285

SymChannel—standing for symmetric channel—shared between the two roles and able to286

transmit Serializable objects. We omit the initialisation of the abovementioned objects.287

Considering the description of the implementation of the e-mail fetching protocol, we look288

at the updateEmails method (Line 8). The method does not return a value (void) and takes289

ECOOP 2021

23:8 Multiparty Languages: The Choreographic and Multitier Cases

as input the UserId—which simplifies the user authentication procedure here, for brevity—to290

identify the user of the Client at the Server.291

In the body, at Line 9, we pass the UserId to the Server. We do this by invoking the292

method com of the ch SymChannel giving to it as argument the userId. This is done by the293

expression userId >> ch::com which uses the Choral chaining operator >> and that corresponds294

to the expanded expression ch.com(userId).2 The method com of the SymChannel transfers the295

value of the sender given as input into an equivalent representation of the value at the receiver.296

In this case, the sender is the Client (where the UserId object lives) and the receiver is the297

Server, which stores the result of the communication into variable id which is an object of298

type UserId at its location—i.e., UserId@Server.299

The transfer of the Timestamp from the Client to the Server is similar (Line 10): we retrieve300

the object from the clientDB—invoking method lastCheckOut—and we transfer it to the Server301

thought the SymChannel. Then, to fetch the e-mails, the Client receives a transmission from302

the Server. The Server interrogates its local database (serverDB) by extracting all e-mails303

belonging to the id of the Client and received since its last checkout (indicated by the304

timestamp) and sends them to the Client via their shared SymChannel. At Line 12, the Client305

uses the received list of emails to update its local database (clientDB).306

Lines 13–20 implement the optional part of the protocol from Figure 3. First, the Client307

checks whether it is using a flat-rate connection—this is done through the static library308

ClientLib and its method isOnFlatRate.309

The if-else block at Lines 13–20 allows us to explain the concept of knowledge of choice310

(a hallmark element of choreographic programming) and how Choral implements it. Briefly,311

the concept of knowledge of choice indicates a fork in the flow of a program among alternative312

behaviours, where the concerned roles should coordinate to ensure that they agree on which313

behaviour they should enact. In Choral, we adopt a standard choreographic solution to this314

problem [11] by defining a “selection” primitive to communicate constants drawn from a315

dedicated set of “labels”, so that the compiler has enough information to build code that316

can react to choices made by other roles. Concretely, to define selections, Choral uses a317

method-level annotation @SelectionMethod3, which developers can apply only to methods318

that can transmit instances of enumerated types between roles (the compiler checks for this319

condition). Conveniently, the SymChannel used in the example also supports selections via its320

select methods. In Listing 2, we find the implementation of the knowledge of choice of the321

conditional at Line 14 (where the Client “decides” to fetch the attachments) and at Line 20322

(which skips the retrieval). In the example, we implement the choice by defining the Choice323

enum class at Line 1—note that we use the identifier Role for the single role that owns the324

Choice object in its declaration, instantiated at the Client at Lines 14 and 20.325

If the Client uses a flat-rate connection, the chained statement at Lines 15–17 execute:326

first (Line 15) the Client sends to the Server the IDs of the e-mails (retrieved through327

extractIds(emails)) whose attachments it wants to retrieve, then (Line 16) the Server uses328

the received ids to extract from its database (serverDB) the attachments and it send them329

back to the Client, and finally (Line 17) the Client uses the received attachments to update330

its local database.331

2 To make Choral programs closer to standard choreographic notation, where data flows from left to right,
Choral borrows the forward chaining operator >> from F#: exp >> obj::method is syntactic sugar for
obj.method(exp).

3 Choral preserves the standard @-notation for annotations from Java, which is contextually separated
from @(R1,...,Rn) parameters in Choral programs.

S. Giallorenzo et al. 23:9

Listing 2 Choral implementation for the context-aware e-mail fetching example.
1 enum Choice@Role { THEN, ELSE }
2

3 class EmailSystem@(Client, Server) {
4 private MailServerDB@Server serverDB = ...;
5 private MailDB@Client clientDB = ...;
6 private SymChannel@(Client, Server)<Serializable> ch = ...;
7

8 void updateEmails(UserId@Client userId) {
9 UserId@Server id = userId >> ch::com;

10 Timestamp@Server timestamp = clientDB.lastCheckOut() >> ch::com;
11 List@Client<Email> emails = serverDB.since(id, timestamp) >> ch::com;
12 clientDB.update(emails);
13 if (ClientLib@Client.isOnFlatRate()) {
14 Choice@Client.THEN >> ch::select;
15 clientDB.extractIds(emails) >> ch::com
16 >> serverDB::getAttachments >> ch::com
17 >> clientDB::updateAttachments;
18 }
19 else {
20 Choice@Client.ELSE >> ch::select;
21 }
22 }
23 }

3.3 A Multitier Programming Implementation with ScalaLoci332

We now use ScalaLoci to illustrate the multitier programming approach, implementing the333

protocol from Figure 3 in Listing 3.334

In ScalaLoci, the location of different values is specified through placement types. The335

placement type T on P represents a value of type T on a peer P. Developers can freely define336

the different components, called peers, of the distributed system. For instance, in the example,337

serverDB is a MailServerDB placed on the Server (Line 5) and clientDB is a MailDB placed on the338

Client (Line 6).339

Peers are defined as abstract type members (Lines 2 and 3). Further, peer types express340

the architectural relation between the different peers by specifying ties between peers, thus341

supporting generic distributed architectures. Ties statically approximate the run time342

connections between peers. In the example, we define a single tie from client to server343

(Line 2) and from server to client (Line 3). A single tie expresses the expectation that a344

single remote instance is always accessible. In the specified architecture, a client connects to345

a single server and a server program instance handles a single client.346

The updateEmails method (Line 8) encapsulates the communication logic from Figure 3. It347

takes the UserId for identifying the client as input. The implementation diverts control flow348

to the server using a nested on[Server].run expression (Line 10). The capture clause transfers349

both the timestamp and the userId from the client to the server. Inside the server expression350

(Line 11), the server queries its local serverDB database to extract all e-mails belonging to the351

userId of the client received since its last checkout (indicated by the timestamp). The result352

of the server-side expression is returned to the client using asLocal (Line 12).353

In ScalaLoci, accessing remote values via the asLocal marker creates a local representation354

of the remote value by transmitting it over the network. Usually, such local representation uses355

a future, accounting for network delay and potential communication failure. Futures represent356

values that become available in the future or produce an error. In the example, however, we357

picked a different transmission scheme where values are transmitted synchronously. ScalaLoci358

ECOOP 2021

23:10 Multiparty Languages: The Choreographic and Multitier Cases

Listing 3 ScalaLoci implementation for the context-aware e-mail fetching example.
1 @multitier object EmailSystem {
2 @peer type Client <: { type Tie <: Single[Server] }
3 @peer type Server <: { type Tie <: Single[Client] }
4

5 private val serverDB: MailServerDB on Server = ...
6 private val clientDB: MailDB on Client = ...
7

8 def updateEmails(userId: UserId): Unit on Client = on[Client] {
9 val timestamp: Timestamp = clientDB.latestCheckout

10 val emails: List[Email] = on[Server].run.capture(userId, timestamp) {
11 serverDB.since(userId, timestamp)
12 }.asLocal
13

14 clientDB.update(emails)
15 if (ClientLib.isOnFlatRate) {
16 val ids = clientDB.extractIds(emails)
17 clientDB.updateAttachments(
18 on[Server].run.capture(ids) { serverDB.getAttachments(ids) }.asLocal)
19 }
20 }
21 }

allows developers to choose among different such transmitters.359

The client then uses the received list of emails to update its local clientDB database (Line 14).360

Lines 15–19 implement the optional part of the communication logic from Figure 3. If the client361

is currently using a flat-rate connection—as indicated by the static ClientLib.isOnFlatRate362

method—the client initiates a second server-side computations using on[Server].run (Line 18).363

The client transfers the IDs of the e-mails (retrieved through extractIds(emails))—whose364

attachments to receive—to the server, which extracts the attachments from its serverDB365

database and returns them to the client, which then updates its local clientDB with the366

received attachments (Line 17).367

4 Mini Choreographic and Multitier Languages368

We now introduce Mini Choral and Mini ScalaLoci, minimal languages that omit most features369

of their reference counterparts that are irrelevant to our study (like generics and inheritance).370

This allows us to focus on the distinctive traits that characterise the choreographic and371

multitier approaches, respectively. The minimality of the two languages is instrumental to372

highlight their distinguishing features here and to focus on the salient points that define their373

reciprocal translations in Section 5. Next, we present the grammar of the two languages and374

briefly describe the components that mark them respectively as choreographic and multitier375

languages.376

4.1 Mini Choral377

Listing 4 displays the grammar of Mini Choral. C ranges over class declarations, Channel378

ranges over channel declarations, Field ranges over class fields, Method ranges over method379

definitions, Type ranges over type expressions, and Exp ranges over expression terms. The380

metavariable id ranges over both class names, fields, and variables. We use A, B, C to range381

over role names. Here and in the reminder of the paper, we use overlines to denote sequences382

of terms of the same sort and we denote concatenation of sequences using a comma.383

S. Giallorenzo et al. 23:11

Listing 4 Syntax of Mini Choral

Mini Choral C ::= class·id@(A){ Channel·Field·Method }
Type Expression Type ::= id@(A)
Channels Channel ::= DiChannel@(A, B)·ch_A_B
Field Field ::= Type·id
Method Definition Method ::= Type·id(Type·id){ return·Exp }
Expression Exp ::= id | Exp.id | Exp.id(Exp) | new·id@(A)(Exp)

| lit@(A) | if·(Exp) { Exp }·else·{Exp} | Exp; ·Exp
| ch_A_B.com(Exp) | ch_A_B.select(Exp)

The class declaration C defines its name id, its owner roles A within the @(· · ·) clause,384

the topology of directed channels available between roles in Channel, its field declarations385

Field, and its suite of method definitions Method.386

In Mini Choral, we decided to focus on describing data flow and to limit Choral’s387

expressivity regarding data distribution. That is, we allow only the declared class to be388

distributed at multiple roles, while variables belong to only one role, with the exception of389

Channels, which specify the network topology as a set of objects located (and able to transfer390

single-role objects) between two roles. Specifically, Mini Choral supports only one-way391

channels (drawn from Choral and called DiChannels) of the shape DiChannel@(A,B) ch_A_B—392

with A and B roles of the enclosing class. In this work, the loss of expressiveness of the Mini393

variant with respect to Choral—which supports the definition of multi-role classes/fields394

without the above limitations—lends itself to simplify the algorithms in our translation in395

Section 5 without losing generality on the choreographic approach. In the general case, Choral396

can express arbitrary channel topologies and user-defined implementations of communications397

semantics (e.g., asymmetric channels or bidirectional symmetric channels) [16]—whereas398

most choreographic languages assume a complete topology of channels between all roles in a399

choreography with a fixed communication semantics [4, 11].400

Following the considerations above, we restrict type expressions Type to define variables401

located at one role id@(A). This is reflected in the definition of Fields but also in method402

definitions, where we additionally assume the return type Type and the types of arguments403

Type·id to be located at the same role. The body of the method is the single statement404

return·Exp. Regarding expressions, we focus our description on the relevant, non-standard405

elements: object creation new·id@(A)(Exp) happens for classes at only one role and literals406

lit@(A) (integers, strings, etc.) are always located at one role. In Exp, we use Exp; Exp to407

represent a block which evaluates the expression on the left, discards its value, and returns408

the evaluation of the expression on the right.409

Although already captured by the grammar, we include channel invocations of the shape410

ch_A_B.com(Exp) and ch_A_B.select(Exp) to highlight their relevance in the language.411

DirectChannels support both methods com, meant to transfer data between two roles, and412

select, used to solve knowledge-of-choice challenges in conditionals (that is, informing a role413

of a local choice made by another role, e.g., by using a conditional) [16]. When using selects,414

we assume that the compiler provides us with a Choice enum class at one role, with a THEN and415

ELSE inhabitants (as presented at Line 1 in Listing 2).416

4.1.1 Example: Mini Choral Expressiveness417

We conclude the presentation of our minimal choreographic language by illustrating its418

expressiveness with respect to its reference Choral language with an implementation of the419

ECOOP 2021

23:12 Multiparty Languages: The Choreographic and Multitier Cases

Listing 5 Mini Choral implementation for the context-aware email fetching example.
1 class EmailSystem@(Client, Server) {
2 DirectChannel@(Client, Server) ch_Client_Server
3 DirectChannel@(Server, Client) ch_Server_Client
4

5 MailServerDB@Server serverDB
6 MailDB@Client clientDB
7

8 Unit@Client updateEmails(UserId@Client userId) {
9 return contextAwareUpdate(getEmails(userID, clientDB.lastCheckOut())))

10 }
11

12 List@Client getEmails(UserId@Client id, Timestamp@Client ts) {
13 return ch_Server_Client.com(
14 serverDB.since(ch_Client_Server.com(id), ch_Client_Server.com(ts))
15 }
16

17 Unit@Client contextAwareUpdate(List@Client emails) {
18 clientDB.update(emails);
19 if (ClientLib.isOnFlatRate()) {
20 ch_Client_Server.select(Choice@Client.THEN);
21 clientDB.updateAttachments(
22 ch_Server_Client.com(
23 serverDB.getAttachments(
24 ch_Client_Server.com(clientDB.extractIds(emails)))))
25 }
26 else {
27 ch_Client_Server.select(Choice@Client.ELSE); Unit
28 }
29 }
30 }

email-fetching protocol presented in Section 3.2, Listing 2.420

We report the code of the Mini Choral implementation of the protocol in Figure 3 in421

Listing 5. In the Listing, the main notable difference with Listing 2 is that, by removing422

assignments, we rely on method bindings to reuse variables in “subsequent” (;) invocations.423

Although divided into three sub-methods, we find the updateEmails method that invokes the424

getEmails method, which fetches the emails from the Server by sending to it the id of the425

user and the timestamp (ts) of the last checkout and transmitting back the result of the426

extraction on the serverDB. Notice that the return type of the getEmails method omits the427

definition of the “content” of the list due to the lack of generics. As expected, by omitting428

generics we also drop support for specifying/checking the correct/expected content of the429

collection—an orthogonal guarantee with respect to the specification/check of the flow of430

data among roles. The lack of generics does not hamper the expressiveness of the language431

to capture the correct movement of the data from the Server to the Client and vice versa.432

After obtaining the emails, we can apply method contextAwareUpdate which updates the email433

database of the client and proceeds to conditionally retrieve the attachments of the fetched434

emails. This is done by informing the Server of the choice, via the select methods.435

4.2 Mini ScalaLoci436

Listing 6 displays the grammar of Mini ScalaLoci. L ranges over object declarations, Peer437

ranges over peer declarations, Field ranges over class fields, Method ranges over method438

definitions, Type ranges over type expressions, PlacedType ranges over placement type439

expressions, Exp ranges over expressions, and PlacedExp ranges over placed expressions. The440

S. Giallorenzo et al. 23:13

Listing 6 Syntax of Mini ScalaLoci

Mini ScalaLoci L ::= @multitier object·{ Peer ·Field·Method }
Peer Peer ::= @peer type·A·<:{·type Tie <:·Any·with·Single[B]·}
Placement Type Expression PlacedType ::= Type·on·A
Type Expression Type ::= id

Field Field ::= val·id : PlacedType
Method Definition Method ::= def·id (id : Type) : PlacedType· = ·PlacedExp
Placed Expression PlacedExp ::= on[A]·{ Exp }
Expression Exp ::= id | Exp.id | Exp.id(Exp) | new·id(Exp)

| lit | if·(Exp) { Exp }·else·{ Exp } | Exp; ·Exp
| on[A].run.capture(id)·{ Exp }.asLocal

metavariable id ranges over both class names, fields, and variables. We use A, B, C to range441

over peers.442

The object declaration L defines its name id, and its peers A and topology of directed443

ties between the peers within the @peer type A <: { type Tie <: Any with Single[A] } clauses,444

its field declarations Field, and its method definitions Method. Fields associate a placement445

type expression PlacedType to a variable.446

Mini ScalaLoci is able to express different topologies rather than being restricted to a447

fixed client-server model. This choice remarks the departure taken by ScalaLoci from other448

multitier models and implementations [8, 9, 34, 35, 36], which assume a fixed client-server449

or n-tier architecture of an application. Contrarily, in ScalaLoci, the developer defines an450

arbitrary number of peers and directional ties between them. In contrast to ScalaLoci,451

Mini ScalaLoci only supports a single connected peer instance per peer type (drawn from452

ScalaLoci’s Single ties) of the shape @peer type A <: { type Tie <: Single[A] }—with A and B453

peers of the enclosing multitier module. In this work, the loss of expressiveness of the Mini454

variant with respect to ScalaLoci lends itself to simplify the algorithms in our translation in455

Section 5 with losing generality on the multitier approach.456

In method definitions, the return type PlacedType specifies a location, which places the457

computation of the whole method on that peer, whereas the arguments only have types458

but no placement id : ·Type. The body of the method is a placed expression PlacedExp that459

specifies the placement of the contained expression Exp. Regarding expressions, we focus our460

description on the main differences with Choral: In ScalaLoci, we locate expressions rather461

than data and therefore neither instantiation new·id(Exp) nor literals lit (integers, strings,462

etc.) carry placement annotations.463

Nested remote blocks are encoded by on[A].run.capture(id)·{ Exp }.asLocal expressions,464

which execute the nested expression on the peer A and returns its result via asLocal to465

the surrounding peer, i.e., switching the current perspective to another peer for evaluating466

the nested expression. Note that in the Mini variant, we keep the run, capture and asLocal467

constructs to be close to the complete version of the ScalaLoci language (that is syntactic-468

ally more flexible and supports optional capture clauses and asLocal on module-level value469

bindings).470

4.2.1 Example: Mini ScalaLoci Expressiveness471

We show the implementation of the email-fetching example presented in Section 3.3, Listing 3472

using our minimal multitier language to demonstrate its expressiveness with respect to its473

reference ScalaLoci language.474

Listing 5 shows the Mini ScalaLoci implementation of the communication scheme in475

ECOOP 2021

23:14 Multiparty Languages: The Choreographic and Multitier Cases

Listing 7 Mini ScalaLoci implementation for the context-aware email fetching example.
1 @multitier object EmailSystem {
2 @peer type Client <: { type Tie <: Any with Single[Server] }
3 @peer type Server <: { type Tie <: Any with Single[Client] }
4

5 val serverDB: MailServerDB on Server
6 val clientDB: MailDB on Client
7

8 def updateEmails(userId: UserId): Unit on Client = on[Client] {
9 contextAwareUpdate(getEmails(userID, clientDB.lastCheckOut()))

10 }
11

12 def getEmails(id: UserId, ts: Timestamp): List on Client = on[Client] {
13 on[Server].run.capture(id, ts) {
14 serverDB.since(
15 on[Client].run.capture(id) { id }.asLocal,
16 on[Client].run.capture(ts) { ts }.asLocal))
17 }.asLocal
18 }
19

20 def contextAwareUpdate(emails: List): Unit on Client = on[Client] {
21 clientDB.update(emails);
22 if (ClientLib.isOnFlatRate()) {
23 clientDB.updateAttachments(on[Server].run.capture(emails) {
24 serverDB.getAttachments(
25 on[Client].run.capture(emails) { clientDB.extractIds(emails) }.asLocal)
26 }.asLocal)
27 }
28 else {
29 Unit
30 }
31 }
32 }

Figure 3. As with Mini Choral, the main notable difference with Listing 3 is that by removing476

assignments, we rely on method arguments for scoped variable declarations instead. The477

updateEmails method invokes the getEmails method, which fetches the emails from the Server478

by sending to it the id of the user and the timestamp (ts) of the last checkout and transmitting479

back the result of the extraction on the serverDB. Similar to Mini Choral, Mini ScalaLoci480

also lacks generics, an orthogonal language feature. The lack of generics, however, does not481

limit the expressiveness of the language to capture the correct topology of the system and482

communication between the Server and the Client. After obtaining the emails, we apply483

method contextAwareUpdate, which updates the email database of the client and proceeds to484

conditionally retrieve the attachments of the fetched emails.485

5 Choreographies to Multitier, Multitier to Choreographies486

We now define algorithms that translate programs in a Mini language to the other and487

vice versa. The reason for defining the following algorithms is to present evidence of the488

existence of a common root at the foundation of the two approaches. We show that the489

mechanised procedures for their reciprocal translation are relatively simple. In the remainder490

of this section, for brevity, we use the names Choral and ScalaLoci to indicate their Mini491

counterparts. We first present a translation algorithm from a Choral choreography to a492

ScalaLoci multitier application (Section 5.2). Afterwards, we show a translation algorithm493

from a ScalaLoci multitier application to a Choral choreography (Section 5.2).494

S. Giallorenzo et al. 23:15

Perspective translation Multitier and choreographic programming take different perspect-495

ives on what parts of the language are annotated with locations. In Choral, all literals are496

annotated by the role on which they operate, and the location of operators can be inferred497

by the location of their argument. ScalaLoci assigns peers to expressions, which are then498

written from the specified peer’s perspective.499

While in simple cases there is a direct correspondence between a value on the role A in500

Choral (1@A) and on a peer A in ScalaLoci (on[A] { 1 }), the difference is more obvious in501

compound expressions (on[A] { 1 + 2 + 3 } vs. 1@A + 2@A + 3@A), where in ScalaLoci, only the502

whole expression is annotated but the literals are not, whereas in Choral, only the literals503

are annotated while the expression is not.504

The translation algorithms perform such perspective change by grouping composed literals505

on the same Choral role into a ScalaLoci placed expression and, in the opposite direction,506

assigning the same Choral role to all literals in a ScalaLoci placed expression.507

Further, we translate between ScalaLoci’s way of defining peers and their topology as type508

members and Choral’s way of defining roles as class parameters and their communication509

channels as class members.510

Communication translation In ScalaLoci two peers communicate using asLocal. Given an511

expression e on peer A, the expression on[B] { e.asLocal } describes how peer B can access the512

value of e, implemented as a message with the value of e sent from A to B. In Choral, such513

communication is represented by invoking the com method of a directional communication514

channel, which takes a value on role A and returns it on role B.515

The translation algorithms transform asLocal in ScalaLoci to an invocation of method516

com of the appropriate channel in Choral and vice versa.517

5.1 From Choreographic Programming to Multitier Programming518

Choral choreography classes to ScalaLoci multitier objects Algorithm 1 describes the519

translation of Choral choreography classes to ScalaLoci multitier objects. We decompose the520

class definition to be transformed into its identifier id, the roles Role, the channel declarations521

Channel, the field declarations Field and the method definitions Method.522

Each Choral role definition is translated to a ScalaLoci peer definition. Each channel523

DiChannel@(A,B) ch_A_B between two roles is translated to a single tie, e.g., a directed one-to-one524

tie, between two peers @peer type A <: { type Tie <: Single[B] }.525

The translation of field definition from Choral to ScalaLoci is straightforward. In Choral,526

fields are introduced with a base type and the residing role, followed by the name of the field527

"idname@(idrole) idtype". In ScalaLoci, fields are introduced as "val idname: idtype on idrole".528

Similarly, method definitions are translated.529

Finally, the algorithm returns a multitier object with the same name and the translated530

definitions as a body.531

Choral choreography expressions to ScalaLoci multitier expressions Algorithm 2 de-532

scribes the translation of Choral expressions to ScalaLoci: the algorithm matches on the533

different cases of Choral Exp terms and transforms each into the corresponding ScalaLoci534

code.535

For sequencing e0; e1, both e0 and e1 are recursively transformed. If both subexpressions536

agree on their placement, e.g., A = B, the complete sequence is placed on the same peer.537

More interestingly, if the subexpressions are placed on different peers, we introduce a nested538

ECOOP 2021

23:16 Multiparty Languages: The Choreographic and Multitier Cases

Algorithm 1 Translation algorithm from Choral classes to ScalaLoci objects.
function choral2loci(class)

"class id@(Role) { Channel Field Method }" ← class
decls ← { }
for T ← Role do

ties ← { "Single[B]" | "DiChannel@(A, B) ch_A_B" ∈ Channel ∧ T = A }
decls ← decls ∪ { "@peer type·T ·<: ·{·type Tie <: Any·with·ties }" }

end
for "idt@(A)·idn" ← Field do

decls ← decls ∪ { "val·id1· : ·id0·on·A" }
end
for "idt@(A)·id·(idtn@(A) iden) { e }" ← Method do

e′ ← choral2loci(e)
decls ← decls ∪ { "def·id(iden : idtn) : ·idt·on·A = {e′}" }

end
return "@multitier object·id·{·decls·}"

end

remote block for e′
0, which executes e′

0 on A and places the overall result of e′
1 on B. For the539

remote block we generate a capture clause for all method-local variables that are free in e0.540

The translations for identifiers, literals and instantiation is straightforward, placing the541

ScalaLoci expression on the peer according to the role specified in the Choral code. Further,542

the case for method invocation is similar since we assume that the receiver of a method543

invocation and its arguments are on the same role. This assumption is expressed by the assert544

statement in the algorithm and holds for every well-typed Mini Choral program. Selection545

does not exist in ScalaLoci. Hence, it is removed.546

The case for branching makes a distinction similar to sequencing of whether the condition547

agrees to the branches regarding their placement, e.g., A = B. If they agree, the complete548

branching is placed on the same peer. Otherwise, we introduce a nested remote block for e′
0,549

which executes e′
0 on A and returns the result to B where the branches are placed. B then550

acts as a coordinator to decide which of the branches to execute.551

Finally, we translate Choral’s channel communication. For a channel from role B to A,552

we generate a ScalaLoci expression, which runs a nested remote block for e′, which executes553

e′ on B and returns the result to A.554

5.2 From Multitier Programming to Choreographic Programming555

ScalaLoci multitier objects to Choral choreography classes Algorithm 3 describes the556

translation of ScalaLoci multitier objects to Choral choreography classes. We decompose the557

multitier object to be transformed into its identifier id, the peer and tie declarations Peer ,558

the field declarations Field and the method definitions Method.559

Each ScalaLoci peer definition is translated to Choral role argument and each single tie560

between two peers is translated to a DiChannel between two peers @(A,B).561

The translation of field and method definitions from ScalaLoci to Choral is straightforward.562

Finally, the algorithm returns a Choral class with the same name and the translated563

definitions as a body.564

S. Giallorenzo et al. 23:17

Algorithm 2 Translation algorithm from Choral expressions to ScalaLoci expressions.
function choral2loci(expr)

return match expr with
case "e0; e1" with

"on[A]{·e′
0·}" ← choral2loci(e0)

"on[B]{·e′
1·}" ← choral2loci(e1)

captures← freeV ars(e0) ∩ currentMethodArguments

if A ̸= B then
"on[B]{ on[A].run.capture(captures)·{·e′

0·}.asLocal; e′
1 }"

else
"on[B]{·e′

0; e′
1·}"

end
case "id" with

A ← roleOf(id)
"on[A]{·id·}"

case "lit@A" with
"on[A]{·lit·}"

case "new·id@A·(e)" with
"on[A]{·e′·}" ← choral2loci(e)
"on[A]{·new·id(e′)·}"

case "e0.id(e)" with
"on[A]{·e′

0·}" ← choral2loci(e0)
"on[B]{·e′·}" ← choral2loci(e)
assert A = B // receiver and arguments have the same role
"on[A]{ e′

0.id(e′) }"
case "ch.select(e)" with

"Unit"
case "if·(e0)·{·e1·}·else·{·e2·}" with

"on[A]{·e′
0·}" ← choral2loci(e0)

"on[B]{·e′
1·}" ← choral2loci(e1)

"on[C]{·e′
2·}" ← choral2loci(e2)

captures← freeV ars(e0) ∩ currentMethodArguments

assert B = C // branches have the same role
if A ̸= B then

"on[B]{·if·(on[A].run.capture(captures)·{·e′
0·}.asLocal)·{·e′

1·}·else·{·e′
2·} }"

else
"on[B]{·if·(e′

0)·{·e′
1·}·else·{·e′

2·}·}"
end

case "ch_B_A.com(e)" with
"on[B]{·e′·}" ← choral2loci(e)
captures← freeV ars(e) ∩ currentMethodArguments

"on[A]{ on[B].run.capture(captures)·{·e′·}.asLocal }"
end

end

ScalaLoci multitier expressions to Choral choreography expressions Algorithm 4 de-565

scribes the translation of ScalaLoci expressions to Choral expressions. The algorithm matches566

on the different cases of ScalaLoci Expr terms and transforms each of them into the corres-567

ponding ScalaLoci code.568

The translations for sequencing, identifiers, literals, instantiation and method invocation569

is straightforward, recursively transforming each subexpression.570

In the case for branching, the translation needs to synthesise select expressions to571

implement knowledge of choice (recall Section 3.2). Hence, we collect all peers used in the572

ECOOP 2021

23:18 Multiparty Languages: The Choreographic and Multitier Cases

Algorithm 3 Translation algorithm from ScalaLoci objects to Choral classes.
function loci2choral(module)

"@multitier object id { Peer Field Method }" ← module

decls ← { }
roles ← { }
for "@peer type A <: { type Tie <: Any with·ties }" ← Peer do

roles ← roles ∪ { A }
for "Single[B]" ← ties do

decls ← decls ∪ { "DiChannel@(A,B) ch_A_B" }
end

end
for "val id1: id0 on A" ← Field do

decls ← decls ∪ { "id0@(A) id1" }
end
for "def id(iden : idtn): idt on A = { e }" ← Method do

e′ ← loci2choral(e)
decls ← decls ∪ { "idt@(A) id(idtn@(A)·iden) { e′ }" }

end
return "class id@(roles) { decls }"

end

branches and create select statements for all channels between those peers for both branches.573

Finally, we translate ScalaLoci’s nested remote blocks. For a remote expression placed574

on A that executes e on B, we generate a Choral channel communication that transfers the575

value of e from B to A.576

6 A Unified Perspective577

Although choreographic and multitier programming evolved in dissimilar ways, their cores—578

represented by our two Mini languages—are close enough to let us define in Section 5579

straightforward translation algorithms in both directions and show the core features of both580

approaches isomorphic.581

Besides the more abstract purpose to present evidence of the closeness of the two582

approaches, our translation algorithms are also directly useful in practice. Translating583

Choral to ScalaLoci code enables the reuse of ScalaLoci’s middleware for Choral. In general,584

translating to multitier programs is interesting because we can leverage the possibility of585

compiling to different technologies.586

Translating ScalaLoci to Choral code enables synthesising the choreography of the587

multitier program. Making the protocol manifest supports both manually checking what588

communications take place as well as automatic analyses (e.g., security).589

We believe that both the multitier and choreographic research areas can greatly benefit590

from cross-fertilisation and transfer of concepts already developed in one but lacking in the591

other. As a glimpse of this fact, we dedicate Section 6.1 to describe some advanced features592

present in only one of the two languages (Choral, ScalaLoci) and outline how they could be593

integrated into the other in the future. We conclude this section by widening our scope on594

the category of multiparty language in Section 6.2. We give an (incomplete) overview on595

other languages that are neither multitier nor choreographic but share common traits that596

can classify them as multiparty ones. We consider those languages valuable additions to the597

S. Giallorenzo et al. 23:19

Algorithm 4 Translation algorithm from ScalaLoci expressions to Choral expressions.
function loci2choral(expr)

return match expr with
case "on[A]{·e0; e1·}" with

e′
0 ← loci2choral("on[A]{·e0·}")

e′
1 ← loci2choral("on[A]{·e1·}")

"e′
0; e′

1"
case "on[A]{·id·}" with "id"
case "on[A]{·lit·}" with

"lit@A"
case "on[A]{ new id(e) }" with

e′ ← loci2choral("on[A]{·e·}")
"new·id@A(e′)"

case "on[A]{·e0.id(e)·}" with
e′

0 ← loci2choral("on[A]{·e0·}")
e′ ← loci2choral("on[A]{·e·}")
"e′

0.id(e′)"
case "on[A]·{·if·(e0)·{·e1·}·else·{·e2·}·}" with

e′
0 ← loci2choral("on[A]{·e0·}")

e′
1 ← loci2choral("on[A]{·e1·}")

e′
2 ← loci2choral("on[A]{·e2·}")

peers ← peersIn(e′
1) ∪ peersIn(e′

2)
channels ← { "ch_A_B" | B ∈ peers ∧A has tie to B }
thenSelects ← { "c.select(Choice@A.THEN)" | c ∈ channels }
elseSelects ← { "c.select(Choice@A.ELSE)" | c ∈ channels }
"if·(·e′

0·)·{·thenSelects;·e′
1·}·else·{·elseSelects; e′

2·}"
case "on[A]{ on[B].run.capture(captures)·{·e·}.asLocal }" with

e′ ← loci2choral("on[B]{e}")
"ch_B_A.com(e′)"

end
end

Feature Choral ScalaLoci

Distributed Data Structures ✓ ×
Dynamic Topologies × ✓
Higher-Order Composition ✓ ×
Races − ✓
Fault tolerance ✓ ✓
Asynchrony ✓ ✓

Table 1 Overview of the feature comparison of choreographic and multitier programming.

multiparty category and subject of future research akin to this work.598

6.1 Feature Comparison599

We now discuss a few features that are important for concurrent and distributed programming.600

Our discussion is summarised in Table 1, which shows which features are present in Choral and601

ScalaLoci, respectively (the − means partial presence, explained in the relevant paragraph602

where we discuss the feature). The first four features have evolved separately and give603

ECOOP 2021

23:20 Multiparty Languages: The Choreographic and Multitier Cases

potential for cross-fertilisation, whereas the last two are important features that have been604

dealt in both worlds (yet separately).605

Distributed Data Structures606

The @(R1, ..., Rn) type notation supported in Choral specifies the distribution of classes607

and objects over roles. This is true also without taking into account communication. As an608

example, let us consider the BiPair class below, which implements an incarnation of a Pair609

class where the two values (referred as left and right) of the pair belong to different roles.610

611
1 class BiPair@(A,B)<L@X, R@Y> {612

2 private L@A left;613

3 private R@B right;614

4 public BiPair(L@A left, R@B right) { this.left = left; this.right = right; }615

5 public L@A left() { return this.left; }616

6 public R@A right() { return this.right; }617

7 }618619

As its Java counterpart, also BiPair is parametric with respect to its contents: we use620

parameters L and R to capture the type of the left and right components of the pair. Then,621

by specifying that L is owned by one role X and R is owned by another role Y, we indicate that622

the two values in the pair must be at different roles (and they can capture different data623

types, e.g., String and Integer). Indeed, adopting the same interpretation of Java generics,624

Choral interprets role parameter binders so that the first appearance of a parameter is a625

binder, while subsequent appearances of the same parameter are bound—hence, given that626

the declaration of type parameters <...> limits the scope of the of role parameters X and Y,627

we are indicating that they cannot coincide. For completeness, we include in the definition628

of the BiPair class its fields (left and right, respectively located at A and B), a constructor,629

and the traditional accessors.630

Besides showing the basic feature of inherent distribution supported by the Choral631

type system, the example of BiPair is useful to illustrate that, also without considering632

communications, Choral offers support in defining programs where the data at some role633

needs to correlate with data at another, e.g., as in the case of distributed authentication634

tokens.635

Similar to Choral, in ScalaLoci, we use parameters L and R to capture the type of the left636

and right components of the pair. Corresponding to Choral’s roles definition, we define an A637

and a B peer type. We then specify that L is placed on a peer A and R is placed on a peer B:638

639
1 @multitier trait BiPair[L, R] {640

2 @peer type A641

3 @peer type B642

4643

5 val left: L on A644

6 val right: R on B645

7 }646647

While we can define distributed data structures similar to Choral, they have to be648

composed at compile-time limiting their usability because of ScalaLoci’s lack of higher-order649

composition.650

Dynamic Topologies and Homogenous Behaviours651

A feature of ScalaLoci that is not covered in its Mini variant is the possibility for peer types652

to abstract over multiple peer instances of the same type, e.g., a master-worker architecture653

where a single master can connect to an arbitrary number of homogeneous (i.e., with the654

S. Giallorenzo et al. 23:21

Listing 8 Distributed Architectures.
1 @multitier object P2P {
2 @peer type Peer <: { type Tie <: Multiple[Peer] }
3 }
4 @multitier object P2PRegistry {
5 @peer type Registry <: { type Tie <: Multiple[Peer] }
6 @peer type Peer <: { type Tie <: Optional[Registry] with Multiple[Peer] }
7 }
8 @multitier object MultiClientServer {
9 @peer type Server <: { type Tie <: Multiple[Client] }

10 @peer type Client <: { type Tie <: Single[Server] with Single[Node] }
11 }
12 @multitier object ClientServer {
13 @peer type Server <: { type Tie <: Single[Client] }
14 @peer type Client <: { type Tie <: Single[Server] with Single[Node] }
15 }
16 @multitier object Ring {
17 @peer type Node <: { type Tie <: Single[Prev] with Single[Next] }
18 @peer type Prev <: Node
19 @peer type Next <: Node
20 @peer type RingNode <: Prev with Next
21 }

same behaviour) worker nodes. Such a feature also enables dynamic topologies where peers655

can join and leave the system at run time. A variable number of peer instances is expressed656

in ScalaLoci’s peer specification by not using a Single tie but an Multiple or an Optional tie,657

i.e., an arbitrary number or at most one remote peer of a given type can connect, respectively.658

Listing 8 shows the definitions for different topologies with their iconification on the659

right. The P2P module defines a Peer that can connect to arbitrary many other peers. The660

P2PRegistry module adds a central registry, to which peers can connect. The MultiClient-661

Server module defines a client that is always connected to a single server, while the server662

can handle multiple clients simultaneously. The ClientServer module specifies a server that663

always handles a single client instance. For the Ring module, we define a Prev and a Next664

peer. A RingNode itself is both a predecessor and a successor. All Node peers have a single665

tie to their predecessor and a single tie to their successor.666

ScalaLoci allows to abstract over different peer instances of the same type and uniformly667

receive values from multiple connected remote peers, asLocalFromAll returns a sequence that668

contains the remote values from the different peers. Yet, a specific peer instance client669

can be selected via on(client).run { ... }.asLocal (using the client value referencing a peer670

instance) instead of on[Client].run { ... }.asLocal (using the Client peer type). The handlers671

remote[Client].join foreach { ... } and remote[Client].leave foreach { ... } can be used to672

react to dynamic changes in the topology of the running multitier system.673

Denièlou and Yoshida [13] developed a theory for choreographies with homogeneous roles674

and dynamic topologies by allowing choreographies to be parametrised (also) in collections of675

roles. Plans for supporting for this feature in Choral are discussed in [16, §7]. In this extension,676

prefixing a role parameter declaration with *, as in *Clients, specifies that this is a collection677

of roles. Types are extended with products indexed over collections of role using a syntax678

similar to Java for-each blocks. For instance, the type forall(Client: Clients) String@Client679

represents a “tuple” with a String for each role in the collection Clients. We can write a680

scatter-gather channel over a star topology (cf. MultiClientServer) as follows:681

682
1 abstract class StarChannel@(Server,*Clients) {683

2 forall(Client : Clients) {SymChannel@(Server,Client)} star;684

3 forall(Client : Clients) {String@Client} scatter(String@Server m);685

4 String@Server gather(forall(Client : Clients) {String@Client} ms);686

5 }687

ECOOP 2021

23:22 Multiparty Languages: The Choreographic and Multitier Cases

688

Method gather of StarChannel is then translated to ScalaLoci’s primitive asLocalFromAll and689

vice versa. A further extension discussed in [16, §7] is the introduction of existential quan-690

tification over roles in role collections. For instance, with(Client: Clients) String@(Client)691

represents a string at some role in the collection Clients. We can extend the example above692

to support any-cast communication as follows:693

694
1 abstract class StarChannel@(Server,*Clients) {695

2 /* ... */696

3 with(Client : Clients) {String@(Client)} any(String@Server m);697

4 String@Server any(with(Client : Clients) {String@(Client)} m);698

5 }699700

Method any of StarChannel is then translated to ScalaLoci’s on(c).run { ... } and vice701

versa.702

Higher-Order and First-Class Multiparty Programs703

We classify “higher-order” a multiparty language where multiparty components (objects,704

functions) are values that can be passed as arguments.705

Choral is higher-order because methods can accept choreographic objects with multiple706

roles as parameters. In Choral, Channels are one of the most basic examples of the usage of707

the higher-order feature. For example, we can pass a DiChannel as an argument.708

709
1 class MyClass@(A,B){710

2 void passValue(DiChannel@(A,B) ch){711

3 ch.com< Integer >(5@B);712

4 }713

5 }714715

In the example, the method passValue takes as input the choreographic object DiChannel716

and, by invoking its com method, we execute the protocol needed to send the data (5@B)717

between the two roles.718

ScalaLoci does not support higher-order composition (no multitier objects as values or719

dynamic multitier object storage) but at least supports statically-composed modules [39].720

The following snippet shows the declaration of a ClientServer multitier module that is721

parameterised over a Client and a Server peer. The module uses the monitoring functionality722

provided by the Monitoring multitier module, which is parameterised over a Monitor and723

a Monitored peer. The Monitoring module is instantiated by mon inside ClientServer. The724

ClientServer module identifies the Client peer with the Monitored peer and the Server peer725

with the Monitor peer and defines their ties accordingly:726

727
1 @multitier trait Monitoring {728

2 @peer type Monitor { type Tie <: Single[Monitored] }729

3 @peer type Monitored { type Tie <: Single[Monitor] }730

4 }731

5732

6 @multitier object ClientServer {733

7 @multitier object mon extends Monitoring734

8735

9 @peer type Client <: mon.Monitored { type Tie <: Single[mon.Monitor] with Single[Server] }736

10 @peer type Server <: mon.Monitor { type Tie <: Single[mon.Monitored] with Single[Client] }737

11 }738739

S. Giallorenzo et al. 23:23

Races740

Both Choral and ScalaLoci support programs with races to some degree. We distinguish two741

prototypical scenarios: races among producers and races among consumers.742

To program a race among multiple producers in ScalaLoci, we can simply retrieve the743

values from all remote producers via asLocalFromAll and pick the first one that becomes744

available via Future.firstCompletedOf as shown in the example below:745

746
1 Future.firstCompletedOf(747

2 on[Producer].run { generateValue() }.asLocalFromAll map {748

3 case (producerPeerInstance, value) => value map { (producerPeerInstance, _) }749

4 })750751

It is not possible to program a race among multiple consumers in ScalaLoci.752

In Choral, it is possible to implement protocols with races among producers and among753

consumers provided their number is statically fixed. For instance, below is the type for a754

choreography where two producers rage to send a message to a consumer.755

756
1 interface ProducerRace(Producer1,Producer2,Consumer) {757

2 Message@Consumer run(Message@Producer1 m1, Message@Producer2 m2);758

3 }759760

The constraint that the number of roles must be statically fixed is related to the inability of761

Choral to capture dynamic topologies and, as discussed above, is solved by adding collections762

of roles to the language. In the case of consumer races, another limitation is that the Choral763

type system is not powerful enough express (and enforce) their presence. Consider a situation764

where two consumers race to receive a message from a single producer. In Choral, this765

protocol can implement the following interface:766

767
1 interface ConsumerRace(Producer,Consumer1,Consumer2) {768

2 BiPair@(Consumer1,Consumer2)<Optional<Message>,Optional<Message>> run(Message@Producer m);769

3 }770771

However, the return type of run does not guarantee that exactly one consumer receives772

the message: implementations that deliver the message to both or neither respect the type.773

As discussed in [16, §7], we can write a precise type if we extend Choral with existential774

quantification over roles as shown in the example below.775

776
1 interface ConsumerRace@(Producer, Consumer1, Consumer2) {777

2 with (C : [Consumer1, Consumer2]){ Message@C } run(Message@Producer m);778

3 }779780

Fault Tolerance781

In ScalaLoci, remote values whose computation or transmission to the local peer instance782

fail result in a future that is completed with a failure value. Thus, user code can detect a783

failed remote access and decide how to react appropriately. Failed futures can be handled784

using the usual operators on futures, e.g., recover:785

786
1 on[Client].run { generateValue() }.asLocal recover { case _ => generateOtherValue() }787788

Like other aspects of communication in Choral, the language does not commit to specific789

interaction patterns: programmers can implement their own strategies e.g. using exceptions790

or returning errors.791

ECOOP 2021

23:24 Multiparty Languages: The Choreographic and Multitier Cases

Asynchrony792

For the sake of exposition, we presented multiparty programs using communication APIs793

as if they were blocking and designed the Mini variants of both Choral and ScalaLoci794

as synchronous. ScalaLoci promotes an asynchronous approach: the preferred variant of795

accessing remote values via asLocal in ScalaLoci creates a future to account for network delay796

and potential communication failure. On the other hand, Choral is agnostic with regards to797

communication models: programmers can import libraries of channels or implement their798

own. For instance, a communication model similar to ScalaLoci’s asLocal is offered by the799

following interface:800

801
1 interface AsyncDiChannel@(Sender, Receiver)<T@X> {802

2 <S@Y extends T@Y> Future@Receiver<S> com(Promise@Sender<S>);803

3 }804805

6.2 Other Multiparty Languages806

For the future we envision further cross-fertilisation between multiparty languages, and that807

the class of multiparty languages might get larger. We mention a few approaches that might808

contribute to this.809

Software architectures [14, 33] are about organising software systems into well-studied810

patters that comprise components and their connections organised in a certain configura-811

tion. Architecture description languages (ADL) [26] specify software architectures and the812

constraints among the architecture components. Different from choreographic and multitier813

programming, ADLs usually specification languages separate from the implementation. An814

exception is ArchJava [1] which support specifying a software architecture and enforcing815

its constraints together with the implementation. Regarding cross-fertilisation, ADLs come816

equipped with powerful analysis, code synthesis, and runtime-support tools as well as model817

checkers, which can be also used in multitier and choreographic scenarios to enforce different818

aspects of correctness.819

Partitioned global address space languages (PGAS) [12] are often used in the domain820

of high-performance computing. The main abstraction is a global memory address space821

where logical partitions are assigned to processes to maximize data locality. X10 [7] features822

explicit fork/join operations and provides a sophisticated dependent type system [6] to model823

the place (the heap partition) a reference points to. PGAS languages, similar to multitier824

and choreographic languages reduce the boundaries between hosts in a distributed system.825

7 Conclusion826

Choreographic and multitier languages have developed independently, leading to a number827

of research achievement carried out within two vibrant but separate research communities [2,828

28, 40]. In this paper, we discussed the fundamental nature of the programming paradigms829

based on these languages, isolating the core difference between them. We then showed that,830

under the cover of syntactic variance, the two approaches are similar enough to be related831

and to reason about potential cross-fertilisation. Our observations offer a platform for future832

joint work between the respective communities.833

References834

1 Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting software835

architecture to implementation. In Proceedings of the 24th International Conference on836

S. Giallorenzo et al. 23:25

Software Engineering, ICSE ’02, pages 187–197, New York, NY, USA, 2002. ACM. doi:837

10.1145/581339.581365.838

2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-839

Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch840

Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-841

olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types in842

programming languages. Foundations and Trends in Programming Languages, 3(2-3):95–230,843

2016.844

3 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered845

programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.846

doi:10.1145/2220365.2220367.847

4 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous848

global programming. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM849

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,850

Italy - January 23 - 25, 2013, pages 263–274. ACM, 2013. doi:10.1145/2429069.2429101.851

5 Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat, editor, Foundations852

of Software Science and Computation Structure, First International Conference, FoSSaCS’98,853

Held as Part of the European Joint Conferences on the Theory and Practice of Software,854

ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1378 of Lecture855

Notes in Computer Science, pages 140–155. Springer, 1998. doi:10.1007/BFb0053547.856

6 Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. Type inference for locality857

analysis of distributed data structures. In Proceedings of the 13th ACM SIGPLAN Symposium858

on Principles and Practice of Parallel Programming, PPoPP ’08, pages 11–22, New York, NY,859

USA, 2008. ACM. doi:10.1145/1345206.1345211.860

7 Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,861

Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach to862

non-uniform cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference863

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages864

519–538, New York, NY, USA, 2005. ACM. doi:10.1145/1094811.1094852.865

8 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming866

without tiers. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.867

de Roever, editors, Formal Methods for Components and Objects, 5th International Symposium,868

FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006, Revised Lectures, volume869

4709 of Lecture Notes in Computer Science, pages 266–296. Springer, 2006. doi:10.1007/870

978-3-540-74792-5_12.871

9 Ezra E. K. Cooper and Philip Wadler. The RPC calculus. In Proceedings of the 11th ACM872

SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP ’09,873

pages 231–242, New York, NY, USA, 2009. ACM. doi:10.1145/1599410.1599439.874

10 Luís Cruz-Filipe and Fabrizio Montesi. Choreographies in practice. In Elvira Albert and Ivan875

Lanese, editors, Formal Techniques for Distributed Objects, Components, and Systems - 36th876

IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International877

Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete,878

Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture Notes in Computer Science, pages879

114–123. Springer, 2016. doi:10.1007/978-3-319-39570-8_8.880

11 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.881

Dynamic choreographies: Theory and implementation. Logical Methods in Computer Science,882

13(2), 2017. doi:10.23638/LMCS-13(2:1)2017.883

12 Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter.884

Partitioned global address space languages. ACM Computing Surveys, 47(4), May 2015.885

doi:10.1145/2716320.886

13 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In Thomas Ball887

and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on888

ECOOP 2021

https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/BFb0053547
https://doi.org/10.1145/1345206.1345211
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1145/1599410.1599439
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1145/2716320

23:26 Multiparty Languages: The Choreographic and Multitier Cases

Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,889

pages 435–446. ACM, 2011. doi:10.1145/1926385.1926435.890

14 David Garlan and Mary Shaw. An introduction to software architecture. Technical report,891

Pittsburgh, PA, USA, 1994. Accessed 2020-05-05. URL: http://www.cs.cmu.edu/afs/cs/892

project/vit/ftp/pdf/intro_softarch.pdf.893

15 Saverio Giallorenzo, Ivan Lanese, and Daniel Russo. Chip: A choreographic integration894

process. In On the Move to Meaningful Internet Systems. OTM 2018 Conferences - Confederated895

International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26,896

2018, Proceedings, Part II, pages 22–40. Springer, 2018. doi:10.1007/978-3-030-02671-4_2.897

16 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choreographies as objects. CoRR,898

abs/2005.09520, 2020. URL: https://arxiv.org/abs/2005.09520, arXiv:2005.09520.899

17 Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular Actor formalism for900

artificial intelligence. In Proceedings of the 3rd International Joint Conference on Artificial901

Intelligence, IJCAI ’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann902

Publishers Inc. Accessed 2020-05-05. URL: http://ijcai.org/Proceedings/73/Papers/903

027B.pdf.904

18 Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.905

Scribbling interactions with a formal foundation. In Raja Natarajan and Adegboyega K.906

Ojo, editors, Distributed Computing and Internet Technology - 7th International Conference,907

ICDCIT 2011, Bhubaneshwar, India, February 9-12, 2011. Proceedings, volume 6536 of Lecture908

Notes in Computer Science, pages 55–75. Springer, 2011. doi:10.1007/978-3-642-19056-8\909

_4.910

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.911

J. ACM, 63(1):9, 2016. Also: POPL, pages 273–284, 2008. URL: http://doi.acm.org/10.912

1145/2827695, doi:10.1145/2827695.913

20 Intl. Telecommunication Union. Recommendation Z.120: Message Sequence Chart, 1996.914

21 Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. TaxDC:915

A taxonomy of non-deterministic concurrency bugs in datacenter distributed systems. In Proc.916

of ASPLOS, pages 517–530, 2016.917

22 Alberto Lluch-Lafuente, Flemming Nielson, and Hanne Riis Nielson. Discretionary information918

flow control for interaction-oriented specifications. In Logic, Rewriting, and Concurrency,919

volume 9200 of Lecture Notes in Computer Science, pages 427–450. Springer, 2015.920

23 Hugo A. López and Kai Heussen. Choreographing cyber-physical distributed control systems921

for the energy sector. In SAC, pages 437–443. ACM, 2017.922

24 Hugo A. López, Flemming Nielson, and Hanne Riis Nielson. Enforcing availability in failure-923

aware communicating systems. In FORTE, volume 9688 of Lecture Notes in Computer Science,924

pages 195–211. Springer, 2016.925

25 Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a com-926

prehensive study on real world concurrency bug characteristics. In Proc. of ASPLOS, pages927

329–339, 2008.928

26 Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for929

software architecture description languages. IEEE Transactions on Software Engineering,930

26(1):70–93, January 2000. doi:10.1109/32.825767.931

27 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer932

Science. Springer, 1980. doi:10.1007/3-540-10235-3.933

28 Fabrizio Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen,934

2013. http://www.fabriziomontesi.com/files/choreographic_programming.pdf.935

29 Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal936

lambda calculus for distributed computing. In 19th IEEE Symposium on Logic in Computer937

Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 286–295. IEEE938

Computer Society, 2004. doi:10.1109/LICS.2004.1319623.939

https://doi.org/10.1145/1926385.1926435
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
https://doi.org/10.1007/978-3-030-02671-4_2
https://arxiv.org/abs/2005.09520
http://arxiv.org/abs/2005.09520
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
http://doi.acm.org/10.1145/2827695
http://doi.acm.org/10.1145/2827695
http://doi.acm.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1109/32.825767
https://doi.org/10.1007/3-540-10235-3
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://doi.org/10.1109/LICS.2004.1319623

S. Giallorenzo et al. 23:27

30 Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large940

networks of computers. Commun. ACM, 21(12):993–999, 1978.941

31 Object Management Group. Business Process Model and Notation.942

http://www.omg.org/spec/BPMN/2.0/, 2011.943

32 Peter W. O’Hearn. Experience developing and deploying concurrency analysis at facebook. In944

Andreas Podelski, editor, Static Analysis - 25th International Symposium, SAS 2018, Freiburg,945

Germany, August 29-31, 2018, Proceedings, volume 11002 of Lecture Notes in Computer946

Science, pages 56–70. Springer, 2018. doi:10.1007/978-3-319-99725-4_5.947

33 Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture.948

ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992. doi:10.1145/141874.949

141884.950

34 Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. Eliom: A core ML language for tierless951

web programming. In Atsushi Igarashi, editor, Proceedings of the 14th Asian Symposium952

on Programming Languages and Systems, APLAS ’16, pages 377–397, Berlin, Heidelberg,953

November 2016. Springer-Verlag. doi:10.1007/978-3-319-47958-3_20.954

35 Bob Reynders, Frank Piessens, and Dominique Devriese. Gavial: Programming the web with955

multi-tier FRP. The Art, Science, and Engineering of Programming, 4(3):6:1–6:32, February956

2020. doi:10.22152/programming-journal.org/2020/4/6.957

36 Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language for programming the958

web 2.0. In Peri L. Tarr and William R. Cook, editors, Companion to the 21th Annual ACM959

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,960

OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, pages 975–985. ACM, 2006.961

doi:10.1145/1176617.1176756.962

37 W3C. WS Choreography Description Language. http://www.w3.org/TR/ws-cdl-10/, 2004.963

38 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system development964

with ScalaLoci. Proceedings of the ACM on Programming Languages, 2(OOPSLA):129:1–129:30,965

October 2018. doi:10.1145/3276499.966

39 Pascal Weisenburger and Guido Salvaneschi. Multitier modules. In Alastair F. Donaldson,967

editor, Proceedings of the 33rd European Conference on Object-Oriented Programming (ECOOP968

’19), volume 134 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:29,969

Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: http:970

//drops.dagstuhl.de/opus/volltexte/2019/10795, doi:10.4230/LIPIcs.ECOOP.2019.3.971

40 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. A survey of multitier program-972

ming. ACM Computing Surveys, 53(4), September 2020. doi:10.1145/3397495.973

ECOOP 2021

http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1007/978-3-319-99725-4_5
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.1145/1176617.1176756
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1145/3276499
http://drops.dagstuhl.de/opus/volltexte/2019/10795
http://drops.dagstuhl.de/opus/volltexte/2019/10795
http://drops.dagstuhl.de/opus/volltexte/2019/10795
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.1145/3397495

	1 Introduction
	2 Background: Choreographic and Multitier Programming Languages
	2.1 Choreographic Languages
	2.2 Multitier Languages
	2.3 Towards Linking Choreographic to Multitier Languages

	3 Overview of Choral and ScalaLoci
	3.1 A Context-Aware Email-Fetching Protocol
	3.2 A Choreographic Programming Implementation with Choral
	3.3 A Multitier Programming Implementation with ScalaLoci

	4 Mini Choreographic and Multitier Languages
	4.1 Mini Choral
	4.1.1 Example: Mini Choral Expressiveness

	4.2 Mini ScalaLoci
	4.2.1 Example: Mini ScalaLoci Expressiveness

	5 Choreographies to Multitier, Multitier to Choreographies
	5.1 From Choreographic Programming to Multitier Programming
	5.2 From Multitier Programming to Choreographic Programming

	6 A Unified Perspective
	6.1 Feature Comparison
	6.2 Other Multiparty Languages

	7 Conclusion

