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Abstract In microservices, Model-Driven Engineering (MDE) has emerged
as a powerful methodology for architectural design. Independently, the
community of programming languages has investigated new linguistic
abstractions for effective microservice development. Here, we present the
first preliminary study of how the two approaches can cross-pollinate,
taking the LEMMA framework and the Jolie programming language as
respective representatives. We establish a common ground for compar-
ing the two technologies in terms of metamodels, discuss practical en-
hancements that can be derived from the comparison, and present some
directions for future work that arise from our new viewpoint.

1 Introduction

In microservices, applications emerge as compositions of independently-executable
components (microservices, or briefly, services), which communicate via message
passing [12]. Building microservice systems poses a series of challenges for both
design and development, which has motivated two prolific strands of research.

On the side of design, Model-Driven Engineering (MDE) [17] has become a
prominent methodology for the specification of service architectures [2]. Frame-
works such as LEMMA, MicroBuilder, and MDSL offer modelling languages to
design service components that abstract from concrete implementations [32,33,21].

On the side of development, new linguistic abstractions for programming
languages are emerging as powerful tools to effectively express the configura-
tion and coordination of microservices. Ballerina and Jolie are examples of such
languages [29,27]. In particular, Jolie incorporates ideas from process calculi to
ease the programming of workflows and it offers “polyglot” constructs to integ-
rate services written in foreign languages (e.g., Java) [25,27].

So far, results on microservices by the MDE and programming communities
have evolved prolifically, yet separately. This is unfortunate since previous re-
search showed great potential in combining programming language and MDE
? Work partially supported by Independent Research Fund Denmark, grant no. 0135-
00219.
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techniques [13,6,11]. In part, we deem this phenomenon due to the few op-
portunities the two communities have to interact. Case in point, the authors
come from the different two communities and met only recently, at the last two
editions of the International Conference on Microservices (an event organised
specifically to bridge sub-communities of traditional fields that share an interest
in microservices). Seminars from both parts evidenced that MDE methodolo-
gies and programming languages for microservices share a common conceptual
foundation that has never been properly made precise nor leveraged [16,30].

This article is the first step towards bridging conceptually MDE frame-
works and programming languages for microservices. As grounding, we take
LEMMA [31,32] and Jolie [27] as respective representatives of the two approaches.

The main challenge is that MDE frameworks come with specifications—
like LEMMA’s metamodels [31,32]—distant from those given for programming
languages—some parts of Jolie are described by using process calculi [19,26],
and for others there is a reference implementation [24,1]. To address this, we
develop the first conceptual metamodel of the Jolie language, drawing from our
experience with its formalisations [19,26,10] and reference implementation [24,1].

Having metamodels for both Jolie (from this paper) and LEMMA (from [31,32])
allows for comparing them. We identify some key shared concepts and differ-
ences. Interestingly, the differences are complementary perspectives on common
concerns, providing fertile ground for future evolutions of both approaches: we
sketch extensions of LEMMA induced by Jolie, and vice versa.

The common footing we establish brings us closer to an ecosystem that co-
herently combines MDE and programming abstractions to offer a tower of ab-
stractions [23] that supports a step-by-step refinement process from the abstract
specification of a microservice architecture (MSA) to its implementation.

2 A Structured Comparison of Jolie and LEMMA

The conceptual metamodels of Jolie (new in this article) and LEMMA (a sim-
plification of the metamodel in [32]) are respectively displayed in Figure 1a and
Figure 1b, in UML format. As a basis for comparison, we classify their elements
in the three categories commonly found in characterisation and specifications of
(micro)services in [14,3,35]: Application Programming Interfaces (APIs) 1○ and
Access Points 2○, which, combined, define the public contract of a microservice,
and the private internal behaviour 3○ that a microservice enacts. We proceed
by explaining the metamodels and our comparison following these categories.

2.1 Application Programming Interfaces (APIs)

APIs—originally introduced to provide hardware independence to programs [8]—
specify what functionalities a microservice offers to clients [12]. Besides loosing
coupling, APIs contribute to technology agnosticism, especially when minimising
the assumptions made on the technologies used to implement behaviours.
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Figure 1: Core meta-models of Jolie (a) and LEMMA (b).

Jolie conceptualises APIs into Interfaces. An Interface is a collection of Oper-
ations, each having its own name and being either: a OneWay operation, where
the sender delivers its message to the service but does not wait for it to be
processed by the service’s behaviour; or a RequestResponse operation, where
the sender delivers its message and waits for the receiving service’s behaviour
to reply with a response. Operations include types for the data structures that
can be exchanged through them. A Jolie Type is a tree-shaped data type made
of two components: (i) a Basic Type that describes the type of the root of the
tree and (ii) a set of Nodes that define the fields of the data structure. Basic
Types include a Native Type (primitives like boolean, integer, char, string) and
a Refinement that specifies further restrictions on the native type [18]. Nodes
are arrays with specified ranges of lengths (Cardinality). Jolie data types, and
thus interfaces, are technology agnostic: they model Data Transfer Objects that
build on native types generally available in most architectures [9].

LEMMA captures APIs as characterising components of a given Microservice
though its Service Modelling Language [32]. Conceptually, a Microservice is a
composition of Interfaces, each clustering one or more Operations. LEMMA
distinguishes three types of microservices. Functional and utility ones realise
domain-specific business logic and reusable generic functionality, respectively.
Infrastructure microservices provide technical capabilities, e.g., for service dis-
covery [4]. In LEMMA, a microservice operation is a collection of Parameters,
each defined by an exchange pattern (either incoming or outgoing), a communic-
ation type (synchronous or asynchronous), and a Type, expressed in the Domain
Modelling language. Types can specify some Domain-Driven Design (DDD) se-
mantics in the form of DDD patterns, e.g., the Entity pattern [15] which defines
the identifying traits of the Type’s inhabitants, e.g., a Person with a name and
birthdate but uniquely identified by its social security number.
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From the above descriptions—also remarked with the colours of the partitions
in Figure 1a and Figure 1b, tagged with 1○—APIs are captured similarly in Jolie
and LEMMA: they both attribute a paradigm to each operation, either request-
response/synchronous or notification/asynchronous, although Jolie at the level of
operations and LEMMA at the level of parameters. Types in the two models dif-
fer, but, besides LEMMA’s DDD semantics, the differences are mostly technical.
We exploit the vicinity of views on APIs between Jolie and LEMMA to propose
in Section 3 an extension of Jolie that captures DDD patterns of LEMMA’s
Types. At the conceptual level, Jolie and LEMMA interpret API design from
different perspectives. Jolie defines APIs as reusable artefacts, separately from
services (a service can then refer to API definitions). In LEMMA, APIs are part
of a service definition. This difference makes for an interesting point for building
a reference metamodel for microservices, as discussed in Section 3.

2.2 Access Points

When a microservice implements an API, it must make a technological com-
mitment on where and how its clients can interact with the API. Access points
fulfil this need, complementing the public APIs of a microservice with the spe-
cification and configuration of the technologies used to (i) format data (how
data are structured/marshalled for transmission, e.g., JSON); and (ii) transmit
data (where microservices can contact each other and how data are transported
among them, e.g., an IP address). Access points are the main elements that in-
crease coupling between microservices, as providers expect clients to include in
their technology stacks the technologies used at providers’ access points.

Jolie integrates the Port concept (cf. Figure 1a) to support access point defin-
ition and configuration. A Jolie Port determines the location of an access point
in the form of a URI [5] and associates it with a protocol. Furthermore, a Port
clusters one or more Jolie Interfaces, which define the operations available at that
access point (and also complete the public contract of the given microservice).

Jolie distinguishes between InputPorts and OutputPorts (cf. Figure 1a). In-
putPorts expose a public contract to clients while OutputPorts define access
points used in behaviours (cf. Section 2.3) to invoke other microservices.

LEMMA provides the Endpoint concept (cf. Figure 1b) to model locations
and technologies of access points, as part of a microservice API. To cope with
technology heterogeneity in MSA [28], LEMMA treats technology information as
a dedicated concern in microservice modelling. Indeed, it provides two modelling
languages to (i) organise technology information in dedicated technology models;
and (ii) assign this information to service models within dedicated mapping
models. In the context of access points, technology models cluster Protocols and
DataFormats (cf. Figure 1b) and make them available to mapping models for
determining the technical endpoint characteristics.

Both Jolie and LEMMA support the specification of inbound access points:
Jolie InputPorts and LEMMA Endpoints include the definition of the techno-
logical choices that define the location and the data formats of access points.
However, Jolie and LEMMA differ in how they describe outbound access points:
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(i) Jolie uses OutputPorts to specify, in behaviours, the interaction with the ac-
cess points of other microservices. (ii) LEMMA uses the RefMicroservice concept
to specify dependencies among microservices—LEMMA leaves to model pro-
cessors how to interpret RefMicroservices, e.g., defining deployment precedence.

2.3 Behaviours

Behaviours specify the internal business logic of a microservice, including when
the microservice accepts requests from clients and when it invokes other mi-
croservices. Jolie allows developers to use Java, JavaScript or Jolie Behaviours
to express the behaviour of microservices. Jolie Behaviours are a fragment of the
Jolie Language (herein, Jolie Behavioural Language), where microservice beha-
viours are first-class citizens that, starting from the basic service invocation, one
can compose into complex behaviours via high-level workflow operators such
as Sequence, Parallel, and Guarded Replication. The choice of these operators
comes from process calculi and the study of core languages for service-oriented
computing [20,27]. In this sense, the Jolie Behavioural Language is a full-fledged
specification language for microservices behaviour and, borrowing LEMMA’s
conceptual organisation, the Jolie Interpreter as its default technology.

LEMMA does not support (yet) complete specifications of microservice be-
haviours. However, one can use LEMMA’s malleable technology modelling lan-
guage in this direction, defining a suite of technology aspects for declaring gen-
eral behaviours (e.g., that a microservice is guarded by a circuit breaker) and
programming new code generators to produce microservice skeletons.

3 Cross-Fertilisation and Conclusion

The conceptual similarities between Jolie and LEMMA regarding APIs, Access
Points and Behaviours identified in this work open the door to cross-fertilisation.

Behaviours in LEMMA As discussed in Section 2.3, LEMMA does not support
complete and general specifications of microservice behaviours. We propose to
extend LEMMA with hosting of languages for programming behaviours like the
Jolie Behavioural Language. In general, one can envision a suite of such guest
languages that users can select from or extend. The snippet below illustrates
a typical instance of this scenario where a programmer extends a microservice
specification with a behaviour for operation1. To this end, the programmer im-
ports a behaviour modelling language and a suitable technology for it, in this
case, the Jolie Behavioural Language and the Jolie Interpreter.
import microservices from "example.services" as ExampleServices
import behaviour_language from "jolie.behaviour_language" as jolie
import technology from "jolie.technology" as jolie_interpreter

@behaviour_language(jolie)
@technology(jolie_interpreter)
ExampleServices::org.example.Microservice {
operation1() { /* programmed using the given behavioural language" */ }

}
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This requires a conceptual and technological infrastructure for language integ-
ration in some regards similar to quotation [22,7]: APIs modelled in LEMMA
need to be rendered available to the guest language and aspects of behaviour
interaction and composition need to be made available to LEMMA. This observa-
tion suggests that this integration infrastructure could be founded over the core
concepts and behaviour operators for service-oriented programming of process
calculi that already constitute the foundation of the Jolie Behavioural Language.

DDD patterns in Jolie As mentioned in Section 2.1, we can augment LEMMA’s
Types with DDD semantics, i.e., constraints imposed by the domain on data
structures. Equipping Jolie with such a feature can increase its expressiveness in
useful ways, which we discuss briefly below. Comment annotations can capture
DDD patterns in Jolie. For example, we can express the Entity pattern (cf.
Section 2.1) via the annotation @entity below, which associates the property
identity of the pattern with two sub-nodes of the Person type (SSN and country):
/// @entity { identity = [ SSN, country ] }
type Person { SSN: string, country: string( length(3) ), name: string }

An immediate result is using DDD patterns to improve documentation, by
attaching plain-text explanations of the intended usage of types—in unison with
the additional constraints expressed by refinements (cf. length(3) above). More
advanced integrations can elevate DDD patterns at the level of types, opening
the door to runtime and static utilities. For instance, we can have operations
“governed” by the semantics of patterns, e.g., to verify entity equality through a
unique assertEquals operation that checks equality of the components defined in
the identity annotation of the entity’s type. Similarly, patterns can indicate static
constraints on types, e.g., there cannot be two Persons, identified by SSN and
country, whose names differ. Pattern-aware execution engines can enforce static
constraints at runtime, e.g., keeping track of the (privacy-preserving) “signature”
of each identified entity and its correlated immutable values.

Reference Metamodel Jolie and LEMMA are in remarkable conceptual proximity
despite their distant origins—namely Programming Languages and MDE. This
close match in their conceptual foundations hints at the existence of a reference
metamodel for MSAs to be uncovered. This reference metamodel should identify
the main concepts of MSA including their basic properties and relationships to
each other. Furthermore, it should emerge from the analysis of various existing,
yet fragmented bodies of MSA knowledge ranging from pattern collections, over
best practices and reference solutions for certain challenges in MSA, to more
formal approaches like metamodels for programming and modelling languages.
Recent efforts in the area of software deployment automation [34] reveal the po-
tential of reference metamodels as they (i) reify and organise knowledge about a
specific subject area; (ii) enable the comparison and reasoning about alternative
approaches to the same issue; and (iii) allow identification of migration paths and
cost estimation for technology choices. We believe that a reference metamodel
for MSAs would be valuable to organise efforts and unify the great number of
ad-hoc solutions for recurring challenges and the heterogeneity of MSAs.
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