
Multiparty Session Types as Coherence Proofs

Marco Carbone · Fabrizio Montesi (�) ·
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Abstract We propose a Curry-Howard correspondence between a language for
programming multiparty sessions and a generalisation of Classical Linear Logic
(CLL). In this framework, propositions correspond to the local behaviour of a
participant in a multiparty session type, proofs to processes, and proof normalisation
to executing communications. Our key contribution is generalising duality, from
CLL, to a new notion of n-ary compatibility, called coherence. Building on coherence
as a principle of compositionality, we generalise the cut rule of CLL to a new rule
for composing many processes communicating in a multiparty session. We prove
the soundness of our model by showing the admissibility of our new rule, which
entails deadlock-freedom via our correspondence.
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1 Introduction

Session types are protocols for communications in concurrent systems [16,26]. A
recent line of work investigates Curry-Howard correspondences between the type
theory of session types and linear logic, where proofs correspond to processes,
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propositions to types, and proof normalisation to communications [6,28]. An
important consequence of such correspondences is that several notions that usually
require complex additional definitions and proofs, e.g., dependency relations for
deadlock-freedom [12,23], follow for free from the theory of linear logic, yielding a
succinct formulation of the formal foundations of sessions.

The aforementioned correspondences cover only session types with exactly
two participants, called binary session types. In practice, however, protocols often
describe the behaviour of multiple participants [25]. Multiparty Session Types
(MPSTs) have been proposed to capture such protocols, by matching the commu-
nications enacted by many participants with a global scenario [17]. Unfortunately,
MPSTs are more involved than binary session types, since they include complex
analyses on the structure of protocols and a mapping from global types, which
describe multiparty protocols, to local types, which describe the local behaviour
of each single participant. So far, it has been unclear whether a succinct logical
formulation of MPSTs can be developed, as done for binary session types. Therefore,
we ask:

Can we design a proof theory for reasoning about multiparty sessions?

A positive answer to our question would lead to a clearer understanding of the
principles that underpin multiparty session programming. The main challenge lies
in the foundational notion of duality found in linear logic, which, in a Curry-Howard
interpretation of propositions as types, checks whether the session types of two
respective participants are compatible. It is an open question how to generalise
the notion of type duality to that of “multiparty compatibility” found in MPSTs,
which allows to compose an arbitrary number of participants [17,14,20]. Therefore,
differently from previous work, we are in a situation where the existing logic does
not provide us with natural tools for dealing with the types we desire to capture.

The main contribution of this work is the development of Multiparty Clas-
sical Processes (MCP), a proof theory for reasoning on synchronous multiparty
communications. The key aspect of MCP is that it generalises Classical Linear Logic
(CLL) [15], by building on a new notion of type compatibility, called coherence,
that replaces duality. Using MCP, we can provide a concise reconstruction of the
foundations of MPSTs. In the following, we outline our investigation:

– Coherence. We start by formalising a language for local types and global types
(§ 3, Types). As in MPSTs, a local type denotes the I/O actions of a single
participant in a session, whereas a global type denotes the desired interactions
among all participants in a session. We then present coherence, a proof sys-
tem for determining whether a set of local types follow the scenario denoted
by a global type (§ 3, Coherence). We prove the adequacy of coherence by
showing that global types are proof terms for coherence proofs (§ 3, Figure 2);
equivalences between coherence proofs correspond to the equivalences between
global types originally formulated with an auxiliary definition in [8] (§ 3, Propo-
sition 1); and, the coherence proof system yields projection and extraction
procedures from global types to local types and vice versa (§ 3, Proposition 2
and Proposition 3). Finally, we show that coherence generalises the notion
of duality in CLL (§ 3, Proposition 4). Our extraction procedure is the first
not requiring auxiliary conditions (e.g., dependency relations as in [19]) and
capturing nested protocols [13].
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– Multiparty Classical Processes. We present Multiparty Classical Processes
(MCP), a proof theory that is in a Curry-Howard correspondence with a
language for synchronous multiparty sessions (§ 4). The key aspect of MCP is
using coherence as a new principle for compositionality in order to generalise
the standard cut rule of linear logic, by allowing an arbitrary number of proofs
to be composed (§ 4, Figure 6). Such a generalisation gives us a consavative
extension of the binary cut rule of Classical Linear Logic (CLL) (§ 7). From
the proof theory of MCP, we derive logically-founded notions of structural
equivalences and reductions for multiparty processes (§ 4, Figure 7 and Fig-
ure 8). Driven by the correspondence between processes and proofs, we show
that: communications among processes always follow their session types (§ 5,
Theorem 4); and, communications never get stuck (§ 5, Corollary 1), improving
on previous techniques for analysing progress in multiparty sessions (§ 8).

2 Preview

We give an informal introduction to MCP with the 2-buyer protocol [17], where two
buyers buy a book together from a seller. This can be described by the following
global type:

1. B1 -> S : 〈str〉; S -> B1 : 〈int〉; S -> B2 : 〈int〉; B1 -> B2 : 〈int〉;
2. B2 -> S : N( B2 -> S : 〈addr〉; end, end)

(1)

Above, B1 (the first buyer), B2 (the second buyer) and S (the seller) are roles.
In Line 1, B1 sends the book title to S, then S sends a quote to B1 and B2. At
this point, B1 sends to B2 the fraction of the price it wishes to pay. In Line 2, B2
communicates to S whether (N) to proceed with the purchase and, if so, also an
address for the delivery.

In multiparty session types, each role in a global type is implemented by a
different process. For example, the following three programs implement the roles
in (1):

Buyer1
def
= x B1 S(title); xB1 S(quote); x B1 B2(contr)

Buyer2
def
= xB2 S(quote); xB2 B1 (contr);

(
xB2 S.inl; x B2 S(addr) + xB2 S.inr

)
Seller

def
= xS B1(title); x S B1(quote); x S B2(quote); xS B2N.case

(
xS B2(addr), 0

)
The three processes above are defined in the π-calculus with (synchronous) multi-
party sessions [12,18], and communicate using the session (or channel) x. In term
Buyer1, x B1 S(title) means “as role B1, send the book title over channel x to the
process implementing role S”; xB1 S(quote) means “as role B1, receive a quote over
channel x from the process implementing role S”; finally, x B1 B2(contr) means “as
role B1, send to the process implementing role B2, over channel x, the amount
the first buyer is willing to contribute with”. Note that Buyer2 makes a choice
after receiving the contribution from Buyer1, i.e., it either accepts or rejects the
purchase by respectively selecting the left or right branch of the case construct in
the code of Seller.
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Following the approach in [28], we can type channel x using CLL propositions
(differently from [28], we use O to type outputs and ⊗ to type inputs, see § 8):

usage of x in Buyer1: str O int⊗ int O end

usage of x in Buyer2: int⊗ int⊗
(
(addr O end)⊕ end

)
usage of x in Seller: str⊗ int O int O

(
(addr⊗ end) N end

) (2)

Above, each proposition states how x is used by each process. For instance, Buyer1
outputs (O) a string, receives (⊗) an integer, sends another integer and finally
terminates (end).

CLL cannot compose our three processes using the above specifications, since
its composition rule Cut can only compose two processes, which communicate over
the same channel x with compatible binary session types A and A⊥:

P ` ∆,x :A Q ` ∆′, x :A⊥

(νx :A) (P | Q) ` ∆,∆′ Cut

Using the same channel among our three processes is essential for tracking the
dependencies expressed by the global type in (1): for example, we need to ensure
that Seller sends a quote to Buyer2 only after it has received a request for a book
from Buyer1. Such constraints cannot be tracked by binary session types [17]. To
overcome this issue, we annotate each connective in propositions with roles. For
example, the type of x for Buyer1 would become:

annotated usage of x in Buyer1: str OS int⊗S int OB2 end

annotated usage of x in Buyer2: int⊗S int⊗B1
(
(addr OS end)⊕S end

)
annotated usage of x in Seller: str⊗B1 int OB1 int OB2

(
(addr⊗B2 end) NB2 end

) (3)

Annotations identify the dual role of each action, e.g., the usage for Buyer1 now
reads: send a string to S (OS); receive an integer from S (⊗S); send an integer to
B2 (OB2); and, terminate (end). We can then reformulate Cut as:

Pi ` Γi, x
pi :Ai G � {pi :Ai}i

(νx :G)
(∏

i Pi

)
` {Γi}i

MCut

In our new multiparty cut rule MCut, if some processes Pi use session x as role pi
(denoted xpi), each according to some respective types Ai, and such types coherently
follow a global type specification G (formalised by the judgement G � {pi :Ai}i),
then we can compose them in parallel within the scope of session x, written
(νx :G) (P1 | . . . | Pn). In our example, for i ranging from 1 to 3, {pi :Ai}i
would correspond to the types in (3), where p1, p2 and p3 would be, respectively,
Buyer1, Buyer2 and Seller. In § 6, we will show that such types coherently follow
the global type given in (1).

MCP goes beyond the original multiparty session types [17], capturing also
multicasting and nested protocols [12,13]. For example, we can enhance the 2-buyer
protocol as:

1. B1 -> S : 〈str〉; S -> B1,B2 : 〈int〉; B1 -> B2 : 〈int〉;

2. B2->B1, S : N

(
B2->S : 〈addr〉; end,

B1->S : 〈Gsub〉;B1->S : 〈str〉;B2->S : 〈str〉; end

)
(4)

Above, S multicasts the price to both B1 and B2; and B2 multicasts its decision
to B1 and S. We have also updated the right branch of the choice using a nested
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A,B, . . . ::= 1 (unit for ⊗) | ⊥ (unit for O)

| AOp̃B (send A to p̃, then B) | A⊗p B (receive A from p, then B)

| A⊕p̃ B (select A or B in p̃) | ANpB (offer A or B to p)

| !A (replication) | ?A (server)

G ::= p -> q̃ : 〈G′〉;G | p -> q̃ : N(G1, G2) | ?p -> !q̃ : 〈G〉 | endpq̃

Fig. 1 Local Types (A,B, . . .) and Global Types (G).

protocol Gsub, which is private to B1 and S, where B1 tells S whether it wants to
purchase the product alone:

Gsub = B1->S : N
(
B1->S : 〈addr〉; end, B1->S : 〈str〉; end

)
In MCP, nested protocols can proceed in parallel to their originating protocols.
For example, the last two communications, where B1 and B2 inform S of their
respective reasons for not completing the purchase, can be executed in parallel to
Gsub. We will formalise this in § 5.

3 Coherence

We give a proof-theoretical reconstruction of coherence, from [17]. Our theory
generalises duality, from CLL, to checking the compatibility of multiple types. We
define coherence as a proof system for deriving sets of (compatible) local types,
which describe the local behaviours of participants in a multiparty session. Global
types are proof terms for coherence proofs, yielding a correspondence between sets
of compatible local types and their global descriptions.

Types. The syntax of local and global types is given in Figure 1, where p, q range
over a set of roles. Global types are highlighted, to distinguish them as proof terms.
Highlighting is also used in our syntax of local types, to show the difference with
CLL. We will adopt the same convention in § 4 when we present more terms. A
local type A describes the local behaviour of a role in a session. Types 1 and ⊥
denote session termination, respectively representing the request and the acceptance
for closing a session (which were informally abstracted by end in our previous
examples). A type AOp̃B denotes a multicast output of a session with type A to
roles p̃, with a continuation B. A type A ⊗p B represents an input of a session
with type A from role p, with continuation B. Types A⊕p̃ B and ANpB denote,
respectively, the output of a choice between the continuations A and B to roles p̃
and the input of a choice from role p. The replicated type !A offers behaviour A as
many times as requested. Finally, type ?A requests the execution of a replicated
type and proceeds as A.

A global type G describes the behaviour of many participants. In the interaction
p -> q̃ : 〈G′〉;G, role p sends to roles q̃ a message to create a new session of type G′,
and then the protocol proceeds as G. In p -> q̃ : N(G1, G2), role p communicates
to roles q̃ its choice of either branch G1 or G2. A type ?p -> !q̃ : 〈G〉 denotes that
role p may ask roles q̃ to execute G many times. Finally, in endpq̃, role p asks roles
q̃ to terminate the session (for brevity, we often write end).
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G � Θ, p :B, {qi :Di}i G′ � p :A, {qi :Ci}i
p -> q̃ : 〈G′〉;G � Θ, p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O
endpq̃ � p :⊥, q1 :1, . . . , qn :1

1⊥

G1 � Θ, p :A, {qi :Ci}i G2 � Θ, p :B, {qi :Di}i
p -> q̃ : N(G1, G2) � Θ, p :A⊕q̃ B, {qi :CiNpDi}i

⊕N
G � p :A, {qi :Bi}i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi}i
!?

Fig. 2 Coherence.

Judgements. A role typing p :A states that role p behaves as specified by type A.
Our judgements for coherence have the form G � p1 :A1, . . . , pn :An which reads
as “the types A1, . . . , An of the respective roles p1, . . . , pn (assumed to be pairwise
distinct) are compatible and follow the global type G”. We use Θ to range over
sets of role typings, and make the standard assumption that we can write Θ, p :A
only if a role typing for p does not appear in Θ. Given some roles p̃, we use the
notation {pi :Ai}i to denote the set of role typings p1 :A1, . . . , pn :An, assuming
p̃ = p1, . . . , pn and i ranging from 1 to n. Given G, we say that G is valid if there
exists Θ such that G � Θ. Conversely, given Θ, we say that Θ is coherent if there
exists G such that G � Θ. Intuitively, the validity and coherency correspond to
syntactic well-formedness or projectability in [17].

We report the rules for deriving coherence judgements in Figure 2. Rule ⊗O
matches the output type from role p to roles q̃ with the input types of roles q̃,
whenever (i) the types for the newly created session are coherent and (ii) the types
of all continuations are also coherent. Rule ⊕N checks that both possibilities in a
choice are coherent, where all roles participating in the communication are allowed
to have different behaviour and the other roles are not (a multicast generalisation
of [17]). In rule !?, we check that a client requests the creation of a coherent session
only from replicated services. Finally, rule 1⊥ checks that all participants agree
on the termination of a protocol. As in CLL, we interpret type 1 as a terminated
process and ⊥ as a process that has terminated its behaviour in a session and
proceeds with other sessions. Therefore, we read rule 1⊥ as “a protocol terminates
when one participant waits (type ⊥) for the termination of all the others (type
1), which execute in parallel”. This design choice simplifies our development; we
discuss a generalisation in § 8.

For example, p -> q̃ : N(endrq̃, endps̃) is not valid since end does not have correct
participant annotation. p -> q̃ : N(p -> r̃ : 〈endrq̃〉, endpq̃) is not valid either since a
global type in the right branch does not contain the participants p and qi (hence it
does not match with rule ⊕N).

Example 1 (2-Buyer Protocol) We can revisit the local types for the 2-buyer
protocol in § 2 (1), where now data types are abstracted by 1’s and ⊥’s.

A
def
= ⊥OS1⊗S⊥OB2⊥

B
def
= 1⊗S1⊗B1

(
(⊥OS1)⊕S 1

)
C

def
= 1⊗B1⊥OB1⊥OB2

(
(1⊗B2 ⊥) NB2 1

)
Let G be the global type in (1) with end instead of data types; then, G �
B1 :A,B2 :B,S :C.
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{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : 〈G〉; r -> s̃ : 〈G′〉;G′′ 'g r -> s̃ : 〈G′〉; p -> q̃ : 〈G〉;G′′

(→→)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : N(r -> s̃ : 〈G〉;G1, r -> s̃ : 〈G〉;G2) 'g r -> s̃ : 〈G〉; p -> q̃ : N(G1, G2)

(→⊕)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : N(r -> s̃ : N(G1, G2), r -> s̃ : N(G3, G4))

'g

r -> s̃ : N(p -> q̃ : N(G1, G3), p -> q̃ : N(G2, G4))

(⊕⊕)

Fig. 3 Swapping relation 'g for global types.

3.1 Properties of Coherence

Swapping. Immediately from our correspondence between global types and coher-
ence proofs, we can reconstruct the standard notion of swapping 'g for global types
from [8]. Intuitively, two communications involving different roles can always be
swapped, capturing the fact that separate roles execute concurrently. For example,
the following coherence proof (for p, q, r, s different):

G � Θ, p :A′, q :B′, r :C′, s :D′ G′′ � Θ̃, r :C, s :D

r -> s : 〈G′′〉;G � Θ, p :A′, q :B′, r :COsC′, s :D ⊗r D′
⊗O

G′ � p :A, q :B

p -> q : 〈G′〉; r -> s : 〈G′′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :COsC′, s :DOrD′,
⊗O

is equivalent to ('g)

G � Θ, p :A′, q :B′, r :C′, s :D′ G′ � Θ̃, p :A, q :B

p -> q : 〈G′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :C′, s :D′
⊗O

G′′ � r :C, s :D

r -> s : 〈G′′〉; p -> q : 〈G′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :COsC′, s :DOrD′
⊗O

Such equivalence proves that a global type of the form p -> q : 〈G′〉; r -> s : 〈G′′〉;G
is equivalent to r -> s : 〈G′′〉; p -> q : 〈G′〉;G. Formally:

Definition 1 (Swapping congruence 'g) The swapping congruence 'g is the
smallest congruence satisfying the rules in Figure 3.

In general, two global types are proof terms for the same set of local typings
if and only if they are equivalent. To prove this, we first need to introduce two
auxiliary lemmas.

Lemma 1 Let G � Θ. Then:

– Θ = Θ′, p :AOq̃B, {qi :Ci⊗pDi}i implies that the proof for deriving G contains
an application of rule ⊗O that introduces p :AOq̃B, {qi :Ci ⊗p Di}i;

– Θ = Θ′, p :A⊕q̃ B, {qi :CiNpDi}i implies that the proof for deriving G contains
an application of rule ⊕N that introduces p :A⊕q̃ B, {qi :CiNpDi}i;

– Θ = Θ′, p :?A, {qi :!Bi}i implies that the proof for deriving G contains an
application of rule !? that introduces p :?A, {qi :!Bi}i.

Proof The thesis follows immediately from the definition of the rules for coherence,
since there are no elimination rules and, e.g., rule ⊗O is the only one that can
introduce the propositions that we are interested in. The same argument holds for
the other cases. ut
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In the following Lemma, we consider a weight metric that will be useful later for
reasoning inductively on coherence proofs. The reason for introducing this metric is
that the swapping rule (→⊕) from Figure 3 does not preserve the size of the proof
that it transforms: if we apply it from left to right, the communications at the
beginning of both branches of the choice gets conflated to a single one; if we apply
it from right to left, the communication before the choice gets duplicated in the
branches of the choice. Even the height of the derivation tree for the proof changes
when we apply this rule. However, we can define a weight metric that allows us
to see that having a (swappable) communication before a choice is equivalent to
having two instances of it in the two branches of the same choice. Formally, the
weight w(G) of a global type G is a natural number; the function w is inductively
defined as:

w( endpq̃ ) = 2 w( ?p -> !q̃ : 〈G〉 ) = w(G) + 1

w( p -> q̃ : N(G1, G2) ) = w(G1) + w(G2)

w( p -> q̃ : 〈G′〉;G ) = w(G′) · w(G)

A type ?p -> !q̃ : 〈G〉 has the weight of G plus 1. A choice weighs as the sum of
its two branches. A communication p -> q̃ : 〈G′〉;G weighs as the product of the
respective weights of G′ and G. In other words, looking at the correspondence with
coherence proofs, ⊗ corresponds to product (of weights) and ⊕ to sum (of weights).
In the base case, the term endpq̃ weighs 2, since we must ensure that the function
is strictly monotonic on the inductive definition of a term G.

Lemma 2 Let G1 be a valid global type. Then:

– G1 � Θ, p :AOq̃B, {qi :Ci⊗pDi}i implies that there exists G2 = p -> q̃ : 〈G′′2 〉;G′2
such that G1 'g G2, w(G1) = w(G2), and G2 � Θ, p :AOq̃B, {qi :Ci ⊗p Di}i;

– G1 � Θ, p :A⊕q̃B, {qi :CiNpDi}i implies that there exists G2 = p -> q̃ : N(G′2, G
′′
2 )

such that G1 'g G2, w(G1) = w(G2), and G2 � Θ, p :A⊕q̃ B, {qi :CiNpDi}i;
– G1 � Θ, p :?A, {qi :!Bi}i implies that there exists G2 = ?p -> !q̃ : 〈G′2〉 such that
G1 'g G2, w(G1) = w(G2), and G2 � Θ, p :?A, {qi :!Bi}i.

Proof The proof is by induction on the derivation of G1. We focus on the first
implication; the others follow by similar reasoning. By Lemma 1, we know that
the proof for deriving G1 must contain an application of rule ⊗O that introduces
p :AOq̃B, {qi :Ci ⊗p Di}i.

We proceed by cases on the last applied rule in the derivation:

– Case 1⊥ (Base case). This case is not applicable since there must be an
application of ⊗O (by Lemma 1).

– Case ⊗O introducing p :AOq̃B, {qi :Ci ⊗p Di}i:

G′1 � Θ, p :B, {qi :Di}i G′′1 � p :A, {qi :Ci}i
p -> q̃ : 〈G′′1 〉;G′1 � Θ, p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

The thesis follows trivially since G1 = G2.
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– Case ⊗O not introducing p :AOq̃B, {qi :Ci ⊗p Di}i:

G′1 � Θ′,
r :F, {sj :Ij}j , p :AOq̃B,
{qi :Ci ⊗p Di}i

G′′1 � r :E, {si :Hi}i

r -> s̃ : 〈G′′1 〉;G′1 �
Θ′, r :EOs̃F, {sj :Hj ⊗r Ij}j ,
p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

By induction hypothesis, we know that we can rewrite this proof as:

F G′′1 � r :E, {si :Hi}i

r -> s̃ : 〈G′′1 〉; p -> q̃ : 〈G′′2 〉;G′2 �
Θ′, r :EOs̃F, {sj :Hj ⊗r Ij}j ,
p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

where

F =

G′2 � Θ′, r :F, {sj :Ij}j , p :B, {qi :Di}i G′′2 � p :A, {qi :Ci}i

p -> q̃ : 〈G′′2 〉;G′2 �
Θ′, r :F, {sj :Ij}j ,
p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

such that G′1 'g p -> q̃ : 〈G′′2 〉;G′2 and w(G′1) = w(p -> q̃ : 〈G′′2 〉;G′2). Hence, by
the fact that the swapping relation'g is a congruence, we have r -> s̃ : 〈G′′1 〉;G′1 'g

r -> s̃ : 〈G′′1 〉; p -> q̃ : 〈G′′2 〉;G′2. Moreover, applying rule (→→) from the defini-
tion of 'g, we obtain:

F ′ G′′2 � p :A, {qi :Ci}i

p -> q̃ : 〈G′′2 〉; r -> s̃ : 〈G′′1 〉;G′2 �
Θ′, r :EOs̃F, {sj :Hj ⊗r Ij}j ,
p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

where

F ′ =
G′2 � Θ′, r :F, {sj :Ij}j , p :B, {qi :Di}i G′′1 � r :E, {si :Hi}i
r -> s̃ : 〈G′′1 〉;G′2 � Θ′, r :F, {sj :Ij}j , p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

such that r -> s̃ : 〈G′′1 〉;G′1 'g p -> q̃ : 〈G′′2 〉; r -> s̃ : 〈G′′1 〉;G′2 and
w(r -> s̃ : 〈G′′1 〉;G′1) = w(p -> q̃ : 〈G′′2 〉; r -> s̃ : 〈G′′1 〉;G′2) .

– The cases for ⊕N and !? are similar to the previous one. For case ⊕N, we
may have to apply the transformation (→⊕). As anticipated, although this
transformation changes the size of a proof, it does not change its weight
(which is what we need to prove here). This follows from simple distribution of
multiplication over addition. Rule (→⊕) states (we report it verbatim, since
our argument holds independently from this particular proof):

p -> q̃ : N(r -> s̃ : 〈G〉;G1, r -> s̃ : 〈G〉;G2) 'g r -> s̃ : 〈G〉; p -> q̃ : N(G1, G2)

We can easily verify that weight remains unaffected:

w( p -> q̃ : N(r -> s̃ : 〈G〉;G1, r -> s̃ : 〈G〉;G2) ) = (by definition of w)

w( r -> s̃ : 〈G〉;G1 ) + w( r -> s̃ : 〈G〉;G2 ) = (by definition of w)(
w(G) · w(G1)

)
+
(
w(G) · w(G2)

)
= (by distribution)

w(G) ·
(
w(G1) + w(G2)

)
= (by definition of w)

w( r -> s̃ : 〈G〉; p -> q̃ : N(G1, G2) )
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ut

Proposition 1 (Swapping) Let G1 � Θ. Then, G1 'g G2 if and only if G2 � Θ.

Proof (only if direction) For each rule defining G1 'g G2, we can expand G1 to
its corresponding coherence proofs and commute its last applied rule to obtain a
proof for G2 with the same Θ. In each case, the two proofs prove the same Θ. We
report the representative case of (→⊕). We have that:

G1 = p -> q̃ : N(r -> s̃ : 〈G′′1 〉;G′1, r -> s̃ : 〈G′′1 〉;G′2)

G2 = r -> s̃ : 〈G′′1 〉; p -> q̃ : N(G′1, G
′
2)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : N(r -> s̃ : 〈G′′1 〉;G′1, r -> s̃ : 〈G′′1 〉;G′2)

'g r -> s̃ : 〈G′′1 〉; p -> q̃ : N(G′1, G
′
2)

(→⊕)

The proof for G1 is:

D E

p -> q̃ : N(r -> s̃ : 〈G′′1 〉;G′1, r -> s̃ : 〈G′′1 〉;G′2) �
Θ′, r :E ⊗s̃ F, {sj :HjOrIj}j ,
p :A⊕q̃ B, {qi :CiNpDi}i

⊕N

where

D =
G′1 � Θ

′, r :F, {sj :Ij}j , p :A, {qi :Ci}i G′′1 � r :E, {sj :Hj}j
r -> s̃ : 〈G′′1 〉;G′1 � Θ′, r :E ⊗s̃ F, {sj :HjOrIj}j , p :A, {qi :Ci}i

⊗O

and

E =
G′2 � Θ

′, r :F, {sj :Ij}j , p :B, {qi :Di}i G′′1 � r :E, {sj :Hj}j
r -> s̃ : 〈G′′1 〉;G′2 � Θ′, r :E ⊗s̃ F, {sj :HjOrIj}j , p :B, {qi :Di}i

⊗O

We can rewrite the proof above to obtain one for G2, proving the thesis:

F G′′1 � r :E, {sj :Hj}j

r -> s̃ : 〈G′′1 〉; p -> q̃ : N(G′1, G
′
2) �

Θ′, r :E ⊗s̃ F, {sj :HjOrIj}j ,
p :A⊕q̃ B, {qi :CiNpDi}i

⊗O

where

F =
G′1 �

Θ′, r :F,
{sj :Ij}j , p :A, {qi :Ci}i

G′2 �
Θ′, r :F,
{sj :Ij}j , p :B, {qi :Di}i

p -> q̃ : N(G′1, G
′
2) � Θ′, r :F, {sj :Ij}j , p :A⊕q̃ B, {qi :CiNpDi}i

⊕N

ut

Proof (if direction) We prove that G1 � Θ and G2 � Θ imply G1 'g G2. We
proceed by mutual induction on the weights of the proof derivations of G1 and G2.
For the base case where G1 is derived by rule 1⊥, then G2 must be derived in the
same way, hence the two proofs are the same and the thesis follows. We now move
to the inductive cases, looking first at the last applied rule used to derive G1.
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– Case ⊗O. Here we have that G1 = p -> q̃ : 〈G′1〉;G′′1 such that:

G′1 � Θ′, p :B, {qi :Di}i G′′1 � p :A, {qi :Ci}i
p -> q̃ : 〈G′′1 〉;G′1 � Θ′, p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

If G2 ends with an application of ⊗O that introduces the same principal
formulas, we have that G2 = p -> q̃ : 〈G′′2 〉;G′2. Since G2 has the same typing of
G1, from rule ⊗O we know that also G′′2 and G′2 have the same typings of G′′1
and G′1 respectively, because the rule directs precisely the distribution of roles
and types by looking at the role annotations. The thesis now follows directly
by induction hypothesis (since the proofs for the premises are smaller).
Otherwise, by Lemma 1 we know that we can apply Lemma 2 to obtain a G3 such
that: G2 'g G3; G3 � Θ′, p :AOq̃B, {qi :Ci ⊗p Di}i; G3 = p -> q̃ : 〈G′′3 〉;G′3;
and, the weight of the derivation of G3 is the same as that of the derivation
of G2. By the correspondence between global types and coherence proofs, we
know that:

G′3 � Θ′, p :B, {qi :Di}i G′′3 � p :A, {qi :Ci}i
p -> q̃ : 〈G′′3 〉;G′3 � Θ′, p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

The thesis now follows by induction hypothesis on G′′3 and G′3.
– Case ⊕N. This case is similar to that for ⊗O.
– Case !?. Here we have that G1 = ?p -> !q̃ : 〈G′1〉 such that:

G′1 � p :A, {qi :Bi}i
?p -> !q̃ : 〈G′1〉 � p :?A, {qi :!Bi}i

!?

By hypothesis, we know that G2 � p :?A, {qi :!Bi}i. That means that G2 has !?
as last applied rule:

G′2 � p :A, {qi :Bi}i
?p -> !q̃ : 〈G′2〉 � p :?A, {qi :!Bi}i

!?

The thesis now follows by induction hypothesis.
ut

Projection and Extraction. The hallmark of the theory of multiparty session types
is projection: developers can write protocols as global types, and then automatically
project a global type onto a set of local types that can be used to modularly verify
the behaviour of each participant. As there is only one possible rule application for
each production in the syntax of global types, we can construct an algorithm that
traverses the structure of G:

Proposition 2 (Projection) Given G, we can compute in linear time Θ (if it
exists) such that G � Θ.

We can also use coherence for the inverse procedure, i.e., the extraction of
a global type from a set of local typings Θ. If Θ is coherent, we can just apply
the first applicable coherence rule, noting that the sizes of the local types in the
premises always get smaller:
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Proposition 3 (Extraction) Given Θ, we can compute G (if it exists) such that
G � Θ.

Example 2 In the 2-buyer protocol, G � B1 :A,B2 :B,S :C implies: (i) we can infer
A, B and C from G (proposition 2) and (ii) we can extract G from B1 :A,B2 :B,S :C
(proposition 3). This observation follows directly from the proof coherence, which
we describe now. Three applications of the axiom 1⊥ rule yield:

end � B1 :⊥,S :1 (5)

end � B2 :1,S :1 (6)

end � B1 :⊥,B2 :1,S :1 (7)

We omit the annotations to end for better readability. Next, we combine (5) and
(6) using ⊗O.

B2 -> S : 〈end〉; end � B2 :⊥OS1,S :1⊗B2 ⊥ (8)

Next, we combine (7) and (8) using ⊕N to obtain

� B1 :⊥,B2 :
(
(⊥OS1)⊕S 1

)
,S :((1⊗B2 ⊥)NB21)

The corresponding global type is

S -> B2 : N(B2 -> S : 〈end〉; end, end).

Another application of ⊗O with an axiom application in the right premiss

end � B1 :⊥,S :1

yields

� B1 :⊥OB2⊥,B2 :1⊗B1((⊥OS1)⊕S 1
)
,S :((1⊗B2 ⊥)NB21) (9)

with global type

B2 -> B1 : 〈end〉;S -> B2 : N(B2 -> S : 〈end〉; end, end).

We repeat this operation three more times using rule ⊗O on (9) with the appropriate
instances of the axiom rule as right premisses and obtain the coherence proof of

� B1 :A,B2 :B,S :C

with the appropriate global type:

B1 -> S : 〈end〉;
B1 -> S : 〈end〉;
B2 -> S : 〈end〉;
B2 -> B1 : 〈end〉;
S -> B2 : N(B2 -> S : 〈end〉; end, end).
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(g⊗O) { p -> q̃ : 〈G′〉;G }  { G,G′ }
(g⊕N1) { p -> q̃ : N(G1, G2) } { G1 }
(g⊕N2) { p -> q̃ : N(G1, G2) } { G2 }

(g!?) { ?p -> !q̃ : 〈G〉 }  { G }
(g!C) { ?p -> !q̃ : 〈G〉 } { ?p -> !q̃ : 〈G〉, ?p -> !q̃ : 〈G〉 }
(g!W ) { ?p -> !q̃ : 〈G〉 } ∅
(g1⊥) { endpq̃ } ∅
(gctx) G̃1  G̃2 ⇒ G̃, G̃1  G̃, G̃2

(geq) G̃0 'g G̃1 G̃1  G̃2 G̃2 'g G̃3 ⇒ G̃0  G̃3

Fig. 4 Global Types, reduction semantics.

Global reductions. We define reductions for global types, denoted G̃ G̃′, where
G̃ is a multiset {G1, . . . , Gn}. Global type reductions are just a convention (re-
calling [8]), which we use in § 5 to concisely formalise how processes follow their
protocols. Formally,  is the smallest relation satisfying the rules in Figure 4. Rule
g⊗O models a communication that creates a new session of type G′, which will
then proceed in parallel to the continuation G. Rule g1⊥ models session termina-
tion. Rules g⊕N1 and g⊕N2 model the execution of a choice. In rules g!?, g!C and
g!W , a replicated protocol can be respectively executed exactly once, multiple, or
zero times. Rule gctx lifts the behaviour of a protocol to a multiset of protocols
executing concurrently. We abuse the notation G̃, G̃′ to indicate the union of the
two multisets G̃ and G̃′. Finally, rule geq allows for swappings in a global type.
In this rule, G̃ 'g G̃′ is the point-wise extension of the swapping relation 'g to
multisets. Formally, G̃ 'g G̃′ if and only if G̃ = {G1, . . . , Gn}, G̃′ = {G′1, . . . , G′n},
and Gi 'g G′i for all i ∈ [1, n]. Our semantics preserves validity. Below we write
that G̃ is valid if all the Gi in G̃ are valid.

Theorem 1 (Coherence Preservation) If G̃ is valid and G̃  G̃′, then G̃′ is
valid.

Remark 1 Rule g!? can be derived from rules g!C and g!W . Including it simplifies
our presentation, since each global type reduction corresponds to a communication
in MCP (§ 5).

Coherence as generalised duality. Coherence is a generalisation of duality (from
CLL [15]): in the degenerate case of a session with two participants, the two notions
coincide. We recall the definition of duality X⊥, defined inductively on the syntax
of linear logic propositions:

(X ⊗ Y )⊥ = X⊥OY ⊥ (XOY )⊥ = X⊥ ⊗ Y ⊥

1⊥ = ⊥ ⊥⊥ = 1

(X ⊕ Y )⊥ = X⊥NY ⊥ (XNY )⊥ = X⊥ ⊕ Y ⊥

(!X)⊥ = ?X⊥ (?X)⊥ = !X⊥

We define a partial encoding [[·]] from local types into linear logic propositions:

[[1]] = 1 [[⊥]] = ⊥ [[!A]] =![[A]] [[?A]] =?[[A]] [[A⊗p B]] = [[A]]⊗ [[B]]

[[AOqB]] = [[A]]O[[B]] [[A⊕p B]] = [[A]]⊕ [[B]] [[ANpB]] = [[A]]N[[B]]
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P,Q,R ::= xpq̃(y);P (send) | xpq(y); (P | Q) (recv)

| xpq̃ .inl;P (left sel) | xpq̃ .inr;P (right sel)

| xpq .case(P,Q) (case) | (νx :G)
(∏

i Pi

)
(res)

| closexp (close) | waitxp;P (wait)

| !xp(y);P (service) | ?xp(y);P (client)

| P +Q (choice)

Fig. 5 MCP, syntax of processes.

The encoding [[·]] is defined only when O and ⊕ are annotated with a single role.
We get:

Proposition 4 (Coherence as Duality) Let A,B be propositions where all
subterms of the form COp̃D or C ⊕p̃ D are such that p̃ = q for some q. Then,
[[A]] = [[B]]⊥ if and only if there exists G such that G � p :A, q :B.

Observe that, in Proposition 4, the G corresponding to the coherence proof for
the validity of p :A, q :B is necessarily unique, since coherence is deterministic in
the case of two propositions – the structures of the propositions force the order in
which the rules must be applied.

4 Multiparty Classical Processes

In this section, we present Multiparty Classical Processes (MCP). MCP captures
dependencies among actions performed by different participants in a multiparty
session, whereas, in previous work, actions among different pairs of participants
must be independent [6,28]. We use the synchronous semantics from [18] for a
simplicity of the presentation.

Environments. Let Γ,∆ range over typing environments:

Γ,∆ ::= · | Γ, xp :A

Intuitively, xp :A means that role p in session x follows behaviour A. We write ?∆
whenever ∆ contains only types of the form ?A, and write ∆,xp :A only when xp

does not appear in ∆.

Processes. We report the syntax of processes in Figure 5. In MCP, both input and
output names are bound, as in [28]. Term (send) creates a new session y and sends
it, as role p, to the processes respectively playing roles q̃ in session x; then, the
process proceeds as P . The dual operation (recv) receives, as role p in session x, a
fresh session y from the process playing role q; the process then proceeds as the
parallel composition of P (dedicated to session y) and Q (dedicated to continuing
session x). Similarly, terms (left sel) and (right sel) multicast a selection of a left
or right branch respectively to the processes playing roles q̃ in session x, as role
p. A selection is received by term (case), which offers the two selectable branches.
Terms (close) and (wait) terminate a session. Term (choice) is the standard non-
deterministic choice. In a restriction (res), x is bound in the processes Pi; we
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P ` Γ, yp :A Q ` ∆,xp :B

xpq(y); (P | Q) ` Γ,∆, xp :A⊗q B
⊗

P ` Γ, yp :A, xp :B

xpq̃(y);P ` Γ, xp :AOq̃B
O

P ` Γ Q ` Γ
P +Q ` Γ

+
P ` Γ, xp :A Q ` Γ, xp :B

xpq .case(P,Q) ` Γ, xp :ANqB
N

{Pi ` Γi, x
pi :Ai}i G � {pi :Ai}i

(νx :G)
(∏

i Pi

)
` {Γi}i

MCut

P ` Γ, xp :A

xpq̃ .inl;P ` Γ, xp :A⊕q̃ B
⊕1

P ` Γ, xp :B

xpq̃ .inr;P ` Γ, xp :A⊕q̃ B
⊕2

closexp ` xp :1
1

P ` Γ
waitxp;P ` Γ, xp :⊥ ⊥

P ` ?Γ, yp :A

!xp(y);P ` ?Γ, xp : !A
!

P ` Γ, yp :A

?xp(y);P ` Γ, xp : ?A
?

P ` Γ
P ` Γ, xp : ?A

Weaken
P ` Γ, yp : ?A, zp : ?A

P [x/y][x/z] ` Γ, xp : ?A
Contract

Fig. 6 MCP, typing rules.

use the standard type annotation (as in [28]) to show the relation between the
semantics of processes and global types in § 5. In term xp q(y); (P | Q), y is bound
in P but not in Q. In terms x p q̃(y);P , !xp(y);P , and ?xp(y);P , y is bound in P .

Judgements. Judgements in MCP have the form P ` xp1

1 :A1, . . . , x
pn
n :An, meaning

that process P implements roles pi in the respective session xi with behaviour Ai.

Rules. We report the rules of MCP in Figure 6. Intuitively, a process is typed
with local types; then, we use coherence to check that the local types of composed
processes (rule MCut) coherently implement a global type. All rules are defined up
to context exchange.

Rule MCut is central: it extends the Cut of CLL to composing in parallel an
arbitrary number of Pi that communicate using session x. The rule checks that
the composition of the respective local behaviours of the composed processes is
coherent (G � {pi :Ai}i). In the conclusion, {Γi}i is the disjoint union of all Γi in
the premise.

Rule ⊗ types an input xpq(y); (P | Q), where the subprocess P plays role p
with behaviour A in the received multiparty session y; session x then proceeds
by following behaviour B for role p in Q. Observe that the ⊗ is annotated with
the role q that p wishes to receive from. The multicast output xpq̃(y);P in rule
O creates a new session y and sends it, as role p in session x, to roles q̃. The new
session y is used by P as role p with type A, assuming that the other processes
receiving it implement the other roles (this assumption is checked by coherence in
MCut, when processes are composed). We discuss in § 8 how to relax the constraint
that the role p played in session y is the same.

Rules ⊕1 and ⊕2 type, respectively, the multicast of a left and right selection, by
checking that the process continuation follows the expected local type. Similarly, rule
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N types a branching by checking that the continuations implement the respective
expected local types.

Rule + types the nondeterministic process P +Q, by checking that both P
and Q implement the same local behaviours. Observe that P and Q may still be
substantially different, since they may (i) perform different selections on some
sessions (as rules ⊕1 and ⊕2 can yield the same typing), and (ii) have different
inner compositions of processes whose types have been hidden by rule MCut.

Rules 1 and ⊥ type, respectively, the request and the acceptance for closing
a multiparty session. Rules ! and ? type, respectively, the replicated offering of a
service and its repeated usage (a client). Since a service typed by ! may be used
multiple times, we require that its continuation does not use any linear behaviour
(?∆). Rules Weaken and Contract type, respectively, the absence of clients or the
presence of multiple clients. In rule Contract, sessions y and z are contracted into
a single session x with a standard name substitution, provided that they have the
same type ?A.

5 Semantics

In this section, we demonstrate the consistency of MCP, by establishing a cut-
elimination result that yields an operational semantics and important properties,
e.g., deadlock-freedom.

5.1 Structural Equivalences as Commuting Conversions

MCP supports commuting conversions, permutations of applications of MCut that
maintain the validity of judgements. As an example, consider the following proof
equivalence (≡):

P ` ∆, yp :A, xp :B, zr :C

xpq̃(y);P ` ∆, xp :AOq̃B, zr :C
O

Qi ` Γi, z
si :Di G � r :C, {si :Di}i

(νz :G)
(
xpq̃(y);P |

∏
iQi

)
`{Γi}i, ∆, xp :AOq̃B

MCut

≡

P ` ∆, yp :A, xp :B, zr :C Qi ` Γi, z
si :Di G � r :C, {si :Di}i

(νz :G)
(
P |

∏
iQi

)
`{Γi}i, ∆, yp :A, xp :B

MCut

xpq̃(y); (νz :G)
(
P |

∏
iQi

)
`{Γi}i, ∆, xp :AOq̃B

O

Above, an output is moved out of a restriction of a different session (or in it,
reading in the other direction), as in [28]. In this example, the output process is
the first in the parallel under the restriction; in general, this is not always the
case since the process may be any of those in the parallel composition. In order
to represent equivalences independently of the position of processes in a parallel,
we use process contexts [24]. A context, denoted by C, is a parallel composition
with a hole: C[·] ::= · | C[·] | P | P | C[·]. All equivalences are reported in
Figure 7. The equivalence κpar permutes processes in a parallel, since the premises
of rule MCut can be in any order. In κcut, we can swap two restrictions, which
corresponds to swapping two applications of rule MCut. The equivalence κO shows
that a restriction can always be swapped with an output on a different session.
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(κpar) (νz :G)
(∏

i∈k̃ Pi

)
≡ (νz :G)

(∏
j∈k̃′ Pj

)
(k̃ permutation of k̃′)

(κcut) (νx :G)
(
C
[
(νy :G′) C′[P ]

])
≡ (νy :G′)

(
C′
[
(νx :G) C[P ]

])
(x, y ∈ fn(P ),

x, y not free in C[·])

(κO) (νz :G)
(
C
[
xpq̃(y);P

])
≡ xpq̃(y); (νz :G) C[P ]

(κ⊗) (νz :G)
(
C
[
xpq(y); (P | Q)

])
≡ xpq(y); (P | (νz :G) (C[Q])) (z 6∈ fn(P ))

(κ⊕1) (νz :G) C[xpq.inl;P ] ≡ xpq.inl; (νz :G) C[P ]

(κ⊕2) (νz :G) C[xpq.inr;P ] ≡ xpq.inr; (νz :G) C[P ]

(κN) (νz :G) C[xpq.case(P,Q)] ≡ xpq.case((νz :G) C[P ], (νz :G) C[Q])

(κ!) (νz :G) C[!xp(y);P ] ≡ !xp(y); (νz :G) C[P ]

(κ?) (νz :G) C[?xp(y);P ] ≡ ?xp(y); (νz :G) C[P ]

(κ⊥) (νz :G) C[wait xp;P ] ≡ wait xp; (νz :G) C[P ]

Fig. 7 MCP, Structural Equivalences.

Similarly, the equivalence κ⊗ swaps a restriction with an input, requiring that the
restricted name (z in this case) occurs free in P . In the case of ⊕, we have two
equivalences, corresponding to the right and left selection respectively. For κ&, we
can move a restriction to each branch of a case construct, also duplicating the
context C. Equivalences κ! and κ? allow to swap a restriction with a service and a
client respectively. Finally, κ⊥ is the case for waitxp. There is no equivalence for
the process closexp since it is only typable with the axiom 1.

5.2 Process Reductions as MCut Reductions

As for equivalences, we use our proof theory to derive reductions for processes,
given in Figure 8. The full proof derivations of such reductions are given in the
Appendix. In the reduction β⊗O, the output from role p to roles q̃ on session x
is matched with the inputs at such roles, creating a new session y, following the
global type of x. Reductions β⊕N1 and β⊕N2 capture the left and right multicast
selection of a branching, respectively. In β!?, a set of services with a single client is
reduced to the composition of the bodies of such services with that of the client; the
type ?p -> !q̃ : 〈G〉 of x is correspondingly reduced to G. Reduction β!W garbage
collects a set of unused services. In β!C , instead, a set of services is replicated to
handle multiple clients. Finally, reduction β1⊥ terminates a session x.

5.3 Properties

In the remainder, we abuse the notation P → P ′ to refer to process reductions
closed up to our structural equivalence ≡, as in standard process calculi. We restrict
P → P ′ to be a top-level reduction, i.e., we do not allow reductions of sub-terms
in P . This does not introduce any loss of generality, as in [28].

Processes and Types. Since both equivalences and reductions are derived from
judgement-preserving proof transformations, we immediately obtain the following
two properties:
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(β⊗O) (νx :p-> q̃ : 〈G′〉;G)
(∏

i x
qi p(y); (Pi | Qi) | xpq̃(y);R |

∏
j Pj

)
→ (νy :G′)

(∏
i Pi | (νx :G) (

∏
iQi | R |

∏
j Pj)

)
(β⊕N1) (νx:p-> q̃ : N(G1, G2))

(
xpq̃.inl;P |

∏
ix

qip.case(Qi, Ri) |
∏

j Pj

)
→ (νx :G1)

(
P |

∏
iQi |

∏
j Pj

)
(β⊕N2) (νx:p-> q̃ : N(G1, G2))

(
xpq̃.inr;P |

∏
ix

qip.case(Qi, Ri) |
∏

j Pj

)
→ (νx :G2)

(
P |

∏
i Ri |

∏
j Pj

)

(β!?) (νx :?p -> !q̃ : 〈G〉)
(
?xp(y);P |

∏
i!x

qi (y);Qi

)
→ (νy :G)

(
P |

∏
iQi

)

(β!W ) (νx :?p -> !q̃ : 〈G〉)
(∏

i!x
qi (y);Qi | P

)
→ P if x 6∈ fn(P )

(β!C) (νx :?p -> !q̃ : 〈G〉)
(∏

i!x
qi (w);Qi | P [x/y][x/z]

)
→ (νy :?p -> !q̃ : 〈G〉)

(∏
i!y

qi (w);Qi |
(νz :?p -> !q̃ : 〈G〉)

(∏
i!z

qi (w);Qi | P
))

(β1⊥) (νx :endpq̃)
(
wait xp;P |

∏
i close x

qi
)
→ P

(β+) (νx :G)
(
(P1 + P2) |

∏
iQi

)
→ (νx :G)

(
Pj |

∏
iQi

)
j ∈ {1, 2}

Fig. 8 MCP, Cut Reductions.

Theorem 2 (Subject Congruence) P ` ∆ and P ≡ Q imply that Q ` ∆.

Theorem 3 (Subject Reduction) P ` ∆ and P → Q imply that Q ` ∆.

In Figure 8, global type annotations should not be mistaken for a requirement
of our reductions; they are rather a guarantee given by our proof theory: if a
process is reducible, then its sessions are surely typed with the respective global
types reported in the rule. We use this property to reconstruct the result of session
fidelity from multiparty session types [17]. In the following, gt(P ) denotes the
multiset of global types used in the restrictions inside P .

Theorem 4 (Session Fidelity) P ` ∆ and P → P ′ imply that either gt(P ) 
gt(P ′) or gt(P ) 'g gt(P ′).

Proof (Sketch) First, we observe that we can disregard structural equivalences (≡)
without any loss of generality, because ≡ does not change the global types in P .
We now proceed by cases on the reduction applied to P , from Fig. 8. For all such
cases, we observe that the global types involved in the reduction are transformed
according to the rules for the semantics of global types. ut

Deadlock Freedom. Processes in MCP are guaranteed to be deadlock free. We use
the standard methodology from [6,28]. First, we prove that the MCut rule in MCP
is admissible:
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Theorem 5 (MCut Admissibility) Pi ` Γi, x
pi :Ai, for i ∈ [1, n], and G �

{pi :Ai}i imply that there exists Q such that Q ` {Γi}i.

Proof By induction on the sizes of the proofs for Pi ` ∆i, x
pi :Ai and the formulae

Ai. If a reduction from Figure 8 is applicable, then we apply it. For all such
reductions, we can observe that the size of the proof and/or the formulae decrease
in the right-hand side, and therefore the thesis follows by induction hypothesis.
Otherwise, we can apply one of the commuting conversions from Figure 7. In this
case, the proof gets smaller while the formulae stay the same.

Our case coverage is complete, because when a commuting conversion cannot
be applied we can always apply a reduction. In fact, commuting conversions cannot
be applied only if all proofs for Pi end with an application of a rule with principal
variable x. But if that is the case, then by coherence we have that there must be at
least two proofs for Pk and Pj that have compatible types and can be reduced. ut

The admissibility of MCut gives us a methodology for removing cuts from a
proof, corresponding to executing communications in a process until all restrictions
are eliminated. However, the indiscriminate application of cut reductions inside of
proofs allows for executing communications under input prefixes. This is not in
line with the standard operational formulation of process calculi, where this kind
of reductions are usually not allowed. Therefore, it is also useful to prove that all
restrictions that appear at the top-level can be eliminated without reducing prefixed
sub-terms. Below, we say that P is a restriction if it is of the form (νx :G) (

∏
i Pi),

and we write →+ for one or more applications of →.

Corollary 1 (Deadlock Freedom) P `∆ and P is a restriction imply P→+Q
for some Q that is not a restriction.

Proof The proof follows the same structure as that presented in [28] for the calculus
CP, only generalised from the Cut rule in Classical Linear Logic to rule MCut in
MCP.

Since P is a restriction, the last applied rule in the proof of P is MCut. We now
proceed by cases on the last applied rules of the premises of such MCut. If one of
the premises is itself an MCut, we recursively eliminate it. Otherwise, either: all
premises are logical rules that act on the restriction variable, thus we can apply
a reduction from Fig. 8; or, at least one premise is a logical rule that acts on
a variable other than the restriction variable, thus we can apply a commuting
conversion from Fig. 7. ut

6 The 2-Buyer Protocol Example

We now formalise the 2-buyer protocol from § 2 and expand it further.

Processes and Types. Roles B1, B2 and S are implemented as the processes:

xB1 S(title); wait titleB1; xB1 S(quote);

(
close quoteB1 |
xB1 B2(contrib);wait contribB1;waitxB1; close zZ

)

xB2 S(quote);
(
close quoteB2 | xB2 B1(contrib);

(
close contribB2 | PB2

))
xS B1(title);

(
close titleS | x S B1(quote); wait quoteS; x S B2(quote); wait quoteS; PS)

)
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The first process is the first buyer Buyer1. In the second process, the second buyer
Buyer2, subterm PB2 implements the choice of whether to accept or reject the
purchase:(

xB2 S.inl; x B2 S(addr); wait addrS; closexB2
)

+
(
xB2 S.inr; closexB2

)
Finally, in the third process, the implementation of the seller, PS is the process:

xS B2.case ( xS B2(addr);
(
close addrS | closexS

)
, closexS )

At the level of types, the local types in Example 1 from § 3 can be used to type the
three processes above: Buyer1 ` xB1 :A, zZ :1, Buyer2 ` xB2 :B and Seller ` xS :C. If
we apply our new cut rule, we obtain (νx : G)

(
Buyer1 | Buyer2 | Seller

)
`

zZ :1 where the global type G, corresponding to equation (1) in § 2, is such that
G � B1 :A, B2 :B, S :C.

Nested Multiparty Sessions. We can extend the example above by implementing
the global type (4) in § 2, where the first buyer creates a sub-session with the seller
if the second buyer decides not to contribute to the purchase. Below, we give an
excerpt of the new seller:

...xS B1,B2(quote);wait quoteS;

xS B2.case

(
..., xS B1(y);

(
Psub |

xS B1(why);
(
closewhyS | xS B2(why); ...

)))

where Psub = yS B1.case

(
yS B1(addr); (close addrS | close yS),

yS B1(why); (closewhyS | close yS)

)
. Hence, the type of

channel x, from the seller’s viewpoint, becomes: 1

1⊗B1 ⊥ OB1,B2
(

(1⊗B2 1) NB2
((

(1⊗B1 1) NB1 (1⊗B1 1)
)
⊗B1 1⊗B1 1⊗B2 1

))
We can then use coherence to infer the global type (4) in § 2.

Services. We extend the example to support multiple clients on a replicated session
a:

(νa :?B1 -> !B2, S : 〈G〉) ( Buyers | !aB2(x); Buyer2 | !aS(x); Seller )

where Buyers is the process: (νz :end) ( ?aB1(x); Buyer1 | ?aB1(x); Buyer1′). Pro-
cess Buyer1′ initially behaves as Buyer1, but we replaced the term close zZ with the
term wait zZ; closewW. By applying β!C once, β!? twice, and commuting conversions,
the process above can be reduced to the parallel composition of two sessions that
follow the 2-buyer protocol:

(νx :G)
(

Buyer2 | Seller | (νz : end)
(
Buyer1 | (νx :G) (Buyer2 | Seller | Buyer1’)

))
1 1⊗B21 or 1⊗B2⊥?
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` Γ,A ` ∆,B
` Γ,∆,A⊗B

⊗
` Γ,A,B
` Γ,AOB

O

` Γ,A ` ∆,A⊥

` Γ,∆ Cut

` Γ,A
` Γ,A⊕B

⊕1
` Γ,B
` Γ,A⊕B

⊕2
` Γ,A ` Γ,B
` Γ,ANB

N

` 1
1

` Γ
` Γ,⊥ ⊥

` Γ
` Γ, ?A

Weaken

` ?Γ,A

` ?Γ, !A
!

` Γ,A

` Γ, ?A
?

` Γ, ?A, ?A

` Γ, ?A
Contract

Fig. 9 Classical Linear Logic (CLL).

7 Relation to Linear Logic

In this section, we elaborate on the relationship between MCP and Classical Linear
Logic (CLL). For the reader’s convenience, the rules defining CLL are reported in
Figure 9. With a slight abuse of notation, we consider CLL without the axiom for
initial sequents ` A,A⊥ and the rule for the additive unit >. We did not consider
these rules in the development of MCP, since they do not contribute to our main
aim of capturing multiparty session types but rather are interesting orthogonal
extensions that we leave for future work. For example, adding the axiom has been
shown to be useful in capturing polymorphism [28]. In the rest of this section, we
also do not consider rule + in MCP since it does not add any expressivity to the
underlying proof theory.

The rules of MCP and CLL look very similar. Thus, it is natural to ask whether
there is any difference in the judgements that can be derived in the two systems.
Interestingly, we find out that the sets of derivable judgements in the two systems
are identical. Recall the encoding [[·]] from § 3, which removes annotations from types
in MCP. We extend it to environments Γ in MCP by adding the straightforward
rules:

[[·]] = · [[Γ, xp :A]] = [[Γ ]], [[A]]

Let us write ` Γ in MCP whenever P ` Γ in MCP for some P . Then, we can prove
the following result.

Theorem 6 (Derivable Judgements in MCP and CLL) ` Γ in MCP if and
only if ` [[Γ ]] in CLL.

Proof Observe that removing proof terms in MCP yields a pure logic that differs
from CLL only for two aspects. Firstly, rule MCut in MCP is different from rule Cut
in CLL. Secondly, propositions in MCP are annotated with roles and the channels
they type. However, we know that rule MCut is admissible in MCP (Theorem 5), just
like rule Cut is admissible in CLL [15]. Therefore, when evaluating the expressivity
of the two systems wrt the derivability of judgements, we can limit our comparison
to the cut-free fragments of MCP and CLL without loss of generality. The only
difference between these two fragments is that MCP propositions are annotated
with channels and roles. But such annotations are used only by rule MCut and can
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be freely chosen in all other rules. As a consequence, cut-free MCP is completely
equivalent to the system with the same rules but without annotations; CLL is that
system. ut

Our proof of Theorem 6 relies on the fact that rule MCut in MCP and rule Cut
in CLL do not add any new provable judgements to their respective systems. We
now move from judgements to proofs. What is the difference between the sets of
proofs that can be respectively constructed in MCP and CLL? Since coherence
coincides with duality (Proposition 4) in the case of sessions with two participants,
it is straightforward to show that an application of Cut in CLL corresponds to
an application of MCut in MCP. Formally, let us write P `2 Γ for a judgement
derived in MCP with proof P by using only “binary” applications of MCut, i.e.,
where the number of processes composed at each application of MCut is exactly
two. We write [[P]] for the encoding of P in MCP into a proof in CLL, defined as
an homomorphism where the only relevant change is that each application of a
binary MCut is replaced with an equivalent application of rule Cut, as follows (we
omit the proof terms):[[Q ` Γ1, x

p1 :A1 R ` Γ2, x
p2 :A2 � p1 :A1, p2 :A2

` Γ1, Γ2
MCut

]]
=

[[Q]] ` [[Γ1, x
p1 :A1]] [[R]] ` [[Γ2, x

p2 :A2]]

` [[Γ1, Γ2]]
Cut

We can now prove:

Theorem 7 (Binary MCP and CLL) P `2 Γ in MCP if and only if [[P]] ` [[Γ ]]
in CLL.

Proof By induction on the construction of [[P]]. The interesting case is that of
MCut. The thesis follows from Proposition 4. ut

Theorem 7 cannot be generalised to all of MCP, since CLL cannot compose
more than two proofs at the same time as done in our rule MCut. Hence, MCut must
be somehow simulated using a different proof structure. An interesting line of work
in this direction is the notion of “medium processes” studied in [4]. Given some
processes that have compatible local types for a multiparty session, as composed in
our rule MCut, a medium process corresponds to a proof in (intuitionistic) linear
logic that can be composed with such processes using the standard Cut rule. This
medium process is synthesised by the original global type used to type the processes
and acts as a middleware: all communications over the session are centralised on the
medium, which distributes messages to the processes by following the original global
type. This approach adds a layer of indirection (processes do not communicate
directly, but through the medium) that is not present in the original theory of
multiparty session types, and is also not necessary in MCP. However, it points to
an interesting relationship between global types and the class of proofs in linear
logic that correspond to medium processes (P. Wadler, personal communication,
2015).
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8 Related Work and Discussion

Curry-Howard correspondences for session types. The works closest to ours are the
Curry-Howard correspondences between binary session types and linear logic [6,
28]. We extended this line of work considerably by introducing multiparty sessions,
which required generalising the notion of type compatibility in linear logic to ad-
dress multiple types (coherence). Coherence reconstructs the standard relationship
between the global and local views found in multiparty session types. We then
used coherence to develop a new proof theory that conservatively extends linear
logic to capture multiparty interactions (all derivable judgements in linear logic are
derivable also in our framework, and vice versa). Furthermore, our work provides,
for the first time, a notion of session fidelity in the context of a Curry-Howard
correspondence between linear logic and session types (§ 5, Theorem 4). In this
work we have not treated polymorphism and existential/universal quantification,
which we believe can be naturally added to MCP following the lines presented
in [28,5] for binary sessions.

Our work inverts the interpretation of ⊗ as output and O as input given in [3].
This makes our process terms in line with previous developments of multiparty
session types, where communications go from one sender to many receivers [12].
Using the standard interpretation would yield a join mechanism where multiple
senders synchronise with a single receiver. Formally, in the standard interpretation
of ⊗ as output and O as input, the rules for ⊗ and O in MCP and ⊗O in coherence
would be as follows:

P ` Γ, yp :A Q ` ∆,xp :B

xpq(y); (P | Q) ` Γ,∆, xp :A⊗q B
⊗

P ` Γ, yp :A, xp :B

xpq̃(y);P ` Γ, xp :AOq̃B
O

G � Θ, p :B, {qi :Di}i G′ � p :A, {qi :Ci}i
q̃ -> p : 〈G′〉;G � Θ, p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O

Note that there would be no need to re-prove our results, since the proof theory
would not change.

The standard cut rule in CLL forces the graph of connections among processes
to be a tree [1], a known sufficient condition for deadlock-freedom in session types [7].
A multi-cut rule is proposed in [1] to allow two processes to share multiple channels.
This enables reasoning on networks with cyclic inter-connections, but breaks the
deadlock-freedom property guaranteed by linear logic, since duality is no longer a
sufficient condition when multiple resources are involved (also noted in [28]). For
the first time, MCP processes can have cyclic inter-connections (e.g., our example
in § 2), but they are still guaranteed to be deadlock-free. The key twist is to use
coherence as a principle to check that the inter-connections are safely resolved by
communications. This suggests that coherence may be useful also in other settings
related to linear logic, for reasoning about the sharing of resources among multiple
entities (in our case, sessions). We leave this investigation as interesting future
work.

Multiparty Session Types (MPSTs). Our work concisely unifies many of the ideas
found in separate developments of multiparty session types. Our global types with
multicasting are inspired from [12], to which we added nested and replicated types;
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both additions arise naturally from our proof theory. Our nesting of global types can
be seen as a logical reconstruction of (a simplification of) those originally presented
in [13], while repetitions in global types reconstruct the concept presented in [10].

Our proof system for coherence is inspired by the notion of well-formedness
found in MPSTs [17,12], in the context of synchronous communications [2]. Since
coherence is a proof system, projection and extraction are derived from proof
equivalences, rather than being defined separately as in [17,19]. A benefit is that
our projection and extraction are guaranteed to be correct by construction, whereas
in previous works they have to be proven correct separately wrt the auxiliary notion
of well-formedness.

In [12], MPSTs are combined with an ordering on session names to guarantee
deadlock-freedom. Our deadlock-freedom result, instead, is based on the structure
of our proofs. In some cases, our technique is more precise; for example, consider
the deadlock-free system:

?ap(xa); ?br(xb); xa pq(w1); xb
rs(w2); ( xa pt(w3); P1 | P2 )

!aq(xa); xaqp(w1); (P3 | P4) !at(xa); xatp(w3); (P5 | P6) !bs(xb); xb
sr(w2); P7

If we compose these processes in parallel, restricting sessions a and b accordingly,
we obtain a typable MCP process. Instead, the system in [12] rejects it, since the
actions performed by the first process create a cycle between the names xa and xb.
In [23], the approach in [12] is refined to type processes such as the one above by
ordering the I/O actions of each session.

We conjecture that MCP can be used to naturally extend the work in [9],
where linear logic is used to type choreography programs, obtaining a Curry-
Howard correspondence for the calculus of compositional choreographies typed
with multiparty session types [22].

Coherence. Coherence can be generalised, e.g., in Figure 2: (i) rule !? could allow
for more than one client; (ii) similarly, rule 1⊥ could be relaxed to allow for more
than one ⊥ type; (iii) rule ⊗O could allow the involved participants to play different
roles in the nested session they create, as in [13] (adding such roles as an extra
annotation to each type respectively). We leave these extensions as interesting
future work. Point (ii) influences greatly the complexity of the cut admissibility
proof for MCP (Theorem 5), because it would imply that the cut reduction of a
terminated session could lead to having more than one process in the reductum
(all the processes typed with ⊥), whereas now we have only one. This means that
we would have to type a parallel composition of processes without restriction,
requiring to extend our framework in the fashion of the logic presented in [9].
While extending the proof theory of MCP would be easy, (extending coherence to
allow for missing participants to be added later, as in [22]), it would also cause
an explosion in the number of cases to consider in the proof [9]. As future work,
we will investigate how our rule MCut and the notion of coherence can affect the
mapping from the functional language GV [28,21].

In [11], a proof system similar to the multiplicative-additive fragment without
channel passing of our coherence is embedded in the calculus of constructions.
Differently from our approach, no correspondence between global types and proofs
is provided; hence, extraction does not follow automatically from the theory (and
is not presented).
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A Proof derivations for β-reductions

In this section, we present the full proof derivations for the process reductions in MCP given in
Figure 8. While our structural equivalences are straightforward (they are similar to those in [27],
extended to parallel contexts), our process reductions are quite new because they introduce
multiparty synchronisations.

To improve the readability of our proof transformations, we adopt a short-hand notation for
MCP proof trees, similar to that in [6]. Calligraphic letters D, E, . . . denote proof derivations
in either MCP or coherence (proofs, for short). We use “=” to define proofs, “:” to state that a
proof ends with a given judgement, and (Di)i to denote a list of proofs D1, . . . ,Dn. We also
write a proof name, e.g., D, above a judgement to denote that D is the proof used to derive
that judgement. We use the notation MCut(D1, . . . ,Dn)(G) to denote a proof that ends with
an application of rule MCut, where the Di are the left-hand premises and G the coherence proof
of such application respectively. In each case below, we adopt the convention that L denotes
the left-hand side proof of a β-reduction in Figure 8 (our starting point, or hypothesis) and R
the right-hand side of the reduction (our goal).

Case β⊗O. Given

L = MCut ((Qi)i,P, (Dj)j) (G) P ` {Γj}j , Γ, {∆i}i, {Γi}i

where P = (νx :p-> q̃ : 〈G′〉;G)
(∏

i x
qi p(y); (Pi | Qi) | xpq̃(y);R |

∏
j Pj

)
and such that

G =

G′′
G � {rj :Ej}j , p :B, {qi :Di}i

G′
G′ � p :A, {qi :Ci}i

p -> q̃ : 〈G′〉;G � {rj :Ej}j , p :AOq̃B, {qi :Ci ⊗p Di}i
⊗O

Qi =

Q′i
Pi ` Γi, y

qi :Ci

Q′′i
Qi ` ∆i, x

qi :Di

xqip(y); (Pi | Qi) ` Γi,∆i, x
qi :Ci ⊗p Di

⊗

P =

P ′
R ` Γ, yp :A, xp :B

xpq̃(y);R ` Γ, xp :AOq̃B
O

Dj : Pj `Γj , x
rj :Ej

we can construct

R′ = MCut ((Q′′i )i,P ′, (Dj)j) (G′′)
: (νx :G) (

∏
iQi | R |

∏
j Pj)

)
` {Γj}j , Γ, {∆i}i, yp :A

and, finally:

R = MCut ((Q′i)i,R′) (G′)
: (νy :G′)

(∏
i Pi | (νx :G) (

∏
iQi | R |

∏
j Pj)

)
` {Γj}j , Γ, {∆i}i, {Γi}i

Case β⊕N1. Without loss of generality we only consider this reduction. The case for β⊕N2

is similar. Given

L = MCut (D, (Ei)i, (Fj)j) (G)
: (νx:p-> q̃ : N(G1, G2))

(
xpq̃ .inl;P |

∏
ix

qip.case(Qi, Ri) |
∏

j Pj

)
` Γ, {∆i}i, {Γj}j
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where

G =

G1
G1 � {rj :Ej}j , p :A, {qi :Ci}i

G2
G2 � {rj :Ej}j , p :B, {qi :Di}i

p -> q̃ : N(G1, G2) � {rj :Ej}j , p :A⊕q̃ B, {qi :CiNpDi}i
⊕N

D =

D′
P ` Γ, xp :A

xpq̃ .inl;P ` Γ, xp :A⊕q̃ B
⊕1

Ei =

E ′i
Qi ` ∆i, x

qi :Ci

E ′′i
Ri ` ∆i, x

qi :Di

xqip.case(Qi, Ri) ` ∆i, x
qi :CiNpDi

N

Fj : Pj `Γj , x
qj :Ej

we can construct:

R = MCut (D′, (E ′i)i, (Fj)j) (G1)

: (νx :G1)
(
P |

∏
iQi |

∏
j Pj

)
` Γ, {∆i}i, {Γj}j

Case β1⊥. Given

L = MCut (P, (Qi)i) (G)
: (νx :endpq̃)

(
waitxp;P |

∏
i closex

qi
)
` Γ

where

G = endpq̃ � p :⊥, {qi :1}i
1⊥

Qi = closexqi ` xqi :1
1

P =

P ′
P ` Γ

waitxp;P ` Γ, xp :⊥ ⊥

we can construct:
R = P ′

: P ` Γ

Case β!?. Given

L = MCut (P, (Qi)i) (G)

: (νx :?p -> !q̃ : 〈G〉)
(

?xp(y);P |
∏

i!x
qi (y);Qi

)
` Γ, {∆i}i

where

G =

G′
G � p :A, {qi :Bi}i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi}i
!?

Qi =

Q′i
Qi ` ?∆i, y

qi :Ai

!xqi (y);Qi ` ?∆i, x
qi : !Ai

!

P =

P ′
P ` Γ, yp :B

?xp(y);P ` Γ, xp : ?B
?

we can construct:
R = MCut (P ′, (Q′i)i) (G′)

: (νy :G)
(
P |

∏
iQi

)
` Γ, {∆i}i
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Case β!W . Given

L = MCut ((Qi)i,P) (G)

: (νx : ?p -> !q̃ : 〈G〉)
(∏

i!x
qi (y);Qi | P

)
` Γ, {∆i}i

where

G =

G′
G � p :A, {qi :Bi}i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi}i
!?

Qi =

Q′i
Ai ` ?∆i, y

qi :Ai

!xqi (y);Qi ` ?∆i, x
qi : !Ai

!

P =

P ′
P ` Γ

P ` Γ, xp : ?B
Weaken

we can construct:
R′ = P ′

: P ` Γ
Finally, since all types in ∆i are prefixed with ?, we can iteratively applying Weaken to R′ for
{∆i}i and obtain:

R : P ` Γ, {∆i}i

Case β!C . Given

L = MCut ((Qi)i,P) (G)

: (νx :?p -> !q̃ : 〈G〉)
(∏

i!x
qi (w);Qi | P [x/y][x/z]

)
` Γ, {∆i}i

where

G =

G′
G � p :A, {qi :Bi}i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi}i
!?

Qi =
Qi ` ?∆i, w

qi :Bi

!xqi (w);Qi ` ?∆i, x
qi : !Bi

!

P =

F ′
P ` Γ, yp : ?A, zp : ?A

P [x/y][x/z] ` Γ, xp : ?A
Contract

we can construct:

R′ = MCut ((Qi)i,P ′) (G)
: (νz :?p -> !q̃ : 〈G〉)

(∏
i!z

qi (w);Qi | P
)
` Γ, {∆i}i, yp : ?A

Then, we can iteratively apply Contract to R′ and, finally, rule MCut to obtain:

R : (νy :?p -> !q̃ : 〈G〉)
(∏

i!y
qi (w);Qi | (νz :?p -> !q̃ : 〈G〉)

(∏
i!z

qi (w);Qi | P
))
` Γ, {∆i}i

Case β+. Given
L = MCut (P, (Qi)i) (G)

: (νx :G)
(

(P1 + P2) |
∏

iQi

)
` ∆, {Γi}i

where

P =

P1

P1 ` Γ, xp :A
P2

P2 ` Γ, xp :A

P1 + P2 ` ∆, xp :A
+
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we can construct, for i = 1 in Figure 8:

R = MCut (P1, (Qi)i) (G)

: (νx :G)
(
P1 |

∏
iQi

)
` ∆, {Γi}i

Otherwise, for i = 2 in Figure 8, we construct:

R = MCut (P2, (Qi)i) (G)

: (νx :G)
(
P2 |

∏
iQi

)
` ∆, {Γi}i
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