
EPiC Series in Computing

Volume 94, 2023, Pages 144–163

Proceedings of 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

Keep me out of the loop:

a more flexible choreographic projection

Lúıs Cruz-Filipe, Fabrizio Montesi, and Robert R. Rasmussen

University of Southern Denmark, Odense, Denmark
{lcf,fmontesi,rrr}@imada.sdu.dk

Abstract

Choreographic programming is a paradigm where programmers write global descrip-
tions of distributed protocols, called choreographies, and correct implementations are au-
tomatically generated by a mechanism called projection. Not all choreographies are pro-
jectable, because decisions made by one process must be communicated to other processes
whose behaviour depends on them – a property known as knowledge of choice.

The standard formulation of knowledge of choice disallows protocols such as third-party
authentication with retries, where two processes iteratively interact, and other processes
wait to be notified at the end of this loop. In this work we show how knowledge of choice
can be weakened, extending the class of projectable choreographies with these and other
interesting behaviours. The whole development is formalised in Coq. Working with a proof
assistant was crucial to our development, because of the help it provided with detecting
counterintuitive edge cases that would otherwise have gone unnoticed.

1 Introduction

Choreographic programming [40] is a programming paradigm for concurrent and distributed
software, where developers write the desired communication behaviour that should be enacted
by processes from a global viewpoint in a program called choreography [41]. Choreographies
can be automatically projected to a distributed implementation consisting of a program for each
process. A hallmark result in choreographic programming is deadlock-freedom by design [12]:
distributed implementations projected from choreographies are guaranteed to be deadlock-free,
since the syntax of choreographies cannot express mismatched communication actions.

An important open problem in choreographic programming is that current notions of pro-
jection are too restrictive when it comes to recursion: if some processes need to repeat some
actions, then all other processes not involved in these actions have to know that the repetition
will take place [41, Chapter 12]. This prevents applying choreographic programming to proto-
cols where a process waits for the result of a “loop” that involves other processes, but does not
itself participate in the loop. The aim of this paper is to address this problem.

Example 1. Consider a protocol for authentication with retry: a sensitive server is guarded
from clients until the client has received a token (from an external identity provider) allowing
the interaction to proceed. A simple way to express this protocol is by defining the following
recursive choreographic procedure X, expressed in the choreographic language from [22].

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 144–163

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

X = Client.req −→ IP.x;
If IP.check(x) Then IP.token −→ Client.x; Client.x −→ Server.x; Call Y

Else Call X

Procedure X starts with process Client communicating a request (req) to process IP, which
stores the request in its local variable x (first line). Then, IP checks if the received request
should be allowed to reach the Server. If so, IP communicates a token to Client, which Client

can forward to Server and then enter procedure Y (which implements subsequent interactions
between Client and Server, left unspecified here). Otherwise, this request is dropped and the
procedure is recursively invoked to process another request by the Client.

This definition of X is not projectable in the current theory because of a problem known as
knowledge of choice [15, 41]. Here specifically, the behaviour of Client and Server depends on
the result of a test that only IP is aware of. To fix this, the standard solution is to propagate
the necessary knowledge about a choice by means of selections: communications that carry
constant, pre-defined values (also called labels) from which the receivers can infer what to do.
In our example, we use the labels left and right, obtaining the following definition.

X = Client.req −→ IP.x;
If IP.check(x) Then IP −→ Client[left]; IP −→ Server[left];

IP.token −→ Client.x; Client.x −→ Server.x; Call Y

Else IP −→ Client[right]; IP −→ Server[right]; Call X

From this choreography, we can generate implementations of X for all participants by using
the projection procedure and process language formalised in [21].

X_IP = Client?x; If check(x) Then Client+left; Server+left; Call Y_IP

Else Client+right; Server+right; Call X_IP

X_Client = IP!req; IP & { left: IP?x; Server!x; Call Y_Client

| right: Call X_Client }

X_Server = IP & { left: Client?x; Call Y, Server
| right: Call X_Server }

The procedure for IP, X_IP, receives (?) the request from the client and checks it. If the request
is allowed (then-branch) then IP selects (+) the label left at both the client and the server.
In the code for the client, X_Client, we start by sending (!) the request to IP. Then, we wait
to receive a selection from the same process and switch (&) on the received label: if we receive
left, then we know that the request is allowed and proceed accordingly; otherwise (right), we
recursively invoke the procedure to try again. ◁

While there is in principle nothing wrong with the code shown at the end of Example 1,
Server is forced to be aware of and communicate about every attempt performed by Client.
That is, each time Client tries to obtain a token, Server receives a selection from IP informing it
about the result of the authentication. This is impractical: it should be possible for the server
to wait idly until Client has received a token, without being interrupted for every attempt.
Furthermore, it can raise security issues, as it leaks unnecessary information to Server.

The general pattern from Example 1 is used in many applications, including message val-
idation, cacheing, authentication and circuit breaker (server overload protection) [30, 43, 46].
Unfortunately, current theories of choreographic programming do not support it [12, 19, 26,
29, 41, 48]. In this work, we propose a new theory of projection for choreographies where it is
enough for IP to notify Client of the success of the authentication, yielding the choreography
below.

145

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

X = Client.req −→ IP.x; If IP.check(x) Then IP −→ Client[left]; IP.token −→ Client.x;
Client.x −→ Server.x; Call Y

Else IP −→ Client[right]; Call X [Server]

Crucially, the recursive call to X is annotated to indicate that Server does not need to be
aware of it. (Whereas it is natural that the client does, since it needs to participate in en-
acting it.) Using this device, our new notion of projection produces the simpler definition
X_Server = Client?x; Call Y_Server, which matches our intended behaviour.

Improving projection to deal with this pattern without renouncing formal correctness turned
out to be technically challenging. Intuitively, the key reason resides in the fact that projection
needs to determine which parts of a choreography should be translated to code for a given
process and which should be skipped. Previously, this amounted to a simple check of whether
the given process was involved in each individual choreography action. However, when we add
the ability to declare that a process is not involved in a procedure call (through our new syntax)
this check sometimes requires a more complex analysis of the structure of the remainder of the
choreography.

As we show, one can write choreographies where declaring a process not to be involved in
a procedure call (through our new syntax) does not make sense given the invoked procedure.
Deciding when a choreography is well-formed in this sense requires considering several tricky
corner cases.

To develop our notion of projection and prove it correct (the projected code is semantically
correspondent to the source choreography), we turned to interactive theorem proving. Specif-
ically, we based our development on the formalisation of choreographic programming given in
Coq [5] presented in [21, 22]. Using an interactive theorem prover in our development was es-
sential to the discovery of corner cases that we would have otherwise missed—and, ultimately,
to gaining confidence that we had dealt with all such cases!

Our main contribution consists of the definition and proof of correctness of the new pro-
jection procedure, which is given for an existing and well-studied choreographic programming
language [22] (modulo our enriched syntax for procedure calls). Our entire development is for-
malised in the Coq theorem prover. We also show that all previously proven results still hold
for our extension of the language.

2 Related work

Choreographic programming has been applied to several settings, including service-oriented
computing [12, 26, 40], cyberphysical systems [37, 38], security protocols [7, 36], distributed
agreement [35], and general concurrent and distributed programming [18, 28, 29, 50]. A com-
prehensive introduction to theory of choreographic languages is given in [41]. Many of the
principles behind projection were studied in the context of web services [10, 49] and can be
traced back to research on message sequence charts and similar structures for describing inter-
action protocols [1, 2, 34]. Available implementations of choreographic programming languages
include Chor [12, 40], Choral [28], AIOCJ [26], HasChor [50], and hacc [18]. None of these
existing theories and implementations can compile choreographies with the pattern that we
introduce.

Our work joins the line of work on formalised theories of choreographic programming. The
Coq formalisation we used as starting point for our development [23] (the extended version
of [21, 22]) formalises a substantial part of the theory in [41], and was inspired by earlier
research on a core model of choreographic programming (Core Choreographies [19]). The Coq
development from [23] has been used as a certified component of a tool [18] that compiles

146

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

choreographies to the service-oriented language Jolie [42]. We expect that our development
could be used to produce a new improved version of this component. Other formalisations of
choreographic programming include Kalas [48], which generates executable code in CakeML [45],
and Pirouette [29], which features higher-order composition.

Languages for expressing choreographies are used also for the purposes of documenting,
specifying, testing, and verifying the communication behaviour of concurrent systems, in textual
and visual forms [3, 4, 6, 8, 16, 17, 24, 25, 31, 33, 34, 41, 47, 51]. For example, multiparty session
types are abstract choreographies that do not specify how message payloads are computed (as
in choreographic programming), but only their types [31]. The relation between choreographic
programming and multiparty session types is well-studied: the latter can be used as types for
programs in the former [12, 27, 44], and their integration has been explained also in terms of
linear logic [9, 11, 13, 14].

Research into multiparty sessions types has also observed shortcomings like Example 1 in
their context [32, 39], showing that this is not a defect of our particular theory, but rather a
more general problem with these kinds of frameworks. While the extensions proposed by these
authors are based upon similar intuitions to ours, the technical development is different due to
the differences in the underlying frameworks.

3 Background

We dedicate this section to recap the parts of [23] directly relevant to our work. Throughout,
we use (slightly simplified) Coq notation to explain the concepts and formalisation details.
Moreover, we ignore some aspects of the formalisation that are immaterial to our work, namely:
that the language is paramaterised on a signature; and that interactions have annotations.

3.1 Syntax of choreographies

The syntax of our choreography language is given by the following grammar.

C ::= η; C | If p.b Then C1 Else C2 | Call X | RT_Call X ps C | End
η ::= p.e −→ q.x | p −→ q[l]

A choreography C can be: an interaction η followed by a continuation (η; C); a conditional
If p.b Then C1 Else C2, where the process p evaluates the Boolean expression b to choose between
the branches C1 and C2; a procedure call Call X, where X is the name of the procedure being
invoked; a runtime term RT_Call X ps C, where ps is a list of processes that remain to invoke
X;1 or the terminated choreography End. An interaction η can be: a communication p.e −→ q.x,
where process p sends the result of local evaluating expression e to process q, which stores it
in its local variable x; or a selection p −→ q[l], where p sends label l (either left or right) to
process q. Choreographies are formalised in Coq as an inductive type called Choreography.

Executing a choreography requires knowing procedure definitions. A set of procedure defini-
tions is defined as a mapping from procedure names to pairs of process names (the procedure’s
annotation) and choreographies.

Definition DefSet := RecVar → (list Pid)∗Choreography.

A choreographic program is then a pair consisting of a set of procedure definitions and a (main)
choreography. The procedures are static while the main choreography is dynamic, that is,
executing the program changes the main choreography but not the procedure definitions.

1Runtime terms are used in the semantics of choreographies, described below.

147

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

v := eval e s p s' [==] s[[q,x ⇒ v]]

(D,p.e −→ q.x; C,s) −−[TL_Com p v q]−→ (D,C,s')
CC_Com

beval b s p = true s [==] s'
(D,If p.b Then C1 Else C2,s) −−[TL_Tau p]−→ (D,C1,s')

CC_Then

[#](fst (D X)) = 1 In p (fst (D X)) s [==] s'
(D, Call X, s) −−[TL_Tau p]−→ (D, snd (D X), s')

CC_Call_Local

[#](fst (D X)) > 1 In p (fst (D X)) s [==] s'
(D, Call X, s) −−[TL_Tau p]−→ (D, RT_Call X (fst (D X) [\] p) (snd (D X)), s')

CC_Call_Start

[#]ps > 1 In p ps s [==] s'
(D, RT_Call X ps C, s) −−[TL_Tau p]−→ (D, RT_Call X (ps [\] p) C, s')

CC_Call_Enter

[#]ps = 1 In p ps s [==] s'
(D, RT_Call X ps C, s) −−[TL_Tau p]−→ (D, C, s')

CC_Call_Finish

Figure 1: Semantics of choreographies (selected rules).

Definition Program := DefSet ∗ Choreography.

We write Main P for the dynamic part (choreography) of P. Programs are subject to a number
of well-formedness conditions, e.g., no process communicates with itself. We discuss these in
Section 4.1, in the context of our extended theory.

3.2 Semantics of choreographies

The semantics of choreographies makes some assumptions inspired from process calculi: each
process runs independently of each other and has access to a local store; communications are
synchronous; and the network is reliable. Formally, this semantics is given as a labelled tran-
sition system on configurations, consisting of a program and a (global) state. States associate
to each process a map from variable names to values, corresponding to the local store of that
process. States can be updated: s[[p,x ⇒ v]] is the state obtained from updating s with the
mapping p,x 7→ v. We write s [==] s' to denote that s and s' are extensionally equal.

The transition relation of the labelled transition system is defined implicitly by a number
of transition rules for choreographic configurations; a selection of these are shown in Figure 1.2

Transitions have the form (D,C,s) −−[t]−→ (D,C',s'), where t is a transition label describing the
leakage – what can be observed from the transition happening. The reflexive and transitive
closure of the transition relation is written −−[tl]−→∗ , where tl is a list of transition labels.

Rule CC_Com deals with executing a communication from a process p to a process q: if the
expression e at p evaluates to a value v (using the auxiliary function eval), then the communi-
cation term is consumed and the state of the receiver is updated such that its receiving variable
x is now mapped to value v. The leakage is TL_Com p v q, denoting that p has communicated the
value v to q. Rule CC_Sel (not shown) for selections is similar, but does not change the state.

Rule CC_Then allows a process p to evaluate the guard b of a conditional to true (using the

2The formalisation defines this relation in two layers for technical reasons immaterial to our development.

148

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

auxiliary function beval), proceeding to the then-branch of the conditional. The leakage is
TL_Tau p, denoting that p has executed an internal action. The dual rule CC_Else is not shown.

The remaining rules shown deal with procedure calls. A procedure call reduces when a pro-
cess enters it (rule CC_Call_Start), and is replaced by a runtime term including the procedure’s
name, the list of processes that still need to enter it, and the procedure’s definition. Other
processes can now enter the procedure (rule CC_Call_Enter), and are simply removed from the
runtime term’s list. When the last process enters the procedure, rule CC_Call_Finish consumes
the runtime term, leaving only the choreographic fragment C that still needs to be executed.
In case of a procedure annotated with a single process, rule CC_Call_Local is used rather than
CC_Call_Start: it reduces the procedure call directly into the procedure’s definition. All cases
where a process p enters a procedure (either reducing a call or runtime term) leaks TL_Tau p.

There are transition rules allowing for out-of-order execution, but these are not important
for our work. (In particular, they allow for the choreography C in runtime terms RT_Call X ps C

to reduce, which justifies its inclusion.)
An important consequence of these definitions is that choreographic programs enjoy deadlock-

freedom by design: any non-terminated program (i.e., any program whose main choreography
is not End) can always perform some action.

3.3 The process calculus

Implementations of choreographies are modelled in a formalised process calculus following [21,
41]. This calculus follows the standard way of representing systems of communicating processes,
by giving the code of each process separately and achieving communication when processes
perform compatible I/O actions.

The code of a process is written as a behaviour (B), following the grammar below.

B ::= p!e; B | p?x; B | p+l; B | p & mB1 // mB2 | If b Then B1 Else B2 | Call X | End
mB ::= None | Some B

These terms are the local counterparts to the choreographic terms. The first two productions
deal with communication. A process executing a send action p!e; B evaluates expression e and
sends the result to process p, afterwards continuing as B. Dually, a process executing a receive
action p?x; B receives a value from p and stores it in x before continuing as B.

Selections are implemented by p+l; B and p & mB1 // mB2. The former behaviour describes
sending label l to process p and continuing as B. The latter is a branching term, where mB1

and mB2 are the behaviours that the process executes upon receiving left or right from p,
respectively. Since a process does not need to offer behaviours for all labels, both mB1 and mB2

have type option Behaviour. Conditionals (If b Then B1 Else B2), procedure calls (Call X), and
the terminated behaviour (End) are as in choreographies.

Processes run together in networks, which are maps from processes to behaviours. A pro-
gram pairs a network with a set of procedure definitions that all processes in the network can
invoke. The semantics of networks is also given as a labelled transition system on configura-
tions that consist of a program and a memory state. We omit its formal definition, as this
presentation does not depend on it, and refer the interested reader to [21].

3.4 Endpoint Projection (EPP)

Choreographies are compiled to behaviours by a procedure called endpoint projection. This
procedure is a partial function, and since all functions in Coq are total it was formalised as
an inductive relation bproj : DefSet → Choreography → Pid → Behaviour → Prop. We use the

149

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

[[D,C | p]] == B

[[D,p.e −→ q.x; C | p]]== q!e; B
bproj_Send

p̸= q [[D,C | q]] == B

[[D,p.e −→ q.x; C | q]]== p?x; B
bproj_Recv

p̸= r q ̸= r [[D,C | r]] == B

[[D,p.e −→ q.x; C | r]]== B
bproj_Com

p ∈ fst(D X)

[[D, Call X | p]] == Call (X, p)
bproj_Call_in

p /∈ fst(D X)

[[D, Call X | p]] == End
bproj_Call_out

p̸= r [[D,C1 | p]] == B1 [[D,C2 | p]] == B2 B1 [V] B2 == B

[[D,If r.b Then C1 Else C2 | p]] == B
bproj_Cond'

Figure 2: Selected rules for behaviour projection.

p & Some bL // None [V] p & None // Some bR == p & Some bL // Some bR
merge_SNNS

bL1 [V] bL2 == bL bR1 [V] bR2 == bR

p & Some bL1 // Some bR1 [V] p & Some bL2 // Some bR2 == p & Some bL // Some bR
merge_SSSS

Figure 3: Definition of the merge relation (selected rules).

suggestive notation write [[D,C | p]] == B for bproj D C p B, read “the projection of C on p in the
context of the set of procedure definitions D is B”.

Intuitively, behaviour projection is computed by going through the choreography and trying
to construct the local action corresponding to each choreographic construct. For example, a
communication p.e −→ q.x; C is projected for p as a send action to q followed by the projection
of the continuation C; for q as a receive action from p, again followed by the projection of C;
and for other processes simply as the projection of C.

A representative selection of rules is given in Figure 2. The rules for projecting communica-
tions formalise the intuition given above; the rules for projecting selections and the terminated
choreography follow the same principle. A call to a procedure X is projected by checking whether
the process is involved in the call (the first argument in D X).

Projection of conditionals is special because of the requirement of knowledge of choice men-
tioned in the Introduction. Projecting a conditional for the process evaluating the guard is still
simple – the projection is a local conditional whose two branches computed recursively. For
other processes (rule bproj_Cond', the two branches are projected separately and then combined
using another partial function called merging (the premise B1 [V] B2 == B).

Intuitively, merging attempts to build a behaviour B from two behaviours B1 and B2 that
have similar structures, but may differ in the labels that they accept in branching terms. The
key rule is merge_SNNS (Figure 3), merging two branching terms where one offers a behaviour
on left and the other offers a behaviour on right. If both terms offer behaviours on the same
label, these are recursively combined as in rule merge_SSSS. In all cases, the process choosing the
label must be the same. If B1 and B2 are built from the same constructor other than branching,
merge requires its first action to coincide (e.g. send the same expression to the same process),
tries to merge their continuations, and prepends the common first action to the result.

150

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

Merging is a partial function (for example, End and p+l; End cannot be merged), giving rise
to the following notion of projectability.

Definition projectable_B D C p := ∃ B, [[D,C | p]] == B.

A choreographic program P is projectable, projectable_P P, if Main P is projectable for all pro-
cesses in P and all procedures are projectable for the processes that they use. Finally, endpoint
projection (EPP) is defined as a function that maps a projectable choreographic program to
the process program obtained by combining all these projections.

The relationship between choreographic programs and their projections is described by the
EPP theorem. Informally, this theorem states that choreographic programs and their projections
can simulate each other.

Two aspects make its formulation and proof particularly challenging: (1) the interplay be-
tween conditionals and selections during choreographic execution creates lingering options at
branching terms when projecting; (2) care must be taken to formalise the correct usage of
runtime terms. The former can be solved by introducing the concept called branching order,
which is the least upper bound of merge. The latter is partly handled by the concepts of initial
choreographies and well-formed programs, which are syntactic requirements. A further refine-
ment is the notion strong projectability, which captures the requirement that the choreography
C in RT_Call X ps C must have originated from the definition of X by executing some transitions.
The interested reader should consult [23] for details.

One of the important consequences of the EPP theorem is that projections of choreographic
programs cannot deadlock (since choreographies are deadlock-free). In general, the EPP the-
orem is of particular interest, since EPP has little relevance without it; thus, while extending
the theory we take special care to ensure that it still holds.

4 A new choreographic theory

As we anticipated in Example 1, we extend our choreography language with the possiblity
of marking some processes as muted in recursive procedure calls – they should not enter the
procedure again, but rather ignore that instruction. We achieve this by changing the constructor
for procedure calls in choreographies, so that the syntax of choreographies becomes

C ::= η; C | If p.b Then C1 Else C2 | Call X ps | RT_Call X ps C | End

and updating the semantic inference rules CC_Call_Local and CC_Call_Start as follows

[#](fst (D X) [\\] ps) = 1 In p (fst (D X) [\\] ps) s [==] s'
(D, Call X ps, s) −−[TL_Tau p]−→ (D, snd (D X), s')

CC_Call_Local

[#](fst (D X) [\\] ps) > 1 In p (fst (D X) [\\] ps) s [==] s'

(D, Call X ps, s) −−[TL_Tau p]−→
(D, RT_Call X (fst (D X) [\] p [\\] ps) (snd (D X)), s')

CC_Call_Start

These rules capture the intended semantics of our new procedure calls: the first process
entering a procedure is in its annotation and not muted; and the generated runtime term
excludes muted processes. This exclusion uses the operator for set difference, denoted [\\] .
These rules model the intuition that muted processes have already entered the procedure, and
their premises ensure that only one rule can be applied (as before).

This language also enjoys deadlock freedom – the proof is relatively easy to adapt, as it only
requires minor changes in the case for procedure calls, where the syntax and semantics were
modified.

151

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

4.1 Well-formedness of choreographies

The original syntax of choreographies allows for expressions that do not respect the intended
usage of the language, such as p.e −→ p.x (self-communications). In order to exclude such
terms, our choreographic language included a notion of well-formedness [22, 23].

The possibility of muting processes in procedure calls requires us to add a number of con-
straints to this concept, to ensure that our semantics for muted processes makes sense. Fur-
thermore, well-formedness should be preserved by execution, in the sense that3

Lemma CCP_ToStar_Program_WF : Program_WF P → (P,s) −−[l]−→∗ (P',s') → Program_WF P'

from the original formalisation [23] should still hold for the new language.

Initial choreographies. We start by discussing restrictions that are specific to main chore-
ographies that programmers should write – initial choreographies.

The first restriction, inherited from the original formalisation, is that initial choreographies
cannot use runtime terms: these are generated by the semantics.4 Additionally, we now re-
quire initial choreographies not to have muted processes initially (every procedure call must
have an empty list): muted processes should only appear when expanding recursive procedure
definitions.

Definition initial (C:Choreography) : Prop := no_runtime_terms C ∧ passive_pn C = nil.

Both no_runtime_terms and passive_pn are defined recursively in the natural way.

Well-formed programs. The full list of requirements is summarised in Table 1. Require-
ments annotated with † and ‡ arise from technical aspects related to projection or EPP, and
are discussed in the corresponding sections. We discuss the remaining ones below.

As can be seen in the table, the requirements for well-formed main choreographies and well-
formed procedure definitions are distinct; for example, procedure definitions cannot include
runtime terms, which naturally arise in choreography bodies throughout execution.

Some requirements are inherited from the original theory: no_self_comm, no_runtime_terms,
no_empty_ann, consistent, and well_ann. The first two are explained above; the remaining
ones ensure that runtime terms were correctly generated from some procedure definition (the
processes waiting to enter a procedure form a non-empty subset of the procedure’s annotation).

The four new requirements no_total_silence, no_silent_intruders, correctly_muted, and
no_muted_external_call reflect our intention that muted processes are those that do not need
to be notified of a procedure recursively calling itself.

The first, no_total_silence, forbids wrongly muting all processes, while no_silent_intruders
disallows meaningless muting of processes not involved in the procedure, and simplifies the proof
of several results. These two predicates are defined recursively in the natural way.

The third, correctly_muted, describes when a process is allowed to “wait” in a call: if a
process is muted in a call, then it should not be active before it is being muted. This captures
the intuition that the process is waiting for some other processes before starting to execute
the procedure. This predicate takes two additional arguments: the process we are checking,
and a bool (initially false) indicating whether the process has been used up to this point. In
recursive calls, this second argument is changed to true if the process occurs at the top of the
choreography body.

3To alleviate the notation, we omit all universally quantified variables at the top of formulas.
4In the original theory, this was the only requirement for initial choreographies, which was then imposed to

both the main choreography and all procedure definitions.

152

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

Name C P Description

Interactions

no_self_comm � � Processes in interactions are different.

Runtime terms

no_runtime_terms � There are no runtime terms.
no_empty_ann � All runtime terms only contains non-empty lists.
consistent � Lists in runtime terms only contains processes in the as-

sociated procedure’s annotation.
Procedures

well_ann � Processes in a procedure are in its annotation, which is
non-empty.

Muted processes

no_total_silence � � Every call has at least one non-muted process.
no_silent_intruders � � Muted processes are in the annotation of the procedure.

correctly_muted � Muted processes are not active before they are muted.

no_muted_external_call � Calls with muted processes are to the procedure they
occur in.

† passive_active � Passive processes are also active elsewhere.

† branch_passiveness � If a process is passive in a branch of a conditional, it is
passive in all its branches.

† passive_bridge � If a process is muted in a call to some procedure, then it
is muted in that procedure’s body.

‡ no_passive_activity � If a process is passive, then it interacts with a non-passive
process in the branch where it is non-passive.

Table 1: Well-formedness requirements that apply to the main choreography (C) or to procedure
definitions (P). See Sections 5 and 6 for requirements annotated † and ‡, respectively.

Example 2. Consider the definition of X given at the start of Example 1. Process Client would
not be correctly muted, since it participates in an interaction with IP before the call. However,
Server is correctly muted. This motivates our choice to mute Server, but not Client. ◁

Early in the development, we believed that correctly_muted should also be imposed on
the main choreography. However, while trying to show that this property was preserved by
execution, Coq guided us to corner cases that turned out to yield a counterexample. This is
an example of the usefulness of Coq as a research tool, which helped us abandon an incorrect
development path early on.

The last requirement, no_muted_external_call, also defined recursively, again expresses the
intuition that processes should only be muted when a procedure recursively calls itself. This
design option simplifies our development. In future work, we plan to investigate how to relax
this requirement, for example to allow for mutually recursive procedures with muted processes.

The requirements for well-formed procedures are all gathered into a predicate Procedures_WF :

153

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

DefSet → Prop, which states that all defined procedures satisfy them. This definition gives us
a compact way to reason about all procedures in a program.

5 Projection strikes back

Muted processes in a well-formed program can only appear in recursive calls of procedures
where they do not perform any actions in the branch of the procedure’s execution leading to
the recursive call. This suggests that the projection rules for the revised call terms should be:

p /∈ fst(D X)

[[D, Call X ps | p]] == End
bproj_Call_out

p ∈ fst(D X) p /∈ ps

[[D, Call X ps | p]] == Call X
bproj_Call_in

p ∈ fst(D X) p ∈ ps [[D, snd (D X) | p]] == B

[[D, Call X ps | p]] == B
bproj_Call_in'

Unfortunately, this intuitive “definition” does not terminate: if we try to project the defi-
nition of X in Example 1 for Server, we end up in an infinite loop.

We illustrate this problem with a simplified version of our earlier example.

Example 3. Consider the choreographic procedure

X = If p.check() Then (p.e −→ q.y; End) Else Call X [q]

and suppose that we want to compute the projection of this procedure for q. This projection is
obtained by merging the projections of both branches in the conditional. The projection of the
then-branch is simply p?y, while the rule above states that the projection of the else-branch is
again the projection that we are trying to compute. ◁

Example 3 shows that the fundamental problem comes from the projection of the conditional
– both branches should be projected, and the resulting projections merged. But projecting the
else-branch requires projecting the original choreography, leading to the infinite loop.

In order to avoid this, we introduce a secondary projection pproj D C r B, which we use to
project procedure bodies in the premise of rule bproj_Call_in'. We denote this relation as
{{D, C | r }}== B, so that this rule now becomes:

p ∈ fst(D X) p ∈ ps {{D, snd (D X) | p}} == B

[[D, Call X ps | p]] == B
bproj_Call_in'

The key insight defining pproj is that, in Example 3, we should not even care to project
the else-branch. From q’s perspective, the interesting behaviour occurs in the then-branch –
recall our intuition that q is essentially waiting for p, which in our example means that it is
silently waiting for the choreography to enter the then-branch. The next section discusses how
to formalise this intuition.

5.1 Introducing passive processes

To develop a smarter way of projecting conditionals, we introduce the concepts of active and
passive processes, already anticipated in the previous section.

A process r is passive in a choreography C if r occurs muted in some procedure call occurring
in C. A process r is active in a choreography C if r occurs in C outside of a procedure call where it
is muted. These properties are defined recursively over C as two predicates passive and active.

154

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

To compute the sets of passive and active processes in a choreography, we define two auxiliary
functions passive_pn and active_pn, both of type Choreography → set Pid. These functions are
used to formalise well-formedness: they simplify some decidability proofs, since membership in
a list is decidable.5 Both formulations can be used interchangeably, as stated by e.g.

Lemma passive_iff : passive D p C ↔ In p (passive_pn D C).

Using these notions, we can define a smarter notion of projection for conditionals. The design
philosophy is: if a process is active in a branch of a conditional, then something interesting
happens in that branch, and we need to project it; otherwise we should ignore it. This yields
four cases for projecting a conditional for a process p not evaluating the guard: (i) p is active
in both branches: then something interesting happens in both branches, and we project both
branches and merge them as before; (ii) p is inactive in both branches: then it is not involved
in any of the branches, and we project it as bnil; (iii) p is active in the then-branch and
inactive6 and passive in the else-branch: this is the situation illustrated in Examples 1 and 3,
and as discussed we should only project the then-branch – see rule pproj_cond_ap below; (iv) the
symmetric case where p is active in the else-branch and inactive and passive in the then-branch.

p̸= r {{D,C1 | p}}== B active D r C1 ∼ active D r C2 passive r C2

{{D,If p.b Then C1 Else C2 | p}}== B
pproj_Cond_ap

Example 4. It is easy to see that the definition of X in Example 3 can be projected for q as
p?y using pproj. As a consequence, the projection using bproj can now be obtained by merging
p?y with itself, yielding p?y. ◁

The definition of pproj still calls itself on rule pproj_Call_in' (analogous to bproj_Call_in'),
but intuitively this rule should never be applied: it does not make sense to mute a process in
all recursive calls in a procedure definition – such processes should simply not be part of the
procedure’s annotation, as it is simply waiting without ever doing anything. This intuition is
captured by well-formedness, as we discuss below.

The attentive reader may have noticed that our rules for projecting conditionals are not
exhaustive – what if a process r is active in the then-branch of a conditional, but inactive and
non-passive in the else-branch? In this case, the then-branch projects to something other than
bnil (since r is active), but the else-branch projects to bnil (since r does not occur in it). But
then r is missing knowledge of choice, whence the choreography should be unprojectable. The
same argument applies to the dual case.

5.2 Passiveness and well-formedness

We can now discuss the next set of well-formedness requirements from Table 1.
The first, passive_active, is motivated by the situation suggested above, where a process

is never active inside a procedure – the simplest example would be the procedure definition
X = Call X [q]. Clearly, nothing interesting happens for q7, and attempting to compute pproj

will result in an infinite loop. This is avoided by requiring all passive processes in a procedure
definition to be also active in the same procedure definition.

Definition passive_active D X := (passive_pn (snd (D X))) [C] (active_pn D (snd (D X))).

5Note that sets are represented as lists in the formalisation.
6Well-formedness prevents a process from being active and passive simultaneously, but the definitions allow

for it, and including this hypothesis simplifies a number of proofs.
7Other processes will still reduce, as they re-enter X infinitely many times.

155

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

This requirement has some useful consequences, when combined with correctly_muted:

Lemma procedure_WF_passive_has_if : Procedures_WF D →
passive r (snd (D X)) → has_if (snd (D X)).

Lemma procedure_WF_passive_clear_until_if : Procedures_WF D → passive r (snd (D X)) →
(∃ p t C1 C2, clear_until_if (snd (D X)) = If p ?? t Then C1 Else C2).

The first lemma says that well-formed procedure definitions with passive processes must include
a conditional as a subterm, while the second is used to “extract” this conditional from the
definition by ignoring anything coming before it. As usual, the proofs are by induction over C.

The idea is that correctly_muted forbids processes from being muted after being active.
Thus, if a process is both active and passive in a procedure, there needs to be a conditional
such that it can be active in one branch and inactive/passive in the other.

The next requirement, branch_passiveness, is meant to disallow choreographies requiring
knowledge of choice in relation to termination. Consider the procedure definition

X = If p.b Then p.done → q; End
Else (If p.b' Then Call X q Else End)

This choreography is problematic, because the else-branch (where q is not active) can terminate
or recur without q being notified. Therefore, we require that a process that is passive in a branch
of a conditional must be passive everywhere inside that branch.

Using branch_passiveness, we can prove:

Lemma procedure_WF_clear_until_if_Cond : ∀ D X p t C1 C2 r, Procedures_WF D →
passive r (snd (D X)) → clear_until_if (snd (D X)) = If p ?? t Then C1 Else C2 →
((p̸= r ∧ active D r C1 ∧ ∼passive r C1 ∧ ∼active D r C2 ∧ passive_all r C2) ∨
(p̸= r ∧ active D r C2 ∧ ∼passive r C2 ∧ ∼active D r C1 ∧ passive_all r C1)).

describing the specific passive/active structure of well-formed procedures at the top conditional.
The last requirement we discuss in this section stems from the intuition that the main

choreography should originate from an initial choreography by execution. While this notion
is extremely challenging to formalise precisely, we only need one simpler property to guarantee
preservation of well-formedness throughout execution.

Definition passive_bridge P := ∀ r X,
In (r, X) (passive_call_pn (Main P)) → passive r (Procs P X).

This property states that: if the main choreography contains a procedure call to X where r is
muted, then r must occur muted in X – since this is the only way it could have been introduced
in the main choreography. The definition uses passive_call_pn (Main P), which computes a set
containing all pairs (X,r) such that Main P contains call to X where r is muted.

Preservation of well-formedness through transitions now is established by adding the result

Lemma CCP_To_passive_bridge: Program_WF P → (P,s) −−[l]−→ (P',s') → passive_bridge _ P'.

since all remaining properties in Program_WF were either present in the original formalisation or
refer to Procs P (which does not change throughout execution).8

Intuitively, the lemma holds since muted calls can only be introduced by procedures, and
well-formed procedures can only make muted recursive calls as per no_muted_external_call.
The lemma is formally proven by induction over transitions.

8The function Procs P maps each procedure to its actual definition (excluding the list of involved processes).

156

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

5.3 Projections, compared

The separation of projection into bproj and pproj was instrumental into making projection
computable. Using well-formedness, we can show that they work as intended, in the sense that
they coincide on choreographies where either one could be applied.

The easiest case is that of projecting a choreography for a process that is not passive, as
the cases where bproj and pproj differ are excluded.

Lemma bproj_pproj_not_passive : ∼passive r C → [[D, C | r]] == B ↔ {{D, C | r}} == B

For passive processes, establishing this correspondence requires more work. Therefore, we
prove the two implications separately.

Lemma bproj_pproj_passive : Procedures_WF _ D → passive r (snd (D X)) →
[[D, (snd (D X)) | r]] == B → {{D, (snd (D X)) | r}} == B.

Lemma pproj_bproj_passive : Procedures_WF _ D → passive r (snd (D X)) →
{{D, (snd (D X)) | r }}== B → [[D, (snd (D X)) | r]] == B.

Both proofs take advantage of the structure of well-formed procedures. Since r is passive,
lemma procedure_WF_passive_has_if ensures that the definition of X contains a conditional as
a subterm, which also satisfies all properties of well-formed procedure definitions. Moreover,
procedure_WF_clear_until_if_Cond ensures that r cannot be the process evaluating the guard
of the conditional, and that it has a rather specific passive/active structure.

Let us focus on the lemma bproj_pproj_passive. We use a lemma to deduce that the
projection of X and the first conditional is equivalent for bproj:

Lemma bproj_procedure_clear_until_if : Procedures_WF _ D →
passive r (snd (D X)) → clear_until_if _ (snd (D X)) = If p ?? b Then C1 Else C2 →
[[D, snd (D X) | r]] == B ↔ [[D, If p ?? b Then C1 Else C2 | r]] == B

We consider first the case where r is active and not passive in the then-branch, while it is
inactive and passive in all branches in the else-branch (there is a symmetric case). Using
bproj_pproj_not_passive, we conclude that both projection procedures behave identically in
the then-branch. In the else-branch, we instead use

Lemma bproj_procedure_passive_all_not_active : passive_all r C →
∼active D r C → no_muted_external_call _ D X C → no_silent_intruders D C →
{{D, (snd (D X)) | r}} == B ↔ [[D, C |r]] == B

to conclude that the projecting the else-branch using bproj produces the same result as project-
ing snd (D X) using pproj. Now, we use a third lemma to deduce that the projection of snd (D X)

and the first conditional coincide:

Lemma pproj_procedure_clear_until_if : Procedures_WF _ D →
passive r (snd (D X)) → clear_until_if _ (snd (D X)) = If p ?? b Then C1 Else C2 →
{{D, (snd (D X)) | r }}== B ↔ {{D, (If p ?? b Then C1 Else C2) | r }}== B.

Since r is active and not passive in the then-branch, we conclude that pproj projects the
conditional as the then-branch. But projecting the then-branch using pproj gives the same
result as projecting either the then-branch or the else-branch using bproj. Applying uniqueness
of pproj together with uniqueness and idempotency of merge allows us to complete the proof.
All helper lemmas are proved by induction on the appropriate choreography.

The proof of pproj_bproj_passive follows a similar approach. The corresponding auxiliary
results bproj_procedure_clear_until_if and pproj_procedure_clear_until_if are straightfor-
ward to prove. Each proof is split into two helper lemmas – one for each direction – and they

157

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

proceed by induction over C, using that fact that r is not present in any instruction before
reaching the conditional (since r is passive and correctly_muted hold).

The result bproj_procedure_passive_all_not_active is also not surprising, since bproj pro-
jects muted calls using pproj. Since r is not active in C, it is not present in any instruction
in C. However, r is passive in all branches of C, which must be due to muted calls to X (by
no_muted_external_call assumption). These ideas are used in the formalised proof, which is
performed by induction over C.

Therefore bproj and pproj coincide on procedure definitions in well-formed programs.

Lemma bproj_pproj : Procedures_WF _ D → {{D, (snd (D X)) | r }}== B ↔ [[D, (snd (D X)) | r]]== B

5.4 Decidability

Projection is a partial function formalised as a relation. In order to be able to compute it, we
need to have some decidability results. The major change with respect to the old theory is that
these results now require the choreography to be well-formed, to exclude choreographies such
as X = Call X [q], where projection loops infinitely. This is not a big issue, as well-formedness
is decidable in practice (i.e. for programs that only use a finite number of procedures).

Lemma bproj_dec : Program_WF (D, C) → { B | [[D,C | p]] == B } + { ∼projectable_B D C p}

As in the original theory, the proof is by induction over C. To handle muted calls we use:

Lemma pproj_dec : Procedures_WF _ D →
{ B | {{D, (snd (D X)) | p }}== B } + { ∼∃ B, {{D, (snd (D X)) | p }}== B}.

The idea is: if p is inactive in X, then it is not passive (the contrapositive of requiring that
passive processes are active), so its projection is bnil. Otherwise, p is active in X, and we apply

Lemma pproj_dec' : active D p C → correctly_muted _ D C false p →
no_self_comm C → no_runtime_terms C → branch_passiveness _ p C →
{ B | {{D, C | p }}== B } + { ∼∃ B, {{D, C | p }}== B}.

whose assumptions follow either from well-formedness (if p is passive in X) or from other lemmas
(if p is not passive in X). This proof is again by induction on C; it requires more case analysis
due to the more complex way of projecting conditionals, but the previously problematic case
of muted calls does not arise anymore since p is active in C.

6 The return of the EPP theorem

The proof of the EPP theorem is mostly unaffected by our changes. To make it more manage-
able, the original formalisation split this in two parts (soundness and completeness), and the
proof of soundness is further split into auxiliary lemmas for each subcase. These proofs are
adapted to the new projection simply by adding the case that deals with muted processes in
procedure calls.9 This new case also motivates the last condition in well-formedness.

Example 5. Consider the following procedure definition.

X = If p.b Then (r.y −→ s.x; End) Else (Call X [r,s])

9These lemmas talk about the main choreography, so the new way to project conditionals in procedure
definitions does not affect their proofs. This is a nice consequence of having two distinct projections.

158

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

Projecting X for r and s, respectively, yields s!y; End and r?x; End. This means that, in the
projected network, r and s can communicate directly without waiting for the recursive calls
in X to terminate. However, the choreography cannot model this behaviour, as these processes
have to wait for p.b to evaluate to false. ◁

This example illustrates a form of knowledge of choice: r and s need to be informed that they
can communicate by some process that is involved in the recursive part of X. To disallow it, we
require that: if p is passive in the definition of X, then p must interact with a non-passive process
in every branch of X where p is non-passive. In the example above, this means that both r and s

must communicate with p before they can interact with each other. This requirement is defined
as a predicate no_passive_activity, defined recursively over choreographies. This requirement
might sound restrictive, but it captures our original motivation for muted processes: these
processes are waiting for some external event before proceeding.

This requirement excludes the case where a choreography Call X ps reduces by an action
involving only muted processes (i.e. processes in ps), allowing us to prove lemmas like

Lemma procedure_WF_no_passive_com : Procedures_WF _ D →
passive p (snd (D X)) → passive q (snd (D X)) →
[[D, snd (D X) | q]] == (@Recv Sig' p x a B1) →
[[D, snd (D X) | p]] == (@Send Sig' q e a' B2) → False.

The proof of soundness then invokes passive_bridge to find a procedure definition satisfying
the premises of this (or a similar) lemma.

7 Discussion, conclusions and future work

The most debatable design option in our formalisation is the splitting of projection in two
functions. The main advantage is that this duplication allows us to reuse the pre-existing de-
velopment more easily – the new cases for projecting conditionals would significantly complicate
the proof of soundness, for example. Furthermore, since bproj and pproj coincide for procedure
definitions, many results need only be proved for one of them anyway.

Having only one projection function significantly increases the complexity of the develop-
ment, and yields a less intuitive notion for the main choreography. Furthermore, many lemmas
included corner cases that could never arise from executing initial choreographies – but a syntac-
tic characterisation of such choreographies turned out to be extremely nontrivial. The current
choice thus leads to a cleaner formalisation, and in hindsight acknowledges that procedure def-
initions and the main choreography are slightly different in their handling of muted processes.

Our new theory serves as a useful additional tool for choreographic programmers, allowing
us to write the choreography from Example 1 in the more intuitive way shown at the end of the
Introduction. This extended choreographic language still enjoys deadlock freedom; additionally,
it allows programmers to express livelocks, i.e. scenarios where some processes are not able to
make progress. For example, in Example 1 Server is not able to make progress unless IP sends
the token to Client; thus, it could be waiting forever. This kind of livelocks was not possible
before, since repeating communication structures required recursion with all processes involved
being notified at every iteration.

Our language is a pure extension of the previous one, as any old choreography can be
trivially written in the new language by adding empty lists of muted processes to all procedure
calls. Furthermore, inspection of the semantics shows that the changes have no impact on
these choreographies, while the new well-formedness requirements only affect muted processes.

159

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

Likewise, projection (bproj) is unchanged except when dealing with muted calls. This implies
that previous results like Turing-completeness [22] still hold for the extended language.

Our whole development was done using Coq. This means that not only it was formalised
in Coq, but the theorem prover was actively used as a research tool. As suggested in the text,
well-formedness requirements were introduced in three stages – immediately after extending the
syntax, when defining projection, and when proving the EPP theorem. In several cases, these
arose from obscure corner cases in the proofs some of the more technical lemmas where Coq
was instrumental in detecting counter-examples that might otherwise have gone unnoticed.

In the future, we would like to adapt the notion of amendment [20] to our more robust
projection, so that a choreography like that in Example 1 can be automatically repaired taking
advantage of the fact that muted processes do not need to be informed of the outcomes of all
conditionals. Dually, such a procedure could also detect that some processes could be muted
in some procedure calls, further simplifying the final result.

We would also like to relax the definition of well-formedness to increase the expressiveness
of projectable choreographies further, allowing for a more complex structure of procedure calls
with muted processes in nested conditionals.

Lastly, it would also be interesting to apply our development to other choreographic theories,
e.g. multiparty sessions types.

Our development can be downloaded from https://doi.org/10.5281/zenodo.7746646.

Acknowledgements. We thank the anonymous reviewers for their useful comments, which
helped us improve the quality of this article. This work was partially supported by Villum
Fonden, grants 29518 and 50079, and Independent Research Fund Denmark, grant 0135-00219.

References

[1] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message sequence charts.
IEEE Trans. Software Eng., 29(7):623–633, 2003.

[2] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability and verification of MSC
graphs. Theor. Comput. Sci., 331(1):97–114, 2005.

[3] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo
Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen,
Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas Ng, Luca
Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types in programming lan-
guages. Foundations and Trends in Programming Languages, 3(2–3):95–230, 2016.

[4] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realizability. In John
Field and Michael Hicks, editors, Procs. POPL, pages 191–202. ACM, 2012.

[5] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Texts
in Theoretical Computer Science. Springer, 2004.

[6] Mario Bravetti and Gianluigi Zavattaro. Choreographies and behavioural contracts on the way
to dynamic updates. In Marcello Maria Bersani, Davide Bresolin, Luca Ferrucci, and Manuel
Mazzara, editors, Procs. MOD*, volume 168 of EPTCS, pages 12–31, 2014.

[7] Alessandro Bruni, Marco Carbone, Rosario Giustolisi, Sebastian Mödersheim, and Carsten
Schürmann. Security protocols as choreographies. In Daniel Dougherty, José Meseguer, Sebas-
tian Alexander Mödersheim, and Paul D. Rowe, editors, Protocols, Strands, and Logic, volume
13066 of Lecture Notes in Computer Science, pages 98–111. Springer, 2021.

[8] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. Choreog-
raphy and orchestration conformance for system design. In Paolo Ciancarini and Herbert Wiklicky,

160

https://doi.org/10.5281/zenodo.7746646

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

editors, Procs. COORDINATION, volume 4038 of Lecture Notes in Computer Science, pages 63–
81. Springer, 2006.

[9] Marco Carbone, Lúıs Cruz-Filipe, Fabrizio Montesi, and Agata Murawska. Multiparty classical
choreographies. In Fred Mesnard and Peter J. Stuckey, editors, Procs. LOPSTR, volume 11408 of
Lecture Notes in Computer Science, pages 59–76. Springer, 2019.

[10] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.

[11] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. Coher-
ence generalises duality: A logical explanation of multiparty session types. In Josée Desharnais
and Radha Jagadeesan, editors, Procs. CONCUR, volume 59 of LIPIcs, pages 33:1–33:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

[12] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, Procs. POPL, pages
263–274. ACM, 2013.

[13] Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies, logically. Distributed
Comput., 31(1):51–67, 2018.

[14] Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty session
types as coherence proofs. Acta Informatica, 54(3):243–269, 2017.

[15] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Log. Methods Comput. Sci., 8(1), 2012.

[16] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Event structure semantics
for multiparty sessions. J. Log. Algebraic Methods Program., 131:100844, 2023.

[17] Alex Coto, Roberto Guanciale, and Emilio Tuosto. An abstract framework for choreographic
testing. J. Log. Algebraic Methods Program., 123:100712, 2021.

[18] Lúıs Cruz-Filipe, Lovro Lugović, and Fabrizio Montesi. Certified compilation of choreographies
with hacc. CoRR, abs/2303.03972, 2023. Accepted for publication in Procs. FORTE.

[19] Lúıs Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. Theor.
Comput. Sci., 802:38–66, 2020.

[20] Lúıs Cruz-Filipe and Fabrizio Montesi. Now it compiles! Certified automatic repair of uncompilable
protocols. CoRR, abs/2302.14622, 2023. Accepted for publication in Procs. ITP.

[21] Lúıs Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Certifying choreography compilation.
In Antonio Cerone and Peter Csaba Ölveczky, editors, Procs. ICTAC, volume 12819 of LNCS,
pages 115–133. Springer, 2021.

[22] Lúıs Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Formalising a Turing-complete choreo-
graphic language in Coq. In Liron Cohen and Cezary Kaliszyk, editors, Procs. ITP, volume 193
of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[23] Lúıs Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. A formal theory of choreographic pro-
gramming. Journal of Automated Reasoning, Accepted for publication.

[24] Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message reordering
in rust with multiparty session types. In Jaejin Lee, Kunal Agrawal, and Michael F. Spear, editors,
Procs. PPoPP, pages 246–261. ACM, 2022.

[25] Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. Deconfined global types
for asynchronous sessions. Log. Methods Comput. Sci., 19(1), 2023.

[26] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.
Dynamic choreographies: Theory and implementation. Log. Methods Comput. Sci., 13(2), 2017.

[27] Saverio Giallorenzo, Fabrizio Montesi, and Maurizio Gabbrielli. Applied choreographies. In Chris-
tel Baier and Lúıs Caires, editors, Procs. FORTE, volume 10854 of Lecture Notes in Computer
Science, pages 21–40. Springer, 2018.

[28] Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Object-oriented Choreographic Pro-

161

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

gramming. CoRR, abs/2005.09520, 2020.

[29] Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1–27, 2022.

[30] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Designing, building, and deploy-
ing messaging solutions. Addison-Wesley Professional, 2004.

[31] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. J.
ACM, 63(1):9, 2016. Also: POPL, pages 273–284, 2008.

[32] Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types. In
Marieke Huisman and Julia Rubin, editors, Procs. FASE, volume 10202 of Lecture Notes in Com-
puter Science, pages 116–133. Springer, 2017.

[33] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Lúıs Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira,
and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM Comput.
Surv., 49(1):3:1–3:36, 2016.

[34] Intl. Telecommunication Union. Recommendation Z.120: Message Sequence Chart, 1996.

[35] Sung-Shik Jongmans and Petra van den Bos. A predicate transformer for choreographies – com-
puting preconditions in choreographic programming. In Ilya Sergey, editor, Procs. ESOP, volume
13240 of Lecture Notes in Computer Science, pages 520–547. Springer, 2022.

[36] Alberto Lluch-Lafuente, Flemming Nielson, and Hanne Riis Nielson. Discretionary information
flow control for interaction-oriented specifications. In Narciso Mart́ı-Oliet, Peter Csaba Ölveczky,
and Carolyn L. Talcott, editors, Logic, Rewriting, and Concurrency, volume 9200 of Lecture Notes
in Computer Science, pages 427–450. Springer, 2015.

[37] Hugo A. López and Kai Heussen. Choreographing cyber-physical distributed control systems for
the energy sector. In Ahmed Seffah, Birgit Penzenstadler, Carina Alves, and Xin Peng, editors,
Procs. SAC, pages 437–443. ACM, 2017.

[38] Hugo A. López, Flemming Nielson, and Hanne Riis Nielson. Enforcing availability in failure-aware
communicating systems. In Elvira Albert and Ivan Lanese, editors, Procs. FORTE, volume 9688
of Lecture Notes in Computer Science, pages 195–211. Springer, 2016.

[39] Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising projec-
tion in asynchronous multiparty session types. In Serge Haddad and Daniele Varacca, editors,
Procs. CONCUR, volume 203 of LIPIcs, pages 35:1–35:24. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

[40] Fabrizio Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen, 2013.

[41] Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, 2023.

[42] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming with
Jolie. In Athman Bouguettaya, Quan Z. Sheng, and Florian Daniel, editors, Web Services Foun-
dations, pages 81–107. Springer, 2014.

[43] Fabrizio Montesi and Janine Weber. From the decorator pattern to circuit breakers in microser-
vices. In Hisham M. Haddad, Roger L. Wainwright, and Richard Chbeir, editors, Procs. SAC,
pages 1733–1735. ACM, 2018.

[44] Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In Pedro R. D’Argenio
and Hernán C. Melgratti, editors, Procs. CONCUR, volume 8052 of Lecture Notes in Computer
Science, pages 425–439. Springer, 2013.

[45] Magnus O. Myreen and Scott Owens. Proof-producing synthesis of ML from higher-order logic.
In Peter Thiemann and Robby Bruce Findler, editors, Procs. ICFP, pages 115–126. ACM, 2012.

[46] Michael Nygard. Release It! Design and Deploy Production-Ready Software. Pragmatic Bookshelf,
2007.

[47] Object Management Group. Business Process Model and Notation.
http://www.omg.org/spec/BPMN/2.0/, 2011.

162

http://www.omg.org/spec/BPMN/2.0/

Keep me out of the loop Cruz-Filipe, Montesi and Rasmussen

[48] Johannes Åman Pohjola, Alejandro Gómez-Londoño, James Shaker, and Michael Norrish. Kalas:
A verified, end-to-end compiler for a choreographic language. In June Andronick and Leonardo
de Moura, editors, Procs. ITP, volume 237 of LIPIcs, pages 27:1–27:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022.

[49] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoretical founda-
tion of choreography. In Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and
Prashant J. Shenoy, editors, Procs. WWW, pages 973–982. ACM, 2007.

[50] Gan Shen, Shun Kashiwa, and Lindsey Kuper. Haschor: Functional choreographic programming
for all (functional pearl). CoRR, abs/2303.00924, 2023.

[51] Vasco T. Vasconcelos, Francisco Martins, Hugo-Andrés López, and Nobuko Yoshida. A type
discipline for message passing parallel programs. ACM Trans. Program. Lang. Syst., 44(4):26:1–
26:55, 2022.

163

	Introduction
	Related work
	Background
	Syntax of choreographies
	Semantics of choreographies
	The process calculus
	Endpoint Projection (EPP)

	A new choreographic theory
	Well-formedness of choreographies

	Projection strikes back
	Introducing passive processes
	Passiveness and well-formedness
	Projections, compared
	Decidability

	The return of the EPP theorem
	Discussion, conclusions and future work

