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Abstract

Choreographic programming is a paradigm for writing coordination plans for distributed
systems from a global point of view, from which correct-by-construction decentralised imple-
mentations can be generated automatically. Theory of choreographies typically includes a
number of complex results that are proved by structural induction. The high number of cases
and the subtle details in some of these proofs has led to important errors being found in
published works. In this work, we formalise the theory of a choreographic programming
language in Coq. Our development includes the basic properties of this language, a proof of
its Turing completeness, a compilation procedure to a process language, and an operational
characterisation of the correctness of this procedure. Our formalisation experience illustrates
the benefits of using a theorem prover: we get both an additional degree of confidence from
the mechanised proof, and a significant simplification of the underlying theory. Our results
offer a foundation for the future formal development of choreographic languages.

Keywords Choreographic programming - Theorem proving - Concurrency - Process calculi

1 Introduction

In the setting of concurrent and distributed systems, choreographic languages are used to
define interaction protocols that communicating processes should abide by [32, 43, 46].
These languages are akin to the “Alice and Bob” notation found in security protocols, and
inherit the key idea of making data communication manifest in programs [42]. This is usually
obtained through a linguistic primitive like Alice.e — Bob.x, read “Alice communicates the
result of evaluating expression e to Bob, which stores it in its local variable x”.

In recent years, the communities of concurrency theory and programming languages have
been prolific in developing methodologies based on choreographies, yielding results in pro-
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gram verification, monitoring, and program synthesis [2, 31]. For example, in multiparty
session types, types are choreographies used for checking statically that a system of processes
implements protocols correctly [30]. Further, in choreographic programming, choreographic
languages are elevated to full-fledged programming languages [40], which can express how
data should be pre- and post-processed by processes (encryption, validation, anonymisation,
etc.).

Choreographic programming languages come with a procedure known as Endpoint Pro-
Jjection (EPP), which automatically synthesises executable code for each process described
in a choreography, with the guarantee that executing these processes together implements
the communications prescribed in the choreography [7, 8]. These languages showed promise
in a number of contexts, including parallel algorithms [11], cyber-physical systems [28,
37, 38], self-adaptive systems [23], system integration [27], information flow [36], and the
implementation of security protocols [28].

EPP involves three elements: the source choreographic language, the target process lan-
guage, and the compiler. The interplay between these components, where a single instruction
at the choreographic level might be implemented by multiple instructions in the target
language, makes the theory of choreographic programming error-prone: for even simpler
approaches, like abstract choreographies without computation, it has been recently discov-
ered that a few proofs published in peer-reviewed articles do not hold and their theories
required adjustments. While in most cases these adjustments amounted to correcting small
details in proofs or deal with missing cases, there were situations that required finding new
proof strategies or reformulating statements [39, 45]. In exceptional situations, it has been
discovered that key results actually did not hold [3-5, 25, 35].

This article presents a formalisation of a core theory of choreographic programming in the
theorem prover Coq, the process of developing this formalisation, the challenges encountered,
and how tackling these challenges led to improvements of the original theory.

A note on the process. We argue that computer-aided verification can be successfully applied
to the study of choreographies and to provide solid foundations for future developments.
To substantiate this claim, we summarise the story behind this article, which illustrates how
interactive theorem proving can do more than just checking what we already know.

Our starting point was the theory of Core Choreographies (CC), a minimalistic language
that the first two authors previously proposed for the study of choreographic programming
[16]. CC includes only the essential features of choreographic languages and minimal compu-
tational capabilities at processes (computing the successor of a natural number and deciding
equality of two natural numbers), yet it is expressive enough to be Turing complete.

We started formalising CC in Coq in late 2018. In mid-2019, we gave an informal progress
report on the promising status of the formalisation at the TYPES conference [19]. Unfortu-
nately, we soon stumbled upon an unexpected source of complexity for the formalisation: a
set of term-rewriting rules for a precongruence relation used in the semantics of the language
for (i) expanding procedure calls and (ii) reshuffling independent communications to model
concurrent execution. In addition to being time consuming, reasoning with precongruence
systematically made the formalisation significantly more complicated than the development
in [16] (for a more technical discussion, see Sect. 3.5).

At the time, the second author was responsible for a Master course on theory of choreog-
raphy for students in Computer Science. It quickly became apparent that the technical aspects
(including, but not only, structural precongruence) that complicated the formalisation of CC
were also the most challenging for the students. This observation led that author to develop
an alternative theory of CC for his course material that dispenses with these problematic
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notions without changing its essence [41]. The formalisation in this article uses this revised
choreography theory.

Thus, our work also shows that theorem proving can be used in research: the insights
obtained while doing this formalisation led to changes in the original theory. We show that
this did not come at the cost of expressive power: the original proof of Turing completeness
from [16] still works for the theory in [41] without essential changes [21]. Furthermore,
formalising the theory also allowed us to identify unnecessary assumptions in some lemmas,
yielding stronger results.

Publication history and contribution. As mentioned previously, a first informal progress
report on this formalisation was presented at the TYPES conference in 2019 [19], following
an approach that later turned to be unfeasible. The first formalisation of the choreographic
language, including the proof of Turing completeness, was presented in [21], while the for-
malisation of EPP appeared originally in [20]. The current presentation discusses an updated
formalisation, which (i) no longer uses Coq’s module system and (ii) differs significantly in
the treatment of partial functions, which significantly simplifies the definition of EPP. We
do not discuss the formalisation of the proof of Turing completeness, as this is essentially
unchanged from [21]. Instead, we place a stronger emphasis on the formalisation challenges
compared to the works cited.

The direct result of our work is a formalisation that can be used as a basis for future
work on choreographic programming, both in theory and in practice. Subsequent develop-
ments already include a formalisation of choreography repair [17], a more flexible notion of
projection allowing for livelocks [15], and a toolchain for generating executable code from
choreographies [14]. These developments capitalise on the current contribution in different
ways, showing that the current formalisation is reusable, extendable, and amenable to be
incorporated in tools for software development.

Furthermore, our formalisation dispels any concerns that there may be regarding the
correctness of our results—which is especially relevant in an area where many proofs are
extremely technical and tedious both to write down and to check in detail.

Lastly, we provide more evidence to substantiate the general claim that interactive theorem
proving is a valid tool for conducting research in theoretical computer science, by showing
that formalising a state-of-the-art theoretical development is feasible and can provide valuable
insights that help improve the theoretical development.

The big picture. This work is the first step towards a more ambitious goal: the develop-
ment of a certified framework for choreographic programming. At a later stage, we plan on
developing compilers that can translate the process implementations generated by EPP into
executable code in different programming languages (see Fig. 1). This would yield end-to-end
compilation from choreographies to actual executable code.

Our goal motivated two important design choices in the current work that are not present
in [20, 21]. First, we want to extract a correct implementation of EPP from our formalisation.

This motivated us to move away from Coq’s module system, as we found the Haskell code
generated by extraction to be unidiomatic. Second, we introduce the possibility of annotating
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terms in choreographies with data that may be needed for (second-stage) compilation to
executable programming languages.

Our language has two characteristics that are inherited from the choreographic model
in [16]. First, the semantics that we present in Sect. 3.3 is synchronous. This is a standard
choice for choreographic models, as it makes the development simpler; the interested reader
is referred to [12] for a lengthier discussion on asynchronous models. The second choice is
that we assume a fixed set of labels with only two elements (see Sect.3.2). This is again a
standard choice in theoretical developments, as any label from a fixed finite set of labels can
be encoded by a sequence of labels from a two-element set, but it leads to inefficiency in
practical applications. Formalising a more general theory in Coq poses complex technical
challenges, as discussed in Sect.5.5.

Structure. A full understanding of the more technical details of our formalisation benefits from
some background knowledge on choreographies. For convenience, Sect.2 features a short
introduction to the main intuitions and results of choreography theory, which can be skipped
by readers familiar with the topic. Our choreographic language (syntax and semantics) is
presented together with its Coq formalisation in Sect. 3, where it is also shown that it enjoys
the usual properties of choreographic languages. Section 4 defines the target process language,
together with its semantics. EPP is formalised in Sect. 5, and its soundness and completeness
are discussed in Sect. 6. We review related formalisation efforts in Sect. 7, before concluding
in Sect. 8.
Our development was made using Coq 8.13.2. The source code is available at [22].

2 Background: Choreographic Languages and Endpoint Projection

In this section we describe the language of Simple Choreographies [41], which introduces
the basic principles of choreographies and EPP. We include this material to make our devel-
opment accessible to the reader not familiar with the topic, but it is not directly used in our
development.

2.1 Simple Choreographies

Simple Choreographies can express finite sequences of communications between processes.
Processes are identified by names (p, g, etc.). Choreographies, ranged over by C, are con-
structed according to the following grammar.

C:=p—->q;C|0

A choreography p — q; C represents a communication from a process p to a process q
with continuation C; 0 is the terminated choreography. We omit trailing 0s in examples.

Example 1 (Ring protocol [41]) The choreography below describes a ring protocol among
three participants: Alice communicates to Bob; then Bob communicates to Carol; and finally
Carol communicates back to Alice.

Alice — Bob; Bob — Carol; Carol — Alice (1)

The semantics of Simple Choreographies is given as the labelled transition system induced
by the rules displayed in Fig. 2. Transition labels have the form p— q, allowing for observing
the communications performed by a choreography.

@ Springer



A Formal Theory of Choreographic Programming Page50f34 21

Fig.2 Semantics of simple c =5 ¢ {p,q} #{rs}
choreographies COM DELAY
£ p—qC 2% C p—qC =% p g’

Rule coM models the execution of a communication at the beginning of a choreogra-
phy. Rule DELAY, instead, allows for performing a transition within the continuation of a
choreography, provided that the transition does not involve any of the processes in preceding
instructions. This rule captures the fact that processes run independently of each other, and
thus choreographic instructions can be executed out-of-order. The independence requirement
is captured by the the side-condition {p, q} # {r, s}, where # relates disjoint sets.

Example 2 (Ring protocol, continued [41]) Let C be the choreography in (1). Then, by rule
COM, we have the following chain of transitions.

Alice—Bob . Bob— Carol . Carol— Alice
C ———— Bob — Carol; Carol - Alice ———— Carol — Alice ———— 0

These communications cannot be executed out-of-order, because of the chain of causality
between them: each instruction involves a process that needs to participate in a previous
instruction.

Example 3 Consider now the choreography (inspired from the factory examples in [41]),
which models a system where two “ordering” processes 01 and 0, independently communi-
cate two respective orders to the servers s; and s;.

O] = S1,02 — S2 (2)

The following derivation shows that 0, — s, can be executed first.

T oo M
0—>s ——>0 {o1, 51} # {02, 52}

015y ELAY
0] > S1;0p > S ——> 0] — S1

2.2 Simple Processes

Implementations of Simple Choreographies are modelled in a process language called Simple
Processes [41]. First, we define a grammar for writing process behaviours.

P,O,R:=pL; P|phP|O

These actions are the local counterparts to the communication action in choreographies. A
send action p! sends a message to a process p, and the dual receive action p? receives a
message from a process p. The term 0 is the terminated process.

Processes are composed into networks (N, M, etc.), which are maps from process names
to processes. We introduce some notation: 0 is the terminated network, where all process
names are mapped to 0; p[ P] is the network where p is mapped to P and all other process
names are mapped to 0; and N | M (“N parallel M”) is the union of N and M, assuming
that their supports! are disjoint. Under extensional equality of functions, the set of networks
equipped with parallel composition forms a partial commutative monoid with 0 as identity
element: N|0=N,N|M =M | N,and Ny | (N2 | N3) = (N | N2) | N3 [41].

! The support of a network is the set of all processes not mapped to 0.
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Fig.3 Semantics of simple cont N P29 N Pan

processes plati P] | alp? Q] 2% p[P] | alQ] N|M 25 N M

Fig.4 Process projection for a;[C]r ifr=p

simple choreographies [p—=a;Clr =< p%[C]r ifr=gq [o], =0
[c1e otherwise

Example 4 The following network implements the choreography in (1).
Alice[Bob!; Carol?] | Bob[Alice?; Carol!] | Carol[Bob?; Alice!] 3)

The semantics of Simple Processes is given by the transition rules in Fig.3. Rule com
synchronises processes with matching send and receive actions. Rule PAR allows for parallel
execution.

Example 5 The transitions of the choreography in (1) coincide with those of the network
in (3). Technically, the labelled transition systems generated by the choreography and the
network are isomorphic, showing that the network is indeed a precise implementation of the
choreography.

Example 6 Out-of-order execution for choreographies corresponds to parallelism at the level
of networks. The following network implements the choreography in (2).

or[si!] [ oafs2!] | s1[01?] | s2[027] 4

Using rule PAR and the monoidal structure of parallel composition, the network can start by
executing either the communication between 01 and s; or the one between 0, and s;.

2.3 Endpoint Projection

In general, writing correct implementations of protocols is hard, especially for more expres-
sive choreographic languages as the one that we use later in this article. Endpoint projection
(EPP) is a mechanical procedure for translating choreographies into networks by splitting
choreographic terms into their local counterparts [7, 8, 16, 30, 41]. The idea is that given a
choreography C and a process p, we first compute the process term [C]p that implements
the actions that p should perform to implement its part in C. Then, EPP is defined as the
parallel composition of all such terms.

In the case of Simple Choreographies and Simple Processes, the process projection map
[C]p is defined in a natural way by the recursive equations in Fig. 4. In particular, a communi-
cation term p— q; C is projected to a send action and the projection of the continuation if we
are projecting the sender (first case), a receive action and the projection of the continuation if
we are projecting the receiver, or just the projection of the continuation if we are projecting
a process that is not involved in the communication.

Given a choreography C, its EPP [C] is defined as the network [C](p) = [C]p. This
network is a correct implementation of C.

Theorem 1 (Correctness of EPP [41]) The following statements hold for every choreography
C and transition label | in the language of Simple Choreographies.

Completeness. For any C', if C & C' then [C] A [c’1-
Soundness. For any N, if [C] L N then € & €' for some C’ such that N = [c.
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Example 7 The networks in (3) and (4) are, respectively, the EPPs of the choreographies
in (1) and (2).

The completeness part of Theorem 1 is proven by case analysis on the transition performed
by the choreography. This gives information about the choreography’s structure that can
be used to infer the shape of the network, which in turn shows that it can perform the
corresponding transition. The soundness part is by induction on the choreography, with two
cases depending on whether the transition requires applying the delay rule (and invoking the
induction hypothesis).

2.4 Taking Stock

Theorem 1 is used to prove other notable results given by the choreographic approach, such
as deadlock-freedom. A deadlocked network is one that is not terminated but cannot make any
transitions, typically because all processes are waiting for someone else. Even in a simplistic
process language such as Simple Processes, we can write deadlocked networks, such as:

pla?] | alp?].

Here, p and q are both waiting for each other, and therefore the network will never be able
to proceed.

Since communication terms in choreographies specify simultaneously what sender and
receiver processes are involved, choreographies cannot describe deadlocks, a property known
as deadlock-freedom by design [7]. As a consequence of Theorem 1, the networks generated
by EPP can never become deadlocked.

The choreographic language that we consider in the rest of our article is more expressive
than Simple Choreographies, as it includes features that are important for modelling realistic
protocols. However, the general structure of the development follows the roadmap given in
this section, albeit with a much higher level of complexity.

3 Core Choreographies

We introduce Core Choreographies (CC), the choreographic language that we work with,
and its formalisation. At the end of this section, we discuss how the formalisation process
guided the evolution of the language from its original presentation in [16] to its present form,
which is closer to the style of [41].

In CC, processes can perform point-to-point communications and have storage. Commu-
nicated messages can be either values, which are computed by evaluating local expressions,
or labels (tags, or constants) from a fixed set {left, right}.2 Additionally, choreographies
can include conditionals based on Boolean expressions and invoke recursive procedures.

3.1 Preliminaries

Choreographies are parameterised by a signature, which defines the types for process names
(processes for short) pid, local variables var (used to access the processes’ storage), values
val, expressions expr, Boolean expressions bexpr, and procedure names recvar (from

2 Restricting the set of labels to two elements is standard practice [6, 16]. The practical implications were
discussed in the Introduction (p. 4); for a discussion on how this simplifies the formalisation, see Sect.5.5.
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recursion variables). Signatures also include types for (user-defined) annotations ann (as
discussed in Sect. 1). Since the types of expressions and values are parameters, signatures
also need to specify the evaluation functions mapping expressions to values and Boolean
expressions to Booleans. We fix a signature sig and introduce abbreviations Pid:= (pid Sig)
and similarly for all other parameters for convenience.

All datatypes except the evaluation functions are equipped with a decidable equality.
Since we are targetting extraction, which is not compatible with modules, we reimplemented
DecType as a record type consisting of exactly these two components, and reproved the lem-
mas about decidable equality from the Coq standard library. We also show that the Cartesian
product of two DecTypes can be made into a DecType, and we define a two-element decidable
type Label whose elements are the two labels 1eft and right.

Evaluation functions are again records. The first element is a function that takes an expres-
sion and a mapping from a process’s variables to values, and returns a value (possibly of a
different type as the one stored locally). The second element is a proof that the value returned
by evaluation does not change if the mapping from variables to values is replaced by an
extensionally equivalent one.

The type state:=Pid — Var — Value models the memory state of the set of all pro-
cesses.> We define extensional equality on states, written [==], and prove that it is an
equivalence relation. Furthermore, we define an operation s[[p,x = v] for updating the state
s with the assignment of value v to process p’s variable x, and prove a number of useful
rewriting lemmas.

3.2 Syntax

Choreographies are defined inductively by the following grammar.*

1= pie — g¥x | p —> q[1]
C:=n@a;;C|Ifp??bThenClElseC2|Call X|RT_Call Xps C|End

Here, p,q:Pid are processes, e:Expr is an expression, x:vVar is a variable, 1:Label is a label,
a:Ann is an annotation, b:BExpr is a Boolean expression, X:Recvar is a procedure name, and
ps:1ist pPidis a list of processes.

The terms denoted 1 are called interactions; for many results, it is convenient that they
form their own type. Term p#e — g$x is a value communication, where p communicates
the result of evaluating e to g, which stores it in its local variable x. Term p — qg[1] is a label
selection, where p communicates label 1 to q.

Label selections are used in conjunction with conditionals. In a conditional
If p ??b Then C1 Else C2, the evolution of the choreography is determined by the outcome
of evaluating the Boolean expression b at p. Other processes that need to know which branch
was chosen (knowledge of choice [9]) can get this information through the reception of label
left or right from p.

Interactions are paired with annotations (a), which are ignored by the semantics. They
are meant to include additional information that may be needed in subsequent processing
steps, such as documentation or the second-stage compilation mentioned in Sect. 1. We omit
annotations in all our examples.

3 Inthe formalisation, the type Var — Value is given the name LState (for “local state”), but since local
states are unused elsewhere we do not discuss them here.

4 Throughout this article, we use the pretty-printing rules defined in the Coq formalisation so that the corre-
spondence between the informal mathematical presentation and the formal results is clear.
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Term call x invokes the procedure named x. A procedure may involve several processes,
and the semantics of CC allows each process to join the procedure only when needed. The
runtime term RT_Call X ps C represents this intermediate situation: execution of procedure x
has already evolved to c, but the processes in ps have not yet joined it. Runtime terms are not
meant to be written by programmers: they are auxiliary terms generated by the semantics.

The grammar of choreographies is defined as the following inductive types.

Inductive Eta: Type :=
| Com: Pid - Expr — Pid — Var — Eta
| Sel:Pid — Pid — Label — Eta.

Inductive Choreography : Type =

Interaction:Eta — Ann — Choreography — Choreography

Cond : Pid — BExpr — Choreography — Choreography — Choreography
Call : RecVar — Choreography

RT_Call :RecVar — (list Pid) — Choreography — Choreography

End: Choreography.

A set of procedure definitions, formalised as type DefSet, is a mapping assigning to each
RecvVar a list of processes and a choreography; intuitively, the list contains the processes that
are used in the procedure. A Program is a pair containing a set of procedure definitions and
the choreography to be executed at the start, also called the main choreography.

Definition DefSet := RecVar — (list Pid)xChoreography.
Definition Program :=DefSet * Choreography.

We write Procedures P and Main P for, respectively, the set of procedure definitions and
the main choreography in a program P (so Procedures and Main are simply aliases for the
corresponding projections). Likewise, vars p x and Procs P X denote the list of processes and
the definition of a particular procedure x within p. Finally, Names D is the function mapping
each variable x to the set of processes that it uses according to D:DefSet.

Example 8 (Distributed Authentication) The choreography c1 below describes a multiparty
authentication scenario where an identity provider ip authenticates a client ¢ to server s.
(For convenience, we name some of the subterms in the choreography.)

Cl :=c#credentials — ip$x;; If ip ?? (check x) Then C1t Else Cle
Clt :=ip — s[left];; ip —> c[left];; s#token —> c$t;; End
Cle:=ip — s[right];; ip — c[right];; End

c1 starts with ¢ communicating its credentials to ip, which stores them in x. Then,
ip checks whether the received credentials are valid by evaluating the Boolean expression
check x, and signals the result to s and c by selecting 1eft when the credentials are valid
(c1t) and right otherwise (cle). In the first case, the server communicates a token to c,
otherwise the choreography simply terminates.

The selections from ip to s and c address knowledge of choice, as previously described.

Well-formedness. There are a number of well-formedness requirements on choreographies,
which can be grouped in three categories.

1. Intended use of choreographies. Interactions must have distinct processes (there are no
self-communications), e.g., p#e — p$x is disallowed.

2. Intended use of runtime terms. Procedure definitions may not contain runtime terms.
Main P may include subterms RT_call X ps C, but ps must be nonempty and include only
process names that occur in Vars P X.
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3. Design choices in the formalisation. The processes in vars x include all processes that
are used in Procs X.

Well-formedness is essential in the proof of correctness of EPP (Sect. 6).
We start by formalising the different properties of choreographies separately:

— initial c holds if ¢ does not contain runtime terms (RT_Call);
— no_self_comm C holds if ¢ contains no self-communications;
— no_empty_ann C holds if all runtime terms in ¢ have nonempty lists of process names.

These properties are defined recursively over ¢ in the natural way. Well-formedness of chore-
ographies Choreography WF is defined as the conjunction of the last two properties.

Well-formedness of programs also takes into account the additional requirements on the
lists of processes annotating runtime terms. Specifically, in a program p, the choreography
Main P must be consistently annotated with respect to vars P: in any subterm RT_Call X ps C'
in Main P, the list ps only contains processes appearing in vars P X. This property is written
as consistent (Vars P) (Main P), where predicate

consistent: (RecVar — list Pid) — Choreography — Prop

is defined inductively in the expected way. Also, the set of procedure definitions in P must
be well-annotated: if Procedures P X=(ps,C), then the set of processes used in ¢ must be a
nonempty subset of ps,’

Definitionwell_ann (P:Program) (X:RecVar) : Prop :=
Vars PX #nil A CCC_pn (Procs P X) (Vars P) [C] Vars P X.

The last definition uses function ccc_pn, which computes the set of processes occurring in
a choreography, given the set of processes used in each procedure. It generalises to cCP_pn,
which computes the set of processes occurring in a well-annotated program.

Using these ingredients, we define well-formedness of programs as follows.
Definition Program_ WF (P:Program): Prop :=

Choreography WF (Main P) A consistent (Vars P) (Main P) A
V X,no_self_comm (Procs PX) A initial (Procs PX) Awell_ann P X.

Since initial choreographies do not include runtime terms, this definition also implies that
all procedure definitions are well-formed.

Example 9 Let Defs:DefSet map FileTransfer to the pair consisting of the process list
c:: s::nil and the following choreography.

s.(file, check) — c.x;; (* send file and check data *)
If c.(cre(fst(x)) ==snd(x)) (* cyclic redundancy check *)
Then ¢ — s[left];; End (* file received correctly, end *)

Else c — s[right];; Call FileTransfer (* errors detected, retry *)

FileTransfer describes a file transfer protocol between a server s and a client c using Cyclic
Redundancy Checks (crc) to detect errors from a noisy channel.

Assuming that Defs maps all other procedure definitions to End, the program
P=(Defs,Call FileTransfer) satisfies Program_WF P.

Recall that our long-term future goal is to apply program extraction to this formalisation,
and then use the result in tools. Many of the results that we show later only hold for well-
formed programs, and any tool built on our theory should be able to validate that its input is

5 We defined suggestive notations [C] [U], [\] and [#] for the set operations we use.
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well-formed. However, due to the quantification over all procedure names, well-formedness

of programs is in general not decidable. In practice, though, choreographic programs only

use a finite number of procedures; if these are known, well-formedness becomes decidable.
This observation motivates the definition of a recursive predicate

used_procedures_C : Choreography — list RecVar — Prop

such that used_procedures_c ¢ Xs holds iff ¢ only calls procedures in xs (directly). This is
generalised to programs by requiring that all procedures in xs also satisfy the same property,
and additionally that all procedures not in xs be defined as End.

Definition used_procedures (P:Program) (Xs:1ist RecVar) :=
used_procedures_C (Main P) Xs A
V X, (In X Xs — used_procedures_C (Procs P X) Xs)
A(~InXXs — Procs PX=End A Vars PX #nil).

The requirement vars PX #nil for procedures not in xs is included to ensure well-
formedness. From this, we can prove decidability of well-formedness.

Lemma Program_WF_dec :V P Xs, used_procedures P Xs —
{Program_WF P} + {~Program_WF P}.

Applying this lemma in extracted code requires knowing a suitable set xs. While we cannot
automatically verify that this set satisfies used_procedures P Xs, itis very reasonable to trust
that a correct one has been provided: typically, the relevant procedures used in a program are
written down explicitly, making it straightforward to list them.

An alternative approach would be requiring the set of procedure names to be finite. This
is closer in spirit to the pen-and-paper presentations of choreographic languages—even if
procedure names are taken from an infinite set, only a finite number of them can be used in a
concrete program [16]. We chose the present approach for simplicity, as working with finite
sets in Coq is notoriously cumbersome.

3.3 Semantics

The semantics of CC is defined by means of labelled transition systems, in three layers. At
the lowest layer, we define the transitions that a choreography can make (ccc_To), parame-
terised by a set of procedure definitions; then we pack these transitions into the more usual
presentation—as a labelled relation cCP_To on configurations (pairs program/state). Finally,
we define multi-step transitions CCP_ToStar as the transitive and reflexive closure of the
transition relation. This layered approach makes proofs about transitions cleaner, allowing
us to separate the different levels of induction.
Transition labels. Each layer of the semantics has its type of transition labels. For the lower
level, we define an inductive type RichLabel whose constructors reflect the possible actions
a choreography can take: value communications, label selections, reducing a conditional, or
locally joining a procedure call.

The second layer uses the type TransitionLabel of labels corresponding to the observ-
able actions. These types are related forget:RichLabel — TransitionLabel. Labels in the
third layer are simply lists of TransitionLabels.

Inductive RichLabel : Type =

| RL_Com (p:Pid) (v:Value) (g:Pid) (x:Var) : RichLabel
| RL_Sel (p:Pid) (q:Pid) (1:Label) : RichLabel

| RL_Cond (p:Pid) : RichLabel

| RL_Call (X:RecVar) (p:Pid) : RichLabel.
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Inductive TransitionLabel : Type =

| TL_Com (p:Pid) (v:Value) (g:Pid) : TransitionLabel
| TL_Sel (p:Pid) (q:Pid) (1:Label): TransitionLabel
| TL_Tau (p:Pid): TransitionLabel.

Pen-and-paper presentations only include TransitionLabels, which capture what can
be observed in transitions without revealing syntactic information about the choreography.
However, in Coq, this information is needed to obtain induction hypotheses that are strong
enough for our development, which is why we have introduced RichLabels.

The transition relations are defined inductively by the rules in Figs.5, 6, 7. For read-
ability, we present them in a more standard rule notation — below, we exemplify how they
correspond to constructors in the formalisation. We also introduce suggestive notations for
all these relations: «C,s>» —{r1,D}— «C',s"> stands for (CCC_To D C s r1 C's') (this relation
is parameterised by D:Defset for dealing with procedure calls); ¢ —{t1}— c' stands for
(CCP_To c t1 c¢'), where c,c:Configuration are pairs containing a Program and a State;
and ¢ —{ts}—* ¢' stands for (CCP_ToStar c ts ).

The rules defining ccc_To can be divided into three groups, which we describe in the
following paragraphs.

Transition rules. Rules c_com, C_sel, c_Then and c_Else deal with execution of the first
action in a choreography.

As an example, rule c_sel corresponds to a constructor

C_SelDpglaCss's[==]s'— CCC_ToD(p — q[l]@a;;C)s(RL_Selpgl)Cs'

Including the requirement s [==] s' instead of simply writing s in the conclusion is essential for
enabling transitions between different intensional representations of the same state, which
occur in practice. In particular, confluence (discussed below) does not hold without this
formulation. The corresponding more compact rules are proved as lemmas, e.g.,

Lemma C_Sel': «p — g[1] @a;; C,s>»> —RL_Sel pql,D}— «KC,s>.

These formulations can be useful in proofs that use existential tactics to infer a previously
uninstantiated target of a transition.

Procedure calls. Rules c_call_Local,C_Call_Start,C_Call_EnterandC_cCall_Finish
allow a process to enter a procedure call, with different cases according to whether other
processes have already entered the procedure and/or whether there are any other processes
that still have to join it.

A procedure call is expanded when the first process joins it (rule c_call_start). The
remaining processes and the procedure’s definition are stored in a runtime term, from
which we can observe transitions either by more processes entering the procedure (rule
C_call_Enter) or by out-of-order execution of internal transitions of the procedure (rule
C_Delay call, discussed below). When the last process enters the procedure, the runtime
term is consumed (rule ¢_call Finish). Rule c_call Local addresses the edge case of a
procedure that only uses one process.

Out-of-order execution. Rules c_Delay_Eta, C_Delay Cond and C_bDelay Call deal
with out-of-order execution (cf. Example 3). These rules require that the processes involved
in the transition do not appear in the first term in the choreography; these conditions are
specified by auxiliary predicates defined straightforwardly.

Example 10 Consider the program (p,c1) where c1 is the choreography in Example 8 and
D:DefSet is arbitrary (there are no recursive calls in C1).

(D,C1,stl) —{L_Comc ipvl}— (D, If ip ??(check x)ThenClt ElseCle, st2)
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v :=eval_on_state Evesp s' [==]s[qx = V]
<p#e — q$x@a;; C,s>> —[RL_Com p v q %, DI— <C,s">

s [==] o

<p — q[1]@a;; C,s>> —RL_Sel p q 1, D— <C,s">

Sel

eval_on_state BEvb s p = true s [==]s'
<If p??b Then C1 Else C2,s>> —{RL_Cond p, D}— «C1,s">

eval_on_state BEvb s p = false s [==]s'
< If p??b Then C1 Else C2,5>> —[RL_Cond p, D}— «C2,s">

disjoint_eta_rl etat <C,s>> —t,D}— <C';s">
< eta@ann;; C,s>> —{t,D}— <eta@ann;; C';s">

<C1,5> —t,D}— «C1',s">
<C2,5> —t,D}— «C2',s">

< If p??b Then C1 Else C2,s>> —{t,D}— <If p??b Then C1'Else C2',;s">>

disjoint_p_rlpt

disjoint_ps_rlpst <C,s>> —t,D}— <C';s">
<RT_Call X ps C,s>> —{t,D}— <«RT_Call X ps C',;s">

s [==]s' [#](fst (DX))=1 1Inp (fst (D X))
«Call X,s>> —{RL_Call X p,D|— <snd (D X),s">

s [==]s' [#](fst (DX))>1 Inp (fst (D X))

Com

C_Then

C_Else

C_Delay_Eta

C_Delay_Cond

C_Delay_Call

C_Call_Local

«Call X,s>> —|RL_Call X p,D— <RT_Call X (fst (D X)[\]p) (snd (D X)),s">

s [==]s'" [#]ps>1 Inpps
<RT_Call X ps C,s>> —RL_Call X p,D}— <RT_Call X (ps[\]p) C,s">

s[==|s' [#lps=1 Inpps
<RT_Call X ps C,s>> —{RL_Call X p,D}— <C,s">

Fig.5 Semantics of choreographies, lower layer (CCC_To)

C_Call_Start

C_Call_Enter

C_Call_Finish

Fig. 6 Semaptics qf <<C,s>> —[t,D]—> <<C',S'>>
choreographies, middle layer CCP_Base
(CCP_To) (D,C,s) —jforget t}— (D,C',s")
s[==]s" cl —t}—c2 2 —{1}—*c3
(Prs) —fnil— (ps) Cr-Base o1 [t 3 CCTStep

Fig.7 Semantics of choreographies, top layer (CCP_ToStar)

where v1:= eval_on_state Ev credentials stl cis the evaluation of credentials at cin
st1 according to the evaluation function Ev, and st2:= st1[[ip,x = v1]. If check x evaluates

to true at ip in st2, then execution continues as follows.

(D, If ip ?? (check x) ThenClt ElseCle, st2) —L_Tau ip}— (D, Clt, st2)

—|L_Sel ipsleft;L_Sel ip c left}—* (D, s#token — c$t;; End, st2)

—|L_Com s c v2}— (D, End, st3)

where v2:= eval_on_state Ev token st2 s and st3:=st2[[c.t = v2].
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If the check fails, the choreography instead continues as follows.

(D, If ip ??(check x) ThenClt Else Cle, st2) —L_Tau ip}— (D, Cle, st2)
—{L_Sel ip s right;L_Sel ip c right}—* (D, End, st2)

In the compound transitions in the examples above, the actions in the label are executed in
order.

Example 11 Let Defs be as in Example 9 and c be the body of FileTransfer. Consider the
program (Defs,Call FileTransfer). The processes in the procedure FileTransfer can
join it in any order as exemplified by the transitions below.

(Defs, Call FileTransfer, st) —{L_Tau c}—
(Defs,RT_Call FileTransfer s:inil C, st) —{L_Tau s}— (Defs,C, st)

(Defs, Call FileTransfer, st) —{L_Tau s}—
(Defs,RT_Call FileTransfer c:nil C, st) —{L_Tau c}— (Defs,C, st)

The state st is immaterial.

We prove a number of useful low-level properties about transitions. For example, we show
that transitions are preserved by state equivalence.

Lemma CCC_To_eq:sl[==]sl'— s2 [==]s2'—>
<LC,s1>» —tlDl— «KC,s2>» — KC,s1™>» —{tlDl— «KC,s2"™>.

This result generalises to cCP_To and cCP_Tostar. Likewise, we show that: the set of pro-
cesses involved in a choreography cannot increase during execution; transitions preserve
well-formedness and the set of procedure definitions; well-formed choreographies do not
perform self-communications; and terminated choreographies cannot perform transitions.

3.4 Progress, Determinism, and Confluence

The challenging part of formalising CC is establishing the core properties of the language
semantics, which are essential for more advanced results and not always proven in full detail
in pen-and-paper publications. We discuss some of the issues encountered, as these were also
the driving force behind the changes relative to [16].

The first key property of choreographies is that they are deadlock-free by design: any
choreography that is not terminated can execute.

This is proved by doing case analysis on the choreography and invoking the rule consuming
its first action. Since the only terminated choreography in CC is End, this property also implies
that any choreography either eventually reaches the terminated choreography End or runs
infinitely.

Theorem progress : VYV P,Main P # End — Program_WF P —
Vs,3tlc,(P,s) —{tl}— c.

Theorem deadlock_freedom:V P, Program WF P —
Vstsc,(Ps) —{ts}—* c'—
{Main (fstc')=End} +{3 tlc",c' —{tl}— c"}.

The second property of our semantics is that it is deterministic, in the sense that transitions
can be uniquely inferred from their label or the resulting state. These properties are essential
for later results, and the need for them was the original motivation for introducing type
RichLabel—the first group of results does not hold if TransitionLabels are used in the
definition of ccc_To.
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Lemma CCC_To_deterministic: «C,s>» —tll,D}— «KCl,s1> —
L0, —{t12D}— «C2,s23 — t1l=t12 — C1=C2 A s1 [==] s2.

Lemma CCC_To_deterministic_3:«kC,s>» —tllD}— «KC.s1>» —
«C,s>» —tl2,D}— KC\s2>» — tll=t12.

The third key property is confluence, which has some relevant implications for our cal-
culus: if a choreography has two different transition paths, then these paths either end at the
same configuration, or both resulting configurations can reach the same one. This is proved
by first showing the diamond property for choreography transitions (considering all possible
combinations of independent transitions), then lifting it to one-step transitions, and finally
applying induction to show it for multistep transitions.

Lemma diamond_Chor :
<LC,s>» —tll,D}— «KCl,s13» — «KC,s>» —{tl2,D}— KC2,82>> — tll # tl2 —
JC's, «Cl,s1>» —{tl2,D}— «KC,s"> A KC2,52>» —{tll,D}— KC's">.

Lemma diamond_1:c —tll}—cl—>c —tl2 }—>c2 - tll #tl2 —
Jdc¢',cl Htl2}—>c' Ac2 —tll }— c.

Lemma diamond_4 : (P,s) —{tl11 }—* (P1,s1) — (P,s) —{tl12 }—=* (P2,52) —
(3 P'tll'tl2' sl's2),
(Pl,s1) —{t11' —*(P.,s1) A (P2,52) —{t12' }—* (P',s2') A s1'[==] s2).

As an important consequence, we get that any two executions of a choreography that end
in a terminated choreography must finish in the same state.

Lemma termination_unique:c —tll}—* ¢l - ¢ —{tl2}—* c2 —
Main (fst ¢l) =End — Main (fst ¢2) =End — snd cl [==] snd c2.

Using these results, we can establish Turing completeness of CC. The structure of the
proof closely follows that of [16], and has been described in [21]. We briefly summarise it
for completeness of the presentation.

First, we formalise Kleene’s partial recursive functions [34] as an inductive type in Coq.
Since all functions in Coq are total, this definition only establishes syntax for them. We
define an evaluation function separately that takes a partial recursive function f, an input 71
and a number of steps k, and performs k steps of the computation of f(71)—where e.g. base
functions evaluate to their value in one step, while unfolding a composition or performing one
recursive call takes one step. This allows us to define convergence to a value (the computation
finishes in a finite number of steps) and divergence (the computation does not finish in any
number of steps).

Next, we define a mapping from partial recursive functions to choreographies, and show
that there is a correspondence between the evaluation function defined above and the execution
of the choreography. In particular, given a function f and an input 7, if f (1) converges to a
value, then executing the choreography obtained from f from an appropriate state storing the
values 7 terminates in a state where a particular process stores the result; if f (1) is undefined,
then execution of the choreography never terminates. The converse implications also hold.
The formal proof relies essentially on the definition of the semantics of choreographies and
confluence results. The interested reader is referred to the works cited above for additional
details.
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3.5 Discussion

Formalising the proof of confluence following [16] turned out to be a spiralling process:
the pen-and-paper proof assumes some obvious properties, which were not proved; proving
these required some additional lower-level lemmas; these in turn generated some even more
specific lemmas; and so on. At some point, we realised that the auxiliary lemmas accumulated
already accounted for 90% of the formalisation. Worse, these lemmas were extremely specific
and detached from the contents of [16]—even though we were far from done. This led us to
rethinking the design of CC, and eventually to adopting the language of [41].

In this section, we discuss the features of the original language that turned out to be

problematic. These regarded the handling of procedure definitions (syntax) and the treatment
of procedure calls and out-of-order execution (semantics).
Syntax. Procedures were initially defined by including a term def X=CX in C in the grammar
defining choreographies. While this removed the need for a separate notion of program, it
introduced several dimensions of complexity. Even the notion of terminated choreography
was nontrivial, since End could occur arbitrarily deep inside some of these terms. This made
it hard to ensure that the Coq definition was an adequate representation of the informal notion
in [16], affecting all results regarding termination, progress, and deadlock-freedom. With the
current syntax, terminated programs are exactly those whose for which Main P=End.

Additionally, the name x in def X=CX in C acts as a binder, which added all the usual
problems of working with binders—in particular, having to deal with capture-avoiding sub-
stitutions and «-renaming. In the current language, procedure names are statically determined
and fixed, so there is no need to rename them ever, and they can be treated as constants. This
constructor also allowed for unintuitive choreographies, e.g., def X=Cx in ¢ where the chore-
ography cx itself contains additional procedure definitions.

Pairing procedure definitions with choreographies in programs yields a cleaner theory,
and the overhead of an additional layer is a very small price to pay for the simplicity gained.
This approach had been proposed earlier [13], and the two formulations are argued to be
equally expressive in [18].

Semantics. Instead of a labelled transition system, the semantics of [16] was a reduction
semantics that used a structural precongruence relation to model out-of-order execution and
to unfold procedure definitions.

To understand this issue, consider again Example 3, which shows a choreography that has
two possible initial transitions. In a framework with reductions and structural precongruence,
the out-of-order transition is obtained by first rewriting the choreography as 0 — s2; 01 — 51
and then applying rule COM. The set of legal rewritings is formally defined by the structural
precongruence relation <, and there is a rule in the semantics that closes the transition relation
under it.

In any proofs about the semantics, an approach using structural precongruence needs to
take into account all the possible ways into which choreographies may be rewritten in a reduc-
tion. Concretely, in the proof of confluence, where there are two reductions, there are four
possible places where choreographies are rewritten; given the high number of rules defin-
ing structural precongruence, this led to an explosion of the number of cases. Furthermore,
induction hypotheses typically were not strong enough, requiring us to resort to complicated
auxiliary notions such as explicitly measuring the size of the derivation of transitions, and
proving that rewritings could be normalised. This process led to a seemingly ever-growing
number of auxiliary lemmas that needed to be proved, with no counterpart in the original
reference [16], and after several months of work with little progress it became evident that
the problem lay in the formalism.
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Summary. The current proof of confluence takes about 300 lines of Coq code, including a
total of 11 lemmas. This is in stark contrast with the previous attempt, which while still
unfinished already included over 30 lemmas with extremely long proofs.

With the current definitions, the theory of CC is formalised in two files. The first file,
which defines the preliminaries, contains 24 definitions, 60 lemmas and around 740 lines of
code. The second file, defining the syntax and semantics of CC and proving properties about
it (including all the ones described herein), contains 32 definitions, 126 lemmas, 2 theorems
and around 2300 lines of code.

The formalisation of partial recursive functions contains 22 definitions and 84 lemmas,
with a total of 1464 lines of code. The proof of Turing completeness consists of 28 definitions
and 65 lemmas, with a total of 2371 lines of code.

4 The Process Language

The second part of our formalisation concerns the process calculus that we use for imple-
menting CC: Stateful Processes (SP). We follow the pen-and-paper design presented in [41].
SP is used to define networks of processes running in parallel, each with its own behaviour,
that can interact by direct messaging.

4.1 Syntax

The syntax of SP is structured in three layers: behaviours, which express the local actions
performed by individual processes; networks, which combine processes in a system where
they can interact; and programs, which pair a network with a set of procedure definitions
(which all processes can call). As with CC, we assume an underlying signature.

The constructors for behaviours correspond to those for choreographies, but interac-
tions are now split between the two different roles involved (sender and receiver). The type
Behaviour is defined inductively from the grammar below.

B:=End|ple @!a;B|p?x @?a;B|pH+)l @+a;B|p &mB1 / mB2

| If e Then Bl Else B2 | Call X
mB := None | Some (a,B)

Conditionals, procedure calls, and the terminated behaviour are standard and similar to the
corresponding constructs in CC.

A term ple @! a represents a send action towards p, where e is the expression used to
compute the value to be sent and a is an annotation. Dually, a term p?x @? a represents a
receive action where a value received from p is stored in the local variable x (a is, again, an
annotation).

A selection action p(+)1 @+ a; B is similar to a send action (label 1 is sent to p). The dual
action needs to offer a behaviour for 1, but may also accept other labels. In pen-and-paper
presentations, these branching terms are typically defined as partial functions from labels to
behaviours.

Formalising this informal description is challenging. A natural choice would be to include
a constructor Branching: Pid — (Label — option Behaviour) — Behaviour. However,
this is problematic for defining EPP, which relies on a recursively defined function
on pairs of behaviours called merging (cf. Sect.5.1). Defining this function directly in
Coq is unwieldy because of the complexity of writing the appropriate term of type
Label — option Behaviour given the corresponding subterms from the arguments.
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Using partial functions also seems like an overkill, considering that there are only two
possible labels. Instead, we include a constructor

Branching : Pid — option (AnnxBehaviour) — option (Ann#Behaviour) — Behaviour

that registers explicitly the behaviours offered for each of the two possible labels, in order.
This design choice avoids the aforementioned issues, at the cost of making our development
harder to generalise to larger sets of labels in the future.

Because of the option types in Branching, the induction principles generated automati-
cally for Behaviour are not strong enough (they do not include induction hypotheses over
the Behaviours appearing within branching terms). To overcome this, we define an auxil-
iary function depth:Behaviour — nat measuring the depth of the AST corresponding to
a Behaviour, use it to prove the expected general induction principle, and define a tactic
BInduction B that applies it.

Networks. Networks are simply (total) functions from processes to behaviours.

Definition Network :=Pid — Behaviour.

We define extensional equality of networks N (==) N' in the expected way and show that it is an
equivalence relation. We support the common notation for writing networks by including a
function for constructing singleton networks p[B], a parallel composition operator N | N', and
a removal operator N p (recall the description in Sect.?2).

For simplicity, we do not require disjoint support in parallel composition: if both net-
works define a nonterminated behaviour for p, the result of (W | N') p and (W' | N) p is different.
Although this may seem odd, it has the advantage of making parallel composition total. We
show that parallel composition is commutative under the assumption that the two composed
networks have disjoint supports.

Lemma Behaviour_eq End_dec :V (b:Behaviour), {b=End} + {b# End}.

(* N | N' stands for (Par N N') *)
Definition Par (NN:Network) :=
funp = if (Behaviour_eq End_dec (Np)) thenN'p else Np.

Definition Network_disjoint (NN':Network):=V p,Np=EndV N p=End.
Lemma Par_comm : Network_disjoint NN'— (NIN') (==) (N' | N).

Our library includes a number of results to reason about the network operations, including
very specific lemmas dealing with networks that appear in the rules defining the semantics
of SP, e.g., that updating the behaviours of two distinct processes yields the same result
independent of the order of the updates.

Programs and well-formedness. As before, a program is a pair consisting of a set of procedure
definitions and a network.

Definition DefSetB :=RecVar — Behaviour.
Definition Program :=DefSetB * Network.

Well-formedness is significantly simpler than for choreographies. If B:Behaviour, then B
is well-formed, Behaviour_WF B, as long as no process in B attempts to communicate with
itself. N:Network is well-formed, Network_wF N, if all processes are mapped to well-formed
behaviours. This is not decidable in general, but it is under the assumption that all processes
outside a given set ps are mapped to End—an assumption that holds for all networks that can
be written explicitly using parallel composition of singleton networks.

@ Springer



A Formal Theory of Choreographic Programming Page 190f34 21

Np=(q! e@aj; B) v := eval_on_state Eve s p

s' [==] (s]a,x = v
Na=(p?xa?aiB) W (=) (Wp alple | qe) ° TTCx=
_Com
&N,s>> —RL_Com p v q x,D— <N',s">
tp=lal) et Ol e W (==) (e a plE) | alBl) s [==] s
N q = (p & Some (a'Bl) // Br)
S_LSel
<N,s>> —[RL_Sel p q left,D— <N',s"> -
Np = (q(+) right @+ a; B) e SR
Nq=(p& Bl // Some (a',Br)) N' (==) Wp q] p[B] | q[Br]) s [==] s
S_RSel
«N,s>> —[RL_Sel p q right,D— <N',s"> -
N p = (If b Then B1 Else B2) v R
eval_on_state BEvb s p = true W (==) (@pl|pBl) s[==]s
S_Then
<N,s> —{RL_Cond p,D}— <N';s">
N p = (If b Then B1 Else B2) v I
eval_on_state BEv b s p = false N (==)(Wp|pB2) s[==]s
S_El1
<N,s>> —{RL_Cond p,D}— <N',s"> ¢
Np==CallX N (==)(Np]| p[DX]) s[==]s'
S_Call
<N,s>> —{RL_Call X p,D}— <N',;s">
Fig.8 Semantics of networks, bottom layer (SP_To)
Fig.9 Semantics of networks, <N,s> —]t,D}— <N';s">
i SPP_Base
middle layer (SPP_To) (D,N,s) —[forget t] (D.N',s")

Well-formedness of programs does not make sense: well-formedness of a behaviour
depends on who is executing it, but a procedure definition has no information about which
processes will call it.

Example 12 Consider the network N = c[Bc] | s[Bs] | ip[Bip], where:

Bc := iplcredentials; ip & Some (s?t; End) // Some End
Bs := ip & Some (c!token; End) // Some End

Bip = c?x; Bip'
Bip':=If (check x) Then (s(+)left; c(+)left; End) Else (s(+)right; c(+)right; End)

This network implements the choreography in Example 8.

4.2 Semantics

The semantics of SP is again defined by a labelled transition system. Transitions for com-
munications match dual actions in two processes, while conditionals and procedure calls
simply run locally. There are again three layers of definitions, which are shown in Fig. 8,
9, 10, and two types of transition labels (as in CC). Transitions support suggestive nota-
tions: «N,s>» —{[t1,D}— «N',s"> for (SP_ToDNs t1N's'), C —{1}— C' for (SPP_ToC 1)),
and ¢ —{1s}—*c' for (SPP_ToStar C 1s C").

These definitions warrant similar observations as those for the semantics of CC. Transitions
include premises on network equality and state equality, rather than requiring specific values.
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s [==] s' cl —ft}—c2 c2 —1}—*c3

SPT_Base SPT_Step

(P,s) —nil}—* (P,s') cl —ftul}—* c3

Fig. 10 Semantics of networks, top layer (SPP_ToStar)

We include some lemmas stating the more restricted rules, both as a sanity check and because
they can be useful to instantiate variables created by the use of existential tactics in proofs.
Lemma S_LSel':Np=(qg(+) left @+a;B) > Ng=(p & Some (a',B1)// Br) —

<«N,s3» —RL_Sel pgleft,Dl— «N\p\qglp[B]lg[Bl],s>.

There are two rules for reducing selections, one for each label. This is a deviation for
standard practice (where there is a single rule and a premise matching the label in both
behaviours) stemming from our design choice of avoiding functions in branching terms.
Having an extra rule generates additional cases in induction proofs, but this formulation
effectively simplifies the formalisation by eliminating one layer of inversion.

Example 13 We illustrate the possible transitions of the network from Example 12. We abbre-
viate the behaviours of processes that do not change in a reduction to ... to make it clearer
what parts of the network are changed. Furthermore, we omit trailing Ends in Behaviours.
The network starts by performing the transition
(D, c[Bc] I s[Bs] | ip[Bip], stl) —{L_Comc ip vl}—
(D, c[ip & Some (s?t) // Some End] | s[...] | ip[Bip'], st2)
where v1 and st2 are as in Example 10.
If eval_on_state (check x) st2 ip=true, execution continues as
(D, c[ip & Some (s?t) // Some End] | s[Bs] | ip[Bip'], st2)
—L_Tau ip}— (D, c[...]I s[...] | ip[s(+)left;c(+)left], st2)
—]L_Sel ip s left}— (D, cl...]| s[c!token] | ip[c(+)left], st2)
—L_Sel ipc left}— (D, c[s?t]Is[..] | ip[End], st2)
—L_Com s ¢ v2}— (D, c[End] | s[End] | ip[End], st3)

where v2 and st3 are again as in Example 10. Otherwise, it continues as follows.

(D; c[ip & Some (s?t) // Some End] | s[Bs] | ip[Bip'], st2)
—L_Tau ipl— (D;cl...] | s[...] | ip[s(+)right;c(+)right], st2)
—L_Sel ip s right}— (D; c[...] | s[End] | ip[c(+)right], st2)
—{L,_Sel ip c right}— (D; c[End] | s[End] | ip[End], st2)

The labels in these reductions are exactly as in Example 10.

4.3 Determinism and Confluence

As for CC, we prove a number of useful results about the semantics of SP. These can be
roughly divided in two groups: results showing that reductions are stable under the extensional
equalities on the different types involved, and properties on the actual transitions. While the
results in the first category are not surprising, they are useful and show that the definitions
make sense.

Lemma SP_To_eq:sl[==]sl' — s2[==]s2'—
KN,s1>» —{tlDl— «N,s2>» — <N,s1>» —{tlD}— <N,s2">.

Lemma SP_To_Network_eq: N1 (==) N2 —
«N1,s>» —{tlDl— «N,s"™>» — «KN2,s>»> —{tlD}— <N,s"™>.

Lemma SP_To_Defs_wd: (V¥ X,DX=D"X) —
&LN,s>» —tlDl— «N,s™> — «N,s>» —{tl,D'}— <«N,s">.
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While determinism and confluence are similar to the corresponding results to CC, they
are not as interesting: for networks generated by EPP (which are the ones we are interested
in), these results would follow by the same properties for choreographies.

The formalisation of SP consists of 25 definitions, 81 lemmas, 11 simple tactics, and
approximately 1960 lines of Coq code.

5 Endpoint Projection

As with the simple language from Sect. 2, the intuition for generating process implementations
is that each choreographic action should be projected to the corresponding process action. The
prototypical example is the value communication p#e — g$x @a, which should be projected
to a send action gle @!a for p, to a receive action p?x @?a for q, and skipped for any other
processes.

In the presence of conditionals, this intuition is not enough. Projecting a conditional
If p.bThen Ct Else Ce for any process other than p, say g, is nontrivial, because g has no
way of knowing which branch should be executed. Therefore g’s behaviour must combine
the projections obtained for ct and ce.

This problem is commonly known as knowledge of choice, and one of the solutions relies
on the usage of label selections [8, 9]. If g’s behaviour should depend on the result of p’s
local evaluation, then the result of this evaluation should be communicated to g by means
of a label selection. The two possible behaviours can then be combined in a branching term
offering two different options.

5.1 Merge

A standard way of combining behaviours to solve the problem above is the merge operator
[8]: a partial binary operator that returns a behaviour combining all possible executions of
its arguments (if possible). In SP, two behaviours can be merged only if they are built from
the same constructor with matching parameters. So if 81 can be merged with B2 to yield
B, we can also merge p?x @? a; B1 with p?x @? a; B2 to obtain p?x @? a; B, but p?x @? a; B1
can never be merged with g?x @? a; B2 for p# g (different arguments) or with gle @! a; B2
(different constructor).

The only exception is branching terms, where merge can combine offers on dif-
ferent labels. For example, merging p & Some (a,B)// None with p & None / Some (a',B')
yields p & Some (a,B) / Some (a',B"). In this way, the prototypical choreographic conditional
If p?? Then (p—> g[left]; g.e —> p;; End) Else (p—> glright];; End) can be projected for
g as p & Some (p!e; End) / Some End.

The partiality of merge again poses a formalisation problem. Our original approach
[20] defined an auxiliary type xBehaviour that extends the syntax of behaviours with a
constructor XUndefined: xBehaviour. In this work, instead, we define a ternary relation
merge: Behaviour — Behaviour — Behaviour — Prop.® While this design requires two
additional lemmas stating that this relation is functional and computable, it significantly
simplified this part of the formalisation (both in size and complexity of the proofs). As an
example, [20] reported a number of inversion results, e.g., if merging two behaviours yields

6 Technically, because merge is defined on a separate file, all types defined in the formalisation of SP need
the signature as a parameter. Since this signature is fixed, we omit it everywhere.
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B1[V] B2 ==B
merge_End merge_Send
End [V] End == End ple @la; B1 [V] ple @Qla; B2 == ple @Qla; B

B1 [V] B2 == B
p’x @7a; Bl [V] p?x @Q7a; B2 == p?x @7a; B

merge_Recv

Bi [V] B2 ==B
p(+)1 @+a; BL [V] p(+)1 @+a; B2 == p(+)1 @+a; B

merge_Sel

merge_Branching NNNN
p & None // None [V] p & None // None == p & None // None

merge_Branching_ SNNN
p & Some (aL,bL) // None [V] p & None // None

== p & Some (aL,bL) // None

bL1 [V] bL2 == bL
p & Some (aL,bL1) // None [V] p & Some(aL,bL2) // None
== p & Some (aL,bL) // None

merge_Branching_SNSN

bL1 [V] bL2 == bL
p & Some (aL,bL1) // Some (aR,bR) [V] p & Some(aL,bL2) // None
== p & Some (aL,bL) // Some (aR,bR)

merge_Branching_SSSN

bL1 [V] bL2 == bL  bR1 [V] bR2 == bR
p & Some (aL,bL1) // Some (aR,bR1)
[V] p & Some(aL,bL2) // Some(aR,bR2)
== p & Some (aL,bL) // Some (aR,bR)

merge_Branching_SSSS

Bt1 [V] Bt2 == Bt Bel [V] Be2 == Be
If p??e Then Btl Else Bt2 [V] If p?7e Then Bel Else Be2
== If p??e Then Bt Else Be

merge_Cond

merge_Call
Call X [V] Call X == Call X

Fig. 11 Definition of the merge relation

a behaviour starting with a send action, then both arguments start with that same action. All
these results can now be obtained directly by applying inversion on the relevant hypotheses.

The full definition of merge includes 22 clauses. Figure 11 lists all representative cases; the
missing clauses deal with the remaining combinations of None / Some subterms in branching
terms (see Sect. 5.5 for a discussion on the exponential dependency of the number of clauses
on the number of labels, and on the problems with formalising the more general definition
from the literature). We also define the suggestive notation B1 [v] B2 == B for merge B1 B2 B,
which reminds us that merge is a partial function.

We show that merge is functional, decidable, and preserves well-formedness.

All proofs are simple using induction on behaviours and inversion on the hypotheses on

merge.
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B [>] B
——————— MB_End MB_Send
End [>] End ple Q! a; B [>>] ple Q! a; B
B[>]B B[>]B
MB_Recv MB_Sel
p?’x Q7 a; B [>>] p?x Q7 a; B' p(+)1 @+ a; B [>] p(+)1 @+ a; B

MB_Branching_NN
p & mBl // mBr [>>] p & None // None

Br [>] Br'
p & mBl // Some (a,Br) [>>] p & None // Some (a,Br')

MB_Branching_NS

Bl [>>] B1'
p & Some (a,Bl) // mbR [>>] p & Some (a,B1l') // None

MB_Branching_SN

Bl [>>] B1' Br [>] Br'
p & Some (a,Bl) // Some (a',Br) [>] p & Some (a,B1') // Some (a',Br')

MB_Branching_SS

B1 [>]B1' B2 [>>] B2'
MB_Cond ————————— MB_Call
If p Then Bl Else B2 [>>| If p Then B1'Else B2' Call X [>] Call X

Fig. 12 Definition of the branching order

Lemma merge_unique : Bl [V]B2==B — B1 [V]B2==B'— B=B"
Lemma merge_dec: {BIB1[V]B2==B }+{~3B,B1[V]B2==B}.
Lemma merge_WF : B1 [V] B2 ==B —
Behaviour WF _ p Bl — Behaviour_WF _p B2 — Behaviour_WF _ p B.

Decidability is formulated using the stronger existential quantifier so that we can also obtain
the existential witness to use in further definitions.

5.2 Branching Order

In the literature, the arguments of merge and its result, when defined, are in a relation known
as the branching order [8,41]. This is formalised as yet another inductive type, defined by the
rules in Fig. 12.7 We call the relation more_branches, for which we define the infix notation
[>1.

The branching order is reflexive, transitive and antisymmetric. It is pointwise extended to
networks by defining N(»)N'=Vp,Np[»]Np where () is infix notation for
more_branches_N: Network — Network — Prop. This relation is again reflexive, transitive
and antisymmetric (with respect to extensional equality).

More interestingly, adding branches to some behaviours in a network does not eliminate
any transitions that the network can do.

Lemma SP_To_MBN: «N1,s3» —t1D}— «N2,s"™> — N1'(>>)N1 —
(V X,DX=D'X) —> AN2', KN1',s> —tl,D'}— «KN2',s"> A N2'(>)N2.

(The quantification on D' makes this lemma easier to apply.)

7 In the formalisation, these definitions precede that of merge. This was chosen because the branching relation
is more primitive than the notion of merging. For presentation purposes, though, it makes more sense to invert
this order.
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We can now justify the notation for merge: it is the partial join for the branching order,
in the sense that if two behaviours have an upper bound, then they are mergeable and their
merging is their least upper bound.

Lemma MB_merge : Bl [>>]| B2 <> B1 [V] B2 == B1.

Lemma merge_is_upper_bound: Bl [V]B2==B — B[>]B1.

Lemma MB_has_lub:B[>]|Bl —- B[>]|B2 — dB,B1[V]B2==B'AB[>]B.
Lemma merge_is_lub:B[>]Bl — B[>»]B2 — VB,B1l[V]B2==B"— B[>]B.

Another key result is that the branching order is stable under merging:

Lemma MB_yields_merge : Bl [>]Bl'— B2 [»]B2' — B1 [V]|B2==B —
3B, B1'[V]B2'==B'AB[>]B.

As we will see, this result is essential for the cases of the EPP theorem dealing with condi-
tionals.

Lastly, we prove the algebraic properties of merge — idempotency, commutativity, and
associativity—by exploiting the relationship between merge and the branching order.

All proofs in this section are again simple induction arguments using inversion on the
hypotheses on merge and more_branches.

5.3 Projection

We can now define the projection of a choreography for an individual process. Since this
definition relies on merge for the case of the conditionals, it is also a partial function. We
define it inductively as a relation

bproj : DefSet — Choreography Sig — Pid — Behaviour Sig' — Prop

and abbreviate bproj D C p B to [[D,C | p]]== B.

The type of bproj also reveals a new feature of projection when compared to the simple
language from Sect. 2: the signature for the target instance of SP is different than that of the
source instance of CC. The reason for this lies in the presence of procedure definitions: each
procedure yields several projected procedures, one for each process in the choreography.’
The type of procedure names in the target of projection is thus Recvar=Pid; this can be
seen in the rule for projecting procedure calls, which is included with the remaining rules in
Fig. 13.

We show that bproj is functional and decidable, and that it returns well-formed behaviours
for choreographies without self-communications.

From bproj we obtain several notions of projectability: relative to a process or a set of
processes, and projectability of D:Defset—which requires each procedure to be projectable
relative to its set of used processes.

These notions complement well-formedness, as being well-formed is not enough to be
projectable—well-formedness does not ensure knowledge of choice.

Definition projectable_ BDCp:=3B,|[D,CIp]l==B.

Definition projectable_CDCps:=Forall (funp = projectable_BDC p) ps.
Definition projectable_DD:=V X,projectable_C D (snd (D X)) (fst (D X)).

8 More precisely, one nontrivial procedure for each process actually involved in it—the remaining ones are
all End.

@ Springer



A Formal Theory of Choreographic Programming Page 250f34 21

bproj_End

[D,End | p] == End

[b.C| p] ==8 bproj_Send
[D,p#e — q¥x @a ;; C | p]== qle Qla; B -

p#q [D.C| q] ==B bproj_Recy
[D,p#e — q$x @a ;; C | q]== p?x @7a; B -

p#r gFr |[DC| r] ==B i
bproj_Com
[D,p#e — q¥x @a ;; C | r]==B

[[D,C ‘ Pﬂ ==B b Lo
proj_Pick
[D,p — q[1] @a ;; C | p] == q(+)1 @+a; B

p#q [D.C qf == boro:
proj_Left
[D,p — qleft] @a ;; C | q] == p & Some (a,B) // None

p#a [D.C| qf ==B .
bproj_Right
[D,p — q|right] @a ;; C | q) == p & None // Some (a,B)

p#r g#r |[DC| r] ==B )
bproj_Sel
[D,p — q[l] @a;;C|r] ==B

[D,c1| p] ==B1 [D,Cc2| p] == B2 b . Cond
roj_Con
[D,If p??b Then C1 Else C2 | p] == If b Then Bl Else B2 prod
p#Zr [D,C1| p] ==B1 [D,C2| p] ==B2 B1[V] B2==B boroi Cond'
[D,1f p??b Then C1 Else C2 | p] == B Prod-
In fst (DX
P (b X)) bproj_Call_in

[D,Ccall X | p] == Call (X,p)

~In fst DX
P ( @ %)) bproj_Call_out
[D,Call X | p] == End

Inpps . .
bproj_RT_Call_in
[D,RT_Call X ps C | p] == Call (X,p)

~In s D,C ==B
PP [>. | »] bproj_Call_out
[D,RT_Call X ps C| p] ==B

Fig. 13 Rules for projecting a choreography for a given target process. The notations are the ones printed by
Coq, but they are not parsable due to the the different signatures

A program is projectable if the main choreography is projectable for all its processes and
the set of procedure definitions is projectable.

Definition projectable_P P :=
projectable_C (Procedures P) (Main P) (CCP_pn P) A

projectable_D (Procedures P).
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Finally, we want to compute projections, which are again partial functions. Since our
ultimate goal is to extract a correct implementation of EPP, we need to take a different
approach to partiality and define
Definition epp_CDps C:projectable_CDC ps — Network Sig'.

Definition epp_DD:projectable_DD — DefSetB Sig'.
Definition epp P:projectable_P P — Program Sig'.

taking a proof term as additional argument (for which we prove proof irrelevance). These
definitions are interactive, so we also state and prove lemmas showing that they yield the
expected results as in pen-and-paper presentations [16, 41].

Lemma epp_C_Com_p: Inpps —>
epp_CDps (p#e —> g¥x @a;;C)HCp=g'le @!a; epp_C Dps C HC'p.

Paving the way for the EPP theorem, we prove a number of inversion lemmas for EPP,
which cannot be trivially obtained by applying inversion to a hypothesis.

The proofs follow the structure of the interactive definition, possibly combined with induc-
tion on the choreography.

Lemma epp_C_not_Branching_ None_None : epp_C D ps C HC p # g & None // None.

Lemma epp_C_Sel_Branching_ 1l:epp_CDps CHCp=qg(+)left @+a Bp —
epp_CDps CHCg=p & B1//Br — Bl # None A Br =None.

Lemma epp_C_Cond_Send_inv:epp_CDps (Ifp??bThenCl ElseC2)HCr=qgle @laB —
3B1B2,epp_CDps ClHClLr=qgle @la Bl
A epp_CDpsC2HC2r=qgle @'laB2 A B1 [V] B2 ==B.

5.4 Strong Projectability

The operational correspondence between choreographies and their projections, which is the
topic of Sect. 6, states that a projectable choreography can make a transition iff its projection
can make a corresponding transition. Generalising this result to multi-step transitions requires
chaining applications of this correspondence. However, projectability is not preserved by
transitions, due to how runtime terms are projected: RT_call X ps C'is projected as call (X,p)
if p is in ps, and as the projection of ¢’ otherwise. Our definition of projectability allows c' to
be unprojectable for any process in ps, which would make the result of the latter transition
unprojectable.

This situation can never arise if one respects the intended usage of runtime terms: initially
c' is the body of a procedure, and ps is the set of processes used in it. Afterwards ps only
shrinks, while ¢' may change due to execution of actions that involve processes not in ps
(which keeps ¢' projectable). This assumption is implicit in pen-and-paper presentations. We
formalise it in the following definition of strong projectability.
Fixpoint str_proj D(C:Choreography Sig) (r:Pid): Prop =
match Cwith
| eta @a;;C'= str_projDC'r
| Ifp??bThenCl ElseC2 = str_projDClr A str_proj DC2 r A projectable_BDCr
| RT_Call XpsC= str_projDCrA (Y p,Inpps —

VBB, [D,snd (DX) I p]l ==B — [[D,C Ip]l==B'— B [»] B)

| _= True
end.

The last conjunct in the case of conditional is needed to guarantee that strong projectability
implies projectability. The last conjunct in the case of runtime terms captures the notion that
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c' may differ from the original definition of procedure X, but the transitions in the reduction
path did not involve processes that still have to execute the procedure call.

Projectability and strong projectability coincide for initial choreographies. Furthermore,
we state and prove lemmas that show that str_proj D C r implies both projectable BDCr
and str_proj DC'r for any choreography c' that ¢ can transition to. (This is the reason for
including the last conjunct in the clause defining strong projectability of conditionals: without
it, we still would not be able to prove that projectable BDC'r.)

Strong projectability for programs requires as expected that all choreographies in the
program be strongly projectable. Furthermore, we also require the program to be well-formed.
This assumption makes the definition simpler and more manageable, as all procedures will
be initial and annotated with the right sets of processes.

Definition str_proj_P P:=Program WF P A projectable_D (Procedures P) A
V r,str_proj (Procedures P) (Main P) r.

Using these results, we can start relating the semantics of choreographies with the defini-
tion of EPP. For example, if ¢ can execute a communication from p to g, then the behaviour of
its projection for p starts by sending the corresponding expression to g, while g’s behaviour
starts by receiving a value from p.

Lemma CCC_To_bproj_Com_p:
str_projDCp — «KC,s>» —RL_CompvVvgxDl— KC,s">—
JeaBp,[[D.Clp]l==Send Sig'ge aBp A [[D,C' | p]] == Bp
Av=eval_on_stateEvesp.

Lemma CCC_To_bproj_Com_q:
str_projDCg— «C,s>» —RL_CompvVvgx,Dl— KC,s"> —
p#qg— JaBqg[[D,Clg]l==Recv Sig'pxaBgA [D,C'|q]l == Ba.

An interesting corner case is what happens for processes not involved in the transition:
they may lose some subbehaviours in branching terms due to some branches of conditionals
disappearing from the choreography.

Lemma CCC_To_bproj_disjoint :
(VY X,CCC_pn (snd (D X)) (Names D) [C] £st (D X)) —
str_projDCp — disjoint_p_rlptl - «KC,s>» —{tl,D}— «KC\,s"> —
IBB,[D.Clpll==BA [D,C'Ip]] ==B' A B[>>] B.

The first hypothesis states that the procedures in D are well-annotated.

All these proofs use induction on the choreography. As a consequence of these lemmas,
we get that strong projectability is preserved by transitions.
Lemma CCC_To_str_proj:

(Y p,str_proj DCp)—>

(Y pY,str_proj D(snd (DY) p) —

(V Y,CCC_pn (snd (DY)) (Names D) [C] £st (DY)) —
<«C,s>»> —t,D}— «KC,s"™> —> Vp,str_projDC'p.

Lemma CCP_To_str_proj:str_proj_PP— (P,s) —{tl}— (P,s') > str_proj_PP.

The hypotheses of the first lemma all hold if (D,c) is a strongly projectable program.

5.5 Discussion
Modelling of partial functions. The definition of merge very explicitly considers the 2* = 16

possible combinations of behaviours that can be offered when both arguments are branching
terms. This clearly does not scale if the set of labels is larger, and it is the place where our
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design choice of fixing it to a two-element set is most critical. The same issue, but with a
smaller impact, arises in the definition of more_branches, which includes 22 = 4 clauses
related to branching terms, and in the definition of bproj, which includes one clause for each
branching term.

We do not think that this issue can be circumvented. Our original approach considered an
unspecified type Label:DecType, and branching terms had type

Branching: Pid — (Label — option (AnnxBehaviour)) — Behaviour

This definition quickly proved unusable in practice: the induction principles generated by Coq
were too weak, and most datatypes related to the process calculus had an undecidable equality.
Furthermore we ran into problems with definitions that required inspecting the behaviours
associated to the labels because of the size restrictions in elimination combinators.

The first time we managed to have a working definition of merge was after fixing the set
of labels to contain two elements. This was the approach presented in [20], where merge is
formalised by first defining a total function

Xmerge : XBehaviour — XBehaviour — XBehaviour

(where xBehaviour is a type including XUndefined subterms with the obvious intended
meaning), and then defining merge B1 B2 as Xmerge (inject Bl) (inject B2), where inject
is the trivial injection from Behaviour to XBehaviour.

Apart from the added complexity of having duplications of types and definitions through-
out the formalisation, working with these functions is very cumbersome. The definition of
xmerge relies heavily on deciding equalities, so proofs of results about xmerge necessarily
had to perform the same eliminations. At the end of the day, the number of cases in proofs
was in the same order of magnitude as in the current version—but they were generated in
several verbose elimination steps, rather than directly from performing induction/inversion
on a hypothesis. Furthermore, the old definition required us to consider a significant number
of absurd cases (in some lemmas, around 90% of the total), whereas with the current def-
inition these cases are simply not generated. The only added complexity we noticed while
adapting the formalisation was that we occasionally needed to apply lemma merge_unique
to infer that two behaviours are identical—but the size of this part of the formalisation was
reduced by about 80% (from around 3150 lines down to 700 lines).

Taking all these aspects into account, we believe that the current design choices are the
best possible compromise at this stage between the full generality given by including an
unrestricted set of labels and the benefits of having a fully formalised theory.

Projectability. The lemmas relating projectability to the low-level semantics of choreogra-
phies typically include several hypotheses, cf. lemma ccc_To_str_proj. For programs, we
packaged these properties in a single definition (str_proj_P). For the lower-level lemmas,
we decided against this because not all these properties are needed in all lemmas—some
are only required in results involving procedure calls, others are important for conditionals,
and communications require far fewer. By including only the necessary assumptions in each
lemma, we obtain more robust results.

Strong projectability. The need for strong projectability was independently identified in the
pen-and-paper presentation in [41]. There, the projectability requirement on runtime terms
was included in the notion of well-formedness for choreographies. While this option matches
the intuition of “intended usage of runtime terms”, it requires having defined projection. In our
formalisation, we strive for modularity, and we opted for a design where the choreographic
calculus is fully decoupled from the target language and the definition of projection. In this
way, we allow for future extensions of our development with alternative definitions of EPP.
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In the future, it would be interesting to investigate whether there is a syntactic characteri-
sation of “intended usage of runtime terms” that is completely at the level of choreographies.
Such a characterisation would yield the benefits of both approaches described above: it would
give us a notion of well-formedness closer to intuition, while keeping it decoupled from EPP.
Summary. The definitions of branching order, merge and Endpoint Projection, together with
the accompanying lemmas, are divided in three files totaling 14 definitions, 126 lemmas and
15 tactics to automate recurring types of goals. By far the largest bulk is the formalisation of
EPP, at over 2200 lines of Coq code (with approximately 100 lemmas), while the branching
order and merge require respectively 260 and 440 lines of Coq code (with a total of only 3
results that require longer proofs).

6 The EPP Theorem

The operational correspondence between choreographies and their projections, in languages
that include both conditionals and out-of-order execution, is not as straightforward as for the
simple language in Sect.2. In particular, branching terms in networks may linger for a bit
longer compared to the choreographies that generated them. This requires referring to the
branching order in the EPP theorem:

Lemma EPP_Complete: str_proj_PP — (P,s) —{tl}— (P.s') —
INtl, (epp PHP,s) —{tl1'}— (N,s")
A Procs N = Procs (epp P HP) A V HP', Net N (>>) Net (epp P' HP').

Lemma EPP_Sound : str_proj_P P — (epp PHP,s) —{tl}— (N,s') —
Ip'tl, (P,s) —{tl't— (P,s') AV HP', Net N' (>>) Net (epp P' HP').

(Recall that epp takes a proof of projectability as its last argument.)

Completeness is not too hard to prove. As in [16, 41], the result is proven by considering
the possible transitions that Main P can make; there are four cases, and the results proved
earlier about the shape of the projection of p suffice to establish the thesis without too much
work. The whole proof is 250 lines long, and the generalisation to multi-step transitions
requires an additional 40 lines.

The proof of soundness is known to be harder [8, 16, 40, 41]. A common strategy is
to proceed by induction on the choreography, and then do case analysis on the possible
network transition. The latter is either the first term in the choreography, and we can apply
the matching choreography rule; or it is not, and we can apply a delay rule and invoke the
induction hypothesis.

Each of these cases is challenging in itself, and they are therefore stated as separate lemmas
on transitions. As an example, the transition lemma for communications reads
Lemma SP_To_bproj_Com: str_proj_P (D,C) >

<epp_CDps CHC,s>» —{RL_CompvgxDhF— KN,s"™> —
3¢, «C,s>» —[RL_Comp v gxDF—> KC\.s"> AV HC, (N'(==) (epp_C D ps C'HC")).

and the corresponding proof script is around 320 lines long. There are five of these lemmas
in total, of a similar level of complexity.
Soundness also requires an additional lemma on procedure calls:

Lemma SP_To_bproj_Call_name: <epp_CDps CHC,s>»> —RL_Call Xp,D'}— «<N,s"> —
3 (Y:RecVar),X=(Y,p) A X_Free _YC.

which is needed to apply the corresponding transition lemma.
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Chaining applications of EPP_Sound also requires that extending the projection of a chore-
ography with extra branches does not add transitions.

Lemma SP_To_MBN_epp : N1 () epp_C D'ps CHC - «KN1,s>»> —tl,D}— «KN2,8> —
IN2', Kepp_CD'ps CHC,s>» —tl,D}— «KN2.,s"> A N2 (>)N2'.

This resultis lifted to sPP_To and sPP_Tostar. The latter generalisation requires applying
EPP_Sound. It is then itself used to prove soundness of EPP for multi-step transitions.

The proof of the EPP theorem consists of an additional 2650 lines of Coq code, for only
14 lemmas.

7 Related Work

The need for formalising concurrency theory is identified in [39], where the authors for-
malised a published article on a process calculus in Coq and discovered several major flaws
in the proofs. The authors

[...] feel that it is [the errors’] very presence in a peer-reviewed, state-of-the-art paper
that strongly underlines the need for a more precise formal treatment of proofs in this
domain. [39, Sect. 6]

Since then, there have been a number of formalisation efforts in this area. We discuss the
ones closest to our work.

To the best of our knowledge, our original presentations [20, 21] were the first formal-
isations of a choreographic language featuring the expected programming constructs that
allow for infinite and branching concurrent behaviour. As we discussed, this article presents
a substantial improvement of the original development.

More recently, there have been two additions to the family of fully-formalised choreo-
graphic programming languages.

Kalas is a certified compiler written in HOL from a choreographic language similar to
ours to CakeML [44].

As in our development, the set of selection labels in Kalas is restricted to two. Kalas
includes an asynchronous semantics, while ours is synchronous, but the notion of EPP is more
restrictive than ours: it is an ad-hoc definition that bypasses the need for the merge operator,
but does not provide its full flexibility. In particular, processes evaluating conditionals must
immediately send selections to the processes that need them, while CC is more faithful to
the pen-and-paper literature on choreographies [7, 8, 30].

Example 14 To illustrate the flexibility of our projection, consider the following enhanced
version of our distributed authentication choreography from Example 8, where ip now imme-
diately communicates whether the authentication attempt was successful to a logger.

c#credentials — ip$x;;
If ip ?? (check x) Then

ip#(valid x) — logger.y;;

ip — s[left];; ip — c[left];; s#token — c$t;; End
Else

ip#(invalid x) — logger.y;;

ip — s[rightl];; ip — c[right];; End

This choreography is projectable in our framework but not in Kalas, because ip performs
does not immediately engage in selections in the branches of the conditional. However, doing
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so would require postponing the logging action, which might be important to do right away
because of non-functional requirements.

Pirouette is a functional choreographic programming language formalised in Coq [29]. It
supports asynchronous communication and higher-order functions, but at the cost of intro-
ducing hidden global synchronisations for all processes whenever a function is called. The
semantics of CC is, instead, decentralised and all synchronisations are syntactically explicit—
but again it only has synchronous semantics and no higher-order features.

Extending CC with asynchronous communication has also been studied [12], but since
it was not part of the reference pen-and-paper work that we followed, we postponed its
formalisation to future work.

Another line of research connected to choreographic programming is that of multiparty
session types [30]. These types are essentially choreographies without computation (e.g.,
communications only specify sender, receiver, and message type, but not how the message is
computed or where it is stored), and are therefore simpler than CC. There are two available
formalisations of multiparty session types [10, 33]. Both formalisations include a counterpart
to the EPP theorem, but they are even more restrictive than Kalas in how they handle the
projection of conditionals.

8 Conclusion

We presented a formalisation of a state-of-the-art article on theory of choreographic pro-
gramming. The formalisation process unveiled subtle problems in definitions, making a case
for a more systematic use of theorem provers to validate results in the field. Even more, it
positively impacted the theory itself, showing that formalisation can be valuable tool also in
the design phase of the research process.

Our formalisation was done in parallel with the pen-and-paper revision of CC carried
out in [41]. There are two interesting observations to make about this parallel development.
First, many of the technical aspects that we discuss in this article were also independently
discovered during the writing of [41]. Second, the seemingly disparate goals of making the
theory more intuitive to students and amenable to formalisation actually converged on the
same solution, and sometimes resulted in useful exchanges of feedback. Taken together, these
two observations strongly suggest that the current formulation of CC is the “right” one, and
offers a suitable basis for future developments.

Our work also provides some valuable lessons about formalising semantics of concurrent
systems. While choosing between a reduction semantics with a structural precongruence for
dealing with out-of-order execution or a transition semantics based on a labelled transition
system was mostly a matter of taste in pen-and-paper presentations, the latter approach is
clearly preferable from a formalisation point of view. Since it does not require syntactic
manipulation of choreographies for modelling transitions, the derivations corresponding to
execution steps are shorter and do not include potential redundancy, which makes it easier
to reason about them and to find appropriate induction hypotheses.

Our formalisation further benefits from the design choice of defining all procedures at
the top level, which allows us to bypass all the complexity of having to work explicitly with
binders and substitution.

We have already started exploring extensions and applications of our formalisation. These
include amendment (a procedure that injects appropriate selections to make a choreography
projectable), a proof of starvation-freedom, alternative definitions of EPP, and applying pro-
gram extraction to develop a certified toolchain from choreographies to executable code.
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An important tool for future extensions is stronger automation for proofs about chore-
ographies. Our development already includes a few simple tactics that deal with commonly-
recurring goals, but it would be worthwhile to extend this library with more powerful tactics,
e.g., to reason about multi-step transitions. Furthermore, for many proofs by structural induc-
tion, there are strong similarities among their different cases, and it would be interesting to
try to automate proof strategies that can capitalise on this.

The appeal of choreographic programming largely depends on its promise of delivering
correct implementations, by removing the possibility of human error through EPP. This
promise has motivated a proliferation of choreographic programming languages, including
features of practical value such as asynchronous communication, nondeterminism, broadcast,
dynamic network topologies, and more [2, 26, 31, 41]. The theories of these languages are
becoming more and more complex, thus increasing the likelihood of critical mistakes and
making the case for more trustworthy developments. We hope that our work can contribute
a solid foundation for the development of these features.
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