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Abstract. Choreographic programming is a paradigm for developing
concurrent and distributed systems, where programs are choreographies
that define, from a global viewpoint, the computations and interactions
that communicating processes should enact. Choreography compilation
translates choreographies into the local definitions of process behaviours,
given as terms in a process calculus.
Proving choreography compilation correct is challenging and error-prone,
because it requires relating languages in different paradigms (global in-
teractions vs local actions) and dealing with a combinatorial explosion of
proof cases. We present the first certified program for choreography com-
pilation for a nontrivial choreographic language supporting recursion.
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1 Introduction

Choreographic programming is an emerging programming paradigm where the
desired communication behaviour of a system of communicating processes can be
defined from a global viewpoint in programs known as choreographies [25]. Then,
a provably-correct compiler can automatically generate executable code for each
process, with the guarantee that executing these processes together implements
the communications prescribed in the choreography [5,7]. The theory of such
compilers is typically called EndPoint Projection (EPP).

Choreographies are inspired by the “Alice and Bob” notation for security
protocols [27]. The key idea is to have a linguistic primitive for a communication
from a participant to another: statement Alice.e → Bob.x reads “Alice evaluates
expression e and sends the result to Bob, who stores it in variable x”. This syntax
has two main advantages. First, the desired communications are syntactically
manifest in a choreography, which makes choreographic programming suitable
for making interaction protocols precise. Second, it disallows writing mismatched
send and receive actions, so code generated from a choreography enjoys progress
(the system never gets stuck) [7].

The potential of choreographic programming has motivated the study of
choreographic languages and EPP definitions for different applications, including
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self-adaptive systems [15], information flow [21], system integration [16], parallel
algorithms [10], cyber-physical systems [17,23,24], and security protocols [17].

EPP involves three elements: the source choreography language, the target
language, and the compiler. The interplay between these components, where a
single instruction at the choreographic level might be implemented by multiple
instructions in the target language, makes the theory of choreographic program-
ming error-prone: for even simpler approaches, like abstract choreographies with-
out computation, it has been recently discovered that a few key results published
in peer-reviewed articles do not hold and their theories required adjustments [28],
raising concerns about the soundness of these methods.

In this article, we present a certified program for EPP, which translates terms
of a Turing complete choreographic language into terms of a distributed process
calculus. Our main result is the formalisation of the hallmark result of choreo-
graphic programming, the “EPP Theorem”: an operational correspondence be-
tween choreographies and their endpoint projections. This is the first time that
this result has been formalised in a theorem prover, increasing our confidence in
the methodology of choreographies.

Structure and Related Work. Our formalisation is developed in Coq [4], and we
assume some familiarity with it. We start from a previous formalisation [13] of
a choreographic language (Core Choreographies [12]), which we recap in Sect. 2.
This formalisation only deals with the choreographic language and its properties;
in particular, the target calculus for EPP is not defined therein.

In Sect. 3, we define our target language: a distributed process calculus in-
spired by the informal presentation in [26]. The calculus has communication
primitives that recall those commonly used for implementing choreography lan-
guages, e.g., as found in (multiparty) session types [20]. In Sect. 4, we define
merging [5]: a partial operator that addresses the standard problem (for chore-
ographies) of checking that each process implementation eventually agrees on the
choice between alternative behaviours in protocols [3,5]. Building on merging,
in Sect. 5, we define EPP. Then, in Sect. 6, we explore pruning [5]: a preorder
induced by merging that plays a key role in the EPP Theorem, proved in Sect. 7.

Choreographies are used in industry for the specification and definition of
web services and business processes [19,29]. These languages feature recursion
or loops, which are not present in the only other formalisation work on choreogra-
phies that we are aware of [18]. We have validated the theory of EPP from [26],
and made explicit several properties that are typically only implicitly assumed.
Our results show that the ideas developed by researchers on choreographies, like
merging, can be relied upon for languages of practical appeal.

2 Background

We use the choreographic language of [26], which is inspired by Core Choreogra-
phies (CC) [12]. So far, this is the only Turing complete choreographic language
that has been formalised [13]. In this section, we recap this formalisation, which
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our work builds upon. We refer the reader to [13] for a discussion of the design
options both behind the choreographic language and the formalisation. Some of
these are relevant for our development, and we explain them when needed.

CC is designed to model communication protocols involving several partici-
pants, called processes, each equipped with memory cells, identified by variables.
Communications are of two kinds: value communications, where a process evalu-
ates an expression using the values stored in its memory and sends the result to
a (distinct) process; and (label) selections, where a process selects from different
behaviours available at another process by means of an identifier (the label).
Selections are used to communicate local choices made by a process to other
processes. Recursive and infinite behaviour is achieved by defining procedures.

Syntax. The formalisation of CC is parametric on the types of processes (Pid,
ranged over by p), variables (Var, ranged over by x), expressions (Expr, ranged
over by e), values stored in memory (Value, ranged over by v), Boolean expres-
sions (BExpr, ranged over by b) and procedure names (RecVar, ranged over by X).
Equality on these types must be decidable. Labels, ranged over by l, are either
left or right, which is common in choreographies and session types [6,8,30].

The syntax of choreographies is defined by the following BNF grammar.

eta ::= p.e -> q.x | p -> q[l]
C ::= eta; C | If p.b Then Ct Else Ce | Call X | RT_Call X ps C | End

An eta is a communication action, where p.e -> q.x is a value communication1

and p -> q[l] is a label selection. Eta is the type of all communication actions.
Choreographies are ranged over by C. A choreography eta; C, can execute

a communication eta and continue as C. A conditional If p.b Then Ct Else Ce

evaluates the Boolean expression b in the memory of process p and continues
as Ct or Ce, according to whether b evaluates to true or false. Choreography
Call X is a call to a procedure X. Term RT_Call X ps C is a runtime term, discussed
below. Term End is the terminated choreography. We write Choreography for the
type of all choreographies.

This grammar is implemented as a Coq inductive type, e.g., eta; C stands for
Interaction eta C, where Interaction : Eta → Choreography → Choreography is a
constructor of type Choreography.

Example 1 (Distributed Authentication). The choreography C1 below describes a
multiparty authentication scenario where an identity provider ip authenticates
a client c, to server s (we name subterms for later use).

C1 := c.credentials -> ip.x; If ip.(check x) Then C1t Else C1e

C1t := ip -> s[left]; ip -> c[left]; s.token -> c.t; End
C1e := ip -> s[right]; ip -> c[right]; End

C1 starts with c communicating its credentials, stored in the local variable
credentials, to ip, which stores them in x. Then, ip checks if the credentials are

1 For readability, we use notations closer to the usual mathematical ones than in for-
malisation, where they are slightly different due to Coq’s restrictions on overloading.
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valid or not by evaluating the local expression check x, and signals the result to
s and c by selecting left when the credentials are valid (C1t) and right other-
wise (C1e). In the first case, the server communicates a token (stored in its local
variable token) to the client, otherwise the choreography ends.

Because the guard of the conditional is evaluated by ip, only this process
knows which branch of the choreography to execute. This is an instance of the
knowledge of choice problem. Label selections propagate this information to
processes whose behaviour depends on this choice (in this case, both s and c). ◁

A program is a pair (Procedures P,Main P):DefSet ∗ Choreography. Elements of
type DefSet (set of procedure definitions) map each X to a pair containing the
processes used in X (Vars P X) and the choreography to be executed (Procs P X).
These procedure definitions can then be called from each other and from Main P

(using term Call X), allowing for the definition of recursive behaviour.
Executing procedure calls generates runtime terms. Choreography Call X can

reduce by a process p entering X. It becomes RT_Call X ps C, where C is the defi-
nition of X and ps is the list of processes used in X (other than p). This term can
then either reduce by another process entering the procedure (and being removed
from ps), or by executing some action in C that does not involve processes in ps

(and C is updated). When the last process in ps calls X, RT_Call X ps C reduces
to C. The runtime term RT_Call X ps C is not meant to be used when writing a
choreography, and in particular it should not occur in procedure definitions. A
choreography that does not include any such term is called initial.

There are three kinds of restrictions when writing choreographies.
(i) Intended use of choreographies. Interactions must have distinct processes (no

self-communication), e.g., p.e -> p.x is disallowed.
(ii) Intended use of runtime terms. All choreographies Procs P X must be initial.

Main P may include subterms RT_Call X ps C, but ps must be nonempty and
include only process names that occur in Vars P X.

(iii) Design choices in the formalisation. Informally, Vars X contains the processes
that are used in Procs X. This introduces constraints that are encapsulated
in the definition of well-formed program.

The constraints in the last category are particularly relevant for the proof of the
EPP Theorem, so we discuss them in that context in Sect. 7.

Example 2. Let Defs:DefSet map FileTransfer to the pair consisting of the pro-
cess list c :: s :: nil and the following choreography.

s.( file, check) -> c.x; (* send file and check data *)

If c.( crc(fst(x))== snd(x)) (* cyclic redundancy check *)

Then c -> s[left]; End (* file received correctly, end *)

Else c -> s[right]; Call FileTransfer (* errors detected, retry *)

FileTransfer describes a file transfer protocol between a server s and a client c

using Cyclic Redundancy Checks (crc) to detect errors from a noisy channel. ◁

Semantics. The semantics of CC is defined as a labelled transition system using
inductive types. It uses a state, which is a function mapping process variables to
their values: State:Pid → Var → Value.
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The semantics is structured in three layers. The first layer specifies transitions
with the following relation, parameterised on a set of procedure definitions.

CCC_To : DefSet → Choreography → State

→ RichLabel → Choreography → State → Prop

Rules in this set include that p.e -> q.x;C in state s transitions to C in state s' ,
where s' coincides with s except that s' q x now stores the value obtained by
evaluating e at p in state s.2 RichLabel includes information about the executed
term – the above communication is labelled R_Com p v q x. There are also rules for
out-of-order execution: interactions involving distinct processes can be executed
in any order, reflecting concurrency. For example, p.e -> q.x;r -> s[left] can
execute as a communication from p to q followed by a label selection from r to
s, but also as the latter label selection followed by the former communication.

The second layer raises transitions to the level of programs, abstracting from
unobservable details. It is defined by a single rule: if CCC_To Defs C s t C' s' , then
({| Defs; C|}, s) —[forget t]−→ ({|Defs; C'|},s'). Here, {|Defs; C|} denotes the pro-
gram built from Defs and C, and forget removes unobservable details from tran-
sition labels (e.g., forget (R_Com p v q x) is L_Com p v q). Labels for conditionals
and procedure calls all simplify to L_Tau p, denoting an internal action at p. The
third layer defines the reflexive and transitive closure of program transitions.

Important properties of CC formalised in [13] include deadlock-freedom by
design (any program P such that Main P ̸= End reduces), confluence (if P can exe-
cute two different sequences of actions, then the resulting programs can always
reduce to a common program and state), and Turing completeness.

Example 3. Consider the program {|D; C1|} where C1 is the choreography in
Example 1 and D:DefSet is arbitrary (there are no recursive calls in C1).

{|D; C1|}, st1) —[L_Com c ip v1]−→ ({|D; If ip.(check x) Then C1t Else C1e|},st2)

where v1 is the evaluation of e at c in st1 and st2 updates the value of ip’s
variable x accordingly. If check x is true at ip in st2, then it continues as follows.

{|D; If ip.(check x) Then C1t Else C1e|}, st2) —[L_Tau ip]−→ {|D; C1t|}, st2)
—[L_Sel ip s left; L_Sel ip c left]−→∗ {|D; s.token -> c.t; End|}, st2)
—[L_Com s c v2]−→ {|D; End|}, st3)

where v2 is the evaluation of token at s in st2 and st3 updates st2 accordingly.
Otherwise, it continues as follows.

{|D; If ip.(check x) Then C1t Else C1e|}, st2) —[L_Tau ip]−→ {|D; C1e|}, st2)
—[L_Sel ip s right; L_Sel ip c right]−→∗ {|D; End|}, st2)

In compound transitions, the actions in the label are executed in order. ◁

Example 4. Let Defs as in Example 2 and C be the body of FileTransfer. Con-
sider the program {|Defs; Call FileTransfer|}. The processes in the procedure
FileTransfer can start a call in any order as exemplified by the transitions below.

2 The semantics of CC only requires extensional equality of states, which is why s' is
quantified over rather than directly defined from s.
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{|Defs; Call FileTransfer|},st) —[L_Tau c]−→
({| Defs; RT_Call FileTransfer s::nil C|},st) —[L_Tau s]−→ ({|Defs; C|},st)

{|Defs; Call FileTransfer|},st) —[L_Tau s]−→
({| Defs; RT_Call FileTransfer c::nil C|},st) —[L_Tau c]−→ ({|Defs; C|},st)

The state st is immaterial. ◁

3 Stateful Processes

Our first contribution is formalising SP (Stateful Processes), the process calculus
for implementing CC [26], which is inspired by the process calculi in [11,12].3

3.1 Syntax

SP is defined as a Coq functor with the same parameters as CC. Its syntax
contains three ingredients: behaviours, defining the actions performed by indi-
vidual processes; networks, consisting of several processes running in parallel;
and programs, defining a set of procedure definitions that all processes can use.

Behaviours. Behaviours are sequences of local actions – counterparts to the
terms that can be written in CC – defined by the following BNF grammar.

B ::= End | p!e;B | p?x;B | p⊕l;B | p&mBl//mBr | If b Then Bt Else Be | Call X

This grammar is again formalised as a Coq inductive type, called Behaviour.
Terms End, If b Then Bt Else Be and Call X are as in CC. Value communications
are split into p!e; B, which evaluates e, sends the result to p, and continues as B,
and by p?x; B, which receives a value from p, stores it at x, and continues as B.4

Label selections are divided into p⊕l; B – sending the label l to p and con-
tinuing as B – and p & mBl // mBr, where one of mBl or mBr is chosen according
to the label selected by p. Both mBl and mBr have type option Behaviour (ei-
ther None or Some B, where B is a behaviour): a process does not need to offer
behaviours corresponding to all possible labels. Informally, branching terms are
partial functions from labels to behaviours; we capitalise on the fact that there
are only two labels to simplify the formalisation.

Many results about Behaviours are proved by structural induction, requiring
inspection of subterms of branching terms. The induction principle automatically
generated by Coq is not strong enough for this, and our formalisation includes
a stronger result that we use in later proofs.

3 The choreography language CC is also inspired by the works [11,12], but formalising
it in Coq benefitted substantially from adopting a labelled transition system seman-
tics. This is discussed extensively in [13]. In this work, we made similar changes to the
process calculus not only for similar reasons, but also to keep a close correspondence
with the choreography language.

4 Processes communicate by name. In practice, names can be either process identifiers
(cf. actors), network addresses, or session correlation data.
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Networks. Networks have type Pid → Behaviour. We define extensional equality
of networks, N== N', and show that it is an equivalence relation. To model prac-
tice, where networks are written as finite parallel compositions of behaviours, we
introduce some constructions: N|N' is the parallel composition of N and N' ; p[B] is
the network mapping p to B and all other processes to End; and N ∼∼ p denotes
network N where p is now mapped to End. The formalisation includes a number
of lemmas about extensional equality, for example that updating the behaviours
of two processes yields the same result independent of the order of the updates.

Programs. Finally, a Program is a pair (Procs P,Net P):DefSetB ∗ Network, where
DefSetB = RecVar → Behaviour maps procedure names to Behaviours.

Programs, networks and behaviours should satisfy well-formedness properties
similar to those of CC. However, these properties are automatically ensured when
networks are automatically generated from choreographies, so we do not discuss
them here. They are included in the formalisation.

Example 5. Consider the network N = c[Bc] | s[Bs] | ip[Bip] composed by the
behaviours below.

Bc := ip!credentials; ip & Some (s?t; End) // Some End

Bs := ip & Some (c!token; End) // Some End

Bip := c?x; Bip'
Bip' := If (check x) Then (s⊕left; c⊕left; End) Else (s⊕right; c⊕right; End)

This network implements the choreography in Example 1. ◁

3.2 Semantics

The semantics of SP is defined by a labelled transition system. Transitions for
communications match dual actions in two processes, while conditionals and
procedure calls simply run locally. We report the representative cases – the
complete definition can be found in the source formalisation [14]. For readability,
we first present them in the standard rule notation.

v := eval_on_state e s p N p = q!e; B N q = p?x; B'
N' == N ∼∼ p ∼∼ q | p[B] | q[B' ] s' == update s q x v

({| Defs; N|}, s) —[L_Com p v q]−→ ({|Defs; N'|}, s')
S_Com

N p = q⊕left; B N q = p & Some Bl // Br

N' == N ∼∼ p ∼∼ q | p[B] | q[Bl] s== s'

({| Defs; N|}, s) —[L_Sel p q left]−→ ({|Defs; N'|}, s')
S_LSel

N p = If b Then B1 Else B2 beval_on_state b s p = true

N' == N ∼∼ p | p[B1] s== s'

({| Defs; N|}, s) —[L_Tau p]−→ ({|Defs; N'|}, s')
S_Then
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N p = Call X N' == N ∼∼ p | p[Defs X] s== s'
({| Defs; N|}, s) —[L_Tau X p]−→ ({|Defs; N'|}, s')

S_Call

Functions eval_on_state and beval_on_state evaluate a (Boolean) expression
locally, given a state, while update s q x v updates state s by changing the value
of q’s variable x to v. We write also == for extensional equality of states.

As for choreographies, the formalisation of these rules is done in two steps.
The first step defines a transition relation parameterised on the set of procedure
definitions, and includes richer transition labels (necessary for doing case analysis
on transitions). This relation is defined as an inductive type, whose first defining
clause is shown below.5

Inductive SP_To (Defs : DefSetB) :
Network → State → RichLabel → Network → State → Prop :=
| S_Com N p e B q x B' N' s s' : let v := (eval_on_state e s p) in
N p = (q!e; B) → N q = (p?x; B') → N' == N ∼∼ p ∼∼ q | p[B] | q[B' ] →
s' == (update s q x v) → SP_To Defs N s (R_Com p v q x) N' s' (...)

This relation is then lifted to configurations just as for CC: if SP_To Defs N s t N' s' ,
then ({| Defs; N|}, s) —[forget t]−→ ({|Defs; N'|},s'). Closure under reflexivity and
transitivity (with similar notation) is again defined as for choreographies.

Example 6. We illustrate the possible transitions of the network from Example 5.
We abbreviate the behaviours of processes that do not change in a reduction to
... to make it more clear what parts of the network are changed. Furthermore,
we omit trailing Ends in Behaviours.

The network starts by performing the transition

{|D; c[Bc] | s[Bs] | ip[Bip]|}, st1) —[L_Com c ip v1]−→
{|D; c[ip & Some (s?t) // Some End] | s[...] | ip[Bip']|}, st2)

where v1 and st2 are as in Example 3. If eval_on_state (check x) st2 ip is true,
it continues as follows

{|D; c[ip & Some (s?t) // Some End] | s[Bs] | ip[Bip'], st2)
—[L_Tau ip]−→ {|D; c[...] | s[...] | ip[s⊕left;c⊕left], st2)
—[L_Sel ip s left]−→ {|D; c[...] | s[c!token] | ip[c⊕left], st2)
—[L_Sel ip c left]−→ {|D; c[s?t] | s[...] | ip[End], st2)
—[L_Com s c v2]−→ {|D; c[End] | s[End] | ip[End], st3)

where v2 and st3 are again as in Example 3. Otherwise, it continues as follows.

{|D; c[ip & Some (s?t) // Some End] | s[Bs] | ip[Bip'], st2)
—[L_Tau ip]−→ {|D; c[...] | s[...] | ip[s⊕right;c⊕right], st2)
—[L_Sel ip s right]−→ {|D; c[...] | s[End] | ip[c⊕right], st2)
—[L_Sel ip c right]−→ {|D; c[End] | s[End] | ip[End], st2)

5 Coq’s type inference mechanism allows us to omit types of most universally quanti-
fied variables and parameters. We abuse this possibility to lighten the presentation.
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The labels in these reductions are exactly as in Example 3. ◁

Transitions are compatible with network equality and state equivalence.

Lemma SPP_To_eq : ∀ P s1 tl P' s2 s1' s2',
s1== s1' → s2== s2' → (P,s1) —[tl]−→ (P',s2) → (P,s1') —[tl]−→ (P',s2').

Lemma SPP_To_Network_eq : ∀ P1 P1' P2 s s' tl, (Net P1== Net P1') →
(Procs P1 = Procs P1') → (P1,s) —[tl]−→ (P2,s') → (P1',s) —[tl]−→ (P2,s').

These results are instrumental in some of the later proofs, and are proven for
the three levels of reductions. The following, related, result is also important.

Lemma SPP_To_Defs_stable : ∀ Defs' N N' tl s s',
{|Defs N,s|} —[tl]−→ {|Defs' N',s'|} → Defs = Defs'.

We also prove that transitions are completely determined by the label.

Lemma SPP_To_deterministic : ∀ P s tl P' s' P'' s' ' ,
(P,s) —[tl]−→ (P',s') → (P,s) —[tl]−→ (P'',s'') →
(Net P'== Net P'') ∧ Procs P' = Procs P'' ∧ (s' == s'' ).

Finally, we show that the semantics of SP is confluent. Although this is not
required for our main theorem, it is a nice result that confirms our expectations.

The formalisation of SP consists of 37 definitions, 80 lemmas, and 2000 lines.

4 Merging

Intuitively, process implementations are generated from choreographies recur-
sively, by projecting each action in the choreography to the corresponding pro-
cess action – for example, a value communication p.e -> q.x should be projected
as a send action q!e at p, as a receive action p?x at q, and not projected to any
other processes. However, this causes a problem with conditionals. Projecting a
choreography If p.b Then Ct Else Ce for any process other than p, say q, requires
combining the projections obtained for Ct and Ce, such that q can “react” to
whichever choice p will make. This combination is called merging [5].

Merge is typically defined as a partial function mapping pairs of behaviours
to behaviours that returns a behaviour combining all possible executions of the
two input behaviours (if possible). For SP, two behaviours can be merged if they
are structurally similar, with the possible exception of branching terms: we can
merge branchings that offer options on distinct labels. For example, merging
p & (Some B) // None with p & None // (Some B') yields p & (Some B) // (Some B'),
allowing If p??b Then (p-> q[left];q.e -> p;End) Else (p-> q[right];End) to be pro-
jected for q as p & Some (p!e; End) // Some End.

Since functions in Coq are total, formalising merging poses a problem. Fur-
thermore, assigning type Behaviour → Behaviour → option Behaviour to merging
causes ambiguity, since branching terms have subterms of type option Behaviour.6

6 Essentially because it is not possible to distinguish if the behaviour assigned to a
label is None because it was not defined, or because a recursive call to merge failed.
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Instead, we define a type XBehaviour of extended behaviours, defined as Behaviour
with an extra constructor XUndefined : XBehaviour. Thus, an XBehaviour is a
Behaviour that may contain XUndefined subterms.

The connection between Behaviour and XBehaviour is established by means
of two functions: inject : Behaviour → XBehaviour, which isomorphically injects
each constructor of Behaviour into the corresponding one in XBehaviour, and
collapse : XBehaviour → XBehaviour that maps all XBehaviours with XUndefined

as a subterm to XUndefined. The most relevant properties of these functions are:

Lemma inject_elim : ∀ B, ∃ B', inject B = B' ∧ B' ̸= XUndefined.
Lemma collapse_inject : ∀ B, collapse (inject B) = inject B.
Lemma collapse_char'' : ∀ B, collapse B = XUndefined → ∀ B', B ̸= inject B'.
Lemma collapse_∃ : ∀ B, collapse B ̸= XUndefined → ∃ B', B = inject B'.

Using this type, we first define XMerge on XBehaviours as below, where we
report only representative cases. (Pid_dec and Expr_dec are lemmas stating de-
cidability of equality on Pid and Expr, allowing us to do case analysis.)

Fixpoint Xmerge (B1 B2:XBehaviour) : XBehaviour := match B1, B2 with

| XEnd, XEnd ⇒ XEnd

| XSend p e B, XSend p' e' B' ⇒ if Pid_dec p p' && Expr_dec e e'
then match Xmerge B B' with XUndefined ⇒ XUndefined

| _ ⇒ XSend p e (Xmerge B B') end
else XUndefined

| XBranching p Bl Br, XBranching p' Bl' Br' ⇒ if Pid_dec p p'
then let BL := match Bl with None ⇒ Bl' | Some B ⇒

match Bl' with None ⇒ Bl | Some B' ⇒ Some (Xmerge B B') end end

in let BR := match Br with None ⇒ Br' | Some B ⇒
match Br' with None ⇒ Br | Some B' ⇒ Some (Xmerge B B') end end

in match BL, BR with Some XUndefined, _ ⇒ XUndefined

| _, Some XUndefined ⇒ XUndefined | _, _ ⇒ XBranching p BL BR end

else XUndefined (...)

Using XMerge we can straightforwardly define merging.

Definition merge B1 B2 := Xmerge (inject B1) (inject B2).

We show merge to be idempotent, commutative and associative. This last
proof illustrates the major challenge of this stage of the formalisation: it requires
a triple induction with 512 cases, of which 84 cannot be solved automatically.
These had to be divided in further subcases of different levels of complexity. The
final case, when all behaviours are branching terms, requires six (!) nested induc-
tions to generate the 64 possible combinations of defined/undefined branches,
which had to be done by hand. The total proof is over 500 lines.

The largest set of lemmas about merge deals with inversion results, such as:

Lemma merge_inv_Send : ∀ B B' p e X, merge B B' = XSend p e X →
∃ B1 B1', B = p ! e; B1 ∧ B' = p ! e; B1' ∧ merge B1 B1' = X.

The similar result for branching terms is much more complex, since there are
several cases for each branch (if it is None, then both B and B' must have None

in the corresponding branch, otherwise it may be from B, from B' , or a merge of
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both), and its proof suffers from the same problems as the proof of associativity
(thankfully, not to such a dramatic level). Automation works better here, and
the effect of the large number of subcases is mostly felt in the time required by
the auto tactic. Still, the formalisation of merging consists of 6 definitions, 43
lemmas, and 2550 lines – giving an average proof length of over 50 lines.

5 EndPoint Projection

The next step is defining EndPoint Projection (EPP): a partial function that
maps programs in CC to programs in SP. The target instance of SP has the
same parameters as CC, except that the set of procedure names is RecVar ∗ Pid

– each procedure is implemented from the point of view of each process in it.

Partiality of EPP stems from the problem of choreography realisability [3].
A choreography such as If p.b Then (q.e -> r.x) Else End cannot be implemented
without additional communications between p, q and r, since the latter processes
need to know the result of the conditional to decide whether to communicate
(see also Example 1). We say that this choreography is not projectable [12].

We define EPP in several layers. First, we define a function bproj : DefSet →
Choreography → Pid → XBehaviour projecting the behaviour of a single process.
Intuitively, bproj Defs C p attempts to construct p’s behaviour as specified by
C; the parameter Defs is used for procedure calls, whose projections depend on
whether p participates in the procedure. Returning an XBehaviour instead of
an option Behaviour gives information about where exactly merging fails (the
location of XUndefined subterms), which can be used for debugging, providing
information to programmers, or for automatic repair of choreographies [2,12].

We show some illustrative cases of the definition of bproj.

Fixpoint bproj (Defs:DefSet) (C:Choreography) (r:Pid) : XBehaviour := match C with

| p.e -> q.x; C' ⇒
if Pid_dec p r then XSend q e (bproj Defs C' r)

else if Pid_dec q r then XRecv p x (bproj Defs C' r)
else bproj Defs C' r

| p -> q[left]; C' ⇒
if Pid_dec p r then XSel q left (bproj Defs C' r)

else if Pid_dec q r then XBranching p (Some (bproj Defs C' r)) None
else bproj Defs C' r

| If p.b Then C1 Else C2 ⇒
if Pid_dec p r then XCond b (bproj Defs C1 r) (bproj Defs C2 r)

else Xmerge (bproj Defs C1 r) (bproj Defs C2 r)
| CCBase.Call X ⇒ if In_dec P.eq_dec r (fst (Defs X)) then XCall (X,r) else XEnd

(...)

The next step is generating projections for all relevant processes. We take
the set of processes as a parameter, and collapse all individual projections.

Definition epp_list (Defs:DefSet) (C:Choreography) (ps:list Pid)
: list (Pid ∗ XBehaviour) := map (fun p ⇒ (p, collapse (bproj Defs C p))) ps.
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A choreography C is projectable wrt Defs and ps if epp_list Defs C ps does
not contain XUndefined, and Defs:DefSet is projectable wrt a set of procedure
names Xs if snd (Defs X) is projectable wrt Defs and fst (Defs X) for each X in
Xs. Projectability of programs is a bit more involved, and we present its Coq
formalisation before discussing it.

Definition projectable Xs ps P :=
projectable_C (Procedures P) ps (Main P) ∧ projectable_D Xs (Procedures P) ∧
(∀ p, In p (CCC_pn (Main P) (fun _ ⇒ nil)) → In p ps) ∧
(∀ p X, In X Xs → In p (fst (Procedures P X)) → In p ps) ∧
(∀ p X, In X Xs → In p (CCC_pn (snd (Procedures P X)) (fun _ ⇒ nil)) → In p ps).

The first two conditions simply state that Main P and Procedures P are projectable
wrt the appropriate parameters. The remaining conditions state that the sets ps
and Xs include all processes used in P and all procedures needed to execute P.
(These sets are not necessarily computable, since Xs is not required to be finite.
However, in practice, these parameters are known – so it is easier to include
them in the definition.) Function CCC_pn returs the set of processes used in a
choreography, given the sets of processes each procedure call is supposed to use.

We now define compilation of projectable choreographies (epp_C), projectable
sets of procedure definitions (epp_D), and projectable programs (epp). These
definitions depend on proof terms whose structure needs to be explored, and
are done interactively; afterwards, we show them to be independent of the proof
terms, and that they work as expected. We give a few examples.

Lemma epp_C_wd : ∀ Defs C ps H H', (epp_C Defs ps C H)== (epp_C Defs ps C H').
Lemma epp_C_Com_p : ∀ Defs ps C p e q x HC HC', In p ps →
epp_C Defs ps (p.e-> q.x;C) HC p = q!e; epp_C Defs ps C HC' p.

Lemma epp_C_Cond_r : ∀ Defs ps p b C1 C2 HC HC1 HC2 r, p ̸= r →
inject (epp_C Defs ps (If p.b Then C1 Else C2) HC r)
= merge (epp_C Defs ps C1 HC1 r) (epp_C Defs ps C2 HC2 r).

Projectability of C does not imply projectability of choreographies that C can
transition to. This is due to the way runtime terms are projected: RT_Call X ps C'
is projected as a call to (X,p) if p is in ps, and as the projection of C' otherwise.
Our definition of projectability allows in principle for C to be unprojectable for
a process in ps, which would make it unprojectable after transition. That this
situation does not arise is a consequence of the intended usage of runtime terms:
initially C' is obtained from the definition of a procedure, and ps is the set of
processes used in this procedure. Afterwards ps only shrinks, while C' may change
due to execution of actions outside ps. We capture these conditions in the notion
of strong projectability, whose representative case is:

Fixpoint str_projectable Defs (C:Choreography) (r:Pid) : Prop :=
match C with | RT_Call X ps C ⇒ str_projectable Defs C r ∧

(∀ p, In p ps → In p (fst (Defs X))
∧ Xmore_branches (bproj Defs (snd (Defs X)) p) (bproj Defs C p)) (...)

The relation Xmore_branches, explained in the next section, is a semantic char-
acterisation of how the projection of bproj Defs snd (Defs X) p may change due
to execution of actions not involving p in snd (Defs X).
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Projectability and strong projectability coincide for initial choreographies.
Furthermore, we state and prove lemmas that show that strong projectability of
C imply strong projectability of any choreography that C can transition to.

6 Pruning

The key ingredient for our correspondence result is a relation on behaviours
usually called pruning [5,7]. Pruning relates two behaviours that differ only in
that one offers more options in branching terms than the other; we formalise
this relation with the more suggestive name of more_branches (in line with [26]),
and we include some illustrative cases of its definition.

Inductive more_branches : Behaviour → Behaviour → Prop :=
| MB_Send p e B B': more_branches B B' → more_branches (p ! e; B) (p ! e; B')
| MB_Branching_None_None p mBl mBr :

more_branches (p & mBl // mBr) (p & None // None)
| MB_Branching_Some_Some p Bl Bl' Br Br' :

more_branches Bl Bl' → more_branches Br Br' →
more_branches (p & Some Bl // Some Br) (p & Some Bl' // Some Br') (...)

The need for pruning arises naturally when one considers what happens when
a choreography C executes a conditional at a process p. In the continuation,
only one of the branches is kept. However, no process other than p knows that
this action has been executed; therefore, if the projection of C executes the corre-
sponding action, both behaviours are still available for all processes other than p.
Given how merging is defined, this means that these processes’ behaviours may
contain more branches than those of the projection of the choreography after
reduction.

Pruning is naturally related to merging, as stated in the following lemmas.

Lemma more_branches_char : ∀ B B', more_branches B B' ↔ merge B B' = inject B.
Lemma merge_more_branches :
∀ B1 B2 B, merge B1 B2 = inject B → more_branches B B1.

Pruning is also reflexive and transitive. Further, if two behaviours have an
upper bound according to pruning, then their merge is defined and is their lub.

Lemma more_branches_merge : ∀ B B1 B2, more_branches B B1 →
more_branches B B2 → ∃ B', merge B1 B2 = inject B' ∧ more_branches B B'.

Finally, two behaviours with fewer branches than two mergeable behaviours
are themselves mergeable.

Lemma more_branches_merge_extend : ∀ B1 B2 B1' B2' B,
more_branches B1 B1' → more_branches B2 B2' → merge B1 B2 = inject B →
∃ B' , merge B1' B2' = inject B' ∧ more_branches B B'.

These two results are key ingredients to the cases dealing with conditionals in
the proof of the EPP Theorem. They require extensive case analysis (512 cases
for the last lemma, of which 81 are not automatically solved by Coq’s inversion
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tactic even though most are contradictory). Analogous versions of some of these
lemmas also need to be extended to XBehaviours, which is straightforward.

Pruning extends pointwise to networks, which we denote as N ≫ N'. The key
result is that, due to how the semantics of SP is defined, pruning a network
cannot add new transitions.

Lemma SP_To_more_branches_N : ∀ Defs N1 s N2 s' Defs' N1' tl,
SP_To Defs N1 s tl N2 s' → N1' ≫ N1 → (∀ X, Defs X = Defs' X) →
∃ N2', SP_To Defs' N1' s tl N2' s' ∧ N2' ≫ N2.

The reciprocal of this result only holds for choreography projections, and is
proven after the definition of EPP.

The formalisation of pruning includes 3 definitions, 25 lemmas, and 950 lines.
Some of these results are used for defining of EPP (previous section), but we de-
layed their presentation as its motivation is clearer after seeing those definitions.

Example 7. The choreography C1 in Example 1 is projectable, yielding the net-
work in Example 5: bproj Defs C1 c = inject Bc, bproj Defs C1 s = inject Bs,
and bproj Defs C1 ip = inject Bip.

If we remove selections from C1, the resulting choreography is not projectable
on process c: projecting the conditional requires merging the projections at
c of the two branches (now simply s.token -> c.t; End and End), which fails
since bproj Defs C5 c = inject (s?t; End) and bproj Defs End c = inject End, but
merge (s?t; End) End = XUndefined. Likewise, merging would fail for s. ◁

7 EPP Theorem

We now prove the operational correspondence between choreographies and their
projections, in two directions: if a choreography can make a transition, then its
projection can make the same transition; and if the projection of a choreography
can make a transition, then so can the choreography. The results of the transi-
tions are not directly related by projection, since choreography transitions may
eliminate some branches in the projection; thus, establishing the correspondence
for multi-step transitions requires some additional lemmas on pruning.

Preliminaries. Both directions of the correspondence depend on a number of
results relating choreography transitions and their projections. These results
follow a pattern: the results for communications state a precise correspondence;
the ones for conditionals include pruning in their conclusions; and the ones for
procedure calls require additional hypotheses on the set of procedure definitions.

Lemma CCC_To_bproj_Sel_p : ∀ Defs C s C' s' p q l, str_projectable Defs C p →
CCC_To Defs C s (CCBase.TL.R_Sel p q l) C' s' →
∃ Bp, bproj Defs C p = XSel q l Bp ∧ bproj Defs C' p = Bp.

Lemma CCC_To_bproj_Call_p : ∀ Defs C s C' s' p X Xs, str_projectable Defs C p →
(∀ Y, In Y Xs → str_projectable Defs (snd (Defs Y)) p) →
(∀ Y, set_incl_pid (CCC_pn (snd (Defs Y)) (fun X ⇒ fst (Defs X)))
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(fst (Defs Y))) →
In X Xs → CCC_To Defs C s (CCBase.TL.R_Call X p) C' s' →
bproj Defs C p = XCall (X,p)
∧ Xmore_branches (bproj Defs (snd (Defs X)) p) (bproj Defs C' p).

These lemmas are simple to prove by induction on C. The tricky part is getting
the hypotheses strong enough that the thesis holds, and weak enough that any
well-formed program will satisfy them throughout its entire execution.

From these results, it follows that projectability is preserved by choreography
reductions. This property is needed even to state the EPP Theorem, since we
can only compute projections of projectable programs.

Lemma CCC_To_projectable : ∀ P Xs ps,
Program_WF Xs P → well_ann P → projectable Xs ps P →
(∀ p, In p ps → str_projectable (Procedures P) (Main P) p) →
(∀ p, In p (CCC_pn (Main P) (Vars P)) → In p ps) →
(∀ p X, In X Xs → In p (Vars P X) → In p ps) →
∀ s tl P' s' , (P,s) —[tl]−→ (P',s') → projectable Xs ps P'.

Some of the hypotheses from the previous lemmas are encapsulated in the
first two conditions: well-formedness of P, which ensures that any runtime term
RT_Call X qs C in Main P only includes processes in qs that are declared to be
used by X (this trivially holds if Main P is initial, and is preserved throughout
execution); and well-annotation of P, i.e., the processes used in any procedure
are a subset of those it declares.7 The remaining hypotheses state, as before, that
Xs and ps include all processes and procedures relevant for executing Main P.

Similarly, we prove that strong projectability is preserved by transitions.

Completeness. In the literature, completeness of EPP is proven by induction on
the derivation of the transition performed by the choreography C. For each case,
we look at how a transition for C can be derived, and show that the projection
of C can make the same transition to a network with more branches than the
projection of C ′. The proof is lengthy, but poses no surprises.

Lemma EPP_Complete : ∀ P Xs ps, Program_WF Xs P → well_ann P → ∀ HP,
(∀ p, In p ps → str_projectable (Procedures P) (Main P) p) →
(∀ p, In p (CCC_pn (Main P) (Vars P)) → In p ps) →
(∀ p X, In X Xs → In p (Vars P X) → In p ps) →
∀ s tl P' s' , (P,s) —[tl]−→ (P',s') →
∃ N tl', (epp Xs ps P HP,s) —[tl']−→ (N,s')
∧ Procs N = Procs (epp Xs ps P HP) ∧ ∀ H, Net N ≫ Net (epp Xs ps P' H).

By combining with the earlier results on pruning, we immediately obtain the
generalisation for multi-step transitions.

Soundness. Soundness is proven by case analysis on the transition made by
the network, and then by induction on the choreography inside each case. For
convenience, we split this proof in separate proofs, one for each transition. We

7 Equality is not necessary, and it would make this property harder to prove.
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omit the statements of these lemmas, since they include a number of technical
hypotheses (similar to those in e.g. SP_To_bproj_Com, which is used in the proof of
the case of communication, but more complex). By contrast with completeness,
all these lemmas are complex to prove: each case requires around 300 lines of
Coq code. The proofs have similar structure, but are still different enough that
adapting them can not be done mechanically.

The last ingredient is a lemma of practical interest on procedure names: each
process only uses “its” copy of the original procedure names. This lemma is not
only crucial in the proof of the next theorem, but also interesting in itself: it
shows that the set of procedure definitions can be fully distributed among the
processes with no duplications.

Lemma SP_To_bproj_Call_name : ∀ Defs Defs' ps C HC s N' s' p X,
SP_To Defs' (epp_C Defs ps C HC) s (R_Call X p) N' s' →
∃ Y, X = (Y,p) ∧ X_Free Y C.

All these ingredients are combined in the proof of soundness of EPP.

Lemma EPP_Sound : ∀ P Xs ps, Program_WF Xs P → well_ann P → ∀ HP,
(∀ p, In p ps → str_projectable (Procedures P) (Main P) p) →
(∀ p, In p (CCC_pn (Main P) (Vars P)) → In p ps) →
(∀ p X, In X Xs → In p (Vars P X) → In p ps) →
∀ s tl N' s' , (epp Xs ps P HP,s) —[tl]−→ (N',s') →
∃ P' tl', (P,s) —[tl']−→ (P',s') ∧ ∀ H, Net N' ≫ Net (epp Xs ps P' H).

Generalising this result to multi-step transitions requires showing that prun-
ing does not eliminate possible transitions of a network. This is in general not
true, but it holds when the pruned network is the projection of a choreography.

Lemma SP_To_more_branches_N_epp : ∀ Defs N1 s N2 s' tl Defs' ps C HC,
N1 ≫ epp_C Defs' ps C HC → SP_To Defs N1 s tl N2 s' →
∃ N2', SP_To Defs (epp_C Defs' ps C HC) s tl N2' s' ∧ N2 ≫ N2'.

The formalisation of EPP and the proof of the EPP theorem consists of
13 definitions, 110 lemmas, and 4960 lines of Coq code. The proof of the EPP
Theorem and related lemmas make up for around 75% of this size.

8 Discussion and Conclusion

We have successfully formalised a translation from a Turing-complete choreo-
graphic language into a process calculus and proven its correctness in terms of an
operational correspondence. This formalisation showed that the proof techniques
used in the literature are correct, and identified only missing minor assumptions
about runtime terms that trivially hold when these are used as intended.

To the best of our knowledge, this is the first time such a correspondence
has been formalised for a full-fledged (Turing-complete) choreographic language.
Comparable work includes a preliminary presentation on a certified compiler
from choreographies to CakeML [18], which however deals only with finite be-
haviours [22]. In the related realm of multiparty session types (where choreogra-
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phies do not include computation), a similar correspondence result has also been
developed independently [9].

The complexity of the formalisation, combined with the similarities between
several of the proofs, means that future extensions would benefit from exploiting
semi-automatic generation of proof scripts.

Combining these results with those from [13] would yield a proof that SP
is also Turing complete. Unfortunately, the choreographies used in the proof
of Turing completeness in [13] are not projectable, but they can be made so
automatically, by means of an amendment (repair) procedure [12]. In future
work, we plan to formalise amendment in order to obtain this result.
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