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Abstract

Choreographic Programming is a paradigm for developing concurrent programs
that are deadlock-free by construction, as a result of programming communi-
cations declaratively and then synthesising process implementations automat-
ically. Despite strong interest on choreographies, a foundational model that
explains which computations can be performed with the hallmark constructs of
choreographies is still missing.

In this work, we introduce Core Choreographies (CC), a model that includes
only the core primitives of choreographic programming. Every computable func-
tion can be implemented as a choreography in CC, from which we can synthesise
a process implementation where independent computations run in parallel. We
discuss the design of CC and argue that it constitutes a canonical model for
choreographic programming.

Keywords: Choreography, Computability, Process Calculi

1. Introduction

Programming concurrent and distributed systems is hard, because it is chal-
lenging to predict how programs executed at the same time in different com-
puters will interact. Empirical studies reveal two important lessons: (i) while
programmers have clear intentions about the order in which communication ac-
tions should be performed, tools do not adequately support them in translating
these wishes to code (Lu et al., 2008); (ii) combining different communication
protocols in a single application is a major source of mistakes (Leesataporn-
wongsa et al., 2016).

The paradigm of Choreographic Programming (Montesi, 2013) was intro-
duced to address these problems. In this paradigm, programmers declaratively
write the communications that they wish to take place, as programs called chore-
ographies. Choreographies are descriptions of concurrent systems that syntacti-
cally disallow writing mismatched I/O actions, inspired by the “Alice and Bob”
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notation of security protocols (Needham and Schroeder, 1978). An EndPoint
Projection (EPP) can then be used to synthesise implementations in process
models, which faithfully realise the communications given in the choreography
and are guaranteed to be deadlock-free by construction even in the presence of
arbitrary protocol compositions (Carbone et al., 2012; Carbone and Montesi,
2013).

So far, work on choreographic programming focused on features of practical
value – including web services (Carbone et al., 2012), multiparty sessions (Car-
bone and Montesi, 2013; Chor, 2017), modularity (Montesi and Yoshida, 2013),
and runtime adaptation (Dalla Preda et al., 2017). The models proposed all
come with differing domain-specific syntaxes, semantics and EPP definitions
(e.g., for channel mobility or runtime adaptation), and cannot be considered
minimal. Another problem, arguably a consequence of the former, is that chore-
ographic programming is meant for implementation, but we still know little of
what can be computed with the code obtained from choreographies (choreog-
raphy projections). The expressivity of the aforementioned models is evaluated
just by showing some examples.

In this paper, we propose a canonical model for choreographic programming,
called Core Choreographies (CC). CC includes only the core primitives that can
be found in most choreography languages, restricted to the minimal require-
ments to achieve the computational power of Turing machines. In particular,
local computation at processes is severely restricted, and therefore nontrivial
computations must be implemented by using communications. Therefore, CC
is both representative of the paradigm and simple enough to analyse from a
theoretical perspective. Our technical development is based on a natural notion
of function implementation, and the proof of Turing completeness yields an al-
gorithm for constructing a choreography that implements any given computable
function. Since choreographies describe concurrent systems, it is also natural
to ask how much parallelism choreographies exhibit. CC helps us in formally
defining parallelism in choreographies; we exemplify how to use this notion to
reason about the concurrent implementation of functions.

Yet, analysing the expressivity of choreographies is not enough. What we are
ultimately interested in is what can be computed with choreography projections,
since those are the terms that represent executable code. However, the expres-
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sivity of choreographies does not translate directly to expressivity of projections,
because EPP is typically an incomplete procedure: it must guarantee deadlock-
freedom, which in previous models is obtained by complex requirements, e.g.,
type systems (Carbone et al., 2012; Carbone and Montesi, 2013). Therefore,
only a subset of choreographies (projectable choreographies) can be used to syn-
thesise process implementations. The EPPs of such projectable choreographies
form the set of choreography projections, which are deadlock-free processes (see
Figure 1).

The main technical contribution of this paper is showing that the set of pro-
jectable choreographies in CC is still Turing complete. Therefore, by EPP, the
set of corresponding choreography projections is also Turing complete, leading
us to a characterisation of a Turing complete and deadlock-free fragment of a
process calculus (which follows the same minimal design of CC). Furthermore,
the parallel behaviour observed in CC choreographies for function implementa-
tions translates directly to parallel execution of the projected processes.

More importantly, the practical consequence of our results is that CC is a
simple common setting for the study of foundational questions in choreogra-
phies. This makes CC an appropriate foundational model for choreographic
programming, akin to λ-calculus for functional programming and π-calculus for
mobile processes. As an example of such foundational questions, we describe
how the standard communication primitive of label selection can be removed
from CC without altering its computational power, yielding a truly minimal
choreography language wrt computation called Minimal Choreographies (MC).
However, doing so eliminates the clean separation between data and behaviour in
message exchanges, which makes the resulting choreography hard to read. This
result suggests that implementations of choreography languages – like (Montesi,
2013), (Dalla Preda et al., 2017), and (W3C WS-CDL Working Group, 2004)
– may adopt a simpler intermediate representation of choreographies that does
not include label selections, by applying our elimination technique to the input
choreography program (where programmers should be able to use selections, for
readability). A key advantage of having a simpler model without selections is
that it bypasses the need for the standard notion of merging (Carbone et al.,
2012), which is typically one of the most complicated steps in EPP. We for-
mally illustrate this point by showing that our EPP for MC enjoys an elegant
definition.

Structure of the paper. § 2 defines Core Choreographies (CC) and its subcalcu-
lus of Minimal Choreographies (MC). § 3 introduces Stateful Processes (SP), our
target process model, and its sublanguage of Minimal Processes (MP), together
with an EndPoint Projection (EPP) from CC to SP (and from MC to MP).
We also show that every unprojectable choreography in CC can be amended
(transformed into a projectable one) by adding only label selections. We prove
that CC and its set of choreography projections are Turing complete in § 4. In
§ 5 we discuss label selections, and show that they can be encoded by commu-
nications; this yields an amendment strategy for MC. In § 6, we show that all
the remaining primitives of CC are necessary to achieve Turing completeness,
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C ::= η;C | if p<-
= q thenC1 elseC2 | defX = C2 inC1 |X | 0

η ::= p.e -> q | p -> q[l] e ::= ε | c | s · c l ::= l | r

Figure 2: Core Choreographies, Syntax.

and discuss the implications of our work for other choreography languages and
process calculi – in particular, we identify a Turing complete and deadlock-free
fragment of value-passing CCS. Related work and discussion are given in § 7.

Publication history. This is an extended version of the material previously pre-
sented in (Cruz-Filipe and Montesi, 2017a). Noteworthy improvements include:
detailed proofs of all results (in particular, Theorems 5, 7, 8, and 9); full def-
initions of our models (namely, the definitions of structural precongruence for
CC and SP); full definitions of EPP and the merge operator. Moreover, the
encoding of selections into communications (§ 5) and the encoding of CC into
Channel Choreographies (§ Appendix A) are new results and have not been
published previously.

2. Core Choreographies and Minimal Choreographies

We introduce Core Choreographies (CC), define function implementation
and parallel execution of choreographies, and prove some key properties of CC.

2.1. Syntax of CC

The syntax of CC is displayed in Figure 2, where C ranges over choreogra-
phies. We use two (infinite) disjoint sets of names: processes (p, q, . . .) and
procedures (X, . . .). Processes run in parallel, and each process stores a value –
a string of the form s · · · s·ε – in a local memory cell. Each process can access its
own value, but it cannot read the contents of another process (no data sharing).

Term η;C is an interaction between two processes, read “the system may
execute η and proceed as C”. An interaction η is either a value communication
– p.e -> q – or a label selection – p -> q[l]. In p.e -> q, p sends its local
evaluation of expression e to q, which stores the received value. Expressions are
either the constant ε, the value of the sender (written as c), or an application
of the successor operator to c. In p -> q[l], p communicates label l (either l or
r) to q. Labels are used to communicate decisions about control flow, rather

than data (see § 2.3). In a conditional if p
<-
= q thenC1 elseC2, q sends its value

to p, which checks if the received value is equal to its own; the choreography
proceeds as C1, if that is the case, or as C2, otherwise. In value communications,
selections and conditionals, the two interacting processes must be different (no
self-communications). Definitions and invocations of recursive procedures are
standard. The term 0, also called exit point, is the terminated choreography.

In the remainder, we write pn(C) for the set of all process names that appear
in C.
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v = e[σ(p)/c]

p.e -> q;C, σ → C, σ[q 7→ v]
C|Com

p -> q[l];C, σ → C, σ
C|Sel

i = 1 if σ(p) = σ(q), i = 2 o.w.

if p
<-
= q thenC1 elseC2, σ → Ci, σ

C|Cond

C1, σ → C ′
1, σ

′

defX = C2 inC1, σ → defX = C2 inC
′
1, σ

′ C|Ctx

C1 ⪯ C2 C2, σ → C ′
2, σ

′ C ′
2 ⪯ C ′

1

C1, σ → C ′
1, σ

′ C|Struct

Figure 3: Core Choreographies, Semantics.

2.2. Semantics of CC

The semantics of CC uses reductions of the form C, σ → C ′, σ′. The total
state function σ maps each process name to its value. We use v, w, . . . to range
over values: v, w, . . . ::= ε | s · v. Values are isomorphic to natural numbers via
⌜n⌝ = sn · ε. The reduction relation → is defined by the rules given in Figure 3.

Rule C|Com models a value communication p.e -> q. In the premise, we
write e[σ(p)/c] for the result of replacing c with σ(p) in e. In the reduc-
tum, σ[q 7→ v] denotes the updated state function σ where q now maps to
v. Rule C|Sel states that selections are no-ops from the choreography’s point of
view (they do not change the state) – see § 2.3 for a more detailed explanation
of why selections are useful. Rule C|Ctx is standard.

Rule C|Struct closes the reduction relation under the structural precongru-
ence ⪯, which is the smallest precongruence satisfying the rules in Figure 4. We
write C ≡ C ′ for C ⪯ C ′ and C ′ ⪯ C.

Structural precongruence allows non-interfering actions to be executed in
any order, modelling concurrent process execution. This is achieved by rules
C|Eta-Eta, C|Eta-Cond and C|Cond-Cond, which swap two terms describing
actions performed by independent processes. They observe the same conditions
as in previous choreography models, where these rules are used for the swapping
relation ≃C , e.g., in (Carbone and Montesi, 2013). For example, rule C|Eta-Eta
allows swapping of two interactions η and η′ – η; η′ ≡ η′; η – whenever the
processes that enact them are distinct – pn(η) ∩ pn(η′) = ∅.

Rules C|ProcEnd and C|Unfold are standard, and respectively deal with
garbage collection of procedure definitions and unfolding of recursive procedures.

In rule C|Unfold, we use the standard notion of context, denoted C[]. We
borrow its definition (adapted to our language) from (Sangiorgi and Walker,
2001). A context C[] is obtained when the hole • (a new reserved term) replaces
one occurrence of 0 in a choreography term given by the grammar in Figure 2.
We write C[C ′] for the choreography obtained by replacing the hole • in C[]
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pn(η) ∩ pn(η′) = ∅
η; η′ ≡ η′; η

C|Eta-Eta
defX = C in0 ⪯ 0

C|ProcEnd

{p, q} ∩ pn(η) = ∅

if p
<-
= q then (η;C1) else (η;C2) ≡ η; if p

<-
= q thenC1 elseC2

C|Eta-Cond

defX = C2 in (η;C1) ≡ η; defX = C2 inC1
C|Eta-Rec

{p, q} ∩ {r, s} = ∅

if p
<-
= q then (if r

<-
= s thenC1 elseC2) else (if r

<-
= s thenC ′

1 elseC
′
2)

≡
if r

<-
= s then (if p

<-
= q thenC1 elseC

′
1) else (if p

<-
= q thenC2 elseC

′
2)

C|Cond-Cond

defX = C2 inC1[X] ⪯ defX = C2 inC1[C2]
C|Unfold

Figure 4: Core Choreographies, Structural precongruence ⪯.

with C ′. Therefore, in rule C|Unfold, we are identifying a specific subterm X
in the choreography on the left (C1[X]) and then replacing it with the body of
the recursive procedure on the right (C1[C2]).

2.3. Label Selection and Minimal Choreographies

To the reader unfamiliar with choreographies, the role of selection – p -> q[l]
– may be unclear at this point. In existing choreography calculi, they are crucial
in making choreographies projectable, as we illustrate with an example.

Example 1. Consider the following choreography.

C = if p
<-
=q then (p.c -> r;0) else (r.c -> p;0)

Here, p checks whether its value is the same as that of q. If so, p communi-
cates its value to r; otherwise, it is r that communicates its value to p. Recall
that processes are assumed to run independently and share no data. Here, p is
the only process that knows which branch of the conditional should be executed.
However, r also needs to know this information, since it must behave differently.
Intuitively, we have a problem because we are asking r to act differently based
on a decision made by another process, p, and there is no propagation of this
decision from p to r (either directly or indirectly, through other processes). We
can easily fix the example by adding selections:

C ′ = if p
<-
=q then (p -> r[l]; p.c -> r;0) else (p -> r[r]; r.c -> p;0) .

Now, p tells r about its choice by sending a different label. This intuition will be
formalised in our definition of EndPoint Projection in § 3.3. The choreography
C (without label selections) is not projectable, whereas C ′ is.
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The example illustrates the role of label selections in choreography languages:
they are not meant to carry data, but rather to select one from several possible
different behaviours offered by the process receiving the label. Thus, they model
interface selections, as in the invocation of a particular method in object-oriented
programming, or an operation in service-oriented computing.

One of the main results in this paper is that the same effect can actually
be achieved in a language without label selections. However, this hides the way
in which control flow is propagated from one process to another. Furthermore,
label selections are a typical ingredient of choreography calculi, and it makes
sense to include them in a core model. This is also reflected in typical implemen-
tations of endpoint languages, where label selections and value communications
are implemented as different primitives. See § 7 for a more thorough discussion.

In this work, we also consider the fragment of CC without label selections,
which we call Minimal Choreographies (MC). The syntax of MC is the same as
that of CC, except that the action p -> q[l] is disallowed; the semantics of MC
is the same as that of CC, disregarding the rules that pertain to terms outside
the language.

2.4. Properties

In the remainder of this section we discuss some properties of Core Chore-
ographies. Unless otherwise stated, those properties also hold for Minimal
Choreographies.

CC enjoys the usual deadlock-freedom-by-design property of choreographies.

Theorem 1 (Deadlock-freedom by design). If C is a choreography, then either:

• C ⪯ 0 (C has terminated);

• or, for all σ, C, σ → C ′, σ′ for some C ′ and σ′ (C can reduce).

Proof. Assume that C ̸⪯ 0 (otherwise the result is trivial). The proof is by
structural induction on C. If C is not of the form defX = C2 inC1, then the
thesis is a consequence of the semantics, since there is always an applicable
reduction rule. If C is of the form defX = C2 inC1, then also C1 ̸⪯ 0, and the
thesis follows by induction hypothesis applied to C1.

Using this theorem, in § 3.3 we prove that the process implementations
obtained by projecting choreographies is deadlock-free.

The semantics of CC suggests a natural definition of computation. We write
→∗ for the transitive closure of → and C, σ ̸→∗ 0 for C, σ ̸→∗ 0, σ′ for any σ′.

Definition 1. A choreography C implements a function f : Nn → N with input
processes p1, . . . , pn and output process q if, for all x1, . . . , xn ∈ N and for every
state σ s.t. σ(pi) = ⌜xi⌝:

• if f(x̃) is defined, then C, σ →∗ 0, σ′ where σ′(q) = ⌜f(x̃)⌝;

• if f(x̃) is undefined, then C, σ ̸→∗ 0.
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By Theorem 1, in the second case C, σ must reduce infinitely (diverge).
In later sections, we need to characterize choreographies that are equivalent

wrt a set of processes. We use the state function σ for this purpose.

Definition 2 (Computational equivalence). Two states σ1, σ2 are equivalent
wrt a set of process names p̃, written σ1 ≡p̃ σ2, if σ1(p) = σ2(p) for every p ∈ p̃.

Two choreographies C1 and C2 are equivalent wrt a set of process names p̃
if: whenever σ1 ≡p̃ σ2, if C1, σ1 →∗ 0, σ′

1 then C2, σ2 →∗ 0, σ′
2 with σ′

1 ≡p̃ σ′
2,

and conversely.

Throughout this paper, we focus on choreographies with only one exit point
(a single occurence of 0). When C has a single exit point, we write C # C ′ for
the choreography obtained by replacing 0 in C with C ′. (Requiring C to have
a single exit point makes this construction linear in the sizes of C and C ′, and
simplifies its theoretical analysis.) This does not add expressivity to CC, but it
allows for the usage of macros (as in the examples below). Then, C #C ′ behaves
as a “sequential composition” of C and C ′, as induction over C shows.

Lemma 1. Let C have one exit point, C ′ be a choreography, σ, σ′, σ′′ be states.

1. If C, σ →∗ 0, σ′ and C ′, σ′ →∗ 0, σ′′, then C # C ′, σ →∗ 0, σ′′.

2. If C, σ ̸→∗ 0, then C # C ′, σ ̸→∗ 0.

3. If C, σ →∗ 0, σ′ and C ′, σ′ ̸→∗ 0, then C # C ′, σ ̸→∗ 0.

Proof. Straightforward by structural induction on C.

Structural precongruence gives C #C ′ fully parallel behaviour in some cases.
Intuitively, C1 and C2 run in parallel in C1#C2 if their reduction paths to 0 can be

interleaved in any possible way. Below, we write C
σ̃−→∗ 0 for C, σ1 → C2, σ2 →

· · · → 0, σn, where σ̃ = σ1, . . . , σn, and σ̃(p) for the sequence σ1(p), . . . , σn(p).

Definition 3. Let p̃ and q̃ be disjoint. Then, σ̃ is an interleaving of σ̃1 and σ̃2

wrt p̃ and q̃ if σ̃ contains two subsequences σ̃′
1 and σ̃′

2 such that:

• σ̃′
2 = σ̃ \ σ̃′

1;

• σ̃′
1(p) = σ̃1(p) for all p ∈ p̃, and σ̃′

2(q) = σ̃2(q) for all q ∈ q̃;

• σ̃(r) is a constant sequence for all r ̸∈ p̃ ∪ q̃.

Definition 4 (Parallel Run). Let C1 and C2 be choreographies such that pn(C1)∩
pn(C2) = ∅ and C1 has only one exit point. We say that C1 and C2 run in par-

allel in C1 # C2 if: whenever Ci
σ̃i−→∗ 0, then C1 # C2

σ̃−→∗ 0 for every interleaving
σ̃ of σ̃1 and σ̃2 wrt pn(C1) and pn(C2).

Theorem 2 (Parallelisation). Let C1 and C2 be choreographies such that pn(C1)∩
pn(C2) = ∅ and C1 has only one exit point. Then C1 and C2 run in parallel in
C1 # C2.
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Proof. The result follows directly by induction over C1.

Definition 4 and Theorem 2 straightforwardly generalise to an arbitrary num-
ber of processes. We provide an example of such parallel behaviour in Theo-
rem 6.

2.5. Examples

We present examples of choreographies in CC, writing them as macros (syn-

tax shortcuts). We use the notation m(params)
∆
= C, where m is the name of

the macro, params its parameters, and C its body.

Example 2. The macro inc(p, t) increments the value of p using an auxiliary
process t.

inc(p, t)
∆
= p.c -> t; t.(s · c) -> p; 0

Using inc, we write a macro add(p, q, r, t1, t2) that adds the values of p and
q and stores the result in p, using auxiliary processes r, t1 and t2. We follow the
intuition as in low-level abstract register machines. First, t1 sets the value of r
to zero, and then calls procedure X, which increments the value of p as many
times as the value in q. In the body of X, r checks whether its value is the same
as q’s. If so, it informs the other processes that the recursion will terminate
(selection of l); otherwise, it asks them to do another step (selection of r). In
each step, the values of p and r are incremented using t1 and t2 as auxiliary
processes. The compositional usage of inc is allowed, as it has exactly one exit
point.

add(p, q, r, t1, t2)
∆
=

defX = if r
<-
=q then r -> p[l]; r -> q[l]; r -> t1[l]; r -> t2[l];0

else r -> p[r]; r -> q[r]; r -> t1[r]; r -> t2[r]; inc(p, t1) # inc(r, t2) # X
in t1.ε -> r;X

By Theorem 2, the calls to inc(p, t1) and inc(r, t2) can be executed in parallel.
Indeed, applying rule C|Eta-Eta for ⪯ repeatedly we can check that:

p.c -> t1; t1.(s · c) -> p;︸ ︷︷ ︸
expansion of inc(p, t1)

r.c -> t2; t2.(s · c) -> r;︸ ︷︷ ︸
expansion of inc(r, t2)

X

⪯ r.c -> t2; t2.(s · c) -> r;︸ ︷︷ ︸
expansion of inc(r, t2)

p.c -> t1; t1.(s · c) -> p;︸ ︷︷ ︸
expansion of inc(p, t1)

X
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B ::= q!⟨e⟩;B | p?;B | q⊕ l;B | p&{li : Bi}i∈I |

| 0 | if c<-
= q thenB1 elseB2 | defX = B2 inB1 | X

N,M ::= p ▷v B | 0 | N |M

Figure 5: Stateful Processes, syntax.

3. Stateful Processes, Minimal Processes and EndPoint Projections

We present Stateful Processes (SP), our target process model, and define
an EndPoint Projection (EPP) that synthesises process implementations from
choreographies in CC. By restricting SP adequately, we obtain a target process
calculus for MC, which we call Minimal Processes (MP), with a corresponding,
simpler, EPP.

3.1. Syntax of SP and MP

The syntax of SP is given in Figure 5.
Networks (N,M) are either the inactive network 0 or parallel compositions

of processes p ▷v B, where p is the name of the process, v its stored value, and
B its behaviour.

We comment on behaviours. Expressions and labels are as in CC. A send
term q!⟨e⟩;B sends the evaluation of expression e to q, proceeding as B. Term
p?;B, the dual receiving action, stores the value received from p in the process
executing the behaviour, proceeding as B. A selection term q ⊕ l;B sends l
to q. Dually, a branching term p&{li : Bi}i∈I receives one of the labels li and
proceeds as Bi. A process offers either: a single branch (labeled l or r); or

two branches (with distinct labels). In a conditional if c
<-
= q thenB1 elseB2, the

process receives a value from process q and compares it with its own value to
choose the continuation B1 or B2. The other terms (definition/invocation of
recursive procedures, termination) are standard.

The syntax of MP is obtained by disallowing the terms q⊕l;B and p&{li : Bi}i∈I .

3.2. Semantics

The reduction rules for SP are mostly standard, from process calculi, and
are included in Figure 6. The key difference from CC is that execution is now
distributed over processes. Rule S|Com follows the standard communication
rule in process calculi. A process p executing a send action towards a process
q can synchronise with a receive-from-p action at q; in the reduct, q’s value is
updated with the value sent by p, obtained by replacing the placeholder c in
e with the value of p. Rule S|Sel is selection from session types (Honda et al.,
1998), with the sender selecting one of the branches offered by the receiver. In
rule S|Cond, p (executing the conditional) acts as a receiver for the value sent by
the process whose value it wants to read (q). All other rules are standard, and
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u = e[v/c]

p ▷v q!⟨e⟩;B1 | q ▷w p?;B2 → p ▷v B1 | q ▷u B2
S|Com

j ∈ I

p ▷v q⊕ lj ;B | q ▷w p&{li : Bi}i∈I → p ▷v B | q ▷w Bj
S|Sel

i = 1 if v = e[w/c], i = 2 otherwise

p ▷v if c
<-
= q thenB1 elseB2 | q ▷w p!⟨e⟩;B′ → p ▷v Bi | q ▷w B′

S|Cond

p ▷v B1 → p ▷v B
′
1

p ▷v defX = B2 inB1 → p ▷v defX = B2 inB
′
1

S|Ctx

N → N ′

N |M → N ′ |M
S|Par N ⪯ M M → M ′ M ′ ⪯ N ′

N → N ′ S|Struct

Figure 6: Stateful Processes, Semantics.

defX = B2 inB1[X] ⪯ defX = B2 inB1[B2]
S|Unfold

p ▷v 0 ⪯ 0
S|PZero

N |0 ⪯ N
S|NZero

defX = B in0 ⪯ 0
S|ProcEnd

Figure 7: Stateful Processes, Structural Precongruence.

use a structural precongruence that includes associativity and commutativity of
parallel composition, together with the rules in Figure 7, supporting recursion
unfolding and garbage collection of terminated processes and unused definitions.

As for CC, we can define function implementation in SP.

Definition 5 (Function implementation in SP). A network N implements a
function f : Nn → N with input processes p1, . . . , pn and output process q if
N ⪯ (

∏
i∈[1,n] pi ▷vi Bi) | q ▷w B′ |N ′ and, for all x1, . . . , xn ∈ N:

• if f(x̃) is defined, then N(x̃) →∗ q ▷⌜f(x̃)⌝ 0;

• if f(x̃) is not defined, then N(x̃) ̸→∗ 0.

where N(x̃) is a shorthand for N [ ˜⌜xi⌝/vi], the network obtained by replacing in
N the values of the input processes with the arguments of the function.

3.3. EndPoint Projection

We now define an EndPoint Projection (EPP) from CC to SP.
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[[p.e -> q;C]]r =


q!⟨e⟩; [[C]]r if r = p

p?; [[C]]r if r = q

[[C]]r o.w.

[[p -> q[l];C]]r =


q⊕ l; [[C]]r if r = p

p&{l : [[C]]r} if r = q

[[C]]r o.w.

[[if p
<-
= q thenC1 elseC2]]r =


if c

<-
= q then [[C1]]r else [[C2]]r if r = p

p!⟨c⟩; ([[C1]]r ⊔ [[C2]]r) if r = q

[[C1]]r ⊔ [[C2]]r o.w.

[[defX p̃ = C2 inC1]]r =

{
defX = [[C2]]r in [[C1]]r if r ∈ p̃

[[C1]]r o.w.

[[0]]r = 0 [[X p̃]]r =

{
X if r ∈ p̃

0 o.w.

Figure 8: Core Choreographies, Behaviour Projection.

We first discuss the rules for projecting the behaviour of a single process p,
a partial function [[C]]p defined by the rules in Figure 8. Selections are projected
similarly to communications, and 0 is projected to 0. All rules follow the
intuition of projecting, for each choreography term, the local action performed
by the process that we are projecting. For example, for a communication term
p.e -> q, we project a send action for the sender p, a receive action for the
receiver q, or just the continuation otherwise. The rule for selection is similar.

The rules for projecting recursive definitions and recursive calls are defined
assuming that procedure names have been annotated with the process names
appearing inside the body of the procedure, in order to avoid projecting unneces-
sary procedure code – see (Carbone et al., 2012). This is an easy preprocessing
of the choreography, which we assume is performed before using projection.
The preprocessing recursively visits the choreography and leaves it untouched,
except when it meets a recursive definition term defX = C2 inC1. In that
case, it annotates the choreography – defX p̃ = C2{X p̃/X} inC1{X p̃/X} where
{p̃} = pn(C2) – and then proceeds recursively. In other words, the definition of
X and all its invocations in C2 and C1 are annotated with p̃.

The rule for projecting a conditional is more involved, using the partial
merging operator ⊔ to merge the possible behaviours of a process that does not
know which branch will be chosen. The formal definition is found in Figure 9.
Merging is a homomorphic binary operator; for all terms but branchings it

requires isomorphism, q!⟨e⟩;B⊔q!⟨e⟩;B′ = q!⟨e⟩; (B⊔B′). The only case where

12



(q!⟨e⟩;B) ⊔ (q!⟨e⟩;B′) = q!⟨e⟩; (B ⊔B′)

(p?;B) ⊔ (p?;B′) = p?; (B ⊔B′)

(q⊕ l;B) ⊔ (q⊕ l;B′) = q⊕ l; (B ⊔B′)

p&{li : Bi}i∈J ⊔ p&{li : B′
i}i∈K =

p&
(
{li : (Bi ⊔B′

i)}i∈J∩K ∪ {li : Bi}i∈J\K ∪ {li : B′
i}i∈K\J

)
(
if c

<-
= q thenB1 elseB2

)
⊔

(
if c

<-
= q thenB′

1 elseB
′
2

)
=(

if c
<-
= q then (B1 ⊔B′

1) else (B2 ⊔B′
2)
)

X ⊔ X = X

(defX = B2 inB1) ⊔ (defX = B′
2 inB

′
1) =

(defX = (B2 ⊔B′
2) in (B1 ⊔B′

1))

B1 ⊔ B2 = B′
1 ⊔B′

2 (if B1 ⪯ B′
1 and B2 ⪯ B′

2)

Figure 9: Core Choreographies, Merge Operator in Behaviour Projection.

branching terms can have unmergeable continuations is when they are guarded
by distinct labels, in which case merge returns a larger branching including all
options (merging branches with the same label).

Merging explains the role of selections in CC, common in choreography mod-
els (Coppo et al., 2016; Carbone et al., 2012; Carbone and Montesi, 2013; Honda
et al., 2008; Dalla Preda et al., 2017; Qiu et al., 2007). Recall the choreographies
from Example 1. In choreography C, the behaviour of r cannot be projected
because we cannot merge its different behaviours in the two branches of the
conditional (a send with a receive). Choreography C ′ is projectable, and the
behaviour of r is [[C]]r = p&{l : p?;0, r : p!⟨c⟩;0}.

Definition 6 (EPP from CC to SP). Given a choreography C and a state σ,
the endpoint projection of C and σ is the parallel composition of the projections
of the processes in C.

[[C, σ]] =
∏

p∈pn(C)

p ▷σ(p) [[C]]p

The EPP from MC to MP is defined by restricting the EPP from CC to
SP to the relevant cases. Since choreographies in MC do not have selections,
process projections of choreographies in MC never have branchings. This means
that, in the case of MC, the merging operator ⊔ used in EPP is exactly syntactic
equality (since the only nontrivial case was that of branchings). Consequently,
we can replace the rule for projecting conditionals with the following, simpler,
one.
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[[if p
<-
= q thenC1 elseC2]]r =


if c

<-
= q then [[C1]]r else [[C2]]r if r = p

p!⟨c⟩; [[C1]]r if r = q and [[C1]]r = [[C2]]r

[[C1]]r if r ̸∈ {p, q} and [[C1]]r = [[C2]]r

Since the state function σ is total, [[C, σ]] is defined for some σ iff [[C, σ′]] is
defined for all other σ′. In this case, we say that C is projectable.

Example 3. Recall the definition of inc(p, t).

inc(p, t)
∆
= p.c -> t; t.(s · c) -> p; 0

Given any σ, the EPP of inc(p, t) is:

[[inc(p, t), σ]] = p ▷σ(p) t!⟨c⟩; t?;0 | t ▷σ(t) p?; p!⟨s · c⟩;0

In order to characterize the correspondence between choreographies and their
projections, we introduce a pruning relation between networks, inspired by (Car-
bone et al., 2012; Carbone and Montesi, 2013).

Definition 7. The pruning relation ⊒ on networks is defined as 0 ⊒ 0 and
p ▷v B |N ⊒ p ▷v B

′ |N ′ if B ⊔B′ = B and N ⊒ N ′.

Intuitively, N ⊒ N ′ if both N and N ′ are parallel compositions of the same
processes, and each process in N offers at least the same behaviours as in N ′,
with potentially extra options in its branching terms.

Using pruning, we can formalise the operational correspondence guaranteed
by EPP.

Theorem 3 (Operational Correspondence (CC ↔ SP)). Let C be a projectable
choreography. Then, for all σ:

Completeness: If C, σ → C ′, σ′, then [[C, σ]] →⊒⪯ [[C ′, σ′]];

Soundness: If [[C, σ]] → N , then there exist C ′, σ′ and N ′ such that C, σ →
C ′, σ′ and N ⪯ N ′ ⊒ [[C ′, σ′]].

Proof. The proof is an adaptation of the proofs of similar results in (Carbone
et al., 2012; Carbone and Montesi, 2013); we sketch a few typical cases, also to
illustrate where pruning plays a role.

Completeness: by induction on the derivation of the reduction C, σ → C ′, σ′.

• Consider the case of rule C|Com. Then C = p.e -> q;C ′, σ′ = σ[q 7→
e[σ(p)/c]] and

[[C, σ]] = p ▷σ(p) q!⟨e⟩;Bp | q ▷σ(q) p?;Bq |N ′′

→ p ▷σ(p) Bp | q ▷e[σ(p)/v] Bq |N ′′

If Bp, Bq ̸⪯ 0, then the result of the reduction is precisely [[C ′, σ′]].
If one or both of these behaviours are 0, then ⪯ needs to be applied
to remove the corresponding processes from the network in order to
obtain [[C ′, σ′]].

14



• Consider the case of rule C|Cond with i = 1 (i.e. σ(p) = σ(q)). Then

C = if p
<-
= q thenC1 elseC2, C

′ = C1, σ
′ = σ and

[[C, σ]] = p ▷σ(p) if c
<-
= q thenB1 elseB2 | q ▷σ(q) p!⟨c⟩;Bq |N ′′

→ p ▷σ(p) B1 | q ▷σ(q) Bq |N ′′

Assume first for simplicity that B1, Bq ̸⪯ 0. For each process r ̸= p,
the network obtained above is [[C1, σ]]r⊔[[C2, σ]]r, which in general does
not coincide with [[C1, σ]]r. However, since merge is trivially associa-
tive and idempotent, it immediately follows that p ▷σ(p) B1 | q ▷σ(q)
Bq |N ′′ ⊒ [[C1, σ]].

In the case that B1, Bq ̸⪯ 0, structural precongruence also needs
to be applied to remove the respective processes from the resulting
network.

• Finally consider the case when C|Struct applies, i.e. C ⪯ C1, C1, σ →
C ′

1, σ
′ and C ′

1 ⪯ C ′. The thesis then follows by observing that rules
C|Eta-Eta, C|Eta-Cond, C|Eta-Rec and C|Cond-Cond do not change
the projected choreographies, while the behaviour of C|Unfold is re-
producible by S|Unfold. Therefore [[C, σ]] ⪯ [[C1, σ]] and the induction
hypothesis applies. It remains to be shown that [[C ′

1, σ
′]] ⪯ [[C ′, σ′]],

which also requires considering rule C|ProcEnd – whose behaviour
again can be directly replicated by S|ProcEnd.

Soundness: the proof is now by induction on the structure of C. We detail
one representative case.

• Suppose that C = p.e -> q;C ′. Then [[C, σ]] = p▷σ(p)q!⟨e⟩;Bp | q▷σ(q)
p?;Bq |N ′′, and there are two cases.

If [[C, σ]] → N involves the communication between p and q, then the
choreography can mimic this action by consuming p.e -> q and evolv-
ing to C ′. Any applications of structural precongruence to [[C, σ]]
must involve only rules S|Unfold and S|ProcEnd, which can be di-
rectly applied also to C (and may require additional applications of
the same rules to other processes in N , namely those that occur in
the definition of the relevant variable X). Likewise, applications of
structural precongruence to N either involve the same rules (and the
same argument applies to [[C ′, σ]]) or garbage collection (which is
transparent, since it can never be applied to [[C ′, σ]]). Finally, addi-
tional garbage collection rules may be needed to obtain [[C ′, σ′]]. In
any case, N ⪯ [[C ′, σ′]].

If [[C, σ]] → N does not involve p and q, then we observe that nec-
essarily N has the form p ▷σ(p) q!⟨e⟩;Bp | q ▷σ(q) p?;Bq |N ′′, where
[[C ′, σ]] → p ▷σ(p) Bp | q ▷σ(q) Bq |N ′′ = N−. Then we can apply
the induction hypothesis to C ′, and find C ′′, σ′ such that N− ⪯
N ′ ⊒ [[C ′′, σ′]] for some N ′. Since the transition from C ′ to C ′′

does not involve p or q, a simple induction argument shows that
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p.e -> q;C ′, σ → p.e -> q;C ′′, σ′, and from the definition of ⪯ and ⊒
it follows that N ⪯ N ′′′ ⊒ [[p.e -> q;C ′′, σ′]] where N ′′′ is obtained
from N ′ by prepending the original communication actions between
p and q at the head of these processes’ behaviours.

As a consequence of Theorems 1 and 3, choreography projections never dead-
lock.

Theorem 4 (Deadlock-freedom by construction). Let N = [[C, σ]] for some C
and σ. Then, either N ⪯ 0 (N has terminated), or N → N ′ for some N ′ (N
can reduce).

Proof. If N ⪯ 0 then the theorem clearly holds. Otherwise, the thesis follows
from Theorems 1 and 3.

3.4. Choreography Amendment

An important property of CC is that all unprojectable choreographies can
be made projectable by adding some selections. We annotate recursion variables
as for EPP, assuming that pn(X p̃) = {p̃}.

Definition 8 (Amendment). Given C in CC, the transformation Amend(C) re-
peatedly applies the following procedure until no longer possible, starting from the

innermost subterms in C. For each conditional subterm if p
<-
= q thenC1 elseC2

in C, let r̃ ⊆ (pn(C1) ∪ pn(C2)) be the largest set such that [[C1]]r ⊔ [[C2]]r is

undefined for all r ∈ r̃; then if p
<-
=q thenC1 elseC2 in C is replaced with:

if (p
<-
=q) then (p -> r1[l]; · · · ; p -> rn[l];C1) else (p -> r1[r]; · · · ; p -> rn[r];C2)

Lemma 2 (Amendment Lemma). For every choreography C:

Completeness: Amend(C) is defined;

Projectability: for all σ, [[Amend(C), σ]] is defined;

Correspondence: for all σ, C, σ →∗ C ′, σ′ iff Amend(C), σ →∗ Amend(C ′), σ′.

Proof. This procedure clearly terminates, since each iteration processes one con-
ditional that is never changed again. By construction, the resulting choreogra-
phy is projectable: if [[C1, σ]]r and [[C2, σ]]r are not mergeable, then the corre-

sponding terms in [[Amend(if p
<-
= q thenC1 elseC2), σ]]r are both branching terms,

making them mergeable. Correspondence is immediate, since the only new ac-
tions in Amend(C ′) are label selections, which do not change the state when
executed.

Example 4. Applying Amend to the choreography C in Example 1 yields the
choreography C ′ in the same example.
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Example 5. Thanks to merging, amendment can also recognise some situations
where additional selections are not needed. For example, in the choreography

C = if p
<-
= q then (p.(s · c) -> r;0) else (p.(c) -> r;0), r does not need to know

the choice made by p, as it always performs the same input action. Here, C is
projectable and Amend(C) = C.

Note that amending a choreography from MC returns a choreography in CC.
In § 5 we show that we can prove an amendment lemma for MC, but this will
require much more work.

4. Turing Completeness of MC and Its Consequences

We now move to our main result: the set of choreography projections of CC
(the processes synthesised by EPP) is not only deadlock-free, but also capable of
computing all partial recursive functions, as defined by Kleene (Kleene, 1952),
and hence Turing complete. To this aim, the design and properties of CC give us
a considerable pay off. First, by Theorem 3, the problem reduces to establishing
that a projectable fragment of CC is Turing complete. Second, by Lemma 2,
this simpler problem is reduced to establishing that MC is Turing complete,
since any choreography in MC can be amended to one in CC that is projectable
and computes the same values. We also exploit the concurrent semantics of
CC and Theorem 2 to parallelise independent sub-computations (Theorem 6).
By projecting our choreographies via EPP, we obtain corresponding function
implementations in the process calculus SP.

Establishing that CC is Turing complete is long, but not difficult. Our proof
is in line with other traditional proofs of computational completeness (Cut-
land, 1980; Kleene, 1952; Turing, 1937), where data and programs are distinct.
This differs from other proofs of similar results for, e.g., π-calculus (Sangiorgi
and Walker, 2001) and λ-calculus (Barendregt, 1984), which encode data as
particular programs. The advantages are: our proof can be used to build chore-
ographies that compute particular functions; and we can parallelise independent
sub-computations in functions (Theorem 6).

4.1. Partial Recursive Functions

Our definition of the class of partial recursive functions R is slightly simpli-
fied, but equivalent to, that in (Kleene, 1952), where it is also shown that R is
the class of functions computable by a Turing machine. R is defined inductively
as follows.

Unary zero: Z ∈ R, where Z : N → N is s.t. Z(x) = 0 for all x ∈ N.

Unary successor: S ∈ R, where S : N → N is s.t. S(x) = x+ 1 for all x ∈ N.

Projections: If n ≥ 1 and 1 ≤ m ≤ n, then Pn
m ∈ R, where Pn

m : Nn → N is
s.t. Pn

m(x1, . . . , xn) = xm for all x1, . . . , xn ∈ N.
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Composition: if f, gi ∈ R for 1 ≤ i ≤ k, with each gi : Nn → N and f : Nk →
N, then h = C(f, g̃) ∈ R, where h : Nn → N is defined by composition
from f and g1, . . . , gk as: h(x̃) = f(g1(x̃), . . . , gk(x̃)).

Primitive recursion: if f, g ∈ R, with f : Nn → N and g : Nn+2 → N, then
h = R(f, g) ∈ R, where h : Nn+1 → N is defined by primitive recursion
from f and g as: h(0, x̃) = f(x̃) and h(x0 + 1, x̃) = g(x0, h(x0, x̃), x̃).

Minimization: If f ∈ R, with f : Nn+1 → N, then h = M(f) ∈ R, where h :
Nn → N is defined by minimization from f as: h(x̃) = y iff (1) f(x̃, y) = 0
and (2) f(x̃, y) is defined and different from 0 for all z < y.

Example 6 (Addition and Subtraction). We show that add ∈ R, where add :
N2 → N adds its two arguments. Since add(0, y) = y and add(x + 1, y) =
add(x, y)+1, we can define add by recursion as add = R

(
P 1
1 , C(S, P 3

2 )
)
. Indeed,

the function y 7→ add(0, y) is simply P 1
1 , whereas 1+add(x, y) is h(x, add(x, y), y)

where h(x, y, z) = y+1, which is the composition of the successor function with
P 3
2 .
From addition, we can define subtraction by minimization, since sub(x, y) =

x− y is the smallest z such that y+ z = x (subtraction is not defined if y > x).
We use an auxiliary function eq(x, y) that returns 0 if x = y and a non-zero
value otherwise, which is known to be partial recursive. Then we can define

subtraction as sub = M
(
C
(
eq, C(add, P 3

2 , P
3
3 ), P

3
1

))
. Indeed, composing add

with P 3
2 and P 3

3 produces (x, y, z) 7→ y + z, and the outer composition yields
(x, y, z) 7→ eq(y + z, x). This function evaluates to 0 precisely when z = y − x,
and applying minimization computes this value from x and y.

4.2. Encoding Partial Recursive Functions in MC and CC

All functions in R can be implemented in CC, in the sense of Definition 1.
Since selections can be inferred by amendment, we develop our encoding in MC
and discuss projectability later.

Given f : Nn → N, we denote its implementation in MC by {|f |}p̃ 7→q, where
p̃ and q are parameters. All choreographies we build have a single exit point,
and we combine them using the sequential composition operator # from § 2.

We use auxiliary processes (r0, r1, . . .) for intermediate computation, and an-
notate the encoding with the index ℓ of the first free auxiliary process name
({|f |}p̃ 7→q

ℓ ). To alleviate the notation, the encoding assigns mnemonic names to
these processes and their correspondence to the actual process names is for-
malised in the text using π(f) for the number of auxiliary processes needed for
encoding f : Nn → N, defined by

π(S) = π(Z) = π (Pn
m) = 0 π(R(f, g)) = π(f) + π(g) + 3

π (C(f, g1, . . . , gk)) = π(f) +
∑k

i=1 π(gi) + k π(M(f)) = π(f) + 3

For simplicity, we write p̃ for p1, . . . , pn (when n is known) and {Ai}ni=1 for
A1 # . . . # An.
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The encoding of the base cases is straightforward.

{|Z|}p 7→q
ℓ = p.ε -> q {|S|}p 7→q

ℓ = p.(s · c) -> q {|Pn
m|}p̃ 7→q

ℓ = pm.c -> q

Composition is also simple. Let h = C(f, g1, . . . , gk) : Nn → N. Then:

{|h|}p̃ 7→q
ℓ =

{
{|gi|}

p̃ 7→r′i
ℓi

}k

i=1
# {|f |}r

′
1,...,r

′
k 7→q

ℓk+1

where r′i = rℓ+i−1, ℓ1 = ℓ + k and ℓi+1 = ℓi + π(gi). Each auxiliary process
r′i connects the output of gi to the corresponding input of f . Choreographies
obtained inductively use these process names as parameters; name clashes are
prevented by increasing ℓ. By definition of # {|gi+1|} is substituted for the
(unique) exit point of {|gi|}, and {|f |} is substituted for the exit point of {|gk|}.
The resulting choreography also has only one exit point (that of {|f |}). Below
we discuss how to modify this construction slightly so that the gis are computed
in parallel.

For the recursion operator, we need to use recursive procedures. Let h =
R(f, g) : Nn+1 → N. Then, using the macro inc from Example 2 for brevity:

{|h|}p0,...,pn 7→q
ℓ = def T = if (rc

<-
= p0) then (q

′.c -> q; 0)

else {|g|}rc,q
′,p1,...,pn 7→rt

ℓg
# rt.c -> q′; inc(rc, rt) # T

in {|f |}p1,...,pn 7→q′

ℓf
# rt.ε -> rc; T

where q′ = rℓ, rc = rℓ+1, rt = rℓ+2, ℓf = ℓ+ 3 and ℓg = ℓf + π(f). Process rc is
a counter, q′ stores intermediate results, and rt is temporary storage; T checks
the value of rc and either outputs the result or recurs. Note that {|h|} has only
one exit point (after the communication from r to q), as the exit points of {|f |}
and {|g|} are replaced by code ending with calls to T .

The strategy for minimization is similar, but simpler. Let h = M(f) : Nn →
N. Again we use a counter rc and compute successive values of f , stored in q′,
until a zero is found. This procedure may loop forever, either because f(x̃, xn+1)
is never 0 or because one of the evaluations itself never terminates.

{|h|}p1,...,pn+1 7→q
ℓ = def T = {|f |}p1,...,pn,rc 7→q′

ℓf
# rc.ε -> rz;

if (rz
<-
= q′) then (rc.c -> q; 0) else (inc(rc, rz) # T )

in rz.ε -> rc; T

where q′ = rℓ, rc = rℓ+1, rz = rℓ+2, ℓf = ℓ+ 3 and ℓg = ℓf + π(f). In this case,
the whole if-then-else is inserted at the exit point of {|f |}; the only exit point of
this choreography is again after communicating the result to q.

Definition 9 (Encoding). Let f ∈ R. The encoding of f in MC is {|f |}p̃ 7→q =

{|f |}p̃ 7→q
0 .
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Example 7. We illustrate this construction by showing the encoding of the
add and sub functions given in Example 6. Recall that add = R(P 1

1 , C(S, P 3
2 )).

Expanding {|add|}px,py 7→q we obtain:

{|add|}px,py 7→q
0 =

def T = if (r1
<-
=px) then (r0.c -> q; 0)

else r0.c -> r3︸ ︷︷ ︸
{|P 3

2 |}
r1,r0,py 7→r3
4

; r3.(s · c) -> r2︸ ︷︷ ︸
{|S|}r3 7→r2

4

; r2.c -> r0; r1.c -> r2; r2.(s · c) -> r1︸ ︷︷ ︸
inc(r1,r2)

; T

in py.c -> r0︸ ︷︷ ︸
{|P 1

1 |}
py 7→r0
3

; r2.ε -> r1; T

The first two actions in the else branch correspond to {|C(S, P 3
2 )|}

r1,r0,py 7→r2
3 .

For subtraction, we first show how to implement equality directly in MC,
without resorting to its proof of membership in R. This choreography is not the
simplest possible because we want it to have only one exit point; its construction
illustrates how any choreography can be transformed to have this property.

eq(px, py, q, r)
∆
= def T = (r.c -> q; 0) in

if (px
<-
=py) then (px.ε -> r; T ) else (px.(s · c) -> r; T )

Recall now that sub = M(C(eq, C(add, P 3
2 , P

3
3 ), P

3
1 )). Unfolding the encoding of

minimization and composition, we obtain that {|sub|}px,py 7→q
0 is

def T = {|P 3
2 |}

px,py,r1 7→r5
7 # {|P 3

2 |}
px,py,r1 7→r6
7 # {|add|}r5,r6 7→r3

7 #

{|P 3
1 |}

px,py,r1 7→r4
11 # eq(r3, r4, r0, r11) # r1.ε -> r2;

if r2
<-
= r0 then (r1.c -> q;0) else (inc(r1, r2) # T )

in r2.ε -> r1; T

The first line in the definition of T is {|C(add, P 3
2 , P

3
3 )|}

px,py,r1 7→r3
5 ; the first five

processes composed therewithin are

{|C(eq, C(add, P 3
2 , P

3
3 ), P

3
1 )|}

px,py,r1 7→r0
3 .
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Fully unfolding the base cases, we obtain

{|sub|}px,py 7→q
0 = def T = py.c -> r5; r1.c -> r6;

def R = if (r8
<-
= r5)

then r7.c -> r3; px.c -> r4;

def S = r11.c -> r0; r1.ε -> r2;

if (r2
<-
= r0) then (r1.c -> q; 0) else (r1.c -> r2; r2.(s · c) -> r1; T )

in if (r3
<-
= r4) then (r3.ε -> r11; S) else (r3.(s · c) -> r11; S)

else r7.c -> r10; r10.(s · c) -> r9;

r9.c -> r7; r8.c -> r9; r9.(s · c) -> r8; R

in r6.c -> r7; r9.ε -> r8; R

in r2.ε -> r1; T

Due to the way sequential composition works, the structure of the definition of
sub is no longer clear in this fully unfolded encoding.

4.3. Soundness and Main Results

By induction we now show that the construction presented above is sound.
In the proof, we use partial specifications of states. For example, C, { p 7→ v } →
C ′, { q 7→ w } denotes that execution of C from any state where p contains value
v will yield C ′ in some state where q contains value w.

Theorem 5 (Turing completeness of MC). If f : Nn → N and f ∈ R, then, for

every k, {|f |}p̃ 7→q
k implements f with input processes p̃ = p1, . . . , pn and output

process q.

Proof. The proof is by induction on the definition of the set of partial recursive
functions. We use a stronger induction hypothesis – namely, that if σ(pi) = ⌜xi⌝
and f(x̃) is defined, then {|f |}p̃ 7→q

k , σ →∗ σ′ where σ′(pi) = ⌜xi⌝ and σ′(q) =
⌜f(x̃)⌝. The extra assumption that the input values are not changed during
execution is essential for the inductive step. In the case where f(x̃) is not

defined, we assume as before that {|f |}p̃ 7→q
k , σ ̸→∗ 0.

1. For each base case, it is straightforward to compute the sequence of reduc-
tions from the rules and the definition of the corresponding choreography.
We exemplify this with successor.

{|S|}p 7→q
ℓ : p.(s · c) -> q, { p 7→ ⌜x⌝ } → 0,

{
p 7→ ⌜x⌝
q 7→ ⌜x+ 1⌝

}
2. Let h = C(f, g1, . . . , gk) : Nn → N. The result follows directly from the

induction hypothesis and Lemma 1.
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3. Let h = R(f, g) : Nn+1 → N. By induction hypothesis, choreographies
{|f |}p1,...,pn 7→q

ℓf
and {|g|}p1,...,pn+2 7→q

ℓg
implement f and g, respectively, for all

p̃, q, ℓf and ℓg. Again, assume first that h(x0, x̃) is defined. Then:

{|h|}p0,p̃7→q
ℓ : def T = (. . .) in {|f |}p̃ 7→q′

ℓf
# rt.ε -> rc; T, { pi 7→ ⌜xi⌝ }

IH−−→
∗
def T = (. . .) in rt.ε -> rc; T,

{
pi 7→ ⌜xi⌝
q′ 7→ ⌜f(x̃)⌝

}
→ def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
q′ 7→ ⌜h(0, x̃)⌝
rc 7→ ⌜0⌝

}
We now prove that

def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
q′ 7→ ⌜h(k, x̃)⌝
rc 7→ ⌜k⌝

}
→∗ def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
q′ 7→ ⌜h(k + 1, x̃)⌝
rc 7→ ⌜k + 1⌝

}

for all k < x0. We only need to unfold T once, so we omit the def T =
(. . .) in wrapper in the next reduction sequence.
Since k < x0, the definition of T reduces to the else branch:

T →∗ {|g|}rc,q
′,p̃ 7→rt

ℓg
# rt.c -> q′; rc.c -> rt; rt.(s · c) -> rc; T,

{
pi 7→ ⌜xi⌝
q′ 7→ ⌜h(k, x̃)⌝
rc 7→ ⌜k⌝

}

IH−−→
∗
rt.c -> q′; rc.c -> rt; rt.(s · c) -> rc; T,


pi 7→ ⌜xi⌝
q′ 7→ ⌜h(k, x̃)⌝
rc 7→ ⌜k⌝
rt 7→ ⌜g(k, h(k, x̃), x̃)⌝


→∗ T,


pi 7→ ⌜xi⌝
q′ 7→ ⌜h(k + 1, x̃)⌝
rc 7→ ⌜k + 1⌝
rt 7→ ⌜k⌝


which establishes the thesis, ignoring the value in rt.
By induction on x0 we obtain that

{|h|}p0,p̃ 7→q
ℓ , { pi 7→ ⌜xi⌝ } →∗ def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
q′ 7→ ⌜h(x0, x̃)⌝
rc 7→ ⌜x0⌝

}

(1)−−→ def T = (. . .) in q′.c -> q; 0,

{
pi 7→ ⌜xi⌝
q′ 7→ ⌜h(x0, x̃)⌝
rc 7→ ⌜x0⌝

}

→∗ def T = (. . .) in0,


pi 7→ ⌜xi⌝
q′ 7→ ⌜h(x0, x̃)⌝
rc 7→ ⌜x0⌝
q 7→ ⌜h(x0, x̃)⌝


and the last process is equivalent to 0. In (1) we used the fact that the
contents of rc and p0 are both equal to ⌜x0⌝.
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If h(x0, x̃) is not defined, there are two possible cases. If f(x̃) is not

defined, then {|f |}p̃ 7→q′

ℓf
diverges from any state where each pi contains ⌜xi⌝,

whence so does {|h|}p0,p̃ 7→q
ℓ by Lemma 1 and rule C|Ctx. If g(k, h(k, x̃), x̃)

is undefined for some k < x0, then divergence is likewise obtained from

the fact that {|g|}rc,q
′,p̃

ℓg
diverges from any state where rc contains ⌜k⌝, q′

contains ⌜h(k, x̃)⌝, and pi contains ⌜xi⌝.
4. The case where h = M(f) : Nn → N is very similar, the auxiliary result

now stating that

def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
rc 7→ ⌜k⌝

}
→∗ def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
rc 7→ ⌜k + 1⌝

}
as long as f(x̃, k) is defined and different from 0.
The only new aspect is that non-termination may arise from the fact that
f(x̃, k) is defined and non-zero for every k ∈ N, in which case we get an
infinite reduction sequence

{|h|}p̃→q
ℓ , { pi 7→ ⌜xi⌝ } →∗ def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
rc 7→ ⌜0⌝

}
→∗ def T = (. . .) inT,

{
pi 7→ ⌜xi⌝
rc 7→ ⌜n⌝

}
→∗ . . .

Since MC is a fragment of CC, this result trivially implies Turing complete-
ness of CC. Let SPCC = {[[C, σ]] | [[C, σ]] is defined} be the set of the projections
of all projectable choreographies in CC. By Theorem 4, all terms in SPCC are
deadlock-free. By Lemma 2, for every function f we can amend {|f |} to an equiv-
alent projectable choreography. Then SPCC is Turing complete by Theorems 3
and 5.

Corollary 1 (Turing completeness of SPCC). Every partial recursive function
is implementable in SPCC.

Proof. Let f ∈ R. By Theorem 5, C = {|f |}p̃ 7→q for any suitable p̃ and q imple-
ments f . By Lemma 2, Amend(C) is projectable and operationally equivalent
to C. Hence, by Theorem 3, [[Amend(C), σ]] is a term in SP that correctly
implements f .

We finish this section by showing how to optimize our encoding and obtain
parallel process implementations of independent computations. If h is defined
by composition from f and g1, . . . , gk, then in principle the computation of the
gis could be completely parallelised. However, {||} does not fully achieve this, as
{|g1|},. . . ,{|gk|} share the processes containing the input. We define a modified

variant {{}} of {||} where, for h = C(f, g1, . . . , gk), {{h}}p̃ 7→q
ℓ is{

pj .c -> pij
}
1≤i≤k,1≤j≤n

#
{
{{gi}}

p̃i 7→r′i
ℓi

}k

i=1
# {{f}}r

′
1,...,r

′
k 7→q

ℓk+1
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with a suitably adapted label function ℓ. Now Theorem 2 applies, yielding:

Theorem 6. Let h = C(f, g1, . . . , gk). For all p̃ and q, if h(x̃) is defined and

σ is such that σ(pi) = ⌜xi⌝, then all the {{gi}}
p̃i 7→r′i
ℓi

run in parallel in {{h}}p̃ 7→q.

Proof. By induction on k. For k = 1 there is nothing to prove. By definition

of {{}}, {{gk+1}}
˜pk+1 7→r′k+1

ℓk+1
and {{gi}}

p̃i 7→r′i
ℓi

do not share any process names for

i ≤ k, hence Theorem 2 implies that {{gk+1}}
˜pk+1 7→r′k+1

ℓk+1
and

{
{{gi}}

p̃i 7→r′i
ℓi

}k

i=1
run

in parallel in
{
{{gi}}

p̃i 7→r′i
ℓi

}k+1

i=1
, and hence in {{h}}p̃ 7→q.

This parallelism is preserved by EPP, through Theorem 3.

5. Removing Selections

As we saw earlier, MC is the fragment of CC that does not contain selections,
and MC choreographies can be amended into projectable CC choreographies.
We now show that selections are not necessary to ensure projectability: we can
encode those selections introduced by amendment using only conditionals and
extra communications.

5.1. Selections as Value Communications

Selections are used pervasively for projectability in previous choreography
languages, so the fact that they are technically unnecessary is both interesting
and somewhat unexpected. This construction increases the size of the chore-
ography exponentially, but both the number of processes and the size of the
endpoint projections grow only by a linear factor.

We motivate our construction with an example.

Example 8. Consider a choreography where p makes a choice depending on the
value stored by q, and then r needs to be notified of the result (because, e.g., it is
involved in further communications in one or both of the branches). As an ex-

ample, we take C to be the choreography if p
<-
=q then p -> r[l];C1 else p -> r[r];C2,

where r has different behaviours in C1 and C2.
In order to eliminate the label selections, r must be able to perform a condi-

tional that is guaranteed to choose the same branch as taken by p. With this in
mind, we introduce an auxiliary process p∗ and add communications from p to
p∗ of ε (then branch) or s · c (else branch). Then r can recover this information
by first setting its contents to ε and then comparing them with p∗; this requires
another auxiliary process r∗ to store r’s value in the meantime. Furthermore,
even though we know at a global level what the result of the comparison will be,
the EPP (in particular, merging) demands that we consider both branches in
both cases. We therefore rewrite C as follows.

if p
<-
=q then

(
p.ε -> p∗; r.c -> r∗; r∗.ε -> r; if r

<-
=p∗ then (r∗.c -> r; C1) else (r∗.c -> r; C2)

)
else

(
p.s · c -> p∗; r.c -> r∗; r∗.ε -> r; if r

<-
=p∗ then (r∗.c -> r; C1) else (r∗.c -> r; C2)

)
24



(|C|)+ = p.ε -> z; (|C|)

(|0|) = 0 (|p.e -> q;C|) = p.e -> q; (|C|) (|defX = C2 inC1|) = defX = (|C2|) in (|C1|)

(|X|) = X (|if p<-
= q thenC1 elseC2|) = if p

<-
= q then (|C1, C2|)1 else (|C1, C2|)2

(|C1, C2|) = ⟨(|C1|), (|C2|)⟩ if C1 and C2 do not begin with a selection

(|p -> q[l]; C1, p -> q[r]; C2|) =〈
q.c -> q•; p.ε -> q; if q

<-
= z then q•.c -> q; (|C1, C2|)1 else q•.c -> q; (|C1, C2|)2,

q.c -> q•; p.sc -> q; if q
<-
= z then q•.c -> q; (|C1, C2|)1 else q•.c -> q; (|C1, C2|)2

〉
Figure 10: Elimination of selections from amended choreographies.

Observe that the behaviour of the processes not performing conditionals (p∗ and
r∗) is the same in all four branches, while p and r have two possible behaviours
that are independent of each other’s choices. This guarantees that merging will
work for all projections.

Recall that the definition of amendment guarantees that selections only occur
in branches of conditionals, and that they are always paired and in the same
order. These properties are essential to our construction. The fragment of CC
obtained by amending choreographies in MC can be inductively generated by

C ::= p.e -> q;C | if p<-
= q thenS(p, r̃, l, C1) elseS(p, r̃,r, C2) | defX = C2 inC1 |X | 0

where S(p, r̃, ℓ, C) prepends selections of label ℓ from p to all processes in the
list r̃. Formally, S is defined as

S(p, ∅, ℓ, C) = C S(p, r :: r̃, ℓ, C) = p -> r[ℓ]; S(p, r̃, ℓ, C)

Definition 10 (Selection elimination). Let C be a choreography obtained by
amending a choreography in MC. The encoding (|C|)+ of C in MC uses processes
p, p• for each p ∈ pn(C), plus a special process z, and is defined in Figure 10.

The auxiliary function (|C1, C2|) is used to eliminate selections in condition-
als, by simultaneously traversing both branches. As usual, we write (|C1, C2|)1
to denote the first component of the resulting pair, and likewise for the second
component.

This definition significantly exploits the structure of amended choreogra-
phies, where selections are always paired at the top of the two branches of condi-
tionals. It follows from it that |pn((|C|)+)| = 2|pn(C)|+1 and that |(|C|)+| ≤ 2|C|.
However, the EPP from MC to MP collapses all branches of conditionals, hence
|[[(|C|)+]]q• | ≤ |[[(|C|)+]]q| ≤ 3|[[C]]q| for every q ∈ pn(C).
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Theorem 7 (Selection elimination). For every choreography C ∈ MC, [[(|Amend(C)|)]]
is defined.

For convenience, we split the proof of this result in several lemmas.

Lemma 3. If q ∈ r̃, then [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)1]]q = [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)2]]q.

Proof. By induction on the length of r̃. If r̃ = ∅, then the result is vacu-
ously true. If r̃ does not start with q, then the result follows trivially from
the induction hypothesis. So consider the case where r̃ = q :: r̃′. In this case,
(|S(p, r̃, l, C1), S(p, r̃,r, C2)|) unfolds to

⟨q.c -> q•; p.ε -> q; if q
<-
= z then q•.c -> q; (|S(p, r̃′, l, C1), S(p, r̃′,r, C2)|)1
else q•.c -> q; (|S(p, r̃′, l, C1), S(p, r̃′,r, C2)|)2,

q.c -> q•; p.sc -> q; if q
<-
= z then q•.c -> q; (|S(p, r̃′, l, C1), S(p, r̃′,r, C2)|)1
else q•.c -> q; (|S(p, r̃′, l, C1), S(p, r̃′,r, C2)|)2⟩

and the endpoint projections of both choreographies for q become

q•!⟨c⟩; p?; if c<-
= z then q•?; [[(|S(p, r̃′, l, C1), S(p, r̃′,r, C2)|)1]]q

else q•?; [[(|S(p, r̃′, l, C1), S(p, r̃′,r, C2)|)2]]q

which are defined and identical.

Lemma 4. If [[(|C1|)]]q = [[(|C2|)]]q and p ̸= q ̸∈ r̃, then [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)1]]q =
[[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)2]]q.

Proof. By induction on the length of r̃. If r̃ = ∅, then the result reduces to the
hypothesis. Otherwise, (|S(p, r :: r̃, l, C1), S(p, r :: r̃,r, C2)|) unfolds to

⟨r.c -> r•; p.ε -> r; if r
<-
= z then r•.c -> r; (|S(p, r̃, l, C1), S(p, r̃,r, C2)|)1

else r•.c -> r; (|S(p, r̃, l, C1), S(p, r̃,r, C2)|)2,

r.c -> r•; p.sc -> r; if r
<-
= z then r•.c -> r; (|S(p, r̃, l, C1), S(p, r̃,r, C2)|)1

else r•.c -> r; (|S(p, r̃, l, C1), S(p, r̃,r, C2)|)2⟩

and since q ̸= r there are three cases to consider.

• q is r•: then both endpoint projections become

r?; (r!⟨c⟩; [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)1]]q•)⊔(r!⟨c⟩; [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)2]]q•)

and by induction hypothesis the two processes being merged are identical,
so the result is defined.

• q is z: then both endpoint projections become

r!⟨c⟩; [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)1]]z ⊔ [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)2]]z

and again by induction hypothesis the two processes being merged are
identical, so the result is defined.
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• q is another process: then both endpoint projections become simply

[[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)1]]q ⊔ [[(|S(p, r̃, l, C1), S(p, r̃,r, C2)|)2]]q

whence the induction hypothesis guarantees again that the two processes
being merged are identical, so the result is defined.

Lemma 5. For every choreography C in MC and every process r, [[(|Amend(C)|)]]r
is defined.

Proof. By structural induction on Amend(C). The only non-trivial case is that

where Amend(C) is if p
<-
= q thenS(p, r̃, l, C1) elseS(p, r̃,r, C2), where we need

to consider the possible cases for r. If r = p, then the induction hypothesis
establishes the thesis with induction over r̃. If r ∈ r̃, then Lemma 3 guaran-
tees that both branches of the conditional will be equal, hence the endpoint
projection is again defined. Finally, if r ̸∈ r̃, then by definition of amendment
[[Amend(C1)]]r = [[Amend(C2)]]r, whence Lemma 4 applies and establishes the
thesis as in the previous case.

Proof (Theorem 7). Straightforward consequence of Lemma 5.

The operational semantics of C and (|Amend(C)|) are related by the following
results, which are straightforward to prove by structural induction.

Lemma 6. Choreographies C and (|Amend(C)|)+ are equivalent wrt pn(C).

Lemma 7. If C, σ → C ′, σ′ and σ+ is such that σ+(p) = σ(p) for p ∈ pn(C)
and σ+(z) = ε, then (|Amend(C)|), σ+ →∗ (|C ′|), σ′+ for some σ′+ similarly
related to σ′. Furthermore, the latter reduction consists of only one step except
for the case when the former uses rule C|Cond.

Conversely, if (|Amend(C)|), σ+ → C ′, σ′, then C, σ → C ′′, σ′′ where C ′, σ′ →∗

(|Amend(C ′′)|), σ′′+. Furthermore, the latter reduction is non-empty only in the
case when the former uses rule C|Cond.

Corollary 2. With the notation of the previous lemma, if C, σ →∗ C ′, σ′, then
(|Amend(C)|)+, σ+ →∗ (|Amend(C ′)|), σ′+.

As a consequence, the set SPMC = {[[C, σ]] | [[C, σ]] is defined} of projections
of minimal choreographies is also Turing complete.

Corollary 3 (Turing completeness of SPMC). Every partial recursive function
is implementable in SPMC.

5.2. Discussion

Figure 11 displays the connections among the different calculi that we studied
in this work. We now discuss some consequences of these connections.

The results in this section show that label selection is not a necessary primi-
tive in a choreography calculus, and thus we could take MC (rather than CC) as
our core choreography language. Furthermore, the construction in § 4.2 shows
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Figure 11: Summary of the different mappings between calculi.

that selections are not needed for implementing computable functions in CC;
they are used only for obtaining projectable choreographies, via amendment.

There is however a strong argument for including label selections in a core
choreography calculus. The advantages of eliminating selections are a simpler
choreography language, a simpler definition of EPP (without merging), and a
simpler process language (without selection and branching). The main drawback
is that eliminating a selection needed for projectability makes the choreography
exponentially larger and requires the addition of extra processes and communi-
cations; this significantly changes the structure of the choreography, potentially
making it unreadable. Selections are also present in virtually all choreography
models (Coppo et al., 2016; Carbone et al., 2012; Carbone and Montesi, 2013;
Honda et al., 2008; Dalla Preda et al., 2015; Qiu et al., 2007), therefore we
believe that a core model such as CC should have them (in addition to the
drawback we mentioned).

The combination of our results on amendment and selection elimination sug-
gests the viability of a particular implementation strategy for choreographic pro-
gramming. Programmers could write choreographies without label selections,
ignoring how information about control flow is propagated between processes.
Then, our results could be used to translate these choreographies to process
implementations in a simple language that does not include label communica-
tions (like SPMC). This would simplify the target language, since it would not
require primitives for selection and branching. The exponential growth of the
intermediate choreography representation can be bypassed by using shared data
structures for the syntax tree, since the generated choreographies contain a lot
of duplicate terms.

However, such a methodology makes use of amendment, and relying exclu-
sively on amendment removes an important ability provided in CC and all other
standard choreography calculi: deciding at which point of execution selections
should be performed. In more expressive languages than CC, processes can
perform complex internal computations (Cruz-Filipe and Montesi, 2017c). For
example, assume that p had to assign tasks to other two processes r and s based
on a condition. In one case, r would run a slow task and s a fast one; other-
wise, r would run a fast task and s a slow one. In this case, p should begin by
sending a selection to the process with the slow task and then by sending it the
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necessary data for its computation, before it sends the selection to the process
with the fast task. (Note that it is only amendment that causes this issue,
since our selection elimination procedure preserves the control flow specified by
a choreography with selections.)

6. Minimality in Choreographies

We now discuss our choice of primitives for CC, showing that it is indeed a
minimal core language for choreographic programming. We first show that if we
remove or simplify any primitive from MC we are no longer able to compute all
partial recursive functions using projectable choreographies. Since label selec-
tion can be encoded in MC, we also discuss why it should be included in a core
language. Then we discuss the implications of our results for other choreography
languages.

6.1. Minimality of MC

We proceed by analysing each primitive of MC. Recall that Turing com-
pleteness of MC is a pre-requisite for the Turing completeness of choreography
projections. In most cases, simplifying MC yields a decidable termination prob-
lem (thus breaking Turing completeness). We start with the easiest terms.

Lemma 8. Let C be a choreography with no exit points. Then C does not
terminate.

Proof. Straightforward by structural induction on C.

Lemma 9. Let C be a choreography with no communications. If C implements
a function f : Nn → N, then, for all inputs x⃗ ∈ Nn, either f(x⃗) = xi for some i
or f(x⃗) is undefined.

Proof. By the semantics of MC, only communication actions can change the
state σ, hence structural induction on C shows that Cσ ̸→ C ′σ′ with σ′ ̸= σ.
The thesis is a consequence of the definition of function implementation.

Observe further that the syntax of expressions is trivially minimal: ε (zero) is
the only terminal, removing c makes termination decidable (since values become
statically defined), and likewise for s (since no new values can be computed).

Lemma 10. Let C be a choreography with no recursive definitions. Then C
always terminates.

Proof. Without recursive definitions, rule C|Unfold is never applicable, hence
execution C always reduces the size of the choreography.

Again we observe that recursive definitions are already severely restricted:
MC supports only tail recursion and definitions are not parameterised.

Removing conditionals naturally also breaks Turing completeness.
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Theorem 8. Let C be a choreography with no conditionals. Then termination
of C is decidable and independent of the initial state.

Proof. The second part is straightforward, since rule C|Cond is the only rule
whose conclusion depends on the state.

For the first part, we reduce termination to a decidable graph problem.
Define GC = ⟨V,E⟩ to be the graph whose set of vertices V contains C and 0,
and is closed under the following rules.

• if η;C ∈ V , then C ∈ V ;

• if defX = C2 inC1 ∈ V , then C1 ∈ V ;

• if defX = C2 in η;C1 ∈ V , then defX = C2 inC1 ∈ V ;

• if defX = C2 in η;X ∈ V , then defX = C2 in η;C2 ∈ V .

This set is finite: all rules add smaller choreographies to V , except the last one,
which can only be applied once for each variable in C.

There is an edge between C1 and C2 iff C1, σ → C2, σ
′ for some σ, σ′ without

using rule C|Eta-Eta. This is decidable, as the possibility of a reduction does not
depend on the state (as observed above). Also, if there is a reduction from C1,
then there is always an edge from C1 in the graph, as swapping communication
actions cannot unblock execution.

Then C terminates iff there is a path from C to 0, which can be decided in
finite time, as GC is finite.

More interestingly, limiting processes to evaluating only their own local val-
ues in conditions makes termination decidable. Intuitively, this is because a
process can only hold a value at a time and thus no process can compare its
current value to that of another process anymore.

Theorem 9. If the conditional is replaced by if p.c = v thenC1 elseC2, where v
is a value, and rule C|Cond by

i = 1 if σ(p) = v, i = 2 otherwise

if p.c = v thenC1 elseC2, σ → Ci, σ ,

then termination is decidable.

Proof. We first show that termination is decidable for processes of the form
defX = C2 inX and comparison with 0. The proof is by induction on the
number of recursive definitions in C2.

Consider first the case where C2 has no recursive definitions, and let P be
the set of all process names occurring in C2. We define an equivalence relation
on states by

σ ≡P σ′ iff (∀p ∈ P, σ(p) = ε iff σ′(p) = ε) .

The vertices of the graph are the 2|P | equivalence classes of states wrt ≡P ,
plus ⊤. Note that ≡P is compatible with the transition relation excluding rule
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C|Eta-Eta: for any choreography C using only process names in P , σ1 ≡ σ2 and
C, σi → σ′

i, then σ′
1 ≡ σ′

2.
The edges in the graph are defined as follows. There is an edge from [σ]

to [σ′] if C2, σ → X,σ′, and there is an edge from [σ] to ⊤ if C2, σ → 0, σ′ or
C2, σ → Y, σ′ for some Y ̸= X. This is constructible, as reductions in C2 are
always finite, and well-defined, as alternative reduction paths always end in the
same state.

Since reductions are deterministic and ≡P is compatible with reduction,
every node has exactly one edge leaving from it, except for ⊤. Therefore, we
can decide if defX = C2 inX terminates from an initial state σ by simply
following the path starting at σ and returning Yes if we reach ⊤ and No if we
pass some node twice. This procedure terminates, as the graph is finite.

For the inductive step, proceed as above but add an extra node to the graph,
labeled ⊥. When constructing the edges in the graph, if C2 reduces to a variable
Y different than X, we split into two cases. If Y is not bound in C2, we proceed
as in the previous case. If Y is bound, then we apply the induction hypothesis
to the choreography def Y = CY inY (where Y = CY is the same as in C2) to
decide whether the reduction from Y will terminate; if this is not the case, we
add an edge to ⊥, otherwise we proceed with the simulation. At the end, we
return No in the case that the path followed leads to ⊥.

The general case follows, as C has the same behaviour as defX = C inX for
some X not occurring in C.

If we allow comparisons with other values, the strategy is the same, but
the relation ≡P has to be made finer. The key observation is that only a
finite number of values can be used in comparisons, so we can identify states if
they only differ on processes whose contents are larger than all values used in
conditionals.

Summarising, simplifying MC in any of the ways described above makes it
no longer a representative model of choreographic programming.

6.2. CC as a Core Language

In the Appendix, we formally present an embedding of CC into the choreog-
raphy model from (Carbone and Montesi, 2013), which we refer to in this work
as Channel Choreographies (ChC). ChC is a very rich choreography language
designed to be projected to a variant of the session-typed π-calculus (Coppo
et al., 2016), which we refer to as Channel Processes (ChP). Communications
in ChP are based on channels, instead of process names as in SP. This layer
of indirection means that a process performing an I/O action does not know
which other process it is going to communicate with, and that there can be race
conditions on the usage of channels. ChC comes with a typing discipline for
checking that the usage of channels specified in a choreography does not cause
errors in the process code generated by EPP. In particular, we show that our
embedding always yields well-typed and projectable ChC choreographies.
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Channel Choreographies. Our formal translation from CC to ChC shows that
many primitives of ChC are not needed to achieve Turing completeness, includ-
ing: asynchronous communications, creation of sessions and processes, channel
mobility, parameterised recursive definitions, arbitrary local computation, un-
bounded memory cells at processes, and multiparty sessions. While useful in
practice, these primitives come at the cost of making the formal treatment of
ChC technically involved. In particular, ChC (as well as its implementation
Chor) requires a sophisticated type system, linearity analysis, and definition of
EPP to ensure correctness of projected processes. These features are not needed
in CC.

Other Choreography Languages. The language WS-CDL from W3C (W3C WS-
CDL Working Group, 2004) and the formal models inspired by it – e.g., (Car-
bone et al., 2012) – are very similar to ChC, and a similar translation from CC
could be formally developed, with similar implications as above. The same ap-
plies to the choreography language developed in (Dalla Preda et al., 2015), which
adds higher-order features to choreographies to achieve runtime adaptation. Fi-
nally, the language of compositional choreographies presented in (Montesi and
Yoshida, 2013) is an extension of ChC, and therefore our translation applies
directly. This implies that adding modularity to choreographies does not add
any computational power, as expected.

Process Languages. Our embedding of CC in ChC identifies a fragment of ChP,
via EPP, that is also Turing complete. This fragment is isomorphic to value-
passing CCS (Milner, 1980): since we only have one channel, we can interpret
the constructs k[A]!B⟨e⟩ and k[B]?A(x) as sending and receiving over a channel
with name kAB. We thus obtain a deadlock-free and Turing complete fragment of
value-passing CCS. Deciding whether a given CCS process lies in this fragment
is undecidable by Rice’s Theorem, but it is possible to define a procedure that
establishes deadlock-freedom for a large class of such processes. Both results
are thoroughly discussed in (Cruz-Filipe et al., 2017), where we also present a
procedure to extract a choreography that represents a particular network in SP.

Since ChC has also been translated to the Jolie programming language (Gab-
brielli et al., 2015; Montesi et al., 2014), our reasoning also applies to the latter
and, in general, to service-oriented languages based on message correlation.
Namely, our results identify a deadlock-free and Turing complete fragment of
Jolie.

7. Related Work and Discussion

Choreographies. The origins of choreographic programming (Montesi, 2013) stem
from the efforts of using choreographic descriptions for the specification of in-
teractions among web services. In particular, the Web Services Choreography
Description Language by the W3C, WS-CDL for short, is a choreography lan-
guage for describing the observable interaction behaviour of web services from
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a global viewpoint (W3C WS-CDL Working Group, 2004). The usefulness of
formal methods was recognised early on in the development of WS-CDL, and
spawned a successful line of research based on choreographies. This led to the
introduction of the notion of EndPoint Projection (EPP), which has been for-
malised in process calculi (Carbone et al., 2007; Qiu et al., 2007), and also
adopted in implementations (Red Hat, 2017).

Already in the early works on choreographies, it was evident that choices at
the choreography level (like our conditionals) play an important role for EPP:
their wrong programming may lead to projections that behave incorrectly, as
we discussed in § 2.3 and § 3.3. The solution of checking whether the other
processes could distinguish which branch they should execute based on the labels
that they receive – or, equivalently, operation or method names, as in service-
oriented or object-oriented programming respectively – was given together with
some early proposals of EPP (Carbone et al., 2007; Lanese et al., 2008). The
idea of merging was introduced in (Carbone et al., 2007), for a different calculus
than CC.

In the first choreography languages (W3C WS-CDL Working Group, 2004;
Carbone et al., 2007), the construct for performing a communication includes
both a carried value and a label. This corresponds to having both value com-
munication and label selections in a single construct. It is a choice motivated
by practice, since that is how invocations work in service-oriented computing
(where labels are the operations offered by a service) and object-oriented pro-
gramming (where labels are the names of the methods offered by an object).

Very soon afterwards, however, a series of choreography models with sep-
arate constructs for value communications and label selections (as we have in
CC) started emerging. This transition was influenced by the interaction with
the research line on session types for process calculi, which have the same dis-
tinction (Honda et al., 1998). There are two main reasons for having this dis-
tinction: it makes the model more foundational, since each construct is more
primitive; and it allows for studying the two primitives separately, which is
useful since labels are statically defined whereas communicated values are com-
puted at runtime (for example, the fact that the two labels are distinct can be
statically computed is what allows merging to be defined). The interaction be-
tween session types and choreographies spawned a prolific research area where
choreographies are used as types for protocols in process calculi and concurrent
languages (Hüttel et al., 2016; Ancona et al., 2016). The seminal work in this
direction is the theory of Multiparty Session Types (Honda et al., 2008, 2016).
The theory of session types have been recently found to be in a propositions-
as-types correspondence with linear logic (Caires and Pfenning, 2010; Wadler,
2012), where the action of making a choice (corresponding to a label selection)
is again distinct. This correspondence extends naturally to choreographies used
as types (Carbone et al., 2017).

Thus, selections are important for practical reasons – for example, they
model the selection of an operation, or method, from the interface offered by a
service, or an object – and for theoretical reasons – they are primitives identified
in foundational theories like session types and linear logic. Indeed, all current
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implementations of choreography languages have them (Yoshida et al., 2013;
Chor, 2017; Dalla Preda et al., 2017).

Our encoding from CC to MC and Corollary 3 show, for the first time, that as
far as the computational expressivity of choreography projections is concerned
we need only consider value communications. Technically, the communication of
a choice can be simulated by communicating appropriate values and then using
local conditionals to understand which choice was transmitted by the sender.
This is possible because in choreographic programming we have complete control
of the local computations performed by each process, differently from works
where choreographies are used as types (which abstract from computation).

Which model between CC and MC should we then use when studying chore-
ographies?

If the aim is to determine whether a given choreography language is Tur-
ing complete, then MC is the obvious choice. For example, if a language has
(an equivalent version of) MC as a fragment, then it is obviously Turing com-
plete. Also, the simple EPP for MC gives a procedure for constructing a process
implementation for all possible computations.

Another common aim is to observe the communications enacted by a chore-
ography, either statically (e.g., for verification) or at runtime (e.g., monitoring).
Analysing the flow of choice communications is a key element of all behavioural
type systems for choreographies to date (Carbone et al., 2012; Carbone and
Montesi, 2013; Montesi and Yoshida, 2013; Carbone et al., 2014; Giallorenzo,
2016; Chor, 2017; Red Hat, 2017), which aim at checking that a choreography
correctly implements some protocol specifications. For these, CC is a represen-
tative model that can be used as foundations to start from. For other kinds of
analyses, like information flow in choreographies (Lluch Lafuente et al., 2015),
selections are not strictly necessary and MC may be the better choice. Sim-
ilar considerations apply to monitoring, since typically that involves checking
whether the actions performed by a choreographed system respect some specifi-
cations: if the specifications contain information about explicit choice commu-
nications, then selections are necessary (CC), otherwise MC may offer a simpler
base model. In general, CC is preferrable for all frameworks that have mecha-
nisms where operations (or methods) can be selected out of the interface offered
by some component (like a service or an object).

Choreographic Programming and Applications of our Development. Essentially,
choreographic programming applies the ideas of choreographies and EPP to syn-
thesise correct-by-construction implementations of concurrent processes. Lan-
guages for choreographic programming are typically more complicated than
choreography languages for specifications. For example, we have choreographic
programming languages for: service-oriented computing (Carbone and Mon-
tesi, 2013), including notions such as dynamic networks; adaptable comput-
ing (Dalla Preda et al., 2017), including runtime code updates; and cyber-
physical systems (López et al., 2016; López and Heussen, 2017), including broad-
casts and failures.
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Thus, so far, most expressivity results have been investigated for choreo-
graphic specifications. For example, we know of a strong characterisation result
for multiparty session types: a variant of multiparty session types corresponds
to communicating finite state machines (Brand and Zafiropulo, 1983) that re-
spect the property of multiparty compatibility (Deniélou and Yoshida, 2013).
By contrast, for choreographies used as concrete implementations (our interest
here), this question has barely been scratched before this work: session-typed
choreographies with finite traces correspond to proofs in multiplicative-additive
linear logic (Carbone et al., 2014). The language in (Carbone et al., 2014) does
not include any constructs for programming repetitive behaviour. To the best
of our knowledge, MC is the first choreography language to be identified as
minimally Turing complete.

Just as it happened for process calculi, the field of choreographic program-
ming is evolving into a workshop of different languages developed for different
purposes (Montesi, 2015). In this context, it makes sense to develop new notions
by following a minimalistic approach, such that they remain as easy to adopt
in other choreography models as possible. The results that we have presented
here in extended form have already been useful in this sense. We briefly report
on some developments.

In (Cruz-Filipe and Montesi, 2017d), we showed that CC is unable to encode
asynchronous communication, and then discussed which primitives to add in
order to be able to mimic this behaviour in a synchronous semantics. Thanks
to CC, in addition to the technical convenience of working in a setting that is
as simple as possible, our study again identifies a minimal set of primitives that
must be present in a choreography language to build such an encoding, and the
encoding itself can be structurally extended to most choreography languages.

In (Cruz-Filipe and Montesi, 2017b), we formally defined what a “good”
asynchronous semantics for choreographies is, and show that it is possible to
equip MC with such a semantics, obtaining a version of MC with an asyn-
chronous reduction semantics. Again, our construction is simple yet general
and is easy to adopt in more sophisticated choreography languages.

In (Cruz-Filipe et al., 2017), we considered the problems of (i) deciding
whether a process implementation can be described by a choreography, and (ii)
synthesising such a choreography in the affirmative case; we showed that, for CC
and SP, both problems are solvable in exponential time. Since all languages for
choreographic programming introduced so far include CC, the technical chal-
lenges identified for these problems are present in all such languages, and the
identified exponential complexity is the current lower bound for all of them.

We have also used CC as a basis to obtain expressive choreography lan-
guages for more practical purposes. In (Cruz-Filipe and Montesi, 2017c), we
studied how to extend CC with general sequential composition – a feature that
is unavailable in most choreography calculi equipped with recursion – together
with other commonly occurring primitives that are useful in practice (process
spawning and name passing). The resulting calculus is simple, yet expressive
enough to capture different parallel computing algorithms, like parallel versions
of gaussian elimination and fast fourier transform (Cruz-Filipe and Montesi,
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2016). These two works illustrate how concepts defined for CC (for example,
the notion of “running in parallel”, Definition 4) are naturally applicable in
more complex settings.

Our results support the claim that there are substantial advantages to gain
from first studying choreographic programming in itself, abstracting from fea-
tures that are specific to other models (like channels in process calculi), and
then applying the obtained insights to particular scenarios. We believe that CC
is a useful step in this direction, and that it will serve as a stepping stone for the
future developments of the paradigm of choreographic programming in general.

Full β-reduction and Nondeterminism. Execution in CC is nondeterministic
due to the swapping of communications allowed by the structural precongru-
ence ⪯. This recalls full β-reduction for λ-calculus, where sub-terms can be
evaluated whenever possible. However, the two mechanisms are actually differ-

ent. Consider the choreography C
∆
= p.c -> q; q.ε -> r;0. If CC supported

full β-reduction, we should be able to reduce the second communication before
the first one, since there is no data dependency between the two. Formally, for
some σ: C, σ → p.c -> q;0, σ[r 7→ ε]. However, this reduction is disallowed by
our semantics: rule C|Eta-Eta cannot be applied because q is present in both
communications. This difference is a key feature of choreographies, stemming
from their practical origins: controlling sequentiality by establishing causalities
using process identifiers is important for the implementation of business pro-
cesses (W3C WS-CDL Working Group, 2004). For example, imagine that the
choreography C models a payment transaction and that the message from q
to r is a confirmation that p has sent its credit card information to q; then,
it is a natural requirement that the second communication happens only after
the first. Note that we would reach the same conclusions even if we adopted
an asynchronous messaging semantics for SP, since the first action by q is a
blocking input.

While execution in CC can be nondeterministic, computation results are
deterministic as in many other choreography languages (Carbone and Montesi,
2013; Carbone et al., 2014; Montesi and Yoshida, 2013): if a choreography
terminates, the result will always be the same regardless of how its execution is
scheduled, recalling the Church–Rosser Theorem for the λ-calculus (Church and
Rosser, 1936). Nondeterministic computation is not necessary for our results.
Nevertheless, it can be easily added to CC. Specifically, we could augment CC
with the syntax primitive C1 ⊕p C2 and the reduction rule C1 ⊕p C2 → Ci for
i = 1, 2. Extending SP with an internal choice B1 ⊕ B2 and our definition of
EPP is straightforward: in SP, we would also allow B1 ⊕B2 → Bi for i = 1, 2,
and define [[C1 ⊕p C2]]r to be [[C1]]r ⊕ [[C2]]r if r = p and [[C1]]r ⊔ [[C2]]r otherwise.

Merging and Amendment. Amendment was first studied by Lanese et al. (2013)
for a simple language with finite traces (thus not Turing complete). Our defini-
tion is different, since it uses merging for the first time.

We could define our amendment procedure in different ways, e.g., by prop-
agating selections from a process to another as a chain, rather than from one
process to all the others. This would not influence our results.
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Actors and Asynchrony. Processes in SP communicate by using direct refer-
ences to each other, recalling actor systems. However, there are notable differ-
ences: communications are synchronous and inputs specify the intended sender.
The first difference comes from minimality: asynchrony would add possible be-
haviours to CC, which are unnecessary to establish Turing completeness. We
leave an investigation of asynchrony in CC to future work. The second difference
arises because CC is a choreography calculus, and communication primitives in
choreographies typically express both sender and receiver.

Register Machines. The computational primitives in CC recall those of the Un-
limited Register Machine (URM) (Cutland, 1980), but CC and URM differ in
two main aspects. First, URM programs contain go-to statements, while CC
supports only tail recursion. Second, in the URM there is a single sequen-
tial program manipulating the cells, whereas in CC computation is distributed
among the various cells (the processes), which operate concurrently.

Simulating the URM is an alternative way to prove Turing completeness of
CC. However, our proof using partial recursive functions is more direct and gives
an algorithm to implement any function in CC, given its proof of membership
in R. It also yields the natural interpretation of parallelisation stated in The-
orem 6. Similarly, we could establish Turing completeness of CC using only a
bounded number of processes. However, such constructions encode data using
Gödel numbers, which is not in the spirit of our declarative notion of function
implementation. They also restrict concurrency, breaking Theorem 6.

Acknowledgements

We thank Hugo Torres Vieira and Gianluigi Zavattaro for their useful com-
ments. Montesi was supported by CRC (Choreographies for Reliable and ef-
ficient Communication software), grant no. DFF–4005-00304 from the Danish
Council for Independent Research.

References

Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P.,
Gay, S. J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E. B., Martins, F.,
Mascardi, V., Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos,
V. T., Yoshida, N., 2016. Behavioral types in programming languages. Foun-
dations and Trends in Programming Languages 3 (2-3), 95–230.

Barendregt, H., 1984. The Lambda Calculus: Its Syntax and Semantics, 2nd
Edition. North Holland.

Brand, D., Zafiropulo, P., Apr. 1983. On communicating finite-state machines.
J. ACM 30 (2), 323–342.
URL http://doi.acm.org/10.1145/322374.322380

37

http://doi.acm.org/10.1145/322374.322380


Caires, L., Pfenning, F., 2010. Session types as intuitionistic linear propositions.
In: CONCUR. Vol. 6269 of LNCS. Springer, pp. 222–236.

Carbone, M., Honda, K., Yoshida, N., 2007. Structured communication-centred
programming for web services. In: Proc. of ESOP. Vol. 4421 of LNCS.
Springer-Verlag, pp. 2–17.

Carbone, M., Honda, K., Yoshida, N., 2012. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst. 34 (2), 8.

Carbone, M., Montesi, F., 2013. Deadlock-freedom-by-design: multiparty asyn-
chronous global programming. In: Giacobazzi, R., Cousot, R. (Eds.), POPL.
ACM, pp. 263–274.
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Appendix A. CC as a Core Language: Channel Choreographies

CC is representative of the body of previous work on choreographic program-
ming, where choreographies are used for implementations, for example (Carbone
et al., 2012; Carbone and Montesi, 2013; Chor, 2017; Montesi and Yoshida, 2013;
Dalla Preda et al., 2015; W3C WS-CDL Working Group, 2004). All the prim-
itives of CC (and therefore of MC) can be encoded in such languages. Thus,
we obtain a notion of function implementation for these languages, induced by
that for CC, for which they are Turing complete.

In this section we make this claim precise for the model in (Carbone and
Montesi, 2013), which we refer to in this work as Channel Choreographies
(ChC). ChC is designed to be projected to a variant of the session-typed π-
calculus (Coppo et al., 2016), which we refer to as Channel Processes (ChP).
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C ::= η;C | if p.(e = e′) thenC1 elseC2 | 0

| defX(D̃) = C2 inC1 | X⟨Ẽ⟩ | (νr) C

η ::= p̃[A] start q̃[B] : a(k) | p[A].e -> q[B].x : k

| p[A] -> q[B] : k[l] | p[A] -> q[B] : k⟨k′[C]⟩

D ::= p(x̃, k̃) E ::= p(ẽ, k̃)

Figure A.12: Channel Choreographies, Syntax.

Communications in ChP are based on channels, instead of process names as in
SP. This layer of indirection means that a process performing an I/O action
does not know which other process it is going to communicate with, and that
there can be race conditions on the usage of channels. ChC comes with a typing
discipline for checking that the usage of channels specified in a choreography
does not cause errors in the process code generated by EPP.

Appendix A.1. Channel Choreographies

Syntax. We report the full syntax of ChC in Figure A.12. Several terms are

unnecessary for our translation; we box such terms in our presentation of the
syntax. In the original presentation of ChC, expressions e may contain any basic
values (integers, strings, etc.) or computable functions, making the language
trivially Turing complete. Also, labels l range over an infinite set. Here, for
our development, we need only to consider expressions of the form ε or s · x,
and labels l and r (as in CC). The major difference between CC and ChC
is the usage of public channels a and session channels k. Public channels are
used to create new processes and channels at runtime, whereas session channels
are used for point-to-point communications between processes. We only need a
single session channel in our development.

An interaction η in ChC can be either a start, a value communication, a

selection, or a delegation. In a start term p̃[A] start q̃[B] : a(k), the processes p̃
on the left synchronise at the public channel a in order to create a new private
session k and spawn some new processes q̃ (k and q̃ are bound to the continu-
ation). Each process is annotated with the role it plays in the created session.
Roles are ranged over by A, B, C, . . .. They are used in the typing discipline of
ChC to check whether sessions are used according to protocol specifications,
given as multiparty session types (Honda et al., 2016).

In a value communication p[A].e -> q[B].x : k, process p sends its evalua-
tion of expression e over session k to process q, which stores the result in its
local variable x; the name x appearing under q is bound to the continuation.
Differently from CC, where each process has only one memory cell accessed
through the placeholder c, in ChC each process has an unbounded number of
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p[A].v -> q[B].x : k;C → C[v/x@q]
Ch|Com

p[A] -> q[B] : k[l];C → C
Ch|Sel

p[A] -> q[B] : k⟨k′[C]⟩;C → C
Ch|Del

p̃[A] start q̃[B] : a(k);C → (νq̃, k) C
Ch|Start

i = 1 if v = w, i = 2 otherwise

if p.(v = w) thenC1 elseC2 → Ci
Ch|Cond

C1 ⪯ C2 C2 → C ′
2 C ′

2 ⪯ C ′
1

C1 → C ′
1

Ch|Struct

C1 → C ′
1

defX(D̃) = C2 inC1 → defX(D̃) = C2 inC
′
1

Ch|Ctx

Figure A.13: Channel Choreographies, Semantics.

cells (variables). Selections in ChC, of the form p[A] -> q[B] : k[l], are very
similar to those in CC: the only difference is that we also have to write which
role each process plays and the session used for communicating. In a delegation
term p[A] -> q[B] : k⟨k′[C]⟩, process p delegates its role C in session k′ to pro-
cess q; delegation in ChC is a typed form of channel mobility, inspired by the
π-calculus.

In a conditional, process p chooses a continuation based on whether the
expressions e and e′ evaluate to the same value according to its own local state.
The restriction term (νr) C is standard and binds the scope of r (which can
be either a process name p or a session channel name k) to C. Finally, in the
definition of a recursive procedure, the parameters D̃ indicate which processes
are used in the body of the procedure and which variables and sessions are used
by each process. In the invocation of a procedure X⟨Ẽ⟩, each process can pass
generic expressions as parameters to itself.

Semantics. ChC was originally presented with an asynchronous semantics (Car-
bone and Montesi, 2013). We first present our results using only the (simpler)
synchronous variant of the semantics of ChC, and defer the discussion of the
general asynchronous case to the end of this section. This semantics is given
in terms of a reduction relation, presented in Figure A.13. Rule Ch|Com is
the key rule, where the value sent from a process p is received by a process q.
Technically, this is modelled by replacing variable x with v in the continuation
C, but only when it appears under the process name q (the smart substitution
C[v/x@q]). Rule Ch|Cond models an internal choice: p chooses a continuation
depending on whether the two values v and w are the same. Rules Ch|Del and
Ch|Start implement the informal semantics of delegation and start described
earlier; we do not use them in our development. The other rules are similar to
those of CC. The structural precongruence ⪯ is defined as expected, following
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P,Q ::= k[A]!B⟨e⟩;P | k[B]?A(x);P | k[A]!B⊕ l;P | k[B]?A&{li : Pi}i∈I

| P |Q | if e = e′ thenP elseQ | defX(x̃, k̃) = Q inP | X⟨ẽ, k̃⟩ | 0

Figure A.14: Channel Processes, Syntax (selection).

the same intuition as that for CC. In particular, it supports swapping two terms
whenever they involve disjoint process names.

As expected, ChC offers a deadlock-freedom-by-design property in the style
of Theorem 1 (Carbone and Montesi, 2013).

Appendix A.2. Channel Processes (ChP)

We now present Channel Processes (ChP), the target language that chore-
ographies in ChC can be projected to. We discuss only the terms used in our
work (see (Carbone and Montesi, 2013) for a complete presentation).

Syntax. The relevant part of the syntax of processes (P,Q) is reported in Fig-
ure A.14. Binding occurrences are denoted by the usage of round parentheses.
Terms a[Ã](k), a[A](k) and !a[A](k) are used to start a new session k by synchro-
nising on the public channel a, and model respectively: the process requesting
the creation of the session (responsible for playing the first role in Ã); a process
accepting to play role A in the session; and, finally, a replicated process that will
spawn a fresh process for playing role A. In the first line we have the terms for
in-session communications. In term k[A]!B⟨e⟩;P , as role A on session k, we send
the value of expression e to B on the same session; then, we proceed as P . Du-
ally, term k[B]?A(x);P receives a message for role B from role A on session k and
stores it in variable x. Terms k[A]!B ⊕ l and k[B]?A&{li : Pi}i∈I model, respec-
tively, branch selection and offering. Finally, terms k[A]!B⟨k′[C]⟩ and k[B]?A(k′[C])
capture channel mobility. The other terms are the standard parallel composi-
tion, procedure definition, procedure call, conditional (restricted to checking for
equality), and terminated process.

Semantics. As before, we discuss only the synchronous semantics of ChP. We
discuss only the communication rules, shown in Figure A.15, as all the other
rules are standard – see (Kouzapas and Yoshida, 2013). As in typical calculi
for multiparty sessions equipped with roles, each role in a session is a distinct
communication endpoint. Therefore, a send action on a session k from a role A
towards a role B synchronises with a receive action on the same session k by the
target role B wishing to receive from the sender role A.

Appendix A.3. Endpoint Projection and Typing

As for CC, the Endpoint Projection from ChC to ChP is defined by first
defining how to project the behaviour of a single process. The projection of
a process p from a choreography C, written [[C]]p, is inductively defined on
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k[A]!B⟨v⟩;P | k[B]?A(x);Q → P | Q[v/x]
CP|Com

(j ∈ I)

k[A]!B⊕ lj ;P | k[B]?A&{li : Qi}i∈I → P | Qj
CP|Sel

Figure A.15: Channel Processes, Semantics (selection).

[[p[A].e -> q[B].x : k;C]]r =


k[A]!B⟨e⟩; [[C]]r if r = p

k[B]?A(x); [[C]]r if r = q

[[C]]r otherwise

[[
if p.(e = e′)
then C1 else C2

]]
r

=


if e = e′

then [[C1]]r else [[C2]]r
if r = p

[[C1]]r ⊔ [[C2]]r otherwise

Figure A.16: Channel Choreographies, EndPoint Projection (relevant cases).

the structure of C in a similar way as the behaviour projection given in § 3.3.
The complete EPP procedure from ChC to ChP is technically involved, be-

cause the start term p̃[A] start q̃[B] : a(k) found in ChC enables the reuse of the
same services exposed at a public channel a for spawning processes with poten-
tially different behaviour. However, since start terms and restriction of names
are unnecessary for our development, we can use a much simpler definition –
see (Carbone and Montesi, 2013) for the general case. We report the rules for
projecting value communications and conditionals in Figure A.16. The merg-
ing operator P ⊔ Q works as in CC: it is isormorphic to P and Q aside from
input branches with distinct labels, which are instead included in a larger input
branching.

Appendix A.4. Typing ChC

Differently from CC, the EPP of a choreography in ChC does not always
yield correct results. Consider the following choreography:

C = p[A] -> q[B] : k[l]; q[B].ε -> p[A].x : k; r[A] -> q[B] : k[l]

The choreography C above always terminates by reaching 0 (by using rules
Ch|Sel, then Ch|Com, and then Ch|Sel again). However, its EPP (albeit defined)
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G ::= A -> B :⟨nat⟩;G | A -> B : {li : Gi}i∈I | µt;G | t | end

S ::= nat | string | . . . l ::= l | r

Figure A.17: Global Types, Syntax.

may get stuck:

[[C]]p [[C]]r

[[C]] =
︷ ︸︸ ︷
k[A]!B⊕ l; k[A]?B(x) |

︷ ︸︸ ︷
k[A]!B⊕ l

| k[B]?A&{l : k[B]!A⟨ε⟩; k[B]?A&{l : 0}}︸ ︷︷ ︸
[[C]]q

Above, we have a race between the projections of process p and process r for
the selection of label l offered by process q. This is because both p and r play
the same role A in session k and therefore the receiver (the projection of process
q) cannot distinguish them. In the case where the race is won by the projection
of process r, not only do we obtain a reduction not defined by the originating
choreography, but we even get into a deadlocked situation:

[[C]] → k[A]!B⊕ l; k[A]?B(x) | k[B]!A⟨ε⟩; k[B]?A&{l : 0}

To avoid such situations, ChC comes with a typing discipline based on multi-
party session types that guarantees the absence of races.

A typing judgement for CC has the form Γ;Θ ⊢ C ▷∆, where ∆ types the
usage of sessions, Θ the ownership of roles by processes, and Γ variables and
public channels.

Formally, the typing environment Γ contains variable typings of the form
x@p : S, typing variable x at p with data type S (which can only be nat in our
case). An environment Θ contains ownership typings of the form p : k[A], read
“process p owns role A in k” (when writing Θ, p : k[A], it is assumed that no
other process owns the same role for the same session in Θ). The environment
∆ contains session typings of the form k : G, where G is a global type (Honda
et al., 2016). The syntax of global types is given in Figure A.17. A global
type G abstracts a communication between two roles in a session. A value
communication is abstracted by A -> B : ⟨nat⟩ (we restrict values to be natural
numbers). A global type A -> B : {li : Gi}i∈I allows any selection from A to B

of one of the labels li, provided that then the session proceeds as specified by
the corresponding continuation Gi. The other terms are for recursion (µt and
t) and termination (end).

We discuss the most relevant typing rules for ChC, given in Figure A.18.
Rule T|Com checks that, in a value communication on session k, the sender and
receiver processes own their respective roles in session k (Θ ⊢ p : k[A], q : k[B]),
that the protocol for session k expects a communication for their respective roles
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Γ ⊢ e@p : S Θ ⊢ p : k[A], q : k[B] Γ, x@q : S; Θ ⊢ C ▷∆, k : G

Γ;Θ ⊢ p[A].e -> q[B].x : k;C ▷∆, k : A -> B :⟨S⟩;G
T|Com

Θ ⊢ p : k[A], q : k[B] j ∈ I Γ;Θ ⊢ C ▷∆, k : Gj

Γ;Θ ⊢ p[A] -> q[B] : k[lj ];C ▷∆, k : A -> B : {li : Gi}i∈I

T|Sel

Γ;Θ ⊢ C1 ▷∆ Γ;Θ ⊢ C2 ▷∆

Γ;Θ ⊢ if p.(e = e′) thenC1 elseC2 ▷∆
T|Cond

∆ end only Γ′ ⊆ Γ

Γ, X(D̃) : (Γ′; Θ;∆′); Θ ⊢ X⟨D̃⟩ ▷∆,∆′
T|Call

Γ, X(D̃) : (Γ′; Θ′; ∆′); Θ ⊢ C1 ▷∆ Γ′ ⊆ Γ

Γ′, X(D̃) : (Γ′; Θ′; ∆′); Θ′ ⊢ C2 ▷∆′ Θ′ ⊆ Θ

Γ;Θ ⊢ defX(D̃) = C2 inC1 ▷∆
T|Def

Figure A.18: Channel Choreographies, Typing Rules (selection).

(k : A -> B :⟨S⟩;G), and that the expression sent by the sender has the expected
type S. Rule T|Sel checks that a selection uses one of the labels expected
by the protocol for the session (j ∈ I). Rule T|Cond is standard, requiring
both branches to have the same typing; observe that different communication
behaviour in the two branches may still occur, because of rule T|Sel. Rules
T|Call and T|Def type, respectively, recursive calls and recursive procedures.
These rules are simplified compared to the presentation in (Carbone and Mon-
tesi, 2013), taking into account that our encoding always calls procedures with
exactly the same arguments (processes and variables) as they are declared.

Well-typedness is preserved by reductions. Furthermore, using this type
system we get an operational correspondence result for EPP from ChC to ChP.

Theorem 10 (Operational Correspondence (ChC ↔ ChP) (Carbone and Mon-
tesi, 2013)). Let C be a well-typed channel choreography without start subterms

(terms of the form p̃[A] start q̃[B] : a(k)) and such that its endpoint projection
[[C]] is defined. Then:

• (Completeness) C → C ′ implies [[C]] →≻ [[C ′]];

• (Soundness) [[C]] → P implies C → C ′ and [[C ′]] ≺ P .

where ≺ is the pruning relation defined in (Carbone and Montesi, 2013).

As for CC, the EPP of a well-typed channel choreography never deadlocks.
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Appendix A.5. Embedding CC into ChC

Defining an embedding from CC to ChC is nontrivial, as the communication
primitives of CC and ChC are different. In CC, messages are passed directly
between processes: each process knows whom it is sending to or receiving from
in each communication step; in ChC, communication is between roles in a ses-
sion channel. To translate core choreographies into channel choreographies, we
therefore assign to each process a role syntactically identical to its name, and
perform all communication over a fixed channel k.

Conditional terms are also not directly translatable, as ChC evaluates guards
in a single process. For this reason, each translated process uses two variables:
x, storing its internal value, and y, used exclusively for temporary storage of a
value required for a test.

For recursion, we recall that pn(C) returns the set of process names in C.

Definition 11 (Embedding of CC in ChC). The embedding of a core choreog-
raphy C in ChC is {[C]}, inductively defined as follows.

{[p.e -> q;C]} = p[p].e[x/c] -> q[q].x : k; {[C]}
{[p -> q[l];C]} = p[p] -> q[q] : k[l]; {[C]}{[

if p
<-
=q thenC1 elseC2

]}
= q[q].x -> p[p].y : k;

if p.(x = y) then {[C1]} else {[C2]}
{[defX = C2 inC1]} =

(
defX(∗) = {[C2]}

)
[|C2|/∗] in {[C1]}

{[X]} = X⟨∗⟩ {[0]} = 0

where |A| = {p({x, y}, k) | p ∈ pn(A)}.

Lemma 11. Let C and C ′ be core choreographies. Then C ⪯ C ′ if and only if
{[C]} ⪯ {[C ′]}.

Proof. For the direct implication, observe that all structural precongruence rules
in CC become valid instances of precongruence in ChC when mapped by {[·]}.
Conversely, given a structural precongruence rule in ChC, if its arguments are
in the image of {[·]}, then the rule can be pulled back to a valid precongruence
in CC.

In order to compare the semantics of core and channel choreographies, we
need to take the state into account. This is done by viewing each state as a
substitution, replacing all free occurrences of x with the actual content of the
process it belongs to.

Definition 12 (Substitution induced by state). Let C be a core choreography
and σ be a state. The substitution σC is defined as σC = [σ(p)/x@p | p ∈ pn(C)],
and the embedding of C in ChC via σ is the channel choreography {[C]}σ =
σC({[C]}).

Below, →+ denotes a chain of one or more applications of→, and→? denotes
identity or one application of →.
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Theorem 11 (Operational Correspondence (CC ↔ ChC)). Let C be a chore-
ography in CC. Then, for all σ:

• (Completeness) C, σ → C ′, σ′ implies {[C]}σ →+ {[C ′]}σ′ ;

• (Soundness) {[C]}σ → C ′ implies C, σ → C∗, σ∗ and C ′ →? {[C∗]}σ∗ .

Proof. • (Completeness) We analyze the possible cases for the rule justi-

fying C
η−→ C ′. The only non-trivial case is rule C|Com. Suppose C is

p.e -> q;C ′. If C, σ → C ′, σ′, then {[C]}σ = p.σC(e[x/c]) -> q.x : k; {[C ′]}σ′′

where σ′′ = σC\{σ(q)/x@q} can make a transition to {[C ′]}σ′′ [e[σC(p)/c]/x@q],
which coincides with {[C ′]}σ′ .

• (Soundness) The proof is again by case analysis on the transition from
{[C]}σ to C ′, noting that this cannot involve delegation or start actions.
Most cases are straightforward, except when the transition is a commu-
nication obtained from translating a conditional. In this case, C ′ must
execute the full conditional action, and {[C∗]}σ∗ reduces to C ′ by applica-
tion of rule Ch|Cond.

We now define a notion of function implementation in ChC. Since the se-
mantics of ChC does not have state, this definition is slightly different than
that for CC. The embedding of CC is then a Turing complete fragment of ChC,
which we show to be projectable.

Definition 13 (Implementation in ChC). A channel choreography C imple-
ments a function f : Nn → N with input variables p1.z1,. . . ,pn.zn and output
variable q.z if, for all x1, . . . , xn ∈ N:

• if f(x̃) is defined, then C[ ˜⌜xi⌝/zi@pi] →∗ 0, and q receives exactly one
message with ⌜f(x̃)⌝ as the value transmitted;

• if f(x̃) is not defined, then C[ ˜⌜xi⌝/zi@pi] ̸→∗ 0, and q never receives any
messages.

Theorem 12 (Soundness). If f : Nn → N is a partial recursive function, then{[
{|f |}p̃ 7→q

]}
implements f with input variables p̃.x and output variable q.x.

Proof. Consequence of the proof of Theorem 5 and of Theorem 11: as the only
free variables in

{[
{|f |}p̃ 7→q

]}
are pi.x for 1 ≤ i ≤ n,

{[
{|f |}p̃ 7→q

]}
[⌜xi⌝/zi@pi]

coincides with
{[
{|f |}p̃ 7→q

]}
σ
whenever σ contains ⌜xi⌝ at each process pi.

We conclude by combining our results to characterise a Turing-complete and
deadlock-free fragment of ChP.

Let ChPChC be the smallest fragment of ChP containing the projections of
all typable and projectable choreographies in ChC, formally: ChPChC = {[[C]] |
[[C]] is defined}. By Theorem 10, all terms in ChPChC are deadlock-free.
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We now show that ChPChC is also Turing powerful. The development is
similar to that for SPCC (§ 4.3), but we need two additional steps. First, the
operational correspondence theorem for the EPP of ChC (Theorem 10) needs
the projected channel choreography to be well-typed. Fortunately, this is always
the case for the channel choreographies obtained by embedding amended CC
terms.

Lemma 12. Let C be a core choreography and σ a state. Then C ′ = {[Amend(C)]}σ
implies Γ;Θ ⊢ C ′ ▷∆ for some Γ, Θ and ∆.

Proof. Choosing Θ is trivial, as each process has its own role. For Γ, we assign
type nat to all variables. Finally, ∆ = k : G, where G is inferred by abstracting
the communications in C. The inductive construction of the latter is always
possible since we applied Amend, so we can type each conditional with either
the same global type or a branching global type with two labels.

Second, we need to know that the embedding of a projectable core choreog-
raphy is also projectable in ChC.

Lemma 13. If C is projectable, then {[C]}σ is projectable for any σ.

Proof. The thesis follows from the fact that: if the projections of two chore-
ographies are mergeable in CC, then the projections of their embeddings into
ChC are mergeable. This is proven by structural induction.

Using these results, the proof of Corollary 1 can be adapted to yield the
following property.

Corollary 4 (Turing completeness of ChPChC). Every partial recursive function
is implementable in ChPChC.

We thus characterise a fragment of the session-based π-calculus from (Coppo
et al., 2016) that contains only deadlock-free terms and is Turing complete.

Appendix A.6. Asynchronous semantics

The original semantics of ChC is made asynchronous by means of an addi-
tional rule that allows some transitions protected by a prefix to be executed,
yielding more possible reduction sequences. In this scenario, the operational
correspondence between CC and ChC is no longer as strong as stated in Theo-
rem 11; in particular, the result for soundness now reads

(Soundness) {[C]}σ →+ C ′ implies C, σ →+ C∗, σ∗ and C ′ →∗

{[C∗]}σ∗

However, the reduction relation in the asynchronous setting, restricted to the
language fragment we consider (embeddings of core choreographies, which in
particular are typable) is still confluent, and it includes all synchronous execu-
tions. Therefore, Theorem 12 remains valid in this general case.
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