
Procedural Choreographic Programming

Lúıs Cruz-Filipe and Fabrizio Montesi

University of Southern Denmark {lcf,fmontesi}@imada.sdu.dk

Abstract. Choreographic Programming is an emerging paradigm for
correct-by-construction concurrent programming. However, its applica-
bility is limited by the current lack of support for reusable procedures.
We propose Procedural Choreographies (PC), a choreographic language
model with full procedural abstraction. PC includes unbounded process
creation and name mobility, yielding a powerful framework for writing
correct concurrent algorithms that can be compiled into a process cal-
culus. This increased expressivity requires a typing discipline to ensure
that processes are properly connected when enacting procedures.

1 Introduction

Choreographic Programming [20] is a paradigm for programming concurrent
software that is deadlock-free by construction, by using an “Alice and Bob”
notation to syntactically prevent mismatched I/O communications in programs
(called choreographies) and using an EndPoint Projection to synthesise correct
process implementations [2,4,24]. Choreographies are found in standards [1,26],
languages [6,14,23,25], and specification models [2,4,17]. They are widely used as
a design tool in communication-based software [1,23,25,26], since they describe
interactions unambiguously and thus help ensure correctness [19].

Driven by these benefits, research on applicability of choreographic program-
ming has recently gained in breadth, ranging from service programming [2,4] to
runtime adaptation [11]. We focus on another important aspect: modular pro-
gramming. Writing procedures that can be arbitrarily instantiated and composed
into larger programs is still unsupported. The absence of full procedural abstrac-
tion disallows the creation of libraries that can be reused as “black boxes”.

Example 1. We discuss a parallel version of merge sort, written as a choreogra-
phy. Although this is a toy example, it cannot be written in any previous model
for choreographic programming. We present more realistic and involved examples
in the remainder. We make the standard assumption that we have concurrent
processes with local storage and computational capabilities. In this example,
each process stores a list and can use the following local functions: split1 and
split2, respectively returning the first or the second half of a list; is_small,
which tests if a list has at most one element; and merge, which combines two
sorted lists into one. The following (choreographic) procedure, MS, implements
merge sort on the list stored at its parameter process p.1

1 In this work, we use a monospaced font for readability of our concrete examples, and
other fonts for distinguishing syntactic categories in our formal arguments as usual.

MS(p) = if p.is_small then 0

else p start q1,q2; p.split1 -> q1; p.split2 -> q2;

MS <q1 >; MS <q2 >; q1.* -> p; q2.* -> p.merge

Procedure MS starts by checking whether the list at process p is small, in which
case it does not need to be sorted (0 denotes termination); otherwise, p starts
two other processes q1 and q2 (p start q1,q2), to which it respectively sends
the first and the second half of the list (p.split1 -> q1 and p.split2 -> q2).
The procedure is recursively reapplied to q1 and q2, which independently (con-
currently) proceed to ordering their respective sub-lists. When this is done, MS
stores the first ordered half from q1 to p (q1.* -> p, where * retrieves the data
stored in q1) and merges it with the ordered sub-list from q2 (q2.* -> p.merge).

Procedure MS in Example 1 cannot be written in current choreography mod-
els, because it uses two unsupported features: general recursion, allowing pro-
cedure calls to be followed by arbitrary code; and parametric procedures, which
can be reused with different processes (as in MS<q1> and MS<q2>).

We present Procedural Choreographies (PC), a model for choreographic pro-
gramming that captures these features (§ 2). PC has a simple syntax, but its
semantics is expressive enough to infer safe out-of-order executions of choreo-
graphic procedures – for example, in MS<q1>; MS<q2>, the two calls can be run
in parallel because they involve separate processes and are thus non-interfering.

We also illustrate the expressivity of PC with a more involved parallel down-
loader, showing how our semantics infers parallel executions in a complex sce-
nario of concurrent data streams. This example makes use of additional features:
mobility of process names (networks with connections that evolve at runtime)
and propagation of choices among processes.

The interplay between name mobility and procedure composition requires
careful handling, because of potential dangling process references. We prevent
such errors using a decidable typing discipline (§ 3) that supports type inference.

PC includes an EndPoint Projection (EPP) that synthesises correct concur-
rent implementations in terms of a process calculus (§ 4). This process calculus
is an abstraction of systems where processes refer to one another’s locations or
identifiers (e.g., MPI [22] or the Internet Protocol).

Full definitions, proofs, and further extensions are given in [9]. Additional
examples can be found in [8] (which is based on a pre-print of this article).

2 Procedural Choreographies (PC)

Syntax. The syntax of PC is displayed in Figure 1. A procedural choreography is
a pair 〈D , C〉, where C is a choreography and D is a set of procedure definitions.
Process names (p, q, r, . . .), identify processes that execute concurrently. Each
process is equipped with a memory cell that stores a single value of a fixed type.
Specifically, we consider a fixed set T of datatypes (numbers, lists, etc.); each
process p stores only values of type Tp ∈ T. Statements in a choreography can
either be communication actions (η) or compound instructions (I), both of which

2

C ::= η;C | I;C | 0 η ::= p.e -> q.f | p -> q[l] | p start qT | p : q <-> r

D ::= X(q̃T) = C,D | ∅ I ::= if p.e thenC1 elseC2 |X〈p̃〉 | 0

Fig. 1. Procedural Choreographies, Syntax.

can have continuations. Term 0 is the terminated choreography, which we often
omit in examples. We call all terms but 0;C program terms, or simply programs,
since these form the syntax intended for developers to use for writing programs.
Term 0;C is necessary only for the technical definition of the semantics, to
capture termination of procedure calls with continuations, and can appear only
at runtime. It is thus called a runtime term.

Processes communicate through direct references (names) to each other.2

In a value communication p.e -> q.f , process p sends the result of evaluating
expression e (replacing the placeholder ∗ at runtime with the data in its memory)
to q. When q receives the value from p, it applies to it the (total) function f and
stores the result. The definition of f may also access the contents of q’s memory.

In a selection term p -> q[l], p communicates to q its choice of label l, which
is a constant. This term is intended to propagate information on which internal
choice has been made by a process to another (see Remark 2 below).

In term p start qT , process p spawns the new process q, which stores data of
type T . Process name q is bound in the continuation C of p start qT ;C.

Process spawning introduces the need for name mobility. In real-world sys-
tems, after execution of p start qT , p is the only process that knows q’s name. Any
other process wanting to communicate with q must therefore be first informed
of its existence. This is achieved with the introduction term p : q <-> r, read “p
introduces q and r” (with p, q and r distinct). As its double-arrow syntax sug-
gests, this action represents two communications – one where p sends q’s name
to r, and another where p sends r’s name to q. This is made explicit in § 4.

In a conditional term if p.e thenC1 elseC2, process p evaluates e to choose
between the possible continuations C1 and C2.

The set D contains global procedures. Term X(q̃T) = CX defines a procedure
X with body CX , which can be used anywhere in 〈D , C〉 – in particular, inside
CX . The names q̃ are bound to CX , and they are exactly the free process names in
CX . Each procedure can be defined at most once in D . Term X〈p̃〉 calls (invokes)
procedure X by passing p̃ as parameters. Procedure calls inside definitions must
be guarded, i.e., they can only occur after some other action.

We assume the Barendregt convention and work up to α-equivalence in chore-
ographies, renaming bound variables as needed when expanding procedure calls.

Example 2. Recall procedure MS from our merge sort example in the Introduction
(Example 1). If we annotate the parameter p and the started processes q1 and
q2 with a type, e.g., List(T) for some T (the type of lists containing elements

2 PC thus easily applies to settings based on actors, objects, or ranks (e.g., MPI).

3

of type T), then MS is a valid procedure definition in PC, as long as we allow

two straightforward syntactic conventions: (i) p start q̃T stands for the sequence
p start qT1

1 ; . . . ; p start qTn
n ; (ii) a communication of the form p.e -> q stands for

p.e -> q.id, where id is the identity function: it sets the content of q to the value
received from p. We adopt these conventions also in the remainder.

Remark 1 (Design choices). We comment on two of our design choices.
The introduction action (p : q <-> r) requires a three-way synchronization,

essentially performing two communications. The alternative development of PC
with asymmetric introduction (an action p : q -> r whereby p sends q’s name to
r, but not conversely) would be very similar. Since in our examples we always
perform introductions in pairs, the current choice makes the presentation easier.

The restriction that each process stores only one value of a fixed type is, in
practice, a minor constraint. As shown in Example 2, types can be tuples or lists,
which mimics storing several values. Also, a process can create new processes
with different types – so we can encode changing the type of p by having p create
a new process p′ and then continuing the choreography with p′ instead of p.

Remark 2 (Label Selection). We motivate the need for selections (p -> q[l]).
Consider the choreography if p.coinflip then (p.∗ -> r) else (r.∗ -> p). Here, p flips
a coin to decide whether to send a value to r or to receive a value from r. Since
processes run independently and share no data, only p knows which branch of
the conditional will be executed; but this information is essential for r to decide
on its behaviour. To propagate p’s decision to r, we use selections:

if p.coinflip then (p -> r[l]; p. ∗ -> r) else (p -> r[r]; r. ∗ -> p)

Now r receives a label reflecting p’s choice, and can use it to decide what to do.
Selections are needed only for compilation (see § 4): the first choreography

above is not projectable, whereas the second one is. They can be inferred, and
thus could be removed from the user syntax, but it is useful to be able to specify
them manually (see Remark 4). See also Example 5 at the end of this section.

Semantics. We define a reduction semantics →D for PC, parameterised over
D (Figure 2, top). Given a choreography C, we model the state of its processes
with a state function σ, with domain pn(C), where σ(p) denotes the value stored
in p. We assume that each type T ∈ T has a special value ⊥T , representing an
uninitialised process state. We also use a connection graph G, keeping track of

which processes know each other. In the rules, p
G←→ q denotes that G contains

an edge between p and q, and G ∪ {p↔ q} denotes the graph obtained from G
by adding an edge between p and q (if missing).

Executing a communication action p.e -> q.f in rule bC|Come requires that: p
and q are connected in G; e is well typed; and the type of e matches that expected
by the function f at the receiver. The last two conditions are encapsulated in
the notation e ↓ v, read “e evaluates to v”. Choreographies can thus deadlock
(be unable to reduce) because of errors in the programming of communications;
this issue is addressed by our typing discipline in § 3.

4

p
G←→ q e[σ(p)/∗] ↓ v f [σ(q)/∗](v) ↓ w
G, p.e -> q.f ;C, σ →D G,C, σ[q 7→ w]

bC|Come

p
G←→ q

G, p -> q[l];C, σ →D G,C, σ
bC|Sele

G, p start qT ;C, σ →D G ∪ {p↔ q}, C, σ[q 7→ ⊥T]
bC|Starte

p
G←→ q p

G←→ r

G, p : q <-> r;C, σ →D G ∪ {q↔ r}, C, σ
bC|Telle

i = 1 if e[σ(p)/∗] ↓ true, i = 2 otherwise

G, (if p.e thenC1 elseC2);C, σ →D G,Ci # C, σ
bC|Conde

C1 �D C2 G,C2, σ →D G′, C′
2, σ

′ C′
2 �D C′

1

G,C1, σ →D G′, C′
1, σ

′ bC|Structe

pn(η)#pn(η′)

η; η′ ≡D η′; η
bC|Eta-Etae

pn(I)#pn(I ′)

I; I ′ ≡D I ′; I
bC|I-Ie

X(q̃T) = CX ∈ D

X〈p̃〉;C �D CX [p̃/q̃] # C
bC|Unfolde

Fig. 2. Procedural Choreographies, Semantics and Structural Precongruence (se-
lected rules).

Rule bC|Sele defines selection as a no-op for choreographies (see Remark 2).

Rule bC|Starte models the creation of a process. In the reductum, the starter
and started processes are connected and can thus communicate with each other.
This rule also extends the domain of the state function σ accordingly. Rule
bC|Telle captures name mobility, creating a connection between two processes q
and r when they are introduced by a process p connected to both.

Rule bC|Conde uses the auxiliary operator # to obtain a reductum in the
syntax of PC regardless of the forms of the branches C1 and C2 and the con-
tinuation C. The operator # is defined by η # C = η;C, I # C = I;C and
(C1;C2) # C = C1; (C2 # C). It extends the scope of bound names: any name
p bound in C has its scope extended also to C ′. This scope extension is capture-
avoiding, as the Barendregt convention guarantees that p is not used in C ′.

Rule bC|Structe uses structural precongruence �D . The main rules defining
�D are given in Figure 2 (bottom). We write C ≡D C ′ when C �D C ′ and
C ′ �D C, pn(C) for the set of process names (free or bound) in a choreography C,
and A#B when two sets A and B are disjoint. These rules formalise the notion of
parallelism in PC, recalling out-of-order execution. Rule bC|Eta-Etae permutes
two communications performed by processes that are all distinct, modelling that

5

processes run independently of one another. For example, p. ∗ -> q; r. ∗ -> s ≡D

r. ∗ -> s; p. ∗ -> q because these two communications are non-interfering, but
p. ∗ -> q; q. ∗ -> s 6≡D q. ∗ -> s; p. ∗ -> q: since the second communication
causally depends on the first (both involve q).

This reasoning is extended to instructions in rule bC|I-Ie; in particular, proce-
dure calls that share no arguments can be swapped. This is sound, as a procedure
can only refer to processes that are either passed as arguments or started inside
its body, and the latter cannot be leaked to the original call site. Thus, any
actions obtained by unfolding the first procedure call involve different processes
than those obtained by unfolding the second one. As the example below shows,
calls to the same procedure can be exchanged, since X and Y need not be dis-
tinct. Omitted rules include moving actions inside or outside both branches of
a conditional, or switching independent nested conditionals. Rule bC|Unfolde
unfolds a procedure call, again using the # operator defined above.

Example 3. In our merge sort example, structural precongruence �D allows the
recursive calls MS<q1> and MS<q2> to be exchanged. Furthermore, after the calls
are unfolded, their code can be interleaved in any way.

This example exhibits map-reduce behaviour: each new process receives its
input, runs independently from all others, and then sends its result to its creator.

Example 4. In a more refined example of implicit parallelism, we swap commu-
nications from procedure calls that share process names. Consider the procedure

auth(c,a,r,l) = c.creds -> a.rCreds;

a.chk -> r.res; a.log -> l.app

Client c sends its credentials to an authentication server a, which stores the
result of authentication in r and appends a log of this operation at process l.
In the choreography auth<c,a1,r1,l>; auth<c,a2,r2,l>, a client c authenticates
at two different authentication servers a1 and a2. After unfolding the two calls,
rule bC|Eta-Etae yields the following interleaving:

c.creds -> a1.rCreds; c.creds -> a2.rCreds;

a2.chk -> r2.res; a1.chk -> r1.res;

a1.log -> l.app; a2.log -> l.app

Thus, the two authentications proceed in parallel. Observe that the logging op-
erations cannot be swapped, since they use the same logging process l.

Example 5. A more sophisticated example involves modularly composing differ-
ent procedures that take multiple parameters. Here, we write a choreography
where a client c downloads a collection of files from a server s. Files are down-
loaded in parallel via streaming, by having the client and the server each create
subprocesses to handle the transfer of each file. Thus, the client can request and
start downloading each file without waiting for previous downloads to finish.

par_download(c,s) = if c.more

then c -> s [more]; c start c’; s start s’;

s: c <-> s’; c.top -> s’; pop <c>;

6

c: c’ <-> s’; download <c’,s’>;

par_download <c,s>; c’.file -> c.store

else c -> s [end]

At the start of par_download, the client c checks whether it wants to download
more files and informs the server s of the result via a label selection. In the
affirmative case, the client and the server start two subprocesses, c′ and s′ re-
spectively, and the server introduces c to s′ (s: c <-> s’). The client c sends to
s′ the name of the file to download (c.top -> s’) and removes it from its collec-
tion, using procedure pop (omitted), afterwards introducing its own subprocess
c′ to s′. The file download is handled by c′ and s′ (using procedure download),
while c and s continue operating (par_download<c,s>). Finally, c′ waits until c is
ready to store the downloaded file.

Procedure download has a similar structure. It implements a stream where a
file is sequentially transferred in chunks from a process s to another process c.

download(c,s) = if s.more

then s -> c [more]; s.next -> c.app; pop <s>; download <c,s>

else s -> c [end]

The implementation of par_download exploits implicit parallelism consider-
ably. All calls to download are made with disjoint sets of parameters (processes),
and can thus be fully parallelised: many instances of download run at the same
time, each one implementing a (sequential) stream. Due to our semantics, we
effectively end up executing many streaming behaviours in parallel.

We can even compose par_download with auth, such that we execute the par-
allel download only if the client can successfully authenticate with an authenti-
cation server a. Below, we use the shortcut p -> q̃[l] for p -> q1[l]; . . . ; p -> qn[l].

auth <c,a,r,l>; if r.ok then r -> c,s[ok]; par_download <c,s>

else r -> c,s[ko]

3 Typability and Deadlock-Freedom

We give a typing discipline for PC, to check that (a) the types of functions and
processes are respected by communications and (b) processes that need to com-
municate are first properly introduced (or connected). Regarding (b), two pro-
cesses created independently can communicate only after they receive the names
of each other. For instance, in Example 5, the execution of download<c’,s’> would
get stuck if c’ and s’ were not properly introduced in par_download, since our
semantics requires them to be connected.

Typing judgements have the form Γ ;G ` C . G′, read “C is well-typed
according to Γ , and running C with a connection graph that contains G yields
a connection graph that includes G′”. Typing environments Γ are used to track
the types of processes and procedures; they are defined as: Γ ::= ∅ | Γ, p : T |
Γ, X :G.G′. A typing p : T states that process p stores values of type T , and a
typing X : G . G′ records the effect of the body of X on graph G.

7

Γ ;G ` 0 . G
bT|Ende

p
G←→ q Γ ;G ` C . G′

Γ ;G ` p -> q[l];C . G′ bT|Sele

p
G←→ q Γ ` p : Tp, q : Tq Γ ;G ` C . G′

∗ : Tp `T e : T1 ∗ : Tq `T f : T1 → Tq

Γ ;G ` p.e -> q.f ;C . G′ bT|Come

p
G←→ q p

G←→ r Γ ;G ∪ {q↔ r} ` C . G′

Γ ;G ` p : q <-> r;C . G′ bT|Telle

Γ, q : T ;G ∪ {p↔ q} ` C . G′

Γ ;G ` p start qT ;C . G′ bT|Starte Γ ;G ` C . G′

Γ ;G ` 0;C . G′ bT|EndSeqe

Γ ` p : T ∗ : T `T e : bool Γ ;G ` Ci . Gi Γ ;G1 ∩G2 ` C . G′

Γ ;G ` (if p.e thenC1 elseC2);C . G′ bT|Conde

Γ ` X(q̃T) : GX . G′
X Γ ` pi : Ti

GX [p̃/q̃] ⊆ G Γ ;G ∪ (G′
X [p̃/q̃]) ` C . G′

Γ ;G ` X〈p̃〉;C . G′ bT|Calle

Fig. 3. Procedural Choreographies, Typing Rules.

The rules for deriving typing judgements are given in Figure 3. We assume
standard typing judgements for functions and expressions, and write ∗ : T `T
e : T and ∗ : T1 `T f : T2 → T3 meaning, respectively “e has type T assuming
that ∗ has type T” and “f has type T2 → T3 assuming that ∗ has type T1”.
Verifying that communications respect the expected types is straightforward,
using the connection graph G to track which processes have been introduced to
each other. In rule bT|Starte, we implicitly use the fact that q does not occur in
G (again using the Barendregt convention). The final graph G′ is only used in
procedure calls (rule bT|Calle). Other rules leave it unchanged.

To type a procedural choreography, we need to type its set of procedure

definitions D . We write Γ ` D if: for each X(q̃T) = CX ∈ D , there is exactly one

typingX(q̃T) : GX.G
′
X ∈ Γ , and this typing is such that Γ, q̃ : T ,GX ` CX.G′X .

We say that Γ ` 〈D , C〉 if Γ, ΓD ;GC ` C,G′ for some ΓD such that ΓD ` D and
some G′, where GC is the full graph whose nodes are the free process names in C.
The choice of GC is motivated by observing that (i) all top-level processes should
know each other and (ii) eventual connections between processes not occuring
in C do not affect its typability.

Well-typed choreographies either terminate or diverge.3

3 Since we are interested in communications, we assume evaluation of functions and
expressions to terminate on values with the right types (see § 5, Faults).

8

Theorem 1 (Deadlock freedom/Subject reduction). Let 〈D , C〉 be a pro-
cedural choreography. If Γ ` D and Γ ;G1 ` C . G′1 for some Γ , G1 and G′1,
then either: (i) C �D 0; or, (ii) for every σ, there exist G2, C ′ and σ′ such that
G1, C, σ →D G2, C

′, σ′ and Γ ′;G2 ` C ′ . G′2 for some Γ ′ ⊇ Γ and G′2.

Checking that Γ ` 〈D , C〉 is not trivial, as it requires “guessing” ΓD . How-
ever, this set can be computed from 〈D , C〉.

Theorem 2. Given Γ , D and C, Γ ` 〈D , C〉 is decidable.

The key idea behind the proof of Theorem 2 is that type-checking may require
expanding recursive definitions, but their parameters only need to be instantiated
with process names from a finite set. A similar idea yields type inference for PC.

Theorem 3. There is an algorithm that, given any 〈D , C〉, outputs: (i) a set Γ
such that Γ ` 〈D , C〉, if such a Γ exists; or (ii) NO, if no such Γ exists.

Theorem 4. The types of arguments in procedure definitions and the types of
freshly created processes can be inferred automatically.

Remark 3 (Inferring introductions). These results allow us to omit type annota-
tions in choreographies, if the types of functions and expressions at processes are
given (in `T). Thus, programmers can write choreographies as in our examples.

The same reasoning can be used to infer missing introductions (p : q <-> r) in
a choreography automatically, thus lifting the programmer also from having to
think about connections. However, while the types inferred for a choreography
do not affect its behaviour, the placement of introductions does. In particular,
when invoking procedures one is faced with the choice of adding the necessary
introductions inside the procedure definition (weakening the conditions for its
invocation) or in the code calling it (making the procedure body more efficient).

Example 6. Consider a procedure X(p, q, r) = p.∗ -> q; p : q <-> r; q.∗ -> r, whose
invokation requires only that p is connected to q and r. If we invoke X twice
with the same parameters, as in X〈p, q, r〉;X〈p, q, r〉, we end up performing the
same introduction p : q <-> r twice. We could avoid this duplication by rewriting
X as X(p, q, r) = p. ∗ -> q; q. ∗ -> r and then performing the introduction only
once before invoking the procedure – p : q <-> r;X〈p, q, r〉;X〈p, q, r〉. However,
this makes invoking X more complicated, and deciding which variant is best
depends heavily on the context.

4 Synthesising Process Implementations

We now present our EndPoint Projection (EPP), which compiles a choreography
to a concurrent implementation represented in terms of a process calculus.

4.1 Procedural Processes (PP)

We introduce our target process model, Procedural Processes (PP).

9

B ::= q!e;B | p?f ;B | q!!r;B | p?r;B | q⊕ l;B | p&{li : Bi}i∈I ;B

| 0 | start qT . B2;B1 | if e thenB1 elseB2;B |X〈p̃〉;B | 0;B

B ::= X(q̃) = B,B | ∅ N,M ::= p .v B | (N |M) | 0

u = (f [w/∗])(e[v/∗])
p .v q!e;B1 | q .w p?f ;B2 →B p .v B1 | q .u B2

bP|Come

j ∈ I
p .v q⊕ lj ;B | q .w p&{li : Bi}i∈I →B p .v B | q .w Bj

bP|Sele

q′ fresh

p .v (start qT . B2);B1 →B p .v B1[q′/q] | q′ .⊥T
B2

bP|Starte

p .v q!!r;B1 | q .w p?r;B2 | r .u p?q;B3 →B p .v B1 | q .w B2 | r .u B3

bP|Telle

Fig. 4. Procedural Processes, Syntax and Semantics (selected rules).

Syntax. The syntax of PP is given in Figure 4 (top). A term p .v B is a process,
where p is its name, v is its value, and B is its behaviour. Networks, ranged over
by N,M , are parallel compositions of processes, where 0 is the inactive network.
Finally, 〈B, N〉 is a procedural network, where B defines the procedures that
the processes in N may invoke. Values, expressions and functions are as in PC.

A process executing a send term q!e;B sends the evaluation of expression e
to q, and proceeds as B. Term p?f ;B is the dual receiving action: the process
executing it receives a value from p, combines it with its value as specified by f ,
and then proceeds as B. Term q!!r sends process name r to q and process name q
to r, making q and r “aware” of each other. The dual action is p?r, which receives
a process name from p that replaces the bound variable r in the continuation.
Term q⊕ l;B sends the selection of a label l to process q. Selections are received
by the branching term p&{li : Bi}i∈I , which can receive a selection for any of
the labels li and proceed as Bi. Branching terms must offer at least one branch.
Term start q.B2;B1 starts a new process (with a fresh name) executing B2, and
proceeds in parallel as B1. Conditionals, procedure calls, and termination are
standard. Term start q . B2;B1 binds q in B1, and p?r;B binds r in B.

Semantics. The main rules defining the reduction relation→B for PP are shown
in Figure 4 (bottom). As in PC, they are parameterised on the set of behavioural
procedures B. Rule bP|Comemodels value communication: a process p executing
a send action towards a process q can synchronise with a receive-from-p action
at q; in the reductum, f is used to update the memory of q by combining its
contents with the value sent by p. The placeholder ∗ is replaced with the current
value of p in e (resp. q in f). Rule bP|Sele is standard selection [15], where the
sender process selects one of the branches offered by the receiver.

10

Rule bP|Telle establishes a three-way synchronisation, allowing a process to
introduce two others. Since the received names are bound at the receivers, we
use α-conversion to make the receivers agree on each other’s name, as in session
types [15]. (Differently from PC, we do not assume the Barendregt convention
here, in line with the tradition of process calculi.) Rule bP|Starte requires the
name of the created process to be globally fresh.

All other rules are standard. Relation →B is closed under a structural pre-
congruence �B, which supports associativity and commutativity of parallel (|),
standard garbage collection of 0, and unfolding of procedure calls.

Example 7. We show a process implementation of the merge sort choreography
in Example 1 from § 1. All processes are annotated with type List(T) (omitted);
id is the identity function (Example 2).

MS p (p) = if is_small then 0

else start q 1 . (p?id; MS p <q 1 >; p!*);

start q 2 . (p?id; MS p <q 2 >; p!*);

q 1 !split 1 ; q 2 !split 2 ; q 1 ?id; q 2 ?merge

In the next section, we show that our EPP generates this process implementation
automatically from the choreography in Example 1.

4.2 EndPoint Projection (EPP)

We now show how to compile programs in PC to processes in PP.

Behaviour Projection. We start by defining how to project the behaviour of a
single process p, a partial function denoted [[C]]p. The rules defining behaviour
projection are given in Figure 5. Each choreography term is projected to the local
action of the process that we are projecting. For example, a communication term
p.e -> q.f projects a send action for the sender p, a receive action for the receiver
q, or skips to the continuation otherwise. The rules for projecting a selection or
an introduction (name mobility) are similar.

The rule for projecting a conditional uses the partial merging operator t:
B tB′ is isomorphic to B and B′ up to branching, where the branches of B or
B′ with distinct labels are also included. The interesting rule defining merge is:

(p&{li : Bi}i∈I ;B) t
(
p&{lj : B′j}j∈J ;B′

)
=

p&
(
{lk : (Bk tB′k)}k∈I∩J ∪ {li : Bi}i∈I\J ∪ {lj : B′j}j∈J\I

)
; (B tB′)

The idea of merging comes from [2]. Here, we extend it to general recursion, para-
metric procedures, and process starts. Merging allows the process that decides
a conditional to inform other processes of its choice later on, using selections. It
is found repeatedly in most choreography models [2,7,17].

Building on behaviour projection, we define how to project the set D of
procedure definitions. We need to consider two main aspects. The first is that,
at runtime, the choreography may invoke a procedure X multiple times, but

11

[[p.e -> q.f ;C]]r =


q!e; [[C]]r if r = p

p?f ; [[C]]r if r = q

[[C]]r o.w.

[[p -> q[l];C]]r =


q⊕ l; [[C]]r if r = p

p&{l : [[C]]r} if r = q

[[C]]r o.w.

[[p : q <-> r;C]]s =


q!!r; [[C]]s if s = p

p?r; [[C]]s if s = q

p?q; [[C]]s if s = r

[[C]]s o.w.

[[X〈p̃〉;C]]r =

{
Xr〈p̃〉; [[C]]r if r = pi

[[C]]r o.w.

[[0]]r = 0 [[0;C]]r = [[C]]r

[[if p.e thenC1 elseC2;C]]r =

{
if e then [[C1]]r else [[C2]]r; [[C]]r if r = p

([[C1]]r t [[C2]]r); [[C]]r o.w.

[[p start qT ;C]]r =

{
start q . [[C]]q; [[C]]r if r = p

[[C]]r o.w.

Fig. 5. Procedural Choreographies, Behaviour Projection.

potentially passing a process r at different argument positions each time. This
means that r may be called to play different “roles” in the implementation of
the procedure. For this reason, we project the behaviour of each possible process
parameter p as the local procedure Xp. The second aspect is: depending on the
role that r is called to play by the choreography, it needs to know the names of
the other processes that it is supposed to communicate with in the choreographic
procedure. We deal with this by simply passing all arguments (some of which may
be unknown to the process invoking the procedure). This is not a problem: for
typable choreographies, typing ensures that those parameters are not actually
used in the projected procedure (so they act as “dummies”). We do this for
clarity, since it yields a simpler formulation of EPP. In practice, we can annotate
the EPP by analysing which parameters of each recursive definition are actually
used in each of its projections, and instantiating only those.

We thus define [[D]] =
⋃{

[[X(q̃T) = C]] | X(q̃T) = C ∈ D
}

where, for q̃T =

qT1
1 , . . . , qTn

n , we set [[X(q̃T) = C]] = {Xq1(q̃) = [[C]]q1 , . . . , Xqn(q̃) = [[C]]qn}.

Definition 1 (EPP). Given a procedural choreography 〈D , C〉 and a state σ,
the EPP [[D , C, σ]] is the parallel composition of the processes in C with all

definitions from D : [[D , C, σ]] = 〈[[D]], [[C, σ]]〉 =
〈

[[D]],
∏

p∈pn(C) p .σ(p) [[C]]p

〉
where [[C, σ]], the EPP of C wrt state σ, is independent of D .

Since the σs are total, if [[C, σ]] is defined for some σ, then [[C, σ′]] is defined
also for all other σ′. When [[C, σ]] = N is defined for any σ, we say that C is
projectable and that N is the projection of C, σ. The same holds for [[D , C, σ]].

Example 8. The EPP of the choreography in Example 1 is given in Example 7.

12

Example 9. For an example involving merging and introductions, we project the
procedure par_download (Example 5) for process s, omitting type annotations.

par_download s (c,s) = c&{

more: start s’ . (s?c; c?id; c?c’; download s <c’,s’>);

c!!s’; par_download s <c,s>

end: 0 }

Observe that we invoke procedure downloads, since s’ occurs in the position of
download’s formal argument s.

Properties. EPP guarantees correctness by construction: the code synthesised
from a choreography follows it precisely.

Theorem 5 (EPP Theorem). If 〈D , C〉 is projectable, Γ ` D , and Γ ;G `
C . G∗, then, for all σ: if G,C, σ →D G′, C ′, σ′, then [[C, σ]] →[[D]]� [[C ′, σ′]]
(completeness); and if [[C, σ]] →[[D]] N , then G,C, σ →D G′, C ′, σ′ for some G′,
C ′ and σ′ such that [[C ′, σ′]] ≺ N (soundness).

Above, the pruning relation ≺ from [2] eliminates branches introduced by the
merging operator t when they are not needed anymore to follow the originating
choreography (N � N ′ stands for N ′ ≺ N). Pruning does not alter reductions,
since the eliminated branches are never selected [2]. Combining Theorem 5 with
Theorem 1 we get that the projections of typable PC terms never deadlock.

Corollary 1 (Deadlock-freedom by construction). Let N = [[C, σ]] for
some C and σ, and assume that Γ ;G ` C .G′ for some Γ such that Γ ` D and
some G and G′. Then, either: (i) N �[[D]] 0 (N has terminated); or (ii) there
exists N ′ such that N →[[D]] N

′ (N can reduce).

Remark 4 (Amendment). A choreography can only be unprojectable because
of unmergeable subterms, and thus can be made projectable by adding label
selections. This can be formalised in an amendment algorithm, similar to [10,18].
For example, the first (unprojectable) choreography in Remark 2 can be amended
to the projectable choreography presented at the end of the same remark.

The same argument as in Remark 3 applies: amendment allows us to dis-
regard label selections, but placing them manually can be useful. For example,
suppose p makes a choice that affects q and r. If q has to perform a slower
computation as a result, then it makes sense for p to notify q first.

5 Related Work and Discussion

Choreographic Programming. Our examples cannot be written in previous mod-
els for choreographic programming, which lack full procedural abstraction. In
state-of-the-art models [2,4], procedures cannot have continuations, there can
only be a limited number of protocols running at any time (modulo dangling
asynchronous actions), and the process names used in a procedure are statically
determined. In PC, all these limitations are lifted.

13

Differently from PC, name mobility in choreographies is typically done using
channel delegation [4], which is less powerful: a process that introduces two other
processes requires a new channel to communicate with them thenceforth.

Some choreography models include explicit parallel composition, C |C ′. Most
behaviours of C |C ′ are already captured in PC, for example X〈p, q〉 |Y 〈r, s〉
is equivalent to X〈p, q〉;Y 〈r, s〉 in PC (cf. Example 3) – see [4] for a deeper
discussion. If a parallel operator is desired, PC can be easily extended (cf. [2]).

In [21], choreographies can be integrated with existing process code by means
of a type system, which we could easily integrate in PC.

Asynchrony. Asynchronous communication in choreographic programming was
addressed in [4] using an ad-hoc transition rule. Adding asynchrony to PC is
straightforward (see the technical report [9]).

Multiparty Session Types (MPST). In MPST [16], global types are choreographic
specifications of single protocols, used for verifying the code of manually-written
implementations in process models. Global types are similar to a simplified frag-
ment of PC, obtained (among others) by replacing expressions and functions
with constants (representing types), removing process creation (the processes
are fixed), and restricting recursion to parameterless tail recursion.

MPST leaves protocol composition to the implementors of processes, which
can result in deadlocks, unlike in PC. We illustrate this key difference using our
syntax; we view a protocol in MPST as a (simplification of a) procedure in PC.
Consider the protocols X(r, s) = r.e -> s.f and Y (r′, s′) = r′.e′ -> s′.f ′, and
their instantiations X〈p, q〉 and Y 〈q, p〉. In MPST, a valid composition (in PP)
is p .v q?f ′; q!e | q .v p?f ; p!e′. This network is obviously deadlocked, but MPST
does not detect it because the interleaving of the two protocols is not checked.
In PC, we can only obtain correct implementations, because compositions are
defined at the level of choreographies, e.g., X〈p, q〉;Y 〈q, p〉 or Y 〈q, p〉;X〈p, q〉.

Deadlock-freedom for compositions in MPST can be obtained by restrict-
ing connections among processes participating in different protocols to form a
tree [3,5]. In PC, connections can form an arbitrary graph. Another technique for
MPST is to use pre-orders [7], but this is also not as expressive as PC (see [9]).

MPST can be extended to protocols where the number of participants is fixed
only at runtime [27], or can grow during execution [13]. These results use ad-hoc
primitives and “middleware” terms in the process model, e.g., for tracking the
number of participants in a session [13], which are not needed in PC. MPST can
be nested [12], partially recalling our parametric procedures. Differently from
PC, nested procedures in MPST are invoked by a coordinator (requiring extra
communications), and compositions of such nested types can deadlock.

Sessions and Mobility. Recent theories based on session types [2,4,5,7,16] assume
that all pairs of processes in a session have a private full-duplex channel to
communicate. Thus, processes in a protocol must have a complete connection
graph. PC can be used to reason about different kinds of network topologies.

14

Another important aspect of sessions is that each new protocol execution
requires the creation of a new session, whereas procedure calls in PC reuse
available connections – allowing for more efficient implementations. Our parallel
downloader example uses this feature (Example 5).

The standard results of communication safety found in session-typed calculi
can be derived from our EPP Theorem (Theorem 5), as discussed in [4].

Faults. We have abstracted from faults and divergence of internal computations:
in PC, we assume that all internal computations terminate successfully. If we
relax these conditions, deadlock-freedom can still be achieved simply by using
timeouts and propagating faults through communications.

Acknowledgements. We thank the anonymous reviewers for their useful com-
ments. This work was supported by the CRC project, grant no. DFF–4005-
00304 from the Danish Council for Independent Research, and by the Open
Data Framework project at the University of Southern Denmark.

References

1. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/.
2. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered pro-

gramming for web services. ACM Trans. Program. Lang. Syst., 34(2):8, 2012.
3. M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler. Coherence

generalises duality: A logical explanation of multiparty session types. In CONCUR,
volume 59 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl, 2016.

4. M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty asyn-
chronous global programming. In POPL, pages 263–274. ACM, 2013.

5. M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida. Multiparty session types
as coherence proofs. Acta Informatica, 2017.

6. Chor. Programming Language. http://www.chor-lang.org/.
7. M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global progress for

dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016.

8. L. Cruz-Filipe and F. Montesi. Choreographies in practice. In FORTE, volume
9688 of LNCS, pages 114–123. Springer, 2016.

9. L. Cruz-Filipe and F. Montesi. A language for the declarative composition of
concurrent protocols. CoRR, abs/1602.03729, 2016.

10. L. Cruz-Filipe and F. Montesi. A core model for choreographic programming. In
FACS 2016, volume 10231 of LNCS. Springer, 2017. Accepted for publication.

11. M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro. Dynamic
choreographies. In COORDINATION, LNCS, pages 67–82. Springer, 2015.

12. R. Demangeon and K. Honda. Nested protocols in session types. In CONCUR,
pages 272–286, 2012.

13. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages
435–446. ACM, 2011.

14. K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and N. Yoshida. Scribbling
interactions with a formal foundation. In ICDCIT, pages 55–75. Springer, 2011.

15

http://www.omg.org/spec/BPMN/2.0/
http://www.chor-lang.org/

15. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disci-
plines for structured communication-based programming. In ESOP, volume 1381
of LNCS, pages 122–138. Springer, 1998.

16. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
J. ACM, 63(1):9, 2016.

17. I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between
interaction- and process-oriented choreographies. In SEFM, pages 323–332, 2008.

18. I. Lanese, F. Montesi, and G. Zavattaro. Amending choreographies. In WWV,
pages 34–48, 2013.

19. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics. ACM SIGARCH Computer
Architecture News, 36(1):329–339, 2008.

20. F. Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copen-
hagen, 2013. http://fabriziomontesi.com/files/choreographic programming.pdf .

21. F. Montesi and N. Yoshida. Compositional choreographies. In CONCUR, volume
8052 of LNCS, pages 425–439. Springer, 2013.

22. MPI Forum. MPI: A Message-Passing Interface Standard. High-Performance Com-
puting Center Stuttgart, 2015. Version 3.1.

23. PI4SOA. http://www.pi4soa.org, 2008.
24. Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation of

choreography. In WWW, pages 973–982. ACM, 2007.
25. Savara. JBoss Community. http://www.jboss.org/savara/.
26. W3C WS-CDL Working Group. Web services choreography description language

version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, 2004.
27. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty

session types. In FOSSACS, volume 6014 of LNCS, pages 128–145. Springer, 2010.

16

http://fabriziomontesi.com/files/choreographic_programming.pdf
http://www.jboss.org/savara/

	Procedural Choreographic Programming
	Luís Cruz-Filipe and Fabrizio Montesi

