
Modular Compilation for Higher-Order Functional
Choreographies
Luís Cruz-Filipe #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Eva Graversen #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Lovro Lugović #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Fabrizio Montesi #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Marco Peressotti #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Abstract
Choreographic programming is a paradigm for concurrent and distributed software, whereby descrip-
tions of the intended communications (choreographies) are automatically compiled into distributed
code with strong safety and liveness properties (e.g., deadlock-freedom).

Recent efforts tried to combine the theories of choreographic programming and higher-order
functional programming, in order to integrate the benefits of the former with the modularity of the
latter. However, they do not offer a satisfactory theory of compilation compared to the literature,
because of important syntactic and semantic shortcomings: compilation is not modular (editing a
part might require recompiling everything) and the generated code can perform unexpected global
synchronisations.

In this paper, we find that these shortcomings are not mere coincidences. Rather, they stem
from genuine new challenges posed by the integration of choreographies and functions: knowing
which participants are involved in a choreography becomes nontrivial, and divergence in applications
requires rethinking how to prove the semantic correctness of compilation.

We present a novel theory of compilation for functional choreographies that overcomes these
challenges, based on types and a careful design of the semantics of choreographies and distributed
code. The result: a modular notion of compilation, which produces code that is deadlock-free and
correct (it operationally corresponds to its source choreography).

2012 ACM Subject Classification Theory of computation Ñ Lambda calculus; Theory of computation
Ñ Distributed computing models; Computing methodologies Ñ Distributed programming languages

Keywords and phrases Choreographies, Concurrency, λ-calculus, Type Systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.7

Related Version Full Version: https://arxiv.org/abs/2111.03701

Funding This work was partially supported by Villum Fonden, grants no. 29518 and 50079, and the
Independent Research Fund Denmark, grant no. 0135-00219.

© Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 7; pp. 7:1–7:37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lcfilipe@gmail.com
https://orcid.org/0000-0002-7866-7484
mailto:efgraversen@imada.sdu.dk
https://orcid.org/0000-0002-9430-4907
mailto:lugovic@imada.sdu.dk
https://orcid.org/0000-0001-9684-9567
mailto:fmontesi@imada.sdu.dk
https://orcid.org/0000-0003-4666-901X
mailto:peressotti@imada.sdu.dk
https://orcid.org/0000-0002-0243-0480
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://arxiv.org/abs/2111.03701
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Modular Compilation for Higher-Order Functional Choreographies

A -> B : x;
A -> C : y;
C computes z;
C -> B : z;
. . .

Choreography with n participants

Projection

send x to B;
send y to C;
. . .

Code for participant A

. . . projected behaviour

Code for participant n

Figure 1 Choreographic programming: the communication and computation behaviour of a
system is defined in a choreography, which is then projected (compiled) to deadlock-free distributed
code (adapted from [17]).

1 Introduction

Functional and choreographic programming

Higher-order functional programming is a popular paradigm, which allows programmers
to write modular code with strong guarantees through types. However, when dealing with
concurrent and distributed programs, functional programming still requires developers to
manually write a separate program for each participant, using send and receive actions to
communicate data. This makes it easy to write programs that deadlock, or perform in other
unexpected ways [22].

Choreographic programming (Figure 1) is a simple and powerful method to produce
distributed code that does what it is supposed to do [23, 21, 18]. In this paradigm, programs
are choreographies: structured compositions of the intended communications and computa-
tions that participants should perform, given from a joint perspective. A communication
is expressed in some variation of the communication term from security protocol notation,
Alice -> Bob : M , which reads “Alice communicates the message M to Bob” [26]. Given a cho-
reography, a compiler produces executable distributed code. In the theory of choreographies,
this compilation is called Endpoint Projection (EPP) [1]. A correct EPP has the powerful
consequence of guaranteeing deadlock-freedom “for free”: it is syntactically impossible to
specify mismatched communication actions in choreographies, so the resulting distributed
code cannot get stuck (deadlock-freedom by design) [2].

Recently, there have been two attempts at developing theories that combine the paradigms
of choreographic and functional programming, in the hope of reaping the benefits of both [18,
6]. Finding an adequate notion of EPP in this setting has been an issue. In [6] the λ-
calculus is extended with choreographic primitives for communications, yielding a simple
yet expressive model called Chorλ, but no EPP is presented. In [18] an EPP is given for a
choreographic language that extends a standard imperative choreographic language with
primitives for abstraction and application (for higher-order composition). However, this theory
comes at two important costs when compared to the expected properties of choreographic
programming [24]. First, EPP is not modular: changing a part of a choreography that involves
only some participants can change also the code projected for other participants. This means

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:3

that updating a choreography requires reprojecting and redeploying the entire system, which
is not necessary in previous work. Second, participants perform more synchronisations than
those written in the choreography. This breaks the design principle that all communications
are made syntactically manifest in choreographies.

These issues are not consequences of careless work. Rather, we find that they are both
caused by a novel challenge that arises precisely from the combination of functional and
choreographic programming – explained in the next paragraph. The aim of this work is to
develop a new theory that overcomes this challenge.

The problem

When projecting a choreography to a participant, say Alice, the parts of the choreography
not involving Alice should be ignored [1, 24]. Doing this is simple with traditional imperative
choreographies, which are essentially sequences of commands (c1; c2; . . .). For each command:
if the participant that we are projecting for is involved, we return some (appropriate) code;
otherwise, we just skip the command and go to the next. For example, given the choreography
Carol -> Bob : M ; Alice -> Bob : M 1, a standard EPP would produce for Alice only the code
to execute the second command (a send action towards Bob).

In a higher-order functional setting, checking if a participant is “involved” in a cho-
reographic term is not an easy syntactic check anymore. Consider a choreography C that
takes another choreography x as parameter, runs it, and communicates the result from
Alice to Bob. Since x can be an arbitrary choreography, the participants involved in C are
known only after x is instantiated. This is the technical issue that makes defining EPP for
functional choreographies nontrivial. In [18], the proposed solution sacrifices modularity:
every function application is projected to all participants, who then have to perform a global
system synchronisation for every function call.

This work

We define a notion of EPP for Chorλ, capitalising on the design of its type system and
semantics.

We start our development by focusing on the finite fragment Chorλ, i.e., without recursion.
First, we introduce a target language for representing distributed code: a distributed λ-
calculus, which consists of well-known terms extended with primitives for sending and
receiving messages. Then, we use this language to define a modular EPP for (finite) Chorλ.
The key insight for achieving modularity is the inclusion of a no-op term in the target
language, which is the projection of any choreographic term in which a participant is not
involved. In this way, if some choreographic subterm does not involve a participant p, it is
projected as no-op. And if this term is later edited without involving p, then the projection
for p remains no-op and does not need to be recompiled. This is explained in detail in
Example 6.

The rule for generating no-ops benefits from the careful design of the rule for typing
abstractions in Chorλ. This is not an accident: in [6] this particular rule was claimed
to be designed with the future development of a suitable EPP in mind, but this was not
substantiated. In this paper we show that our EPP satisfies the expected operational
correspondence between choreographies and their projections (Theorems 25 and 26). As a
consequence, projections of choreographies cannot deadlock.

Furthermore, we define a type system for the target language based on standard techniques,
and show that well-typed choreographies are projected onto well-typed target terms whose
types are projections of the source choreographic types (Proposition 10). This result is

ECOOP 2023

7:4 Modular Compilation for Higher-Order Functional Choreographies

relevant for applicability: knowing the type of projected functions lets programmers compose
them in larger projects through APIs under the control of the programmer, as is commonly
done with projected code [15, 17].

A unique feature of Chorλ is that conditionals can use whole choreographies as conditions,
and in particular ones that return distributed data structures – data structures that compose
data residing at different participants. For the first time, our EPP leverages this feature
to offer a new method for capturing knowledge of choice – distributed agreement regarding
choices between alternative choreographic behaviours [4]. Specifically, we can statically
guarantee that two (or more) participants will agree on the instantiation of a sum type
(representing alternative choices) solely by performing independent local checks. When this is
used in a conditional, it means that all participants are guaranteed to make the same choice
at runtime. This gives a simpler alternative to existing verification methods for distributed
choices [21]. We call types used in this way distributed choice types.

Lastly, we extend our development to the full language of Chorλ, including recursion.
Recursion allows for divergent behaviour, which gives an interesting problem: a divergent term
does not necessarily involve all participants, so generalising the operational correspondence
between choreographies and their projections requires allowing choreographies to perform
actions involving participants that are not blocked by divergent computations. The semantics
of Chorλ include rules for performing reductions out of order, which again were designed
with the future development of EPP in mind. We show that these rules are adequate to
generalise our results.

Contribution

We define the first notion of EPP for a functional choreographic programming language that
is modular and does not add extra communications. This necessitates using not only the
information contained in the syntactic structure of a choreography, but also the one contained
in the typing derivation that accompanies it. These sources of information give a number of
cases for projection that need to be designed carefully, in order to distinguish correctly when
a process is potentially involved in the realisation of part of a choreography. We show that
EPP satisfies the usual operational correspondence property between choreographies and
their projections. Our development also proves two unsubstantiated claims from [6]: that
the typing system of Chorλ is expressive enough to support a modular notion of EPP, and
that the semantics of Chorλ capture how distributed participants behave in the presence
of divergence. Furthermore, we check the practical applicability of our theory by using
it to project the model of the Extensible Authentication Protocol (EAP) [28] given in [6],
a nontrivial choreography that makes use of higher-order composition, distributed data
structures, and distributed choice types.

We anticipate that our developments on the theory of higher-order choreographies will
allow higher-order functions to be added to implementations of existing choreographic and
similar languages. We discuss this in Section 7.

Structure

We provide a review of the main features of recursion-free Chorλ in Section 2. In Section 3 we
describe the local endpoint language Chorλ is projected to and how to project a choreography.
We reintroduce recursion into Chorλ and introduce it to our endpoint language in Section 4.
An example of a realistic use case (the Extensible Authentication Protocol) projected using
our method can be seen in Section 5. Related work is given in Section 6. Conclusions are
presented in Section 7. Full definitions and proofs of results for the full language of Chorλ
can be found in Appendix A.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:5

2 Background

In this section, we recap the theory of the choreographic λ-calculus (Chorλ) without recursion,
from [6]. Chorλ extends the simply typed λ-calculus [5] with primitives that make distribution
and communication syntactically manifest.

System model

Chorλ is used to model systems of independent processes, which can interact by synchronous
communication. Each process has a name, and knows the names of the other processes in
the network. There are two kinds of messages that can be exchanged: values are results of
computations; and selection labels are special constants used to implement agreement on
choices about alternative distributed behaviour.

Syntax

The syntax of Chorλ is given by the following grammar

M ::“ V | M M | case M of Inl x ñ M ; Inr x ñ M | selectp,p l M

V ::“ x | λx : T .M | Inl V | Inr V | fst | snd | Pair V V | pq@p | comp,p

T ::“ T Ñρ T | T ` T | T ˆ T | pq@p

where M is a choreography, V is a value, T is a type, x is a variable, l is a label, p is a
process name, and ρ is a set of process names.

Terms are located at processes, to reflect distribution. For example, the value pq@A reads
“the unit value at A”. Types are annotated with process names, as well. In the typing rules
of Chorλ (shown later), term pq@A has the type pq@A, read “the unit type at A”. In our
examples, for simplicity, we assume the presence of primitives for integer values and an
integer type Int@p (“an integer at p”) – the formal treatment of these are straightforward
and similar to that of units.

Abstraction λx : T.M , variable x and application MM are as in the standard (simply
typed) λ-calculus. Sums and products are constructed, respectively, by using Inl/Inr and
Pair. They are deconstructed in the usual way, respectively with case and fst/snd. The
constructors can take only values as arguments, but this does not restrict expressivity (cf.
[6]).

The primitives comp,q and selectp,q l M (where p and q are process names) model
communications of, respectively, values and selection labels. A communication term comp,q
acts as a function that takes a value at the process named p and returns the same value at the
process named q. In a selection term selectp,q l M , instead, p informs q that it has selected
the label l before continuing as M . Selections choreographically represent the communication
of an internal choice made by p to q. As we shall see in our definition of EPP, they play a
key role in establishing agreement among processes regarding what behaviour they should
enact together.

Selections are standard in choreographic languages and should not to be confused with
the distributed choice types that we anticipated in the introduction (these will be illustrated
later, in the next section). The former used to implement agreement on choices, whereas the
latter are used to codify the information that an agreement has been reached and can thus
be used without requiring communication. We will touch on this topic later, in Example 15
and Section 5.

ECOOP 2023

7:6 Modular Compilation for Higher-Order Functional Choreographies

A key feature of Chorλ is distributed data structures. For example, Pair pq@p pq@q is
a distributed pair where the first element resides at p and the second at q. Types record
the distribution of values across processes: if p occurs in the type given to V then part of V

will be located at p. A function may involve more processes than those listed in the types
of its input and output, so the type of abstractions T Ñρ T 1 has the extra ingredient ρ,
which denotes the processes that may participate in the computation of the function besides
those occurring in T or T 1. We simply write T Ñ T 1 in place of T ÑH T 1. For example,
if Alice wants to communicate an integer to Bob directly (without intermediaries), she can
use a choreography of type Int@Alice Ñ Int@Bob; however, if the communication might go
through a proxy, then she can use a choreography of type Int@Alice ÑtProxyu Int@Bob. The
information given by ρ gives control on what processes may participate in choreographies
taken as arguments. As we show in Section 3, this information is essential to achieve a
modular EPP.

We write fvpMq for the set of free variables in a term M , and pnpT q and pnpMq for the set
of process names mentioned in respectively a type T and a choreography M . A choreography
is closed if it has no free variables. Our key results apply to closed choreographies.

▶ Example 1 (Remote Function [6]). The following choreography models a distributed
computation in which a client, C sends an integer val to a server S and a local function
fun located at S is applied to val before the result gets returned to C. The choreography is
parametrised on both fun and val.

λfun : Int@S ÑH Int@S. λval : Int@C. comS,C pfun pcomC,S valqq

{

Typing

Choreographies are typed with judgements of the form Θ; Γ $ M : T , where Θ is the set of
process names that can be used for typing M and Γ is a function assigning types to variables.
We recall a few key typing rules from [6]. Our rules use the notation pnpT q for the process
names that appear in the type T .

pnpT q “ tpu tp, qu Ď Θ
Θ; Γ $ comp,q : T ÑH T rp :“ qs

[TCom]

Θ; Γ $ N : T Ñρ T 1 Θ; Γ $ M : T

Θ; Γ $ N M : T 1
[TApp]

Θ1; Γ, x : T $ M : T 1 ρ Y pnpT q Y pnpT 1q “ Θ1 Ď Θ
Θ; Γ $ λx : T.M : T Ñρ T 1

[TAbs]

A communication is typed as a function from any type T located entirely at the sender p to
the same type moved to the receiver, as long as both process names are in Θ. Application and
abstraction are typed similarly to simply-typed λ-calculus, extended with ρ and Θ (whose
consistency is checked in rule TAbs). Note that ρ and Θ in rule TAbs are not necessarily
minimal, and it is possible to type, e.g., tp, qu; H $ λx : Int@p.x : Int@p Ñtqu Int@p. A
minimal ρ would consist of those processes that appear either in M or in the types of the
free variables of M according to Γ.

▶ Example 2. Let h be the function λx : Int@Alice.comProxy,Bob pcomAlice,Proxy xq, which
communicates an integer from Alice to Bob by passing through an intermediary Proxy. Then,
tAlice, Bob, Proxyu; H $ h : Int@Alice ÑtProxyu Int@Bob. For any term M , the composition

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:7

h M is well-typed if M has type Int@Alice, denoting that the evaluation of M will yield
an integer at Alice. By contrast, h 5@Bob is ill-typed because of wrong data locality (the
argument is not at the process expected by h). {

Semantics

Chorλ comes with an operational semantics given in terms of labelled reductions. Reduction
labels are used to keep track of which processes interact in a reduction, which is going to be
important for our development. We illustrate this with the two key rules below.

λx : T.M V
H

ÝÑ M rx :“ V s

[AppAbs]
fvpV q “ H

comq,p V
tq,pu

ÝÝÝÑ V rq ÞÑ ps

[Com]

Rule AppAbs is the standard application rule of call-by-value λ-calculus – annotated with
an empty set, which indicates that no synchronisation is taking place. Rule Com, instead,
implements a communication by “moving” the communicated value from the sender to the
receiver (through a substitution). Thus, for example, comAlice,Bob3@Alice tAlice,Bobu

ÝÝÝÝÝÝÝÑ 3@Bob.
Since it makes no sense to communicate a variable whose value is stored at the sender
rather than the value itself, we require that the communicated value has no free variables.
Communicating a free variable would cause problems for Chorλ’s type system, since it would
require changing the type of the variable in the environment.

Reductions are labelled with the processes synchronising in them, but this only becomes
relevant information in Section 4.

3 Endpoint Projection (EPP) for finite Chorλ

In this section we develop a theory of EPP for finite Chorλ.

3.1 Process Language
We write implementations of choreographies in a distributed λ-calculus, which we call process
language. Processes run in parallel, each with its own behaviour, and can interact by message
passing.

Syntax

The syntax of process behaviours is given by the following grammar

B ::“ L | B B | case B of Inl x ñ B; Inr x ñ B | ‘p l B

| &ptl1 : B1, . . . , ln : Bnu

L ::“ x | λx : T.B | Inl L | Inr L | fst | snd | Pair L L | pq | recvp | sendp | K

T ::“ T Ñ T | T ` T | T ˆ T | pq | K

where B is a behaviour, L is a local value, and T is a local type.
The terms from the λ-calculus are standard. Pairs and sums work as described for Chorλ,

but note that now they are completely local (as usual) because there are no process name
annotations anymore.

The terms for message passing are the local counterparts of choreographic communication
terms. Selections are implemented by the offer branching term &ptl1 : B1, . . . , ln : Bnu,
which offers a number of different ways it can continue for another process p to choose from,

ECOOP 2023

7:8 Modular Compilation for Higher-Order Functional Choreographies

Σ; Γ $ B : T

Σ; Γ $ ‘p l B : T
[NTChor]

Σ; Γ $ Bi : T for 1 ď i ď n

Σ; Γ $ &ptl1 : B1, . . . ln : Bnu : T
[NTOff]

Σ; Γ $ sendp : T Ñ K
[NTSend] Σ; Γ $ recvp : K Ñ T

[NTRecv]

Σ; Γ $ K : K
[NTbotm]

Σ; Γ $ B : K Σ; Γ $ B1 : K

Σ; Γ $ B B1 : K
[NTApp2]

Figure 2 Typing rules for behaviours (selected rules).

and the choice term ‘p l B, which directs p to continue as the behaviour labelled l. Likewise,
value communication is divided into a send to p action, sendp, and a receive from p action,
recvp.

We also add the no-op term mentioned in the introduction, K, and its type, K. A term
K represents a terminated behaviour with no result. This term is used in the semantics
of send and receive: locally, sendp acts as a function that can take any input and returns
K, and recvp a function that given K returns some value. More interestingly, K also plays
an important role wrt modularity in our notion of EPP, which we will discuss later in our
presentation of projection. All types but K are standard (as in Chorλ, but without process
name annotations).

A system of running processes is called a network.

▶ Definition 3. A network N is a finite map from a set of process names to behaviours.

Given two networks N and N 1 with disjoint domains, their parallel composition N | N 1

maps each process name to the behaviour in the network defining the process. Any network
is equivalent to a parallel composition of networks with singleton domains, so we write
p1rB1s | . . . | pnrBns for the network where each process pi has behaviour Bi [24].

▶ Example 4. Consider the choreography comB,C pcomA,B pq@Aq. A correct implementation
is the network ArsendB pqs | BrsendC precvA Kqs | CrrecvB Ks. {

Typing

Behaviours are typed with judgements of the form Γ $ B : T . The typing rules are the local
counterparts of those in Chorλ, obtained by removing Θ and process names in types. We
add the K type for terms that can result in K. Figure 2 displays representative typing rules
to deal with K and communications.

Semantics

The semantics of networks is given as a labelled transition system. Figure 3 displays some
representative transition rules.

Labels for network transitions have the form τP, where P ranges over sets of one or two
process names. Rule NPro annotates an internal transition by a process with its name, and
rule NPar lifts transitions in parallel compositions.

The transition axioms for send and receive are typical of process calculi with early
semantics. Send and receive transitions are matched in rule NCom to perform a communica-
tion The label τp,q denotes an internal move (τ) and manifests the names of processes that
contribute to performing it (p and q). We treat the subscript p, q as an unordered set that
consists of the two process names.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:9

fvpLq “ H

sendp L
sendp L

ÝÝÝÝÝÑ K

[NSend]
recvp K

recvp L
ÝÝÝÝÑ L

[NRecv]

B1
sendq L

ÝÝÝÝÝÑ B1
1 B2

recvp L
ÝÝÝÝÑ B1

2

prB1s | qrB2s
τp,q

ÝÝÑ prB1
1s | qrB1

2s

[NCom]

‘p l B
‘p l

ÝÝÝÑ B
[NCho]

&ptℓ1 : B1, . . . , ℓn : Bnu
&pℓi

ÝÝÝÑ Bi

[NOff]

B1
‘q ℓ

ÝÝÝÑ B1
1 B2

&p ℓ
ÝÝÝÑ B1

2

prB1s | qrB2s
τp,q

ÝÝÑ prB1
1s | qrB1

2s

[NSel]

pλx : T.Bq L
τ

ÝÑ Brx :“ Ls
[NAbsApp]

K K
τ

ÝÑ K
[NBotm]

B
τ

ÝÑ B1

prBs
τp

ÝÑ prB1s

[NPro] N τP
ÝÑ N 2

N | N 1 τP
ÝÑ N 2 | N 1

[NPar]

Figure 3 Network semantics (representative rules).

The P-annotations in labels enable the formulation of the next lemma, which we use in
some of our proofs to focus on the processes involved in a transition. The proof of this result
and others for the full Chorλ language are provided in Appendix A.

▶ Lemma 5. For any p and N , if N τP
ÝÑ N 1 and p R P then N ppq “ N 1ppq.

Most of the other rules follow the same intuition and are otherwise standard. The
exception is rule NBotm, which garbage collects K terms. We discuss the role of this rule in
Example 9, after having presented our notion of EPP.

3.2 Endpoint Projection (EPP)
We now move to defining the endpoint projection (EPP) of a choreography M for an individual
process p, assuming that M is well-typed; that is, Θ; Γ $ M : T for some Θ, Γ, and T . The
definition of EPP formally depends on this typing derivation, but to keep notation simple we
write just JMKp for the projection of M on p and refer to the type T associated to M in the
specific derivation we are looking at as typepMq.

Projection translates each choreographic term to a corresponding local behaviour. For
example, a communication term comp,q is projected to a send action for the sender p and a
receive action for the receiver q.

Abstraction presents a novel challenge compared to previous, non-functional choreographic
languages. We discuss it in the next example, which also illustrates the importance of K in
our theory of EPP.

▶ Example 6. Let M “ λx : Int@p.M 1 for some M 1, and consider the issue of defining its
projection on a process q different than p, JMKq. Since EPP is usually defined inductively
on the structure of the choreography, this definition should not depend on the context that
M is used in.

The standard principle for EPP found in the literature is to ignore the parts that do not
mention the process we are currently projecting to. Following this principle, we should omit
the initial abstraction (λx) of M in the implementation of q.

ECOOP 2023

7:10 Modular Compilation for Higher-Order Functional Choreographies

For example, for M “ λx : Int@p.2@q, we could design EPP such that JMKq “ 2. This
works when M is used in an application as pλx : Int@p.2@qq 1@p, where JMKq “ 2 is still
reasonable (since q has nothing to do with the argument).

Unfortunately, this standard approach is not robust in the case of functional choreo-
graphies: even if q is not mentioned in the type of x in λx : Int@p, in general it could still
participate in the context that produces the value that x is going to be replaced with. For
example, let M2 “ pλx : Int@p.comq,p 2@qq pcomq,p 1@qq, which expresses a sequence of
communications between q and p (first of 1 and then of 2, in order). If we insist on excluding
the abstraction from the projection on q, then we obtain JM2Kq “ psendp 2q psendp 1q. This
is wrong, because it would send 2 before 1. Therefore, we cannot just skip abstractions that
do not involve the process we are projecting on. In this case, a correct implementation of q in
M2 would be pλx : K.sendp 2q psendp 1q. Our process language is carefully designed to make
terms like this normalise gracefully: after executing sendp 1 the righthandside is K, thus
allowing for the application to be resolved and for the second send action to be executed.

Sometimes, however, abstractions should be skipped. For example, if M is λx : Int@p.1@p,
then JMKq should clearly be K. The alternative, λx : K.K, would break modularity of EPP
because the structure of JMKq would depend on the internal behaviour of p. To solve this
issue, we take the approach of skipping an abstraction like λx : T.M 1 only if both T and M 1

do not mention the process that we are projecting on. Type information is therefore key to
our EPP, in addition to the usual syntactic checks, which is why we have made the EPP
dependent on a typing derivation.

We will come back to K and its companion rule NBotm in Example 9. {

In order to define EPP precisely, we need a few additional ingredients.
Projecting a term M requires knowing the processes involved in its type. As our EPP

takes an entire typing derivation of M as input, the type is implicitly given in the derivation
provided to EPP. So we write without ambiguity pnptypepMqq for this set of process names.

The second ingredient concerns knowledge of choice. When projecting a conditional
case M of Inl x ñ M 1; Inr y ñ M2, processes not occurring in M cannot know what branch
of the choreography is chosen; therefore, the projections of M 1 and M2 must be combined
in a uniquely-defined behaviour. We thus define a partial merge operator (\), adapted
from [1, 8, 19], whose key property is

&tli : BiuiPI \ &tlj : B1
jujPJ “ &

`

tlk : Bk \ B1
kukPIXJ Y tli : BiuiPIzJ Y tlj : B1

jujPJzI

˘

and which is homomorphically defined for the remaining constructs (see Appendix A for the
full definition). The idea is that a process not in M must either perform the same actions
in M 1 and M2 (so the choice does not matter) or receive an appropriate selection to know
which branch has been chosen. Merging of incompatible behaviours is undefined.

▶ Example 7. Consider the choreography

C “ case Inl pq@p of Inl x ñ selectp,q left 0@q; Inr y ñ selectp,q right 1@q .

Using merging, its projection on process q is JCKq “ &ptleft : 0, right : 1u. {

▶ Definition 8. The EPP of a choreography M on a specific process p (JMKp) is defined by
the rules in Figure 4. The EPP of a choreography (JMK) is the parallel composition of the
EPPs on its processes: JMK “

ś

pPpnpMq p
”

JMKp

ı

.

Intuitively, projecting a choreography on a process that is not involved in it returns a K.
In general, however, a choreography may involve processes not mentioned in its type. This
explains the first clause for projecting an application: even if p does not appear in the type of

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:11

Choreographies

JM NKp “

$

’

’

&

’

’

%

JMKp JNKp if p P pnptypepMqq or p P pnpMq X pnpNq

JMKp if JNKp “ K

JNKp otherwise

Jλx : T.MKp “

#

λx : JT Kp . JMKp if p P pnptypepλx : T.Mqq

K otherwise
q
case M of Inl x ñ N ; Inr x1

ñ N 1
y

p “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

case JMKp of Inl x ñ JNKp; Inr x1
ñ

q
N 1

y
p if p P pnptypepMqq

JMKp if JNKp “ JN 1Kp “ K

JNKp \
q
N 1

y
p if JMKp “ K

pλx2 : K. JNKp \
q
N 1

y
pq JMKp otherwise, for some

x2
R fvpNq Y fvpN 1

q

JInl V Kp “

#

Inl JV Kp if p P pnptypepInl V qq

K otherwise
JfstKp “

#

fst if p P pnptypepfstqq

K otherwise

Jselectq,q1 l MKp “

$

’

’

&

’

’

%

‘q1 l JMKp if p “ q ‰ q1

&qtl : JMKpu if p “ q1
‰ q

JMKp otherwise

Jcomq,q1Kp “

$

’

’

’

’

&

’

’

’

’

%

λx : JT Kp .x if p “ q “ q1 and typepcomq,q1 q “ T ÑH T 1

sendq1 if p “ q ‰ q1

recvq if p “ q1
‰ q

K otherwise

Jpq@qKp “

#

pq if q “ p
K otherwise

JxKp “

#

x if p P pnptypepxqq

K otherwise

Types

Jpq@qKp “

#

pq if q “ p
K otherwise

q
T ˆ T 1

y
p “

#

JT Kp ˆ
q
T 1

y
p if p P pnpT ˆ T 1

q

K otherwise

q
T Ñρ T 1

y
p “

#

JT Kp Ñ
q
T 1

y
p if p P ρ Y pnpT q Y pnpT 1

q

K otherwise

Figure 4 Projecting a choreography in Chorλ onto a process – when cases overlap, the first one
takes precedence (representative rules).

ECOOP 2023

7:12 Modular Compilation for Higher-Order Functional Choreographies

M , it may participate in interactions in M . Vice versa, a process can appear in the type of a
choreography without appearing in the choreography itself. The difference between a process
appearing in a choreography or its type becomes important when we look at the projection
of case M of Inl x ñ N ; Inr x1 ñ N 1. Here, p appearing in the type of M indicates that p
will, at the end of the computation of M , know what branch will be chosen; therefore, the
projection on p is a case. However, it is possible that p is involved in the computation of
the condition M without knowing the final choice, e.g., if M “ comp,q M 1. In this case, the
projection on p is not a case but still needs code to participate in the implementation of M

correctly. If p is involved in the branches as well, then we need to project code for them too:
we inject an abstraction in order to maintain the correct order of computation (M before N

and N 1) and make the resulting process well typed (since p does not appear in the type of
M , that type will be projected to K).

The projection of abstraction illustrates the necessity of the ρ annotation on abstraction
types. For example, consider an application of a communication via a proxy pλx : Int@p Ñtru
Int@q.x 3@pq pλy : Int@p.comr,q comp,r yq. Without the annotation tru in subterm pλx :
Int@p Ñtru Int@q.x 3@pq, the projection of this subterm on r would just be K, which is wrong
for the overall application since r will actually be involved.

Selections and communications follow the intuition given before, with one interesting
detail: self-selections are ignored, and self-communications are projected to the identity
function. This is different from previous works, where self-communication is not allowed –
here we lift this restriction.

Likewise, projecting a type T yields K at any process not used in T .

▶ Example 9. Let M “ pcomp,q pλx : Int@p.3@pqq pcomp,q 5@pq, where a function and
a value are both sent from p to q before being applied at q. The implementation of q
is JMKq “ precvp Kq precvp Kq, whose execution is straightforward. At p, however, we
have that JMKp “ psendqpλx : Int.3qq psendq 5q, which after executing the two send actions
becomes K K. After executing its two communications, the choreography M becomes
M 1 “ pλx : Int@q.3@qq 5@q. M 1 is located entirely at q, and therefore JM 1Kp “ K, which is
different than the K K reached by JMKp. We therefore need a way to make the application
K K become K. Rule NBotm serves this purpose. The fact that this is not possible with
two units is the key semantic difference between K and pq. {

▶ Proposition 10. Let M be a closed choreography. If Θ; Γ $ M : T , then for any process p
appearing in M , we have that JΓK $ JMKp : JT Kp, where JΓK are defined by applying EPP to
all types occurring Γ.

▶ Example 11. Let M be the remote function choreography in Example 1. Its projections
on C and S are as follows.

JMKC “ λf : K. λval : Int. recvS psendS valq

JMKS “ λf : pInt Ñ Intq. λval : K. sendC pf precvC Kqq

This example illustrates the key features discussed in the text: projection of communications
as two dual actions; and the way function applications are projected when the process does
not appear in the function’s type. {

We describe what we consider modularity of EPP, formally defined in Definition 12.
Modular projection means that for any context Crs the projection of CrM s at p will be the
same for any M which does not involve p. The definition of context is as expected and can be
found in Appendix A. Modularity is typical (and expected) of EPP, because the projection
of p should not be generating junk code based on the behaviour of other processes.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:13

▶ Definition 12 (Modularity of EPP). An EPP J´K is called modular if JCrM sKp “ JCrN sKp
for any process p, context Crs, and choreographies M and N such that Θ; Γ $ M : T and
Θ; Γ $ N : T with p R Θ.

Modularity ensures that if we modify part of a choreography in which a process p is not
involved, we do not need to recompile the projection of the choreography onto p because
this projection is unaffected. In general, the strong equality requirement could be relaxed to
allow for some extra local actions that do not change the observable behaviour of a process,
e.g., adding “empty” applications like λx.K : K. This would yield some extra flexibility to
deal with cases such as the one seen in Example 6, so long as the interactions with other
processes and return value at p do not change. However, this design would come at some
costs: an increase in complexity due to the addition of a suitable notion of behavioural
equivalence; a potential loss in efficiency, since processes might gain unnecessary reductions
in their projections; and a potential leak of information, since the local code projected on a
process would reveals some information about the behaviours of other processes.

The following proposition, Proposition 14, shows that our EPP is modular.

▶ Lemma 13. Given a choreography M , if Θ; Γ $ M : T and p R Θ then JMKp “ K.

Proof. Follows from p R Θ implying p R pnpT q Y pnpMq and induction on the derivation of
JMKp. ◀

▶ Proposition 14. The EPP J´K given in Definition 8 is modular.

Proof. Follows from Lemma 13 and observing that the projection of any context always
treats K the same. ◀

▶ Example 15 (Distributed choice types). Now that we can project a choreography, we return
to the idea of distributed choice types from the introduction. Consider a choreography

M “ λx : Bool@pp, qq.case x of Inl y ñ comp,q3@p; Inr y ñ 5@q

Here Bool@pp, qq is equivalent to the type ppq@p ˆ pq@qq ` ppq@p ˆ pq@qq, and in general we
can encode a “distributed boolean” as

Bool@p⃗ “ ppq@p1 ˆ ¨ ¨ ¨ ˆ pq@pnq ` ppq@p1 ˆ ¨ ¨ ¨ ˆ pq@pnq

We can use distributed booleans to codify distributed choices, in this case by having both
p and q be able to make local choice without interacting but still guaranteeing that they
choose their respective behaviours correctly.

Specifically, when we project M we get two local choices made at p and q, both of which
are guaranteed to make the same choice. First we have the projections

JMKp “ λx : ppq ˆ Kq ` ppq ˆ Kq.case x of Inl y ñ sendq 3; Inr y ñ K

and

JMKq “ λx : pK ˆ pqq ` pK ˆ pqq.case x of Inl y ñ recvp K; Inr y ñ 5

For these processes to be deadlock-free when put in parallel, we need both of them to make
the same choice. Thankfully, the distributed boolean type ensures that x will always be
instantiated as either Inl pPair pq@p pq@qq or Inr pPair pq@p pq@qq. From the projection we
get JInl pPair pq@p pq@qqKp “ Inl pPair pq Kq and JInl pPair pq@p pq@qqKq “ Inl pPair K pqq,

ECOOP 2023

7:14 Modular Compilation for Higher-Order Functional Choreographies

and similar for the Inr case. We therefore know that Chorλ’s distributed choice works as
intended when projected. As we shall see in Section 5, one use for this technique is to have
different processes independently agree on the size of a distributed list.

Note that if we tried to model a distributed boolean as ppq@p ` pq@pq ˆ ppq@q ` pq@qq, it
would not be useful to represent a distributed choice because it would allow the processes to
make different choices. (Also, M would obviously not be well-typed, as a condition must
have a sum type.) {

We now show that there is a close correspondence between the executions of choreographies
and of their projections. Intuitively, this correspondence states that a choreography can
execute an action if, and only if, its projection can execute the same action, and both
transition to new terms in the same relation. Technically, we need to be more precise: if a
choreography M reduces by rule Case, then the result has fewer branches than the network
obtained by performing the corresponding reduction in the projection of M . (This is a
standard issue with choreographic conditionals [24].)

In order to capture this, we define a partial order Ě that relates a behaviour to a version
with fewer branches: B Ě B1 iff B \ B1 “ B. Intuitively, if B Ą B1, then B offers the same
or more branches than B1 (also in subterms). This notion extends to networks by defining
N Ě N 1 to mean that, for any process p, N ppq Ě N 1ppq. Example 16 shows the necessity of
Ě in order to get a meaningful notion of operational correspondence between choreographies
and their projection.

▶ Example 16. Consider again the choreography from Example 7,

C “ case Inl pq@p of Inl x ñ selectp,q left 0@q; Inr y ñ selectp,q right 1@q ,

and its projection B on q, B “ JCKq “ &ptleft : 0, right : 1u.
When entering the case, C reduces to C 1 “ selectp,q left 0@q, but q is not involved in

this action and its behaviour remains B, which is not JC 1Kq. However, &ptleft : 0, right :
1u \ &ptleft : 0u “ &ptleft : 0, right : 1u, so B Ě JC 1Kq. {

In addition to Ě, we need to equate behaviours that differ only by applications to K like
P and pλx : K.P q K introduced by the projection of applications.

▶ Definition 17. We define ” as the least equivalence relation on behaviours that is closed
under context and P ” pλx : K.P q K for any behaviour P . We write N ” N 1 for the
pointwise extension of ” to networks (i.e., ΠpprPps ” ΠpprP 1

ps iff Pp ” P 1
p for all ps) and

N Ŋ N 1 if there is a network N 2 such that N Ě N 2 and N 2 ” N 1.

We can finally show that the EPP of a choreography can do all that (completeness) and
only what (soundness) the choreography does. Here Ñ˚ denotes a sequence of transitions
with any labels, and Ñ` a nonempty such sequence.

▶ Theorem 18 (Completeness). Given a closed choreography M , if M
P

ÝÑ M 1, Θ; Γ $ M : T ,
and JMK is defined, then there exist networks N and M2 such that: JMK Ñ` N ; M 1 Ñ˚ M2;
and N Ŋ JM2K.

▶ Theorem 19 (Soundness). Given a closed choreography M , if Θ; Γ $ M : T and JMK Ñ˚ N
for some network N , then there exist a choreography M 1, and a network N 1 such that:
M Ñ˚ M 1; N Ñ˚ N 1; and N 1 Ŋ JM 1K.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:15

Since we have no recursion and only require that the choreography and projection
eventually get to the same state, we can prove soundness and correctness without needing
the out-of-order semantics usually required in choreographic languages [24].

From Theorems 18 and 19 and the type preservation and progress results from [6], we
obtain deadlock-freedom: the EPP of a well-typed closed choreography can continue to
reduce until all processes contain only local values.

▶ Corollary 20 (Deadlock-freedom). Given a closed choreography M , if Θ; Γ $ M : T then:
whenever JMK Ñ˚ N for some network N , either there exists p and N 1 such that N τP

ÝÑ N 1

or N “
ś

pPpnpMq prLps.

4 Recursion

So far we have worked with a recursion-free subset of Chorλ. In this section, we extend our
development to the full language presented of Chorλ, which includes recursive definitions [6].
As we will see, recursion is technically challenging because of the introduction of divergence.

4.1 Definitions
Choreographies

Recursion in Chorλ is achieved by named functions (f) parametrised on process names. We
use D to range over mappings of parametrised functions names to choreographies (the bodies
of the functions). To execute a choreography M containing calls to named functions, the
choreography must be associated with a mapping D that contains all the named functions
called by M . The grammar of choreographies is extended with M ::“ ¨ ¨ ¨ | f p⃗pq. A function
call f p⃗pq invokes f by instantiating its parameters with the process names p⃗, which evaluates
to the body of the function. In a function call or definition, parameters must be distinct.
Semantically, we add D as an annotation to the reduction relation for choreographies and use
the following rule to evaluate functions. Labels in Chorλ with recursion are extended to the
form ℓ, P, where the new ingredient ℓ can be either τ or λ. The need for ℓ is explained later.

Dpfpp⃗1qq “ M

f p⃗pq
τ,H

ÝÝÑD M rp⃗1 ÞÑ p⃗s

[Def]

To type recursive choreographies, we introduce recursive type variables ranged over by t.
These are defined in a collection Σ, which contains type equations of the form t@p⃗ “ T –
the elements of p⃗ must be distinct. The grammar of types is extended with parametrised
variables: T ::“ ¨ ¨ ¨ | t@p⃗. Essentially, assuming the presence of an equation t@p⃗1 “ T , t@p⃗
can be unfolded into T rp⃗1 :“ p⃗s. Typing judgements are then of the form Θ; Σ; Γ $ M : T ,
where Γ may now also contain type assignments for recursive functions of the form f p⃗pq : T .

Θ; Σ; Γ $ M : t@p⃗1 t@p⃗ “Σ T p⃗1 Ď Θ ||⃗p|| “ ||p⃗1|| p⃗1 distinct
Θ; Σ; Γ $ M : T r⃗p :“ p⃗1s

[TEq]

We also write Θ; Σ; Γ $ D to denote that each function in D can be typed accordingly to
its type in Γ.

▶ Example 21 (Remote Map). With recursive functions, we can write more complex cho-
reographies that call themselves and each other. Let remoteFunctionpC, Sq be defined as
the choreography in Example 1. We use it to define a function remoteMappC, Sq, where a

ECOOP 2023

7:16 Modular Compilation for Higher-Order Functional Choreographies

server S applies a function to not just one value, but instead to each element of a stream
communicated from a client C. Then S returns the results, which C gathers into a list with
the standard cons function used to construct a new list.

remoteMappC, Sq “ λfun : Int@S Ñ Int@S. λlist : rInts@C.

case list of
Inl x ñ selectC,S stop pq@C;
Inr x ñ selectC,S again

conspCq premoteFunctionpC, Sq fun pfst xqq premoteMappC, Sq fun psnd xqq

Here, rInts@C is defined as rInts@C “ pq@C ` pInt@C ˆ rInts@Cq, representing a list of
integers. In general, we write rts@pp1, . . . , pnq to mean the type satisfying rts@pp1, . . . , pnq “

ppq@p1 ˆ ¨ ¨ ¨ ˆ pq@pnq ` pt@pp1, . . . , pnq ˆ rts@pp1, . . . , pnqq. {

▶ Example 22 (Diffie-Hellman [6]). We recall the choreography for the Diffie–Hellman key
exchange protocol [13], which allows two processes to agree on a shared secret key without
assuming secrecy of communications. Again, we use the primitive type Int.

To define this protocol, we use the local function modPowpRq of the type

modPowpRq : Int@R Ñ Int@R Ñ Int@R Ñ Int@R

which computes powers with a given modulo. Given modPowpRq, we can implement Diffie–
Hellman as the following choreography:

diffieHellmanpP, Qq “

λpsk : Int@P. λqsk : Int@Q. λpsg : Int@P.

λqsg : Int@Q. λpsp : Int@P. λqsp : Int@Q.

pair pmodPowpPq psg pcomQ,P pmodPowpQq qsg qsk qspqq pspq

pmodPowpQq qsg pcomP,Q pmodPowpPq psg psk pspqq qspq

Given the individual secret keys (psk and qsk) and a previously publicly agreed upon
shared prime modulus and base (psg “ qsg, psp “ qsp), the participants exchange their
locally-computed public keys in order to arrive at a shared key that can be used to encrypt
all further communication. This means diffieHellmanpP, Qq has the type:

Int@P Ñ Int@Q Ñ Int@P Ñ Int@Q Ñ Int@P Ñ Int@Q Ñ Int@P ˆ Int@Q

and represents the shared key as a pair of equal keys, one for each participant.
The choreography then takes a shared key as its parameter and produces a pair of

unidirectional channels that wrap the communication primitive with the necessary encryption
based on the key:

makeSecureChannelspP, Qq “ λkey : Int@P ˆ Int@Q.

Pair pλval : String@P. pdecpQq psnd keyq pcomP,Q pencpPq pfst keyq valqqqq

pλval : String@Q. pdecpPq pfst keyq pcomQ,P pencpQq psnd keyq valqqqq

Here enc and dec are local function for encoding and decoding values based on keys.
The fact that this choreography returns a pair of channels can also be seen from its type:

pInt@P ˆ Int@Qq Ñ ppString@P Ñ String@Qq ˆ pString@Q Ñ String@Pqq

Using the channels is as easy as using com itself and amounts to a function application.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:17

Process language

To implement recursive functions in Chorλ, we also add recursive functions to our process
language: B ::“ ¨ ¨ ¨ | f p⃗pq. They have the same syntax as in choreographies, being parametric
on the names of any other processes our process may interact with as part of the function.
Local function names are associated with their definition by a function D, which works the
same as D in the choreographic setting. Furthermore, we add a transition rule to the process
language similar to rule Def for choreographies.

Endpoint Projection

We respectively project function calls, type variables, and function definitions as follows.

Jf p⃗pqKp “

#

fipp1, . . . , pi´1, pi`1, . . . , pnq if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

Jt@p⃗Kp “

#

ti if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

JDK “ tfipp1, . . . , pi´1, pi`1, . . . , pnq ÞÑ JMKpi
| Dpfpp1, . . . , pnqq “ Mu

Each named function gets projected to a different named function for each process in its
list of parameters, with the projected environment now treating each of these as separate
functions parametric on the remaining involved processes. These parameters are needed to
implement interactions. Each process can enter a named function independently. Thus, for
example, if Dpfpp, qqq “ M we get JDK pf1pqqq “ JMKp and JDK pf2ppqq “ JMKq.

On the other hand, projection of recursive types does not need to consider other processes
than the one we are projecting on, since local types never mention any processes. Σ is
otherwise projected similarly to D. For example, if t@pp, qq “ T P Σ then t1 “ JT Kp P JΣK
and t2 “ JT Kq P JΣK.

JΣK “ tti “ JT Kpi
| t@pp1, . . . , pnq “ T P Σu

▶ Example 23 (Projecting Example 21). Projecting the choreography in Example 21 yields
the processes remoteMap1 (for the client) and remoteMap2 (for the server) below. The bodies
of remoteFunction1 and remoteFunction2 are the terms in Example 11.

remoteMap1pSq “ λfun : K. λlist : rInts.
case list of

Inl x ñ ‘S stop pq;
Inr x ñ ‘S again

cons1 premoteFunction1pSq K pfst xqq premoteMap1pSq K psnd xqq

remoteMap2pCq “ λfun : Int Ñ Int. λlist : K.

&Ctstop : K, again : premoteFunction2pCq fun Kq premoteMap2pCq fun Kqu

{

▶ Example 24 (Projecting Example 22). Projecting our choreographies diffieHellmanpP, Qq

and makeSecureChannelspP, Qq for process P yields the following behaviours.

JDpdiffieHellmanpP, QqqK1 pQq “ λpsk : Int. λqsk : K. λpsg : Int. λqsg : K. λpsp : Int. λqsp : K.

pair pmodPow1 psg precvQ Kqq pspq

psendQ pmodPow1 psg psk pspqq

ECOOP 2023

7:18 Modular Compilation for Higher-Order Functional Choreographies

JDpmakeSecureChannelspP, QqqK1 pQq “ λkey : Int ˆ K.

Pair pλval : String. ppsnd keyq psendQ pencrypt1 pfst keyq valqqq

pλval : K. pdecrypt1 pfst keyq precvQ psnd keyqqq

Note the way function calls such as modPowpPq in the choreography get projected to
modPow1 on P, since they are treated as degenerate choreographies (they have only one
process) and P is the first and only process involved. Conversely, modPowpQq on P gets
projected as K since it is located entirely at a different process.

4.2 Out-of-order execution
In the presence of recursion, getting a correspondence between a process and choreographic
language becomes much more challenging. In our results for Chorλ without recursion, we
relied on the fact that a choreography would eventually reduce to a value. This is no longer
true as choreographies can now diverge, and worse they can diverge at one process without
diverging at another. Let, for example, M “ pλx : Int@p.fst pPair 5@q xqq fppq. Assume
that Dpfpp1qq “ M 1, where M 1 diverges. Then the reduction rules that we have seen so
far would not allow x to be instantiated. However, JfppqKq “ K, so JMKq can reduce to 5.
Therefore, we need a way to let M copy the reduction of fst pPair 5@q xq to 5@q. In [6],
we included corresponding reduction rules for Chorλ to deal with this kind of issues. These
rules are all type preserving and avoid creating situations where processes disagree on which
communication should be performed first [6]. These rules were unnecessary to deal with the
recursion-free fragment, so we introduce them now.

Rule InAbs below addresses situations as in the previous example.

M
ℓ,P

ÝÝÑD M 1

λx : T.M
λ,P

ÝÝÑD λx : T.M 1

[InAbs]
M

ℓ,R
ÝÝÑD M 1 ℓ “ λ ñ P X pnpNq “ H

M N
τ,P

ÝÝÑD M 1 N
[App1]

Rule App1 use the ℓ-component in reduction labels to identify whether a reduction is
performed under an abstraction (ℓ “ λ) or not (ℓ “ τ). We need this distinction to prevent
interactions under an abstraction performed by processes involved in the righthandside
of an application. This restriction serves to avoid breaking causal dependencies between
communications. Consider the choreography pλx : Int@p.comq,p 4@qq pcomq,p 5@qq, where
the righthandside communication should be performed first – without the restriction, this
would not be guaranteed. Reductions under abstractions additionally necessitates a new
safety condition on rule AppAbs, ensuring that the free variables of V are distinct from the
bound variables of M to avoid problems with scope.

Our modification allows the choreography M “ pλx : Int@q.fst pPair 5@q xqq fpp, qq to
reduce to M 1 “ pλx : Int@p2.5@qq fpp, qq. Thus, the projections of M on p and q must be
able to reduce to the projections of M 1. For p this is easy, since JMKp “ JM 1Kp “ K f1pqq.
For q, however, we need JMKq “ pλx : Int.fst pPair K xqq f2ppq to reduce to JM 1Kq “ pλx :
Int.Kq f2ppq, which requires the process language to have similar out-of-order semantics. We
therefore add an equivalent rule NInAbs and modify rule NApp1 similarly to rule App1.

In the network, rather than checking for interacting processes, we do not allow commu-
nication actions (send, recv, ‘, &) from inside an abstraction. The reduction labels for the
process language are thus simpler (τ or λ), since we do not need to track process names
involved in actions.

Similar problems appear with applications that have divergent subterms on the lefthand-
side, like fpqq ppλx : Int@p.4@qq 3@pq, and are treated similarly (the corresponding reduction
rules are given in the appendix).

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:19

x R fvpM 1q

ppλx : T.Mq Nq M 1 ù pλx : T.pM M 1qq Nq
[R-AbsR]

x, x1 R fvpMq spnpMq X pnpNq “ H

M pcase N of Inl x ñ M1; Inr x1 ñ M2q ù

case N of Inl x ñ pM M1q; Inr x1 ñ pM M2q

[R-CaseL]

spnpMq X pnpNq “ H

M pselectq,p l Nq ù selectq,p l pM Nq
[R-SelL]

y fresh for M

λx : T.M ù λy : T.M rx :“ ys
[R-alph]

Figure 5 Rewriting of Chorλ (representative rules).

pnpBq “ H

B p&ptl1 : B1, . . . , ln : Bnuq ù &ptl1 : B B1, . . . , ln : B Bnu
[LR-OffL]

pnpB1q “ H

B1 p‘p l Bq ù ‘p l pB1 Bq
[LR-ChoL]

K K ù K
[LR-Botm]

Figure 6 Rewriting of behaviours (representative rules).

Dealing with recursive functions in nested applications requires another addition to the
semantics of Chorλ. Consider the choreography M “ ppλx : Int@p.λy : Int@q.3@pq fppqq 4@q.
We have JMKq “ ppλx : K.λy : Int.Kq Kq 4, which can reduce to K in two steps. Reducing M

accordingly requires being able to instantiate y as 4@q even if fppq diverges. For this, and
other cases of functions whose divergence blocks actions, Chorλ has a set of rewriting rules (see
Figure 5). In our example, M can be rewritten as pλx : Int@p.pλy : Int@q.3@p 4@qqq fppq

by using rule R-AbsR, which can reduce to pλx : Int@p.3@pq fppq as needed. In the
rewriting rules that move a subterm in a lefthandside further in, the synchronising processes
of the subterm, spnpMq, is used to prevent rewritings that would change the order of
communications. To use the rewritings in the semantics we add the rule

M ù˚ N N
τ,P

ÝÝÑ M 1

M
τ,P

ÝÝÑD M 1

[Str]

As before, equivalent rules must be added to the semantics of our process language
(see Figure 6), and the reduction relation is closed under these rewritings. This allows
JMKp “ ppλx : Int.λy : K.3q f1pqq K to be rewritten to pλx : Int.pλy : K.3 Kqq f1pq, which can
reduce to pλx : Int.3q f1pq.

4.3 Properties
Thanks to the extensions discussed in this section, our results can be generalised to the full
language of Chorλ with recursion.

▶ Theorem 25 (Completeness). Given a closed choreography M , if M
τ,P

ÝÝÑD M 1 and
Θ; Σ; Γ $ M : T and JMK is defined, then there exist networks N and M2 such that:
JMK Ñ

`

JDK N ; M 1 Ñ˚ M2; and N Ŋ JM2K.

ECOOP 2023

7:20 Modular Compilation for Higher-Order Functional Choreographies

▶ Theorem 26 (Soundness). Given a closed choreography M , if Θ; Γ $ M : T and JMK Ñ˚ N
for some network N , then there exist a choreography M 1, and a network N 1 such that:
M Ñ˚

D M 1; N Ñ˚ N 1; and N 1 Ŋ JM 1K.

From Theorems 25 and 26 and the type preservation and progress results from [6], we get
the following corollary about deadlock-freedom. Specifically, the EPP of a well-typed closed
choreography can keep reducing until all processes contain only local values (which denotes
termination).

▶ Corollary 27 (Deadlock-freedom). Given a closed choreography M and a function en-
vironment D containing all the functions of M , if Θ; Σ; Γ $ M : T and Θ; Σ; Γ $ D,
then: whenever JMK Ñ˚

JDK N for some network N , either there exists P and N 1 such that
N τP

ÝÑJDK N 1 or N “
ś

pPpnpMq prLps.

We also show that adding recursion does not stop our projection being modular.

▶ Proposition 28. The EPP J´K given in Definition 8 and extended with the equations in
Section 4.1 is modular.

Proof. The only change to the projection of choreographies is adding the projection of f p⃗pq,
for which Lemma 13 still holds. Since no new contexts have been added, projection is then
still modular. ◀

5 EAP

We now use our theory of EPP to obtain an implementation of the core of the Extensible
Authentication Protocol (EAP) [28], which was modelled as a choreography in [6]. EAP is a
widely-employed link-layer protocol that defines an authentication framework allowing a peer
P to authenticate with a backend authentication server S, with the communication passing
through an authenticator A that acts as an access point for the network.

The framework provides a core protocol parametrised over a set of authentication methods
(either predefined or custom vendor-specific ones), modelled as individual choreographies
with type AuthMethod@pP, A, Sq “ String@S ÑtP,Au Bool@S.

For reasons of modularity, it is desirable that the core of the protocol be written in a way
that does not assume any particular authentication method. The eappP, A, Sq choreography
does exactly that by leveraging higher-order composition of choreographies:

eappP, A, Sq “ λmethods : rAuthMethods@pP, A, Sq.

eapAuthpP, A, Sq peapIdentitypP, A, Sq "Auth request"@Sq methods

eapAuthpP, A, Sq “ λid : String@S. λmethods : rAuthMethods@pP, A, Sq.

if emptypP, A, Sq methods then
eapFailurepP, A, Sq "Try again later"@S

else
if pfst methodsq id then

selectS,P ok pselectS,A ok peapSuccesspP, A, Sq "Welcome"@Sqq

else
selectS,P ko pselectS,A ko peapAuthpP, A, Sq id psnd methodsqqq

For the sake of simplicity, we have left out the definitions of a couple of helper choreo-
graphies that are referenced in the example:

eapIdentitypP, A, Sq : String@S ÑtP,Au String@S

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:21

emptypP, A, Sq : rAuthMethods@pP, A, Sq Ñ Bool@pP, A, Sq

eapSuccesspP, A, Sq : String@S Ñ pString@P ˆ String@Aq

eapFailurepP, A, Sq : String@S Ñ pString@P ˆ String@Aq

First, eappP, A, Sq fetches the client’s identity using eapIdentitypP, A, Sq, a function which
exchanges the necessary EAP packets and delivers the client’s identity to the server. Once
the identity is known, eapAuthpP, A, Sq is invoked in order to try the list of authentication
methods until one succeeds, or the list is exhausted and authentication fails.

EAP is parametric on a list of choreographies called methods. We use the notation for lists
in rAuthMethods@pP, A, Sq as described in Example 21, as well as the if M then M 1 else M2

construct which is just syntactic sugar for the previously described case M of Inl x ñ

M 1; Inr x ñ M2. Each authentication method can be an arbitrarily-complex choreography
with its own communication structures that can involve all three involved processes, and it
implements a particular authentication method on top of EAP.

The function emptypP, A, Sq is used to determine whether the list of methods is empty.
Recall the distributed boolean from Example 15, and note how we now use the same idea
to minimise unnecessary communication while still guaranteeing that every process has the
necessary information. The return type of this function, Bool@pP, A, Sq, denotes that the
function uniformly returns either true (Inl pq) or false (Inr pq) at all of P, A, and S. That
is, the result is guaranteed to be the same at these three processess. Since agreement is
guaranteed, each process can locally check its own value without having to perform any
selections. This is in contrast to the return type of each authentication method, Bool@S,
meaning that only the server S has the authority of determining whether the authentication
method was successful or not.

Finally, depending on the outcome of the authentication, an appropriate EAP packet is
delivered by using either eapSuccesspP, A, Sq or eapFailurepP, A, Sq to indicate the result to
the client.

eap1pA, Sq “ λmethods : rAuthMethods.

eapAuth1pA, Sq peapIdentity1pA, Sq Kq methods

eap2pP, Sq “ λmethods : rAuthMethods.

eapAuth2pP, Sq peapIdentity2pP, Sq Kq methods

eap3pP, Aq “ λmethods : rAuthMethods.

eapAuth3pP, Aq peapIdentity3pP, Aq "Auth request"q methods

It is interesting to look at the projections of eapAuthpP, A, Sq for each of the three
participants, which follow below. For the purposes of projection, we desugar the if-then-else
construct.

eapAuth1pA, Sq “ λid : K. λmethods : rAuthMethods.

case empty1pA, Sq methods of
Inl _ ñ eapFailure1pA, Sq K

Inr _ ñ &Stok : eapSuccess1pA, Sq K

ko : eapAuth1pA, Sq K psnd methodsqu

eapAuth2pP, Sq “ λid : K. λmethods : rAuthMethods.

case empty2pP, Sq methods of
Inl _ ñ eapFailure2pP, Sq K

Inr _ ñ &Stok : peapSuccess2pP, Sq Kq

ko : peapAuth2pP, Sq K psnd methodsqq

ECOOP 2023

7:22 Modular Compilation for Higher-Order Functional Choreographies

eapAuth3pP, Aq “ λid : String. λmethods : rAuthMethods.

case empty3pP, Aq methods of
Inl _ ñ eapFailure3pP, Aq "Try again later"
Inr _ ñ case pfst methodsq id of

Inl _ ñ ‘P ok p‘A ok peapSuccess3pP, Aq "Welcome"qq

Inr _ ñ ‘P ko p‘A ko peapAuth3pP, Aq id psnd methodsqqq

Note that the implementation of the check emptypP, A, Sq methods at each process is
completely local, i.e., it does not perform communications. This is possible because all
processes have access to the same list. Afterwards however, only the server S is capable of
determining whether the authentication method was successful or not, and has to communicate
that result to the other two participants by means of selections.

6 Related Work

We already discussed the most related work on choreographic programming and EPP in
Section 1. In this section, we discuss some technical aspects of our development in the
context of previous work more in detail.

In our process language, the terms for communication actions (send, receive, selection, and
branching) are adaptations to the functional setting of standard primitives from traditional
imperative choreographic programming [8, 10, 21] and the local language of multiparty
session types (choreographies without computation) [20, 19, 3]. A similar adaptation was
carried out in [27] for the different setting of multi-threading (their primitives are not based
on process names, but shared channels). Modelling a network as a map from process names
to programs was previously done in [9, 24]. The idea of reporting the names of the involved
processes in transition labels comes from [2, 19, 9, 24].

The first attempt at adding higher-order composition to choreographies goes back to [11],
for a choreographic language that cannot express data nor computation (it is an abstract
specification language). The approach in [11] adopts centralised coordination: resolving
a choreographic application (M M 1 in Chorλ, with M 1 involving more than one process)
requires that the programmer picks a process as central coordinator, which then orchestrates
the other processes with multicasts. This coordination effectively acts as a barrier, so
processes cannot perform their own local computations independently of each other when
higher-order composition is involved. Ten years after [11], another attempt at a notion of EPP
for higher-order choreographies was proposed in [18]. The language in [18] is more expressive,
i.e., it supports expressing computation at processes. However, this feature came at a cost:
it is even more centralised than [11]. In particular, every application in a choreography
requires that all processes generated by projection go through a global barrier that involves
the entire system. The global barrier is modelled as a middleware in the semantics of the
language, and involves even processes that do not contribute at all to the function or its
arguments. Because processes need to participate also in the resolution of applications that
do not involve them, the notion of EPP in [18] is not modular.

In contrast to [11] and [18], Chorλ presents no “hidden” barriers: coordination among
processes is left to the programmer of the choreography, and EPP inserts no hidden syn-
chronisations. Our EPP thus generates more concurrent and faithful implementations. It
is also the first modular EPP for functional choreographic programming: changing the
behaviours of some processes in a choreography requires re-running EPP only for those
processes. This is important for the application of choreographic programming to DevOps
(continuous integration and deployment), library management, and modularity in general.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:23

Another related line of work is that on multitier programming and its progenitor calculus,
Lambda 5 [25]. Similarly to Chorλ, Lambda 5 and multitier languages have data types with
locations [29]. However, they are used very differently. In choreographic languages (thus
Chorλ), programs have a “global” point of view and express how multiple processes interact
with each other. By contrast, in multitier programming programs have the usual “local” point
of view of a single process but they can nest (local) code that is supposed to be executed
remotely. The reader interested in a detailed comparison of choreographic and multitier
programming can consult [17], which presents algorithms for translating choreographies to
multitier programs and vice versa. The correctness of these algorithms has never been proven,
because they use an informally-specified fragment of Choral as a representative choreographic
language. We conjecture that the introduction of an EPP for Chorλ could be the basis for a
future comparison of the compilations for choreographic programs (in terms of Chorλ) and
multitier programs (in terms of Lambda 5).

To the best of our knowledge, no other work supports distributed choice types. The
nearest feature is presented in [21], where choreographic conditionals for a first-order calculus
can be conjunctions of local conditions at different processes. These conditions must be
checked to be consistent by means of separate proofs given in a Hoare-like logic. Our syntax
is more general, since conditions can be choreographies, and our EPP requires no such
additional proofs. However, using a Hoare logic in [21] gives some interesting flexibility, in
that agreement does not need to be encoded as distributed sum types. In the future, it could
be interesting to integrate the two approaches such that agreement could be proved by using
a logic and then made manifest to EPP through our distributed choice types.

7 Conclusion and Future Work

We have presented a new theory of compilation for higher-order functional choreographies,
which introduces modularity and decentralisation.

Our development validates the design of Chorλ [6], but it also reveals that in the case
without recursion it can be significantly simplified: reduction rules for out-of-order execution
were not necessary until we had to deal with divergence. In particular, we have shown that
the fragment of Chorλ without recursion can be modelled by simple semantics and still
achieve the standard deadlock-freedom by design property. However, once recursion is added,
a more sophisticated semantics allowing for out-of-order execution is required. This stems
from the structure of a functional choreography being different than traditional imperative
choreographies.

Our study fills a knowledge gap that is relevant for the future implementations and
applications of choreographic languages. An ad-hoc distributed implementation of higher-
order choreographies exists already in the Choral programming language [16]. However,
Choral is a large object-oriented language that extends Java, meaning that it is not practical
to formally study and prove the standard results expected of a choreographic language. We
have been able to prove these results – correspondence between choreography and projected
distributed implementation (Theorems 25 and 26) and deadlock-freedom (Corollary 27) –
because Chorλ captures the essence of higher-order choreographic composition in a small
language based on the λ-calculus. Our EPP is largely consistent with the implementation of
the Choral compiler, but there are two key differences, both caused by Chorλ being based on
the λ-calculus. First, since Choral is an object-oriented language, not every expression needs
to return a value even if the result of the expression is located elsewhere as in send; therefore,
Choral does not need a K construct. Second, Choral does not have distributed choice types
and instead restricts all conditions to be local (at one process). Thus, our distributed choice
types could form the basis for an interesting extension of Choral.

ECOOP 2023

7:24 Modular Compilation for Higher-Order Functional Choreographies

Aside from Choral, existing choreographic programming languages either have no higher-
order constructs (e.g., Scribble [30], a language based on multiparty session types [19]), or
have the compilation of their higher-order constructs lack modularity and decentralisation
(e.g., Pirouette [18]). Our results provide a foundation for adding mechanisms for higher-order
composition to other choreographic and similar languages with modular compilation.

Future Work

Synchronous communication is widely adopted in theories of processes and is usually imple-
mented in practice by using acknowledgements. A potential extension of Chorλ is adding
support for asynchronous communication, which is usually achieved by adding message queues
and choreographic terms to represent partially-executed communications [12, 7, 14, 24].

Another potential extension of Chorλ, our process language, and our theory of EPP
would be to enable abstraction over process names, that is, extending the syntax such that
values can be the names of processes to be acted upon. This could, for example, enable the
modelling of choreographies with dynamic topologies, where processes discover whom they
have to interact with at runtime.

References
1 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered

programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.
doi:10.1145/2220365.2220367.

2 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, Procs. POPL, pages
263–274. ACM, 2013. doi:10.1145/2429069.2429101.

3 Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty
session types as coherence proofs. Acta Informatica, 54(3):243–269, 2017. doi:10.1007/
s00236-016-0285-y.

4 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Log. Methods Comput. Sci., 8(1), 2012. doi:10.2168/LMCS-8(1:24)2012.

5 Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics,
33(2):346–366, 1932. URL: http://www.jstor.org/stable/1968337.

6 Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti.
Functional choreographic programming. In Helmut Seidl, Zhiming Liu, and Corina S. Pasareanu,
editors, Theoretical Aspects of Computing – ICTAC 2022 – 19th International Colloquium,
Tbilisi, Georgia, September 27-29, 2022, Proceedings, volume 13572 of Lecture Notes in
Computer Science, pages 212–237. Springer, 2022. doi:10.1007/978-3-031-17715-6_15.

7 Luís Cruz-Filipe and Fabrizio Montesi. On asynchrony and choreographies. In Massimo
Bartoletti, Laura Bocchi, Ludovic Henrio, and Sophia Knight, editors, Proceedings 10th
Interaction and Concurrency Experience, ICE@DisCoTec 2017, Neuchâtel, Switzerland, 21-
22nd June 2017, volume 261 of EPTCS, pages 76–90, 2017. doi:10.4204/EPTCS.261.8.

8 Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. Theor.
Comput. Sci., 802:38–66, 2020. doi:10.1016/j.tcs.2019.07.005.

9 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Certifying choreography compilation.
In Antonio Cerone and Peter Csaba Ölveczky, editors, Theoretical Aspects of Computing
– ICTAC 2021 – 18th International Colloquium, Virtual Event, Nur-Sultan, Kazakhstan,
September 8-10, 2021, Proceedings, volume 12819 of Lecture Notes in Computer Science, pages
115–133. Springer, 2021. doi:10.1007/978-3-030-85315-0_8.

10 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Formalising a turing-complete
choreographic language in coq. In Liron Cohen and Cezary Kaliszyk, editors, 12th International
Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy
(Virtual Conference), volume 193 of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.15.

https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.2168/LMCS-8(1:24)2012
http://www.jstor.org/stable/1968337
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.4204/EPTCS.261.8
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:25

11 Romain Demangeon and Kohei Honda. Nested protocols in session types. In Maciej Koutny
and Irek Ulidowski, editors, CONCUR 2012 – Concurrency Theory – 23rd International
Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings,
volume 7454 of Lecture Notes in Computer Science, pages 272–286. Springer, 2012. doi:
10.1007/978-3-642-32940-1_20.

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and
Programming – 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science, pages 174–186.
Springer, 2013. doi:10.1007/978-3-642-39212-2_18.

13 Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638.

14 Simon Fowler, Sam Lindley, and Philip Wadler. Mixing metaphors: Actors as channels and
channels as actors. In Peter Müller, editor, 31st European Conference on Object-Oriented
Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs, pages
11:1–11:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ECOOP.2017.11.

15 Saverio Giallorenzo, Ivan Lanese, and Daniel Russo. Chip: A choreographic integration process.
In Hervé Panetto, Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna,
Dumitru Roman, and Robert Meersman, editors, Procs. OTM, part II, volume 11230 of Lecture
Notes in Computer Science, pages 22–40. Springer, 2018. doi:10.1007/978-3-030-02671-4_2.

16 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Object-oriented choreographic
programming. CoRR, abs/2005.09520, 2020. URL: https://arxiv.org/abs/2005.09520.

17 Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi,
and Pascal Weisenburger. Multiparty Languages: The Choreographic and Multitier Cases.
In 35th European Conference on Object-Oriented Programming, ECOOP 2021, July 12-17,
2021, Aarhus, Denmark (Virtual Conference), LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2021. To appear. Pre-print available at https://fabriziomontesi.com/files/
gmprsw21.pdf.

18 Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1–27, 2022. doi:10.1145/3498684.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9, 2016. Also: POPL, pages 273–284, 2008. doi:10.1145/2827695.

20 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

21 Sung-Shik Jongmans and Petra van den Bos. A predicate transformer for choreographies –
computing preconditions in choreographic programming. In Ilya Sergey, editor, Programming
Languages and Systems – 31st European Symposium on Programming, ESOP 2022, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, volume 13240 of Lecture Notes in Computer
Science, pages 520–547. Springer, 2022. doi:10.1007/978-3-030-99336-8_19.

22 Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. TaxDC:
A taxonomy of non-deterministic concurrency bugs in datacenter distributed systems. In Proc.
of ASPLOS, pages 517–530, 2016.

23 Fabrizio Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen,
2013. http://www.fabriziomontesi.com/files/choreographic-programming.pdf.

24 Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, 2023.
25 Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal

lambda calculus for distributed computing. In 19th IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 286–295. IEEE
Computer Society, 2004. doi:10.1109/LICS.2004.1319623.

ECOOP 2023

https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.1007/978-3-030-02671-4_2
https://arxiv.org/abs/2005.09520
https://fabriziomontesi.com/files/gmprsw21.pdf
https://fabriziomontesi.com/files/gmprsw21.pdf
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1007/978-3-030-99336-8_19
http://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1109/LICS.2004.1319623

7:26 Modular Compilation for Higher-Order Functional Choreographies

26 Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978. doi:10.1145/359657.359659.

27 Vasco Thudichum Vasconcelos, Simon J. Gay, and António Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci., 368(1-2):64–87, 2006.
doi:10.1016/j.tcs.2006.06.028.

28 John Vollbrecht, James D. Carlson, Larry Blunk, Dr. Bernard D. Aboba, and Henrik Levkowetz.
Extensible Authentication Protocol (EAP). RFC 3748, June 2004. doi:10.17487/RFC3748.

29 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. A survey of multitier program-
ming. ACM Comput. Surv., 53(4):81:1–81:35, 2020. doi:10.1145/3397495.

30 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
– 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

A Full definitions and proofs

▶ Definition 29 (Free Variables). Given a choreography M , the free variables of M , fvpMq

are defined as:
fvpN N 1

q “ fvpNq Y fvpN 1
q fvpselectq,p l Mq “ fvpMq

fvpxq “ x fvpλx : T.Nq “ fvpNqztxu

fvppq@pq “ H fvpcomq,pq “ H

fvpf p⃗pqq “ H fvpPair V V 1
q “ fvpV q Y fvpV 1

q

fvpcase N of Inl x ñ M ; Inr y ñ M 1
q “ fvpNq Y pfvpMqztxuq Y pfvpM 1

qztyuq

fvpfstq “ fvpsndq “ H fvpInl V q “ fvpInr V q “ fvpV q

▶ Definition 30 (Bound Variables). Given a choreography M , the bound variables of M ,
bvpMq are defined as:

bvpN N 1
q “ bvpNq Y bvpN 1

q bvpselectq,p l Mq “ bvpMq

bvpxq “ H bvpλx : T.Nq “ bvpNq Y txu

bvppq@pq “ H bvpcomq,pq “ H

bvpf p⃗pqq “ H fvpPair V V 1
q “ bvpV q Y bvpV 1

q

bvpcase N of Inl x ñ M ; Inr y ñ M 1
q “ bvpNq Y bvpMq Y txu Y pbvpM 1

q Y tyuq

bvpfstq “ bvpsndq “ H bvpInl V q “ bvpInr V q “ bvpV q

▶ Definition 31 (Process names of a type). The process names of a type T , pnpT q, are defined
as follows.

pnpt@R⃗q “ R⃗ pnpT Ñρ T 1q “ pnpT q Y pnpT 1q Y ρ

pnppq@Rq “ tRu pnpT ` T 1q “ pnpT ˆ T 1q “ pnpT q Y pnpT 1q

▶ Definition 32 (Process names of a choreography). The process names of a choreography M ,
pnpMq, are defined as follows.

pnpM Nq “ pnpMq Y pnpNq

pnpselectp,q, l Mq “ tp, qu Y pnpMq

pnpxq “ H

pnpcase M of Inl x ñ N ; Inr y ñ N 1q “ pnpMq Y pnpNq Y pnpN 1q

pnpλx : T.Mq “ pnpT q Y pnpMq

pnpInl V q “ ppn Inr V q “ pnpV q

https://doi.org/10.1145/359657.359659
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.17487/RFC3748
https://doi.org/10.1145/3397495
https://doi.org/10.1007/978-3-319-05119-2_3

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:27

Θ1; Σ; Γ, x : T $ M : T 1 ρ Y pnpT q Y pnpT 1q “ Θ1 Ď Θ
Θ; Σ; Γ $ λx : T.M : T Ñρ T 1

[TAbs]

x : T P Γ pnpT q Ď Θ
Θ; Σ; Γ $ x : T

[TVar]
Θ; Σ; Γ $ N : T Ñρ T 1 Θ; Σ; Γ $ M : T

Θ; Σ; Γ $ N M : T 1
[TApp]

Θ; Σ; Γ $ N : T1 ` T2 Θ; Σ; Γ, x : T1 $ M 1 : T Θ; Σ; Γ, x1 : T2 $ M2 : T

Θ; Σ; Γ $ case N of Inl x ñ M 1; Inr x1 ñ M2 : T
[TCase]

Θ; Σ; Γ $ M : T q, p P Θ
Θ; Σ; Γ $ selectq,p l M : T

[TSel]

fpp⃗1q : T P Γ pnpT q Ď p⃗1 Ď Θ ||⃗p|| “ ||p⃗1|| distinctp⃗pq

Θ; Σ; Γ $ f p⃗pq : T rp⃗1 :“ p⃗s
[TFun]

p P Θ
Θ; Σ; Γ $ pq@p : pq@p

[TUnit]
q, p P Θ pnpT q “ q

Θ; Σ; Γ $ comq,p : T ÑH T rq :“ ps
[TCom]

Θ; Σ; Γ $ V : T Θ; Σ; Γ $ V 1 : T 1

Θ; Σ; Γ $ Pair V V 1 : pT ˆ T 1q
[TPair]

pnpT ˆ T 1q Ď Θ
Θ; Σ; Γ $ fst : pT ˆ T 1q ÑH T

[TProj1]
pnpT ˆ T 1q Ď Θ

Θ; Σ; Γ $ snd : pT ˆ T 1q ÑH T 1
[TProj2]

Θ; Σ; Γ $ V : T pnpT ` T 1q Ď Θ
Θ; Σ; Γ $ Inl V : pT ` T 1q

[TInl]
Θ; Σ; Γ $ V : T 1 pnpT ` T 1q Ď Θ

Θ; Σ; Γ $ Inr V : pT ` T 1q
[TInR]

Θ; Σ; Γ $ M : t@p⃗ t@p⃗1 “Σ T ||⃗p|| “ ||p⃗1|| distinctp⃗pq

Θ; Σ; Γ $ M : T rp⃗1 :“ p⃗s
[TEq]

@f p⃗pq P dompDq : f p⃗pq : T P Γ p⃗; Σ; Γ $ Dpf p⃗pqq : T distinctp⃗pq p⃗ Ď Θ
Θ; Σ; Γ $ D

[TDefs]

Figure 7 Full set of typing rules for Chorλ.

pnpPair V V 1q “ pnpV q Y pnpV 1q

pnpfstq “ pnpsndq “ H

pnpcomp,q,q “ tp, qu

▶ Definition 33. We define the set of synchronising processes of a choreography M , spnpMq,
by recursion on the structure of M :

spnpcomS,Rq “ tS, Ru, spnpselectS,R l Mq “ tS, Ru Y spnpMq,
spnpfpR⃗qq “ R⃗, and homomorphically on all other cases.

▶ Definition 34 (Merging). Given two behaviours B and B1, B \ B1 is defined as follows.

B1 B2 \ B1
1 B1

2 “ pB1 \ B1
1q pB2 \ B1

2q

case B1 of Inl x ñ B2; Inr y ñ B3 \ case B1
1 of Inl x ñ B1

2; Inr y ñ B1
3 “

case pB1 \ B1
1q of Inl x ñ pB2 \ B1

2q; Inr y ñ pB3 \ B1
3q

‘p ℓ B \ ‘p ℓ B1
“ ‘p ℓ pB \ B1

q

&tℓi : BiuiPI \ &tℓj : B1
jujPJ “ &

`

tℓk : Bk \ B1
kukPIXJ Y tℓi : BiuiPIzJ Y tℓj : B1

jujPJzI

˘

x \ x “ x λx : T.B \ λx : T.B1
“ λx : T.pB \ B1

q

ECOOP 2023

7:28 Modular Compilation for Higher-Order Functional Choreographies

fvpV q X bvpMq “ H

λx : T.M V
τ,H

ÝÝÑD M rx :“ V s

[AppAbs]
M

ℓ,P
ÝÝÑD M 1

λx : T.M
λ,P

ÝÝÑD λx : T.M 1

[InAbs]

M
ℓ,P

ÝÝÑD M 1 ℓ “ λ ñ P X pnpNq “ H

M N
τ,P

ÝÝÑD M 1 N
[App1]

N
τ,P

ÝÝÑD N 1

V N
τ,P

ÝÝÑD V N 1

[App2]
N

τ,P
ÝÝÑD N 1 P X pnpMq “ H

M N
τ,P

ÝÝÑD M N 1

[App3]

N
τ,P

ÝÝÑD N 1

case N of Inl x ñ M ; Inr x1 ñ M 1 τ,P
ÝÝÑD case N 1 of Inl x ñ M ; Inr x1 ñ M 1

[Case]

M1
ℓ,P

ÝÝÑD M 1
1 M2

ℓ,P
ÝÝÑD M 1

2 P X pnpNq “ H

case N of Inl x ñ M1; Inr x1 ñ M2
ℓ,P

ÝÝÑD case N of Inl x ñ M 1
1; Inr x1 ñ M 1

2

[InCase]

case Inl V of Inl x ñ M ; Inr x1 ñ M 1 τ,H
ÝÝÑD M rx :“ V s

[CaseL]

case Inr V of Inl x ñ M ; Inr x1 ñ M 1 τ,H
ÝÝÑD M 1rx1 :“ V s

[CaseR]

fst Pair V V 1 τ,H
ÝÝÑD V

[Proj1]
snd Pair V V 1 τ,H

ÝÝÑD V 1

[Proj2]

Dpfpp⃗1qq “ M

f p⃗pq
τ,H

ÝÝÑD M rp⃗1 :“ p⃗s

[Def]

fvpV q “ H

comq,p V
τ,tq,pu

ÝÝÝÝÑD V rq :“ ps

[Com]
selectq,p l M

τ,tq,pu
ÝÝÝÝÑD M

[Sel]

M
ℓ,P

ÝÝÑD M 1 P X tq, pu “ H

selectq,p ℓ M
ℓ,P

ÝÝÑD selectq,p ℓ M 1

[InSel] M ù˚ N N
τ,P

ÝÝÑ N 1

M
τ,P

ÝÝÑD M 1

[Str]

Figure 8 Semantics of Chorλ.

fst \ fst “ fst snd \ snd “ snd
Inl L \ Inl L1

“ Inl pL \ L1
q Inr L \ Inr L1

“ Inr pL \ L1
q

Pair L1 L2 \ Pair L1
1 L1

2 “ Pair pL1 \ L1
1q pL2 \ L1

2q f \ f “ f

recvp \ recvp “ recvp sendp \ sendp “ sendp K \ K “ K

▶ Definition 35 (Context). We define a context Crs in Chorλ as follows:

Crs ::“ rs | M Crs | Crs M | selectp,p l Crs | case Crs of Inl x ñ M ; Inr x ñ M

| case M of Inl x ñ Crs; Inr x ñ M | case M of Inl x ñ M ; Inr x1 ñ Crs

| λx : T .Crs

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:29

x R fvpM 1q

ppλx : T.Mq Nq M 1 ù pλx : T.pM M 1qq Nq
[R-AbsR]

x R fvpM 1q spnpM 1q X pnpNq “ H

M 1 ppλx : T.Mq Nq ù pλx : T.pM 1 Mqq Nq
[R-AbsL]

x, x1 R fvpMq

pcase N of Inl x ñ M1; Inr x1 ñ M2q M ù

case N of Inl x ñ pM1 Mq; Inr x1 ñ pM2 Mq

[R-CaseR]

x, x1 R fvpMq spnpMq X pnpNq “ H

M pcase N of Inl x ñ M1; Inr x1 ñ M2q ù

case N of Inl x ñ pM M1q; Inr x1 ñ pM M2q

[R-CaseL]

pselectq,p l Nq M ù selectq,p l pN Mq
[R-SelR]

spnpMq X pnpNq “ H

M pselectq,p l Nq ù selectq,p l pM Nq
[R-SelL]

y fresh for M

λx : T.M ù λy : T.M rx :“ ys
[R-alph]

Figure 9 Rewriting of Chorλ.

ECOOP 2023

7:30 Modular Compilation for Higher-Order Functional Choreographies

fvpLq “ H

sendp L
sendp L

ÝÝÝÝÝÑD K

[NSend]
recvp K

recvp L
ÝÝÝÝÑD L

[NRecv]

B
sendq L

ÝÝÝÝÝÑDpqq B1
1 B2

recvp L
ÝÝÝÝÑDppq B1

2

qrB1s | prB2s
τq,p

ÝÝÑD qrB1
1s | prB1

2s

[NCom]

‘p l B
‘p l

ÝÝÝÑD B
[NCho]

&ptℓ1 : B1, . . . , ℓn : Bnu
&pℓi

ÝÝÝÑD Bi

[NOff]

Bi
µ

ÝÑD B1
i for 1 ď i ď n µ P tτ, λu

&ptℓ1 : B1, . . . , ℓn : Bnu
µ

ÝÑD &ptℓ1 : B1
1, . . . , ℓn : B1

nu
[NOff2]

B
µ

ÝÑD B1 µ P tτ, λu

‘p l B
µ

ÝÑD ‘p l B1
[NCho2]

B1
‘p ℓ

ÝÝÝÑDpqq B1
1 B2

&q ℓ
ÝÝÝÑDppq B1

2

qrB1s | prB2s
τq,p

ÝÝÑD qrB1
1s | prB1

2s

[NSel]

pλx : T.Bq L
τ

ÝÑD Brx :“ Ls
[NAbsApp]

B
µ

ÝÑD B1 µ P tτ, λu

λx : T.B
λ

ÝÑD λx : T.B1

[NInAbs]

B
µ

ÝÑD B2 if µ “ λ then µ1 “ τ else µ1 “ µ

B B1 µ1

ÝÑD B2 B1

[NApp1]

B
µ

ÝÑD B1

L B
µ

ÝÑD L B1
[NApp2] B1 τ

ÝÑD B2

B B1 τ
ÝÑD B B2

[NApp3]

B
µ

ÝÑD B3

case B of Inl x ñ B1; Inr x1 ñ B2 µ
ÝÑD case B3 of Inl x ñ B1; Inr x1 ñ B2

[NCase]

B1
µ

ÝÑD B1
1 B2

µ
ÝÑD B1

2 µ P tλ, τu

case B of Inl x ñ B1; Inr x1 ñ B2
µ

ÝÑD case B of Inl x ñ B1
1; Inr x1 ñ B1

2

[NCase2]

case Inl L of Inl x ñ B; Inr x1 ñ B1 τ
ÝÑD Brx :“ Ls

[NCaseL]

case Inr L of Inl x ñ B; Inr x1 ñ B1 τ
ÝÑD B1rx1 :“ Ls

[NCaseR]

fst Pair L L1 τ
ÝÑD L

[NProj1]
snd Pair L L1 τ

ÝÑD L1
[NProj2]

B
τ

ÝÑDppq B1

prBs
τp

ÝÑD prB1s

[NPro] N τP
ÝÑD N 2

N | N 1 τP
ÝÑD N 2 | N 1

[NPar]

Dpfpp⃗1qq “ B

f p⃗pq
τ

ÝÑD Brp⃗1 :“ p⃗s
[NFun] B ù˚ B2 B2 µ

ÝÑ B1

B
µ

ÝÑD B1
[NStr]

Figure 10 Semantics of networks.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:31

ppλx.Bq B1q B2 ù pλx.B B2q B1q
[LR-AbsR]

pnpB2q “ H

B2 ppλx.Bq B1q ù pλx.B2 Bq B1q
[LR-AbsL]

pcase B of Inl x ñ B1; Inr x ñ B2q B1 ù

case B of Inl x ñ pB1 B1q; Inr x ñ pB2 B1q

[LR-CaseR]

pnpB1q “ H

B1 pcase B of Inl x ñ B1; Inr x ñ B2q ù

case B of Inl x ñ pB1 B1q; Inr x ñ pB1 B2q

[LR-CaseL]

pnpBq “ H

B p&ptl1 : B1, . . . , ln : Bnuq ù &ptl1 : B B1, . . . , ln : B Bnu
[LR-OffL]

p&ptl1 : B1, . . . , ln : Bnuq B ù &ptl1 : B1 B, . . . , ln : Bn Bu
[LR-OffR]

pnpB1q “ H

B1 p‘p l Bq ù ‘p l pB1 Bq
[LR-ChoL]

p‘p l Bq B1 ù ‘p l pB B1q
[LR-ChoR]

K K ù K
[LR-Botm]

y fresh for Bq

λx : T.B ù λy : T.Brx :“ ys
[LR-Alph]

Figure 11 Rewriting of processes.

Σ; Γ $ B : T

Σ; Γ $ ‘p ℓ B : T
[NTChor]

Σ; Γ $ Bi : T for 1 ď i ď n

Σ; Γ $ &ptℓ1 : B1, . . . ℓn : Bnu : T
[NTOff]

Σ; Γ $ sendp : T Ñ K
[NTSend] Σ; Γ $ recvp : K Ñ T

[NTRecv]

Σ; Γ, x : T $ B : T 1

Σ; Γ $ λx : T.B : T Ñ T 1
[NTAbs] x : T P Γ

Σ; Γ $ x : T
[NTVar]

Σ; Γ $ B : T Ñ T 1 Σ; Γ $ B : T

Σ; Γ $ B B1 : T 1
[NTApp]

Σ; Γ $ B : K Σ; Γ $ B1 : K

Σ; Γ $ B B1 : K
[NTApp2]

Σ; Γ $ B : T1 ` T2 Σ; Γ, x : T1 $ B1 : T Σ; Γ, x1 : T2 $ B2 : T

Σ; Γ $ case B of Inl x ñ B1; Inr x1 ñ B2 : T
[NTCase]

f : T P Γ
Σ; Γ $ f : T

[NTDef] Σ; Γ $ pq : pq
[NTUnit]

Σ; Γ $ K : K
[NTbotm]

Σ; Γ $ Pair : T Ñ T 1 Ñ pT ˆ T 1q
[NTPair]

Σ; Γ $ fst : pT ˆ T 1q Ñ T
[NTProj1]

Σ; Γ $ snd : pT ˆ T 1q Ñ T 1
[NTProj2]

Σ; Γ $ B : T 1 tT “ T 1, T 1 “ T u X Σ ‰ H

Σ; Γ $ B : T
[NTEq]

@f P dompDq f : T P Γ Σ; Γ $ Dpfq : T

Σ; Γ $ D
[NTDefs]

Figure 12 Typing rules for behaviours.

ECOOP 2023

7:32 Modular Compilation for Higher-Order Functional Choreographies

Choreographies:

JM NKp “

$

’

’

’

’

’

&

’

’

’

’

’

%

JMKp JNKp if p P pnptypepMqq or p P pnpMq X pnpNq

K if JMKp “ JNKp “ K

JMKp if JNKp “ K

JNKp otherwise

Jλx : T.MKp “

#

λx. JMKp if p P pnptypepλx : T.Mqq

K otherwise

q
case M of Inl x ñ N; Inr x

1
ñ N

1y
p “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

case JMKp of Inl x ñ JNKp; Inr x
1

ñ
q

N
1y

p if p P pnptypepMqq

JMKp if JNKp “
q

N 1
y

p “ K

JNKp \
q

N
1y

p if JMKp “ K

pλx
2 : K. JNKp \

q
N

1y
pq JMKp otherwise, for some

x2
R fvpNq Y fvpN 1

q

q
selectq,q1 ℓ M

y
p “

$

’

’

&

’

’

%

‘q1 ℓ JMKp if p “ q ‰ q1

&qtℓ : JMKpu if p “ q1
‰ q

JMKp otherwise

q
comq,q1

y
p “

$

’

’

’

’

&

’

’

’

’

%

λx.x if p “ q “ q1

sendq1 if p “ q ‰ q1

recvq if p “ q1
‰ q

K otherwise

Jpq@qKp “

#

pq if q “ p
K otherwise

JxKp “

#

x if p P pnptypepxqq

K otherwise

Jf p⃗pqKp “

#

fipp1, . . . , pi´1, pi`1, . . . , pnq if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

JPair V V
1Kp “

#

Pair JV Kp JV
1Kp if p P pnptypepV q ˆ typepV 1

qq

K otherwise

JfstKp “

#

fst if p P pnptypepfstqq

K otherwise
JsndKp “

#

snd if p P pnptypepsndqq

K otherwise

JInl V Kp “

#

Inl JV Kp if p P pnptypepInl V qq

K otherwise
JInr V Kp “

#

Inr JV Kp if p P pnptypepInr V qq

K otherwise

Types:

JT Ñρ T
1Kp “

#

JT Kp Ñ JT
1Kp if p P ρ Y pnpT q Y pnpT 1

q

K otherwise
Jpq@qKp “

#

pq if q “ p
K otherwise

JT ˆ T
1Kp “

#

JT Kp ˆ JT
1Kp if p P pnpT ˆ T 1

q

K otherwise
JT ` T

1Kp “

#

JT Kp ` JT
1Kp if p P pnpT ` T 1

q

K otherwise

Jt@p⃗Kp “

#

ti if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

Definitions:
JDK “ tfipp1, . . . , pi´1, pi`1, . . . , pnq ÞÑ JDpfpp1, . . . , pnqqKpi

| fpp1, . . . , pnq P dompDquu

Figure 13 Projecting Chorλ onto a process.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:33

A.1 Proof of Theorem 25
Proof of Lemma 5. Straightforward from the network semantics. ◀

▶ Lemma 36. Given a value V , if Θ; Σ; Γ $ V : T and JV K is defined then for any process p
in pnpV q, JV Kp “ L.

Proof. Straightforward from the projection rules. ◀

▶ Lemma 37. Given a type T , for any process p R pnpT q, JT Kp “ K.

Proof. Straightforward from induction on T . ◀

▶ Lemma 38. Given a value V , for any process p R pnptypepV qq, if JV Kp is defined then
JV Kp “ K.

Proof. Follows from Lemmas 36 and 37 and the projection rules. ◀

▶ Lemma 39. If M ù M 1 and M
τ,P

ÝÝÑD M2 and JMK is defined then M 1 τ,P
ÝÝÑD M3 such

that M2 ù˚ M3

Proof. Follows from case analysis on M ù M 1. ◀

▶ Lemma 40. If M ù M 1 then for any process p, JMKp ù Y
τ

ÝÑ
˚

B such that B ” JM 1Kp

Proof. Follows from case analysis on M ù M 1. ◀

Proof of Theorem 25. We prove this by structural induction on M
τ,P

ÝÝÑD M 1.

Assume M “ λx : T.N V and M 1 “ N rx :“ V s. Then for any process p P pnptypepλx :
T.Nqq, we have JMKp “ pλx : JT Kp .JNKpq JV Kp and JM 1Kp “ JNKprx :“ JV Kps, and for
any p1 R pnptypepλx : T.Nqq, we have p1 R pnptypepV qq and therefore JMKp1 “ JM 1Kp1 “

K. We therefore get prJMKps
τ

ÝÑJDK JM 1Kp for all p P pnptypepλx : T.Nq and define
N “

ś

pPpnptypepλx:T.Nqq

prJM 1Kps |
ś

p1Rpnptypeppλx:T.Nqq

p1rKs and the result follows.

Assume M “ N M2, M 1 “ N 1 M2, and N
τ,P

ÝÝÑD N 1. Then for any process p P

pnptypepNqq, JMKp “ JNKp JM2Kp and JM 1Kp “ JN 1Kp JM2Kp. For any process p1 such
that JNKp1 “ JM2Kp1 “ K, by induction we have JN 1Kp1 “ K, and therefore JMKp1 “

JM 1Kp1 “ K. For any other process p2 such that JNKp2 “ K, by induction we get
JN 1Kp2 “ K and therefore JMKp2 “ JM 1Kp2 “ JM2Kp2 . For any other process p3 such
that JM2Kp3 “ K, we get JMKp3 “ JNKp3 and JM 1Kp3 “ JN 1Kp3 . And by induction
JNK Ñ˚

JDK NN and N 1 Ñ˚
JDK N2 for NN Ŋ JN2K. For any process p we therefore get

JNKp
µ0

ÝÑJDK
µ1

ÝÑJDK . . . Bp for Bp Ŋ JN2Kp for some sequences of transitions µ0
ÝÑJDK

µ1
ÝÑJDK

. . . , and from the network semantics we get

JMK Ñ˚

ś

pPpnptypepNqqYppnpNqXpnpM2qq

prBp JM2Kps |
ś

JNKp1 “JM2Kp1 “K

p1rKs

|
ś

JMKp2 “JM2Kp2

p2rJM2Kp2 s |
ś

JMKp3 “JNKp3

p2rBp2 s
“ N

and M 1 Ñ˚ N2 M . And since JNK Ñ˚
JDK N 1 and JN 1K Ñ˚

JDK N 1
N , we know these

sequences of transitions can synchronise when necessary, and if JNKp4 ‰ JN 1Kp4 “ K

then we can do the extra application to get rid of this unit.

ECOOP 2023

7:34 Modular Compilation for Higher-Order Functional Choreographies

Assume M “ V N , M 1 “ V N 1, and N
τ,P

ÝÝÑD N 1. Then for any process p P pnptypepV qq,
JMKp “ JV Kp JNKp and JM 1Kp “ JV Kp JN 1Kp. Since V is a value, for any process p1 R

pnptypepV qq, we have JV Kp1 “ K and so for any process p1 such that JV Kp1 “ JNKp1 “ K,
by induction we get JN 1Kp1 “ K and therefore JMKp1 “ JM 1Kp1 “ K. For any other process
p2 such that JV Kp2 “ K, we have JMKp2 “ JNKp2 and JM 1Kp2 “ JN 1Kp2 . By induction,
JNK Ñ˚

JDK NN and N 1 Ñ˚
JDK N2 for NN Ŋ JN2K. For any process p we therefore

get JNKp
µ0

ÝÑJDKppq

µ1
ÝÑJDKppq . . . Bp for Bp Ŋ JN2Kp for some sequences of transitions

µ0
ÝÑJDKppq

µ1
ÝÑJDKppq . . . and from the network semantics we get

JMK Ñ˚
ź

pPpnptypepNqq

prJV Kp Bps |
ź

p1RpnptypepNqq

p1rBp1 s “ N

and

M 1 Ñ˚ V N2

and the result follows.
Assume M “ M2 N , M 1 “ M2 N 1, N

τ,P
ÝÝÑ N 1, and pnpMq X P “ H. Then for any p P P,

pnpJM2Kpq X P “ H and the result follows from induction and using rule NApp3.
Assume M “ case N of Inl x ñ N 1; Inr x1 ñ N2, M 1 “ case M2 of Inl x ñ

N 1; Inr x ñ N2, and N
τ,P

ÝÝÑD M2. Then for any process p such that p P pnptypepNqq,
we have projections JMKp “ case JNKp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp and JM 1Kp “

case JM2Kp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp. For any other process p1 such that
JNKp1 “ JN 1Kp1 “ JN2Kp1 “ K, by induction we get JM2Kp1 “ K, and therefore JMKp1 “

JM 1Kp1 “ K. For any other process p2 such that JNKp2 “ K, we get JMKp2 “ JM 1Kp2 “

JN 1Kp2 \ JN2Kp2 . For any other processes p3 such that JN 1Kp3 “ JN2Kp3 “ K, we
have JMKp3 “ JNKp3 and JM 1Kp3 “ JM2Kp3 . For any other process p4, we have
JMKp4 “ pλx : K.JN 1Kp4 \JN2Kp4 q JNKp4 and JM 1Kp4 “ pλx.JN 1Kp4 \JN2Kp4 q JM2Kp4

for x R fvpN 1q Y fvpN2q. The rest follows by simple induction similar to the second case.
Assume M “ case N of Inl x ñ N1; Inr x1 ñ N2, M 1 “ case N of Inl x ñ N 1

1; Inr x1 ñ

N 1
2, N1

τ,P
ÝÝÑD N 1

1, N1
τ,P

ÝÝÑD N2, and P X pnpNq “ H. Then for any process p such
that p P pnptypepNqq, we have JMKp “ case JNKp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp
For any other process p1 such that JNKp1 “ JN1Kp1 “ JN2Kp1 “ K, by induction we get
JN 1

1Kp1 “ JN 1
2Kp1 “ K, and therefore JMKp1 “ JM 1Kp1 “ K. For any other process p2 such

that JNKp2 “ K, we get JMKp2 “ JN1Kp2 \ JN2Kp2 . For any other processes p3 such that
JN1Kp3 “ JN2Kp3 “ K, we have JMKp3 “ JNKp3 . For any other process p4, we have
JMKp4 “ pλx : K.JN1Kp4 \ JN2Kp4 q JNKp4 . If JN 1

1Kp \ JN 1
2Kp is defined for all p then

the result follows from induction. Otherwise we have M1 and M2 such that N 1
1

τ,P
ÝÝÑD M1

and N 1
2 Ñ τ, PDM2 and JM1Kp \ JM2Kp for all p, and the result follows from induction

on these transitions.
Assume M “ case Inl V of Inl x ñ N ; Inr x1 ñ N 1 and M 1 “ N rx :“ V s. Then for any
process p P pnptypepInl V qq, we have JMKp “ case Inl JV Kp of Inl x ñ JNKp; Inr x1 ñ

JN 1Kp and JM 1Kp “ JN rx :“ JV KpsKp. By Lemma 38, JN rx :“ JV KpsKp “ JNKprx :“ JV Kps.
For any other process p1 R pnptypepInl V qq, JInl V Kp1 “ K, and therefore JMKp1 “

JNKp1 \ JN 1Kp1 Ą JNKp1 “ JM 1Kp1 . The result follows.
Assume M “ case Inr V of Inl x ñ N ; Inr x1 ñ N 1 and M 1 “ N 1rx1 :“ V s. This case is
similar to the previous.
Assume M “ case N of Inl x ñ N1; Inr x1 ñ N2, M 1 “ case N of Inl x ñ N 1

1; Inr x1 ñ

N 1
2, N1

P
ÝÑD N 1

1, N2
P

ÝÑ N 1
2, and P X pnpNq “ H. This case is similar to case four.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:35

Assume M “ comq,pV and M 1 “ V rq :“ ps and fvpV q “ H. Then if q ‰ p,
JMKp “ recvq K, JM 1Kp “ JV rq :“ psKp “ JV Kprq :“ ps since pnptypepV qq “ q,
JMKq “ sendp JV Kq, JM 1Kq “ K, and for any p1 R tq, pu, JMKp1 “ JM 1Kp1 “ K. We there-
fore get JMKp

recvqJV Kqrq:“ps
ÝÝÝÝÝÝÝÝÝÝÑJDK JM 1Kp, JMKq

sendpJV Kq
ÝÝÝÝÝÝÑJDK JM 1Kq, and JMKp1 “ JM 1Kp1 .

We define N “ N 1 “ JM 1K and the result follows. If q “ p, then JMKp “ pλx.xq JV Kp
and JM 1Kp “ JV Kp and N “ N 1 “ JM 1K and the result follows.
Assume M “ selectq,p l M 1. Then JMKq “ ‘p l JM 1Kq, JMKp “ &tl : JM 1Kpu, and for
any p1 R tq, pu, JMKp1 “ JM 1Kp1 . We therefore get JMK

τp,q
ÝÝÑJDK JMKztp, qu | prJM 1Kps |

qrJM 1Kqs and the result follows.
Assume M “ selectq,p l N , M 1 “ selectq,p l N 1, N

τ,P
ÝÝÑD N 1, and P X tq, pu “ H. Then

JMKq “ ‘p l JNKq, JM 1Kq “ ‘p l JN 1Kq, JMKp “ &tl : JNKpu, JM 1Kp “ &tl : JN 1Kpu, and
for any p1 R tq, pu, JMKp1 “ JNKp1 and JM 1Kp1 “ JN 1Kp1 . The result follows from induction
and using rules NOff2 and NCho2.
Assume M “ fst Pair V V 1 and M 1 “ V . Then for any process p P pnptypepPair M 1 V 1qq,
JMKp “ fst Pair JM 1Kp JV 1Kp and for any other process p1 R pnptypepPair M 1 V 1q, we
have JMKp1 “ K and JM 1Kp1 “ K. We define N “ N 1 “ JM 1K and the result follows.
Assume M “ snd Pair V V 1 and M 1 “ V 1. Then the case is similar to the previous.
Assume M “ f p⃗pq and M 1 “ Dpfpp⃗1qqrp⃗1 :“ p⃗s. Then the result follows from the
definition of JDK.
Assume there exists N such that M ù N and N

τ,P
ÝÝÑD M 1. Then the result follows

from induction and Lemma 40. ◀

A.2 Proof of Theorem 26
▶ Definition 41. Given a network N “

ś

pPρ
prBps, we have N zρ1 “

ś

pPpρzρ1q

prBps

▶ Lemma 42. For any process p and network N , if N τP
ÝÑ N 1 and p R P then N ppq “ N 1ppq.

Proof. Straightforward from the network semantics. ◀

▶ Lemma 43. For any set of processes P and network N , if N τP1

ÝÝÑ N 1 and P X P1 “ H then
N zP τP1

ÝÝÑ N 1zP.

Proof. Straightforward from the network semantics. ◀

▶ Lemma 44. If JMKp ù B then there exists M 1 such that M ù M 1 and B ” JM 1Kp

Proof. Follows from case analysis on JMKp ù B keeping in mind that JMKp cannot be
K K. ◀

Proof of Theorem 26. If JMK Ñ˚
JDK N uses rule NStr then this follows from Lemma 44.

Otherwise we prove this by structural induction on M .
Assume M “ N1 N2. Then for any process p P pnptypepN1qq Y ppnpN1q X pnpN2q,
JMKp “ JN1Kp JN2Kp, for any process p1 such that JN1Kp1 “ JN2Kp1 “ K, we have
JMKp1 “ K. For any other process p2 such that JN1Kp2 “ K, JMKp2 “ JN2Kp2 . For any
other process p3 such that JN2K“ K, we get JMKp3 “ JN1Kp3 . We then have 2 cases.

Assume N2 “ V . Then JN2Kp “ L by Lemma 36, and for any p1 such that p1 R

pnptypepN2qq Ď pnptypepN1qq, by Lemma 38, JN2Kp1 “ K and therefore JMKp1 “

JN1Kp1 , and we have 5 cases.

ECOOP 2023

7:36 Modular Compilation for Higher-Order Functional Choreographies

∗ Assume N1 “ λx : T.N3. Then for any process p P pnptypepN1qq, JN1Kp “ λx :
JT Kp .JN3Kp. And for any process p1 R pnptypepN1qq, JN1Kp “ K. We have two cases,
using either rule NAbsApp or rules NInAbs and NApp1.
If we use rule NAbsApp, then there exists p2 such that P “ p2 and p2 P

pnptypepN1qq. We then get JMK τ,P
ÝÝÑJDK M “ JMKztp2u | p2rJN3Kp2 rx :“ JN2Kp2 ss.

Since M Ñ˚ JN3rx :“ N2sK and the remaining transitions in JMK Ñ˚
JDK N take

place in N3, the result follows from using rule NAbsApp in every process in
pnptypepN1qq and induction.
If we use rules NInAbs and NApp1 then there exists p2 such that P “ p2 and
JN3Kp2

µ
ÝÑ B and

JMK µ
ÝÑJDK JMK ztp2uq | p2rλx.B JN2Kp2 s Ñ˚

JDK N

By induction, N3 Ñ˚
D N 1

3 and pJN3K ztp2u | p2rBs ÑD N 2 such that JN3K Ě N 2,
and we define M 1 “ λx : T.N 1

3 N2 and

N 1 “ pN z pnptypepN1qqq |
ź

pPpnptypepN3qq

prpλx.N 2ppqq JN2Kp2 s

and the result follows by using rules InAbs, App1, NInAbs, and NApp1 and
induction.

∗ Assume N1 “ comq,p. Then if q ‰ p, JMKq “ sendp JN2Kq, JMKp “ recvp K, and
for p1 R tq, pu, JN1Kp1 “ K “ JMKp1 , and therefore P “ q, p, and if q “ p then
JN1Kp “ λx.x.
If P “ q, p then N “ JMKztq, pu | qrKs | prJN2Kqrq :“ pss. Because JN2Kp “ K and
JN2Kq “ V , N2 “ V . Therefore M

P
ÝÑD V rq :“ ps and the result follows.

If P “ p then q “ p, N “ JMKztpu | prJN2Kps and the rest is similar to above.
∗ Assume N1 “ fst. Then N2 “ Pair V V 1 and for any process p P

pnptypepPair V V 1qq, JMKp “ fst Pair JV Kp JV 1Kp and for any other process
p1 R pnptypepPair V V 1q, by Lemma 38 we have JMKp1 “ JN1Kp1 “ K, and therefore
JMKp1 Û.
If P “ p P pnptypepPair V V 1qq then N “ JMKztpu | prJV Kps and M

P
ÝÑD V . The

result follows by use of rule NProj1 and Lemma 38.
∗ Assume N1 “ snd. This case is similar to the previous.
∗ Otherwise, N1 ‰ V and either JMK

τp
ÝÑJDK M Ñ˚

JDK N or JMK
τp,q

ÝÝÑJDK M Ñ˚
JDK N .

If JMK
τp

ÝÑJDK M Ñ˚
JDK N then either JN1Kp

τ
ÝÑ B and p P pnptypepN1qq, M “

JMKztpu | prB JN2Kps. We therefore have JN1K
τp

ÝÑ JN1Kztpu | prBs, and by
induction, N1 Ñ˚

D N 1
1 such that JN1Kztpu | prBs Ñ˚ N1 Ŋ JN 1

1K. Since all these
transitions can be propagated past N2 in the network and JN2Kp1 in any process p1

involved, we get the result for M 1 “ N 1
1 N2.

If JMK
τp,q

ÝÝÑJDK M Ñ˚
JDK N then the case is similar.

If N2 ‰ V then we have 2 cases.
∗ If JMK

τp
ÝÑJDK M Ñ˚

JDK N then either JN1Kp
τ

ÝÑ B or JN2Kp
τ

ÝÑ B and the case is
similar to the previous.

∗ If JMK
τp,q

ÝÝÑJDK M Ñ˚
JDK N then there exists L such that either JN1Kq

sendp L
ÝÝÝÝÝÑ Bq

or JN2Kq
sendp L

ÝÝÝÝÝÑ Bq and JN1Kp
recvq Lrq:“ps

ÝÝÝÝÝÝÝÝÑ Bp or JN2Kp
recvq Lrq:“ps

ÝÝÝÝÝÝÝÝÑ Bp.
If JN1Kq

sendp L
ÝÝÝÝÝÑ Bq then JN1Kq ‰ L1 and therefore JN1Kp

recvq Lrq:“ps
ÝÝÝÝÝÝÝÝÑ Bp and the

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:37

case is similar to the previous. If JN2Kq
sendp L

ÝÝÝÝÝÑ Bq then JN1Kq “ L1, and therefore
JN2Kp

recvq Lrq:“ps
ÝÝÝÝÝÝÝÝÑ Bp and the case is similar to the previous.

Assume M “ case N of Inl x ñ N 1; Inr x1 ñ N2. Then for any process p P pnptypepNqq,
JMKp “ case JNKp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp. And for any other process
p1 R pnptypepNqq, JMKp1 “ pλx.JN 1Kp1 \ JN2Kp1 q JNKp1 . We know that JMK τP

ÝÑJDK

M Ñ˚
JDK N and we have three cases.

Assume P “ p P pnptypepNqq. Then we have three cases.
∗ Assume N “ Inl V . Then JNKp “ Inl JV Kp and M “ JMKztpu | prJN 1rx :“ JV KpsKps.

We define M2 “ N 1 and the transitions used in M Ñ˚
JDK N can be used on

M2. By induction, since JN 1Kp1 Ŋ JN 1Kp1 \ JN2Kp1 the result follows from using
rules NAbsApp and NCaseL.

∗ Assume N “ Inr V . Then the case is similar to the previous.
∗ Otherwise, we use either rule NCase or rule NCase2. If we use rule NCase, we

have a transition JNKp
τ

ÝÑ B such that

M “ JMKztpu | prcase B of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kps

and the result follows from induction similar to the last application case.
If we use rule NCase2 then JN 1Kp

τ
ÝÑD B and JN2Kp

τ
ÝÑD B. If JN 1Kp

τ
ÝÑD B then

by induction, N 1 Ñ˚
D N3 and JN 1K ztpu | prBs Ñ˚

D N 2 such that N 2 Ě JN3K and
N2 Ñ˚

D N4 and JN2K ztpu | prBs Ñ˚
D N 3 such that N 3 Ě JN4K. Since N 1 and

N2 are mergeable on other processes, the result follows from using rule InCase.
Assume P “ p R pnptypepNqq. Then we have three cases.
∗ Assume N “ Inl V . Then JNKp “ K and M “ JMKztpu | prJN 1Kp \ JN2Kps. We

define M 1 “ N 1 and the result follows.
∗ Assume N “ Inr V . Then the case is similar to the previous.
∗ Otherwise, JNKp ‰ L and we therefore have JNKp

τ
ÝÑ B and M “ JMKztpu |

prpλx.JN 1Kp \ JN2Kpq Bs. We therefore have JNK
τp

ÝÑ JNKztpu | prBs, and by
induction, N ÑD N3 such that JNKztpu | prBs Ñ˚ N 3 for N 3 Ŋ JN3K. Since all
these transitions can be propagated past N2 in the network and the conditional
or pλx.JN 1Kp2 \ JN2Kp2 q in any other process p1 involved, we get the result for
M 1 “ case N3 of Inl x ñ N 1; Inr x1 ñ N2.

Assume P “ q, p. Then the logic is similar to the third subcases of the previous two
cases.

Assume M “ selectq,p ℓ N . This is similar to the N1 “ comq,p case above.
Assume M “ fpp1, . . . , pnq. Then

JMK “

n
ź

i“1
pirfipp1, . . . , pi´1, pi`1, . . . , pnqs |

ź

pRtp1,...,pnu

prKs

We therefore have some process p such that P “ p and pJMKzpiq | pirJDKpfipp⃗1qqrp⃗1 :“
p1, . . . , pi´1, pi`1, . . . , pnss Ñ˚ N . We then define the required choreography M2 “

Dpfpp1
1, . . . , p1

nqqrp1
1, . . . , p1

n :“ p1, . . . , pns and network

N “ JM2K “

n
ź

i“1
pirJDKpfipp⃗1qqrp⃗1 :“ p1, . . . , pi´1, pi`1, . . . , pnss |

ź

pRp1,...,pn

prKs

and the result follows from induction. ◀

ECOOP 2023

	1 Introduction
	2 Background
	3 Endpoint Projection (EPP) for finite Chorlambda
	3.1 Process Language
	3.2 Endpoint Projection (EPP)

	4 Recursion
	4.1 Definitions
	4.2 Out-of-order execution
	4.3 Properties

	5 EAP
	6 Related Work
	7 Conclusion and Future Work
	A Full definitions and proofs
	A.1 Proof of Theorem 25
	A.2 Proof of Theorem 26

