
Functional Choreographic Programming?

Lúıs Cruz-Filipe , Eva Graversen , Lovro Lugović , Fabrizio Montesi , and

Marco Peressotti

Department of Mathematics and Computer Science, University of Southern Denmark

Abstract Choreographic programming is an emerging programming
paradigm for concurrent and distributed systems, where developers write
the communications that should be enacted and a compiler then auto-
matically generates a distributed implementation.

Currently, the most advanced incarnation of the paradigm is Choral, an
object-oriented choreographic programming language that targets Java.
Choral deviated significantly from known theories of choreographies, and
in particular introduced the possibility of expressing higher-order cho-
reographies that are fully distributed.

In this article, we introduce Chorλ, the first functional choreographic
programming language. It is also the first theory that explains the core
ideas of higher-order choreographic programming. We show that bridging
the gap between practice and theory requires developing a new evalu-
ation strategy and typing discipline for λ terms that accounts for the
distributed nature of computation in choreographies.

Keywords: Choreographies · Concurrency · Lambda calculus · Type
Systems

1 Introduction

Choreographies are coordination plans for concurrent and distributed systems,
which prescribe the communications that system participants should enact in
order to interact correctly with each other. They are widely used in industry, es-
pecially for documentation [17,21,32]. Essentially, choreographies are structured
compositions of communications. These are expressed using a variation of the
communication term from security protocol notation, Alice -> Bob : M , which
reads “Alice communicates the message M to Bob” [27].

Choreographic programming is an emerging programming paradigm aimed at
producing correct-by-construction distributed implementations of choreograph-
ies [16,20,24]. In this paradigm, programs are choreographies in which commu-
nications are structured using standard control-flow constructs, e.g., condition-
als. A compiler then projects a choreography onto each participant, creating an
executable program, which enacts the expected message passing behaviour.

? Work partially supported by Villum Fonden, grant no. 29518.

https://orcid.org/0000-0002-7866-7484
https://orcid.org/0000-0002-9430-4907
https://orcid.org/0000-0001-9684-9567
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480

Choreographies can be large in practice—some even over a hundred pages
of text [28]. Thus, it is important to study how choreographies can be made
modular, enabling the writing (preferably disciplined by types) of large choreo-
graphies as compositions of smaller, reusable ones. The state-of-the-art on mod-
ularity in choreographic programming is currently represented by Choral, an
object-oriented choreographic programming language in which choreographies
are compiled to Java libraries that applications can use as protocol implement-
ations [15]. Choral is the first choreographic programming language powerful
enough to support realistic, mainstream software development. In particular, it
introduced higher-order composition to choreographic programming—the abil-
ity to define and invoke choreographies parameterised over other choreographies.
Higher-order composition is essential to many practical scenarios, e.g. extensible
protocols. An example (covered in Section 4.2) is the Extensible Authentication
Protocol (EAP), a widely-employed link-layer protocol for the authentication of
peers connecting to a network [31]. EAP is parametric over a list of authentica-
tion protocols, and therefore requires higher-order composition.

In Choral, data types are equipped with (possibly many) roles, which are
abstractions of participants. This allows for writing object methods that involve
multiple roles (choreographic methods). We illustrate with an example from [15].

Example 1 (Authentication protocol in Choral [15]). Consider a distributed au-
thentication protocol in which a client (C) wishes to use its account at an iden-
tity provider (I) to access a service (S). Such a protocol can be implemented in
Choral as follows.

class Authenticator@(S,C, I)
{ AuthResult@(C, S) authenticate(Credentials@C credentials){...} }

In the Choral code above, class Authenticator is distributed between the three
roles S, C, and I. Method authenticate takes the credentials of C (to access its
account) and returns the result of the authentication computed at I to C and S.
The result AuthResult@(C, S) is a pair of session tokens, one located at C and
the other at S (if the authentication fails, these will be empty). The interested
reader can see how this example can be implemented in Chorλ in [6]. /

While Choral demonstrated the usefulness of higher-order choreographies,
its development was driven by practice, and it is not grounded in any existing
theory. In particular, the typing and semantics of higher-order choreographies is
not formally understood yet. The current contribution aims at closing this gap.

This Article. We present the choreographic λ-calculus, Chorλ for short, a
theory of choreographic programming that supports higher-order, modular com-
position.

Chorλ is the first choreographic programming model based on λ-calculus,
which has two advantages. First, we can tap on a well-known foundation for
higher-order programming. Second, it reveals that the key design features of

Choral work in the context of functional programming as well. In this way,
Chorλ is also the first instance of functional choreographic programming.

Chorλ is expressive enough to serve as a model of the core features of Choral,
which we illustrate by recreating some of the key examples given as motivation
in the original presentation of Choral [15] (including remote computation, secure
key exchange, and single sign-on) in our functional setting. We also model a more
sophisticated scenario based on the Extensible Authentication Protocol (EAP).
Our examples demonstrate that Chorλ allows for parameterising choreographies
over different communication semantics, enabling protocol layering, a first for
theory of choreographic programming.

To capture the essence of higher-order choreographies in the λ-calculus, we
extend its syntax with features from choreographies and ambient calculi (Sec-
tion 2.1) [3,25]. Namely, in Chorλ, data has explicit location and can be moved
between roles using communication primitives. Another innovative feature is
that the term for performing a communication is a function, and can therefore
be composed with other terms as usual in functional programming.

We develop a typing discipline for Chorλ where types are located at roles
(Section 2.2). The key novelty of our type system is that it tracks which roles
are involved in which terms; this requires extending the standard connective for
typing functions and a dedicated environment in typing judgements.

Another key contribution of this paper is a semantics for choreographies (Sec-
tion 3) in Chorλ. Formulating an appropriate semantics has been particularly
challenging, because there is no prior evaluation strategy for the λ-calculus that
is suitable for functional choreographies. Since choreographies express distrib-
uted computation, theories of choreographic languages typically support out-of-
order execution for subterms that can be evaluated at independent locations [2].
How to formulate the necessary inference rules is well-known in the imperative
setting, but it has never been studied in others. This notion of out-of-order ex-
ecution makes it possible to project the behaviour of each participant and get a
correspondence between their behaviours and that of the choreography. This de-
velopment is outside the scope of the current contribution; the interested reader
can find the full discussion in the accompanying technical report [6].

Structure of the paper. Chorλ, along with its typing, is presented in Section 2.
Its semantics and key properties are discussed in Section 3. Examples of cho-
reographies inspired by practice are given in Section 4. Related work is given in
Section 5. Conclusions are presented in Section 6.

2 The Choreographic λ-calculus

In this section we introduce the Choreographic λ-calculus, Chorλ. This calculus
extends the simply typed λ-calculus [5] with recursion, choreographic terms for
communication, and roles.

Roles are independent participants in a system based on message passing.
Terms in Chorλ are located at roles, to reflect distribution. For example, the

value 5@Alice reads “the integer 5 at Alice”. Terms are typed with novel data
types that are annotated with roles. In this case, 5@Alice has the type Int@Alice,
read “an integer at Alice”.

Values can be moved from a role to another using a communication primitive.
For example, the term comAlice,Bob 5@Alice represents the communication of the
value 5 from Alice to Bob. This term evaluates to 5@Bob and has type Int@Bob.

2.1 Syntax

Definition 1. The syntax of Chorλ is given by the following grammar

M ::= V | f(~R) |M M | caseM of Inl x⇒M ; Inr x⇒M | selectR,R l M

V ::= x | λx : T .M | Inl V | Inr V | fst | snd | Pair V V | ()@R | comR,R

T ::= T →ρ T | T + T | T × T | ()@R | t@~R

where M is a choreography, V is a value, T is a type, x is a variable, l is a label,
f is a choreography name (or function name), R is a role, ρ is a set of roles,
and t is a type variable.

Abstraction λx : T.M , variable x and application MM are as in the standard
(simply typed) λ-calculus, and pairs and sums are added in the standard way.
For the sake of simplicity, constructors for sums (Inl and Inr) and products
(Pair) are only allowed to take values as inputs, but this is only an apparent
restriction: we can define, e.g., a function inl as λx : T .Inl x and then apply it to
any choreography. Similarly, we can define the functions inr and pair (the latter
for constructing pairs). We use these utility functions in our examples. Sums and
products are deconstructed in the usual way, respectively by the case construct
and by the fst and snd primitives.

The primitives comS,R and selectS,R l M (where S and R are roles) come
from choreographies and are the only primitives of Chorλ that introduce inter-
action between roles. The term comS,R is a communication: it acts as a function
that takes a value at role S and returns the same value at role R. The standard
choreographic primitive for synchronous communication Alice -> Bob : M is re-
covered as the function application comAlice,Bob M . The term selectS,R l M is a
selection, where S informs R that it has selected the label l before continuing as
M . Selections are needed for realisability: with this interaction, S communicates
its internal choice to R so that both agree on their future behaviour. Labels are
constants chosen from a fixed set (e.g., {left, right, start, stop, . . . }).

Finally, f(~R) stands for a (choreographic) function f instantiated with the

roles ~R, which evaluates to the body of the function as given by an environment of
definitions (a mapping from function names to choreographies). Function names
are used to model recursion. In the typing and semantics of Chorλ, we use D
to range over mappings of function names to choreographies. Within a choreo-
graphy, there is no need to distinguish between roles that are statically fixed
and role parameters: inside of a function definition, roles are parameters of the

function; otherwise, roles are statically determined. All roles are treated in the
same way by our theory.

To illustrate base values, we also have a term ()@R which denotes a unit
value at the role R—other base values, like 5@R used in the examples above,
can be easily included following the same approach. Values are not limited to one
role in general; for example, Pair ()@S ()@R denotes a distributed pair where
the first element resides at S and the second at R. We say a choreography (or
value or type) is local to R if R is the only role mentioned in any subterm of the
choreography, e.g., λx : ()@R.(Pair x ()@R) is a local function located at R.

Types in Chorλ record the distribution of values across roles: if role R occurs
in the type given to V , then part of V will be located at R. Because a function
may involve more roles besides those listed in the types of their input and output,
the type of abstractions T →ρ T

′ is annotated with a set of roles ρ denoting
the roles that may participate in the computation of a function with that type
besides those occurring in the input T or the output T ′. We often omit this
annotation if the set of additional roles is empty, writing T → T ′ instead of
T →∅ T ′. For example, if Alice wants to communicate an integer to Bob directly
(without intermediaries), then she should use a choreography of type Int@Alice→
Int@Bob; however, if the communication might go through a proxy, then she can
use a choreography of type Int@Alice→{Proxy} Int@Bob. This annotation is vital
to the theory of projection, which is not presented in this paper.1

Aside from the annotations on arrows, our types resemble those of simply
typed λ-calculus and serve the same primary purpose of keeping track of input
and output of functions in order to prevent nonsensical choreographies. Consider
the function h = λx : Int@Alice.comProxy,Bob (comAlice,Proxy x), which communic-
ates an integer from Alice to Bob by passing through an intermediary Proxy and
has the type Int@Alice→{Proxy} Int@Bob. For any term M , the composition h M
makes sense if the evaluation of M returns something of the type expected by
h, that is Int@Alice. The composition h 5@Alice makes sense, but h 5@Bob does
not, because the argument is not at the role expected by h.

Types for sums and products are the usual ones. The type of units is an-
notated with the role where each unit is located; ()@R is the type of the unit

value available (only) at role R. Recursive type variable t@~R are annotated with

the roles ~R, instantiating the roles occurring in their definition (we discuss type
definitions in Section 2.2).

Definition 2 (Roles of a type). The roles of a type T , roles(T), are defined
as follows.

roles(t@~R) = ~R roles(T →ρ T
′) = roles(T) ∪ roles(T ′) ∪ ρ

roles(()@R) = {R} roles(T + T ′) = roles(T × T ′) = roles(T) ∪ roles(T ′)

In our examples we also assume the usual datatypes for integers (Int) and
strings (String) together with their usual operations.

1 The interested reader can find it in Figure 6, in the appendix.

Example 2 (Remote Function). We can use Chorλ to define a small choreo-
graphy, remFun(C, S) for a distributed computation in which a client, C sends
an integer val to a server S where a function fun located at S is applied to val
before the result gets returned to C.

remFun(C, S) = λf : Int@S → Int@S. λv : Int@C. comS,C (f (comC,S v))

This choreography is parametrised on the roles S and C as well as the local
function fun and value val . /

Crucially, a choreographic term M may involve more roles than those lis-
ted in its type. For instance, the three choreographies (()@R), (comS,R ()@S),
and (comP,R (comS,P ()@S)) all have type ()@R, but they implement differ-
ent behaviours involving different roles. This yields a substitution principle for
choreographies that makes them compositional, and will be important in estab-
lishing type preservation later.

A key concern of choreographic languages is knowledge of choice: the property
that when a choreography chooses between alternative branches (as with our
case primitive), all roles that need to behave differently in the branches are
properly informed via appropriate selections [4]. We give an example of how
selections should be used.

Example 3 (Remote Map). We now build on the remote function from Ex-
ample 2 by using it to create a choreography remMap(C, S), where the server
S applies a local function to not just one value received from the client C, but
instead to each element of a list sent individually from C to S and then returned
after the computation at S is complete.

remMap(C, S) = λf : Int@S → Int@S. λlist : [Int]@C.
case list of
Inl x⇒ selectC,S stop ()@C;
Inr x⇒ selectC,S go cons(C) (remFun(C, S) f (fst x)) (remMap(C, S) f (snd x))

Here, [Int]@C is the recursive type satisfying [Int]@C = ()@C+(Int@C×[Int]@C),
representing a list of integers and cons(C) is the usual list constructor located at
C. In general, we write [t]@(R1, . . . , Rn) to mean the recursive type satisfying

[t]@(R1, . . . , Rn) = (()@R1×· · ·×()@Rn)+(t@(R1, . . . , Rn)×[t]@(R1, . . . , Rn)).

When we introduce typing judgements later, we will show how to work with this
kind of type equations.

The choreography uses selections so that S is informed about how it should
behave (terminate or recur) depending on a local choice at C. This is essential
if the choreography is to be implemented in a fully distributed way, since the
information is initially available only at C. Notice how the case is evaluated on
data at role C, so that role is the only one initially knowing which branch has
been chosen. Each branch, however, starts with role C sending a label to role S.
On the other hand, S must wait to receive a label from C to figure out whether
it should terminate (label stop) or continue (label again): from its point of view,
S is reactively handling a stream. /

x : T ∈ Γ roles(T) ⊆ Θ
Θ;Σ;Γ ` x : T

[TVar]
Θ;Σ;Γ ` N : T →ρ T

′ Θ;Σ;Γ `M : T

Θ;Σ;Γ ` N M : T ′
[TApp]

f(~R′) : T ∈ Γ ~R ⊆ Θ ||~R|| = || ~R′|| distinct(~R)

Θ;Σ;Γ ` f(~R) : T [~R′ := ~R]
[TDef]

Θ′;Σ;Γ, x : T `M : T ′ ρ ∪ roles(T) ∪ roles(T ′) = Θ′ ⊆ Θ
Θ;Σ;Γ ` λx : T.M : T →ρ T

′ [TAbs]

roles(T) = {S} {S,R} ⊆ Θ
Θ;Σ;Γ ` comS,R : T →∅ T [S := R]

[TCom]
Θ;Σ;Γ `M : T {S,R} ⊆ Θ
Θ;Σ;Γ ` selectS,R l M : T

[TSel]

Θ;Σ;Γ `M : t@ ~R′ t@~R =Σ T ~R′ ⊆ Θ ||~R|| = || ~R′|| distinct(~R′)

Θ;Σ;Γ `M : T [~R := ~R′]
[TEq]

Figure 1. Typing rules for Chorλ (representative selection).

Free and bound variables are defined as expected, noting that x and y are
bound in case M of Inl x ⇒ M ′; Inr y ⇒ M ′′. We write fv(M) for the set of
free variables in term M . The formal definition can be found in [6].We call a
choreography closed if it has no free variables, and restrict our results to closed
choreographies.

2.2 Typing

We now show how to type choreographies following the intuitions already given
earlier. Typing judgements have the form Θ;Σ;Γ ` M : T , where: Θ is the set
of roles used for typing M ; Σ is a set of type definitions parameterised on roles,
i.e., expressions of the form t@~R = T where the elements of ~R are distinct; and
Γ is a typing environment, i.e. a list of assignments of variable names to their
type (x : T) and of choreography names to the their set of bound roles and type

(f(~R) : T). We require that a type variable t is defined at most once in Σ, that

definitions are contractive [29], and that roles(T) = ~R for any t@~R = T ∈ Σ.
We can use Σ to define common types such as Bool@R = ()@R + ()@R and
the lists described in Example 3. We call Θ;Σ;Γ a typing context. Many of
the rules resemble those for simply typed λ-calculus, but with roles added, and
the additional requirements that only the roles in the type are used in the term
being typed. We include some representative ones in Figure 1 (the complete

typing rules are given in [6]).We use the predicate distinct(~R) to indicate that

the elements of ~R are distinct and ||~R|| to denote the number of elements of ~R.
One novel part of our type system is the annotation ρ on the function type

T →ρ T
′, which, while not necessary for the results of this paper, ensures that

the type of any value contains all the roles of that value. Rule TAbs uses Θ to
ensure that ρ contains every additional role used in the function by requiring
every role to be in Θ and restricting Θ to the roles of T , ρ, and T ′.

Rules TVar, TDef and TAbs exemplify how role checks are added to the
standard typing rules for simply typed λ-calculus. Rule TCom types commu-
nication actions, moving subterms that were placed at role S to role R (here
T [S := R] is the type expression obtained by replacing S with R). Note that the
type of the value being communicated must be located entirely at S. Rule TSel
types selections as no-ops, only checking that the sender and receiver of the se-
lection are legal roles. Rule TEq allows rewriting a type according to Σ in order
to mimic recursive types (see Example 3).

We also write Θ;Σ;Γ ` D to denote that a set of definitions D, mapping
names to choreographies, is well-typed. Sets of definitions play a key role in the
semantics of choreographies, and can be typed by the rule below.

∀f(~R) ∈ domain(D) : f(~R) : T ∈ Γ ~R;Σ;Γ ` D(f(~R)) : T distinct(~R)

Θ;Σ;Γ ` D

Example 4. The set of definitions in Examples 2 and 3 can be typed in the typing
context:

Θ = {C, S} Σ = {[Int]@R = ()@R+ (Int@R× [Int]@R)}

Γ =

{
remFun(C, S) : (Int@S → Int@S)→ Int@C → Int@C,

remMap(C, S) : (Int@S → Int@S)→ [Int]@C → [Int]@C

}
/

3 Semantics of Chorλ

Chorλ comes with a reduction semantics that captures the essential ingredients
of the calculi that inspired it: β- and ι-reduction from λ-calculus, and the usual
reduction rules for communications and selections. Some representative rules are
given in Figure 2.

The key idea of our semantics is that terms at different roles can be evaluated
independently, unless interaction is specified within the choreography. This kind
of role-based out-of-order execution is typical for choreographic calculi [2], but
we port it to λ-calculus here for the first time. In addition to functional cho-
reographies having a different structure to imperative, out-of-order execution
in higher-order choreographies is complicated by having actions where multiple
roles are involved but no synchronisation happens, namely applications of values
located at multiple roles such as choreographies and pairs with elements located
at different roles.

The semantics are annotated with a label, `, and a set of synchronising roles,
R. The label is either λ, when an action is propagated out through a λ-term
as in rule InAbs, or τ otherwise. The set of synchronising roles is empty if no
synchronisations are taking place. The purpose of the label and synchronising
roles is to ensure that synchronisations between the same roles occur in the
expected order, the importance of which will become clear later.

λx : T.M V
τ,∅−−→D M [x := V]

[AppAbs]
M

`,R−−→D M ′

λx : T.M
λ,R−−→D λx : T.M ′

[InAbs]

M
`,R−−→D M ′ ` = λ⇒ R ∩ roles(N) = ∅

M N
τ,R−−→D M ′ N

[App1]

N
τ,R−−→D N ′

V N
τ,R−−→D V N ′

[App2]
N

τ,R−−→D N ′ R ∩ roles(M) = ∅

M N
τ,R−−→D M N ′

[App3]

N
τ,R−−→D N ′

case N of Inl x⇒M ; Inr x′ ⇒M ′
τ,R−−→D case N ′ of Inl x⇒M ; Inr x′ ⇒M ′

[Case]

M1
`,R−−→D M ′1 M2

`,R−−→D M ′2 R ∩ roles(N) = ∅

case N of Inl x⇒M1; Inr x
′ ⇒M2

`,R−−→D case N of Inl x⇒M ′1; Inr x
′ ⇒M ′2

[InCase]

case Inl V of Inl x⇒M ; Inr x′ ⇒M ′
τ,∅−−→D M [x := V]

[CaseL]

fst Pair V V ′
τ,∅−−→D V

[Proj1]
D(f(~R′)) = M

f(~R)
τ,∅−−→D M [~R′ := ~R]

[Def]

fv(V) = ∅

comS,R V
τ,{S,R}−−−−−→D V [S := R]

[Com]
selectS,R l M

τ,{S,R}−−−−−→D M
[Sel]

M
`,R−−→D M ′ R ∩ {S,R} = ∅

selectS,R ` M
`,R−−→D selectS,R ` M ′

[InSel]
M ∗ N N

τ,R−−→M ′

M
τ,R−−→D M ′

[Str]

Figure 2. Semantics of Chorλ.

Rules AppAbs, App1 and App2 implement a call-by-value λ-calculus. Rules
Case and CaseL and its counterpart rule CaseR implement ι-reductions for
sums, and likewise for rules Proj1 and Proj2 wrt pairs. The communication
rule Com changes the associated role of a value, moving it from S to R, while the
selection rule Sel implements selection as a no-op. Rule Def allows reductions
to use choreographies defined in D.

In addition to the fairly standard λ-calculus semantics, we have some rules
for out-of-order execution. These include rewriting terms as described in Fig-
ure 3 and being able to propagate some transitions past an abstraction, case,
and selection as in rules InAbs, InCase and InSel. We also have a “role-aware”
variation of full β-reduction by using rule App3, the need for which is illustrated
by Example 5. These rules serve the purpose of making our semantics decent-
ralised, in the sense that actions at distinct roles can proceed independently.

Example 5. Consider the choreography M = f(S) ((λx : T@R.V@S) V ′@R).
(Note that we abuse notation when we write V@S and T@R to denote that
V and T are located entirely at roles S and R, respectively, though this is not

x /∈ fv(M ′)

((λx : T.M) N) M ′ (λx : T.(M M ′)) N
[R-AbsR]

x /∈ fv(M ′) sroles(M ′) ∩ roles(N) = ∅
M ′ ((λx : T.M) N) (λx : T.(M ′ M)) N

[R-AbsL]

x, x′ /∈ fv(M)

(case N of Inl x⇒M1; Inr x
′ ⇒M2) M

case N of Inl x⇒ (M1 M); Inr x′ ⇒ (M2 M)

[R-CaseR]

x, x′ /∈ fv(M) sroles(M) ∩ roles(N) = ∅
M (case N of Inl x⇒M1; Inr x

′ ⇒M2)
case N of Inl x⇒ (M M1); Inr x′ ⇒ (M M2)

[R-CaseL]

(selectS,R l N) M selectS,R l (N M)
[R-SelR]

sroles(M) ∩ roles(N) = ∅
M (selectS,R l N) selectS,R l (M N)

[R-SelL]

Figure 3. Rewriting of Chorλ.

part of the syntax of Chorλ.) The choreography includes two independent roles,
R and S, but the two never actually interact: the inner application involves
an abstraction and an argument located only at R, so it should be evaluated
independently of S. Likewise, f(S) is located entirely at role S, so it should be
evaluated independently of R.

Without rule App3, M would be unable to evaluate the inner application
before f(S) finished running, which may be never if f diverges, breaking the
assumption that roles execute in a decentralised way. /

The rewriting rules are not standard for the λ-calculus, but they are not as
strange as they first appear. Take, for example, rule R-AbsR; it simply states
that if you have a function with two variables, λx : T.λy : T ′.M , then x and y can
be instantiated in any order as long as they each get the correct value. On the
other hand, rule R-AbsL says that more of the computation can be pushed into
an abstraction so long as it does not affect the order of synchronisations. The
other rewriting rules work on similar principles, but dealing with conditionals
and selections. These rules all work to ensure that while actions can be performed
in different orders the result of the computation must remain the same before
and after rewriting. In Example 6 we see why we need the rewriting rules in
order to support the out-of-order executions necessary for the choreography to
allow concurrent execution of computations located at different roles.

Example 6 (Rewriting). Consider the choreography with an abstraction at S
inside an abstraction at R, M = ((λx : ()@R.λx′ : T@S.()@S) f(R)) V@S.
As in Example 5, R and S each independently execute their part of the cho-
reography. R evaluates f(R) and then applies the result. Independently, S, ex-

ecutes the other application λx′ : T@S.()@S V@S. For M to be able to ex-
ecute the application at S independently of R’s actions, we need rule R-AbsR
to get λx : T@S.()@S and V@S next to each other by rewriting to ((λx :
()@R.(λx : T@S.()@S) V@S) f(R)) and rule InAbs to propagate the applica-
tion of (λx : T@S.()@S) and V@S past λx : ()@R. /

Some of the out-of-order-execution rules, specifically the ones pushing the
left part of an application further in, have restrictions on them because we want
to avoid there being more than one communication or synchronisation available
at the same time on the same roles. This is because we need to ensure that
communications and selections on a specific set of roles must always happen in
the same order, as we otherwise get the problems illustrated by Example 7.

Example 7 (Communication order). Consider a choreography with two comS,R

primitives, M = (λx : T@R.(comS,R V@S)) (comS,R V
′@S). This has a similar

structure to ((λx : ()@R.(λx′ : T@S.M) V@S) f(R)) from Example 6, with part
of the computation hidden behind an abstraction. However, while Example 6
needed to use rule InAbs to allow the computation inside of the abstraction
to execute before the computation outside, doing so would cause problems in
(λx : T@R.(comS,R V@S)) (comS,R V ′@S).

Without going into the technical details, intuitively, the behaviour of M at
R should be (λx : T .(recvS ⊥)) (recvS ⊥) and the behaviour at S should be
(λx : ⊥.(sendR V)) (sendR V ′) where sendR and recvS are the obvious local
actions implementing comS,R. In these behaviours, term ⊥ denotes a part of
the computation that takes place elsewhere.

It is common in choreographic programming, including in Choral, for the
implementation of choreographies to assume that each pair of roles has one
channel between them, which they use for all communications. In such a model,
if the two communications can be performed in any order then S is currently able
to send either V or V ′ and R is correspondingly able to receive either inside or
outside the abstraction. Since S and R act independently, we have no guarantee
that if S chooses to send V first R will also choose to use its left receive action
or vice versa. This can create situations where S sending V synchronises with
the right receive at R, creating a state not intended by the choreography. /

We therefore restrict the out-of-order communications by restricting the syn-
chronising names in rules InAbs, App1, App3, InCase and InSel. To show
that these rules restrict as intended, we have Proposition 1 stating that any re-
ductions available at the same time must have different (or no) synchronisation
roles.

Proposition 1. Given a choreography M , if M
`,R−−→M ′ and M

`′,R′−−−→M ′′ and
there does not exist N such that M ′ ∗ N , and M ′′ ∗ N , then R ∩R′ = ∅.

Proof. The key here is that unless these transitions are either communications or
selections, R and R′ are empty. Once this is clear, the rest follows by induction
on M . ut

We use the label λ in rule InAbs to restrict out-of-order communications,
since we do not know which roles we need to restrict communication on in
situations such as Example 7 until we reach the application, at which point the
λ label becomes a τ again if it is allowed to propagate.

The restrictions on out-of-order communication in out-of-order execution
rules force us to add similar restrictions in the rewriting rules, as illustrated
by Example 8. For this purpose we use the concept of synchronisation roles.

Definition 3. We define the set of synchronising roles of a choreography M ,
sroles(M), by recursion on the structure of M :

sroles(comS,R) = {S,R}, sroles(selectS,R l M) = {S,R} ∪ sroles(M),

sroles(f(~R)) = ~R, and homomorphically on all other cases.

Example 8. Consider a choreography with two communications between S and
R, (comS,R V@S) ((λx : T@R.M) (comS,R V ′@S)). Here, thanks to rule App3
restricting on synchronisation roles, only the left comS,R on V is available. If
rule R-AbsL had no restriction on synchronisation roles, we could rewrite the
choreography to (λx : T@R.((comS,R V@S) M)) (comS,R V ′@S). This instead
leaves the rightmost comS,R on V ′ available. This means we have both commu-
nication available depending on whether we decide to rewrite and we have the
same problem as in Example 7 of S potentially choosing to send V while R has
rewritten and is expecting to receive the left comS,R. We therefore do not allow
such a rewrite and use synchronisation roles to prevent it. /

We now show that closed choreographies remain closed under reductions.

Proposition 2. Let M be a closed choreography. If M →D M ′ then M ′ is
closed.

Proof. Straightforward from the semantics. ut

A hallmark property of choreographies is that well-typed choreographies
should continue to reduce until they reach a value. We split this result into
two independent statements.

Theorem 1 (Progress). Let M be a closed choreography and D a collection
of named choreographies with all the necessary definitions for M . If there exists
a typing context Θ;Σ;Γ such that Θ;Σ;Γ ` M : T and Θ;Σ;Γ ` D, then
either M is a value (and M 6→ D) or there exists a choreography M ′ such that

M
τ,R−−→D M ′.

Proof. Follows by induction on the typing derivation of Θ;Σ;Γ ` M : T . See
details in [6]. ut

Theorem 2 (Type Preservation). Let M be a choreography and D a collec-
tion of named choreographies with all the necessary definitions for M . If there
exists a typing context Θ;Σ;Γ such that Θ;Σ;Γ `M : T and Θ;Σ;Γ ` D, then

Θ;Σ;Γ `M ′ : T for any M ′ such that M
`,R−−→D M ′.

Proof. Follows from induction on the derivation of M
`,R−−→D M ′. See details in

[6]. ut

Combining these results, we conclude that if M is a well-typed, closed, cho-
reography, then either M is a value or M reduces to some well-typed, closed
choreography M ′. Since M ′ still satisfies the hypotheses of the above results,
either it is a value or it can reduce.

4 Illustrative Examples

In this section, we illustrate the expressivity of Chorλ with some representative
examples. Specifically, we use Chorλ to implement the Diffie-Hellman protocol
for key exchange [14] and the Extensible Authentication Protocol [31]. The first
is used in [15] to illustrate the expressiveness of Choral, and we show how it
can be adapted to Chorλ’s functional paradigm. The second example requires
using higher-order composition of choreographies, as the choreography is para-
metrised on a list of authentication protocols. Chorλ is the first theory capable of
modelling these choreographies as they are parametric on roles and include func-
tions which are parametric on other choreographies and no previous formalism
includes both these features.

4.1 Secure Communication

We write a choreography for the Diffie–Hellman key exchange protocol [14],
which allows two roles to agree on a shared secret key without assuming secrecy
of communications. As in Example 3, we use the primitive type Int.

To define this protocol, we use the local function modPow(R) of the type

modPow(R) : Int@R→ Int@R→ Int@R→ Int@R

which computes powers with a given modulo. Like all local functions in Chorλ,
modPow(R) is modelled by a choreography located entirely at one role. Given
modPow(R), we can implement Diffie–Hellman as the following choreography:

diffieHellman(P,Q) =
λpsk : Int@P . λqsk : Int@Q. λpsg : Int@P .
λqsg : Int@Q. λpsp : Int@P . λqsp : Int@Q.

pair (modPow(P) psg (comQ,P (modPow(Q) qsg qsk qsp)) psp)
(modPow(Q) qsg (comP,Q (modPow(P) psg psk psp)) qsp)

Given the individual secret keys (psk and qsk) and a previously publicly
agreed upon shared prime modulus and base (psg = qsg, psp = qsp), the par-
ticipants exchange their locally-computed public keys in order to arrive at a
shared key that can be used to encrypt all further communication. This means
diffieHellman(P,Q) has the type:

Int@P → Int@Q→ Int@P → Int@Q→ Int@P → Int@Q→ Int@P × Int@Q

and represents the shared key as a pair of equal keys, one for each participant.
Using the key exchange protocol, we can now build a reusable utility that

allows us to achieve secure bidirectional communication between the parties,
by encrypting and decrypting messages with the shared key at the appropriate
endpoints. For this we assume two functions that allow us to encrypt and decrypt
a String message with a given Int key:

enc(R) : Int@R→ String@R→ String@R

dec(R) : Int@R→ String@R→ String@R

The choreography then takes a shared key as its parameter and produces a
pair of unidirectional channels that wrap the communication primitive with the
necessary encryption based on the key:

makeSecureChannels(P,Q) = λkey : Int@P × Int@Q.
Pair (λval : String@P . (dec(Q) (snd key) (comP,Q (enc(P) (fst key) val))))

(λval : String@Q. (dec(P) (fst key) (comQ,P (enc(Q) (snd key) val))))

The fact that this choreography returns a pair of channels can also be seen
from its type:

(Int@P × Int@Q)→ ((String@P → String@Q)× (String@Q→ String@P))

Using the channels is as easy as using com itself and amounts to a function
application.

4.2 EAP

Finally, we turn to implementing the core of the Extensible Authentication Pro-
tocol (EAP) [31]. EAP is a widely-employed link-layer protocol that defines an
authentication framework allowing a peer P to authenticate with a backend au-
thentication server S, with the communication passing through an authenticator
A that acts as an access point for the network.

The framework provides a core protocol parametrised over a set of authen-
tication methods (either predefined or custom vendor-specific ones), modelled as
individual choreographies with type AuthMethod@(P,A, S) = String@S →{P,A}
Bool@S. For this reason, it is desirable that the core of the protocol be written
in a way that doesn’t assume any particular authentication method.

The eap(P,A, S) choreography does exactly that by leveraging higher-order
composition of choreographies:

eap(P,A, S) = λmethods : [AuthMethod]@(P,A, S).
eapAuth(P,A, S) (eapIdentity ”auth request”@S) methods

eapAuth(P,A, S) = λid : String@S. λmethods : [AuthMethod]@(P,A, S).
if empty(P,A, S) methods then

eapFailure(P,A, S) ”try again later”@S
else

if (fst methods) id then

selectS,P ok (selectS,A ok (eapSuccess(P,A, S) ”welcome”@S))
else

selectS,P ko (selectS,A ko (eapAuth(P,A, S) id (snd methods)))

For the sake of simplicity, we have left out the definitions of a couple of helper
choreographies that are referenced in the example:

eapIdentity(P,A, S) : String@S →{P,A} String@S

eapSuccess(P,A, S) : String@S → (String@P × String@A)

eapFailure(P,A, S) : String@S → (String@P × String@A)

eap(P,A, S) fetches the client’s identity using eapIdentity(P,A, S), a function
which exchanges the EAP packets and delivers the client’s identity to the server.

Once the identity is known, eapAuth(P,A, S) is invoked in order to try the list
of authentication methods until one succeeds, or the list is exhausted and authen-
tication fails. EAP is parametric on a choreography, or in this case a list of cho-
reographies, methods. We use the notation for lists in [AuthMethod]@(P,A, S) as
described in Example 3, while the function empty(P,A, S) allows us to determine
whether the list of methods is empty. Note that each authentication method can
be an arbitrarily-complex choreography with its own communication structures
that can involve all three involved roles, and implements a particular authentic-
ation method on top of EAP.

Finally, depending on the outcome of the authentication, an appropriate EAP
packet is sent with either eapSuccess(P,A, S) or eapFailure(P,A, S) to indicate
the result to the client.

5 Related Work

We already discussed much of the previous and related work on choreographic
languages and choreographic programming in Section 1. In this section, we dis-
cuss relevant technical aspects in related work more in detail.

Chorλ is inspired by Choral [15], the first higher-order choreographic pro-
gramming language. As we discussed in Section 1, Choral comes with no formal
explanation of its semantics, typing, and guarantees. We have covered these in
the present article, showing that it is possible to formulate semantics and types
of higher-order choreographies that satisfy the expected properties (out-of-order
execution with progress).

There exist theories of choreographies that support some form of higher-order
composition, which are more restrictive than Choral and Chorλ [13,18]. In par-
ticular, they fall short of capturing distribution, both in terms of independent
execution and data structures. In [13], the authors present a choreographic lan-
guage for writing abstract specifications of system behaviour (as in multiparty
session types [19]) that supports higher-order composition. Compared to Chorλ,
the design of the language hampers decentralisation: entering a choreography
requires that the programmer picks a role as central coordinator, which then
orchestrates the other roles with multicasts. This coordination effectively acts

as a barrier, so processes cannot really perform their own local computations in-
dependently of each other when higher-order composition is involved. After [13]
and Choral [15], a theory of higher-order choreographic programming was pro-
posed in [18]. While this theory supports computation at roles, it is even more
centralised than [13]: every function application in a choreography requires that
all processes go through a global barrier that involves the entire system. The
global barrier is modelled as a middleware in the semantics of the language,
and involves even processes that do not contribute at all to the function or its
arguments.

Previous theories of choreographies organised their syntax in two layers: one
for local computation and one for communication [1,2,10,11,8,12,18,22]. Chorλ
has a very different and novel design, whereby a unified language addresses both
areas. An important consequence of our unified approach is that Chorλ can ex-
press distributed data structures (e.g., pairs with elements located at different
roles), which can be manipulated by independent local computations or in co-
ordination by performing appropriate communications. This feature is crucial
for our examples in Section 4 (and several examples in the original presentation
of Choral in [15]).

Another related line of work is that on multitier programming and its pro-
genitor calculus, Lambda 5 [26]. Similarly to Chorλ, Lambda 5 and multitier
languages have data types with locations [33]. However, they are used very dif-
ferently. In choreographic languages (thus Chorλ), programs have a “global”
point of view and express how multiple roles interact with each other. By con-
trast, in multitier programming programs have the usual “local” point of view
of a single role but they can nest (local) code that is supposed to be executed
remotely. The reader interested in a detailed comparison of choreographic and
multitier programming can consult [16], which presents algorithms for translat-
ing choreographies to multitier programs and vice versa.

6 Conclusion and Future Work

We have presented Chorλ, a new theory of choreographic programming that
supports higher-order, modular choreographies. Chorλ is equipped with a type
system that guarantees progress (Theorems 1 and 2). Unlike previous choreo-
graphic programming languages, Chorλ is based on the λ-calculus. It therefore
inherits the simple syntax of λ terms and it is the first purely functional choreo-
graphic programming language. The semantics of Chorλ makes it the first theory
of higher-order choreographies that is truly decentralised: processes can proceed
independently unless the choreography specifies explicitly that they should in-
teract.

We have demonstrated the usefulness of higher-order choreographies in Chorλ
by modelling common protocols in Section 4. The examples on single sign-on with
encrypted channels and EAP, in particular, are parametrised on choreographies
and cannot be expressed in previous theories, either because of lack of higher-

order composition or because the semantics is not satisfactory due to global
synchronisations—which the original protocol specifications do not expect.

Future Work An obvious extension of Chorλ would be to add generic data types,
which we did not include to keep the focus on choreographies. Since we use λ-
calculus as foundation, we believe that this would be a straightforward import
of known methods.

Other features that are interesting for Chorλ have been investigated in the
context of first-order choreographic languages and represent future work. These
include: channel-based communication [2], dynamic creation of roles [7], internal
threads [1], group communication [9], availability-awareness [23], and runtime
adaptation [12].

A more sophisticated extension would be to reify roles, that is, extending
the syntax such that values can be roles that can be acted upon. This could, for
example, enable dynamic topologies: choreographies where a process receives at
runtime a role that it needs to interact with at a later time.

Another interesting line of future work would be to extend existing form-
alisations of choreographic languages with the features explored in this work
[11,10,18,30].

References

1. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–
8:78 (2012). https://doi.org/10.1145/2220365.2220367, https://doi.org/10.
1145/2220365.2220367

2. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) Procs. POPL. pp. 263–
274. ACM (2013). https://doi.org/10.1145/2429069.2429101

3. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–
213 (2000). https://doi.org/10.1016/S0304-3975(99)00231-5, https://doi.

org/10.1016/S0304-3975(99)00231-5

4. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party sessions. In: Formal Techniques for Distributed Systems, pp. 1–28. Springer
(2011)

5. Church, A.: A set of postulates for the foundation of logic. Annals of Mathematics
33(2), 346–366 (1932), http://www.jstor.org/stable/1968337

6. Cruz-Filipe, L., Graversen, E., Lugovic, L., Montesi, F., Peressotti, M.: Functional
choreographic programming. CoRR abs/2111.03701 (2021), https://arxiv.

org/abs/2111.03701

7. Cruz-Filipe, L., Montesi, F.: Procedural choreographic programming. In: FORTE.
Lecture Notes in Computer Science, vol. 10321, pp. 92–107. Springer (2017)

8. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. Theor.
Comput. Sci. 802, 38–66 (2020). https://doi.org/10.1016/j.tcs.2019.07.005,
https://doi.org/10.1016/j.tcs.2019.07.005

9. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Communications in choreograph-
ies, revisited. In: Proceedings of the 33rd Annual ACM Symposium on Ap-
plied Computing, SAC 2018, Pau, France, April 09-13, 2018. pp. 1248–1255.

https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.1016/S0304-3975(99)00231-5
http://www.jstor.org/stable/1968337
https://arxiv.org/abs/2111.03701
https://arxiv.org/abs/2111.03701
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1016/j.tcs.2019.07.005

ACM (2018). https://doi.org/10.1145/3167132.3167267, https://doi.org/

10.1145/3167132.3167267

10. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Certifying choreography compilation.
In: Cerone, A., Ölveczky, P.C. (eds.) Theoretical Aspects of Computing - ICTAC
2021 - 18th International Colloquium, Virtual Event, Nur-Sultan, Kazakhstan,
September 8-10, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12819,
pp. 115–133. Springer (2021). https://doi.org/10.1007/978-3-030-85315-0_8

11. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Formalising a turing-complete choreo-
graphic language in coq. In: Cohen, L., Kaliszyk, C. (eds.) 12th International Con-
ference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome,
Italy (Virtual Conference). LIPIcs, vol. 193, pp. 15:1–15:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ITP.
2021.15

12. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies: Theory and implementation. Log. Methods Comput. Sci. 13(2)
(2017). https://doi.org/10.23638/LMCS-13(2:1)2017

13. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M., Ulid-
owski, I. (eds.) CONCUR 2012 - Concurrency Theory - 23rd International Confer-
ence, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7454, pp. 272–286. Springer (2012).
https://doi.org/10.1007/978-3-642-32940-1_20, https://doi.org/10.1007/

978-3-642-32940-1_20

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638, https:
//doi.org/10.1109/TIT.1976.1055638

15. Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects. CoRR
abs/2005.09520 (2020), https://arxiv.org/abs/2005.09520

16. Giallorenzo, S., Montesi, F., Peressotti, M., Richter, D., Salvaneschi, G., Weis-
enburger, P.: Multiparty Languages: The Choreographic and Multitier Cases.
In: 35th European Conference on Object-Oriented Programming, ECOOP 2021,
July 12-17, 2021, Aarhus, Denmark (Virtual Conference). LIPIcs, Schloss Dag-
stuhl - Leibniz-Zentrum fuer Informatik (2021), to appear. Pre-print available at
https://fabriziomontesi.com/files/gmprsw21.pdf

17. Object Management Group: Business Process Model and Notation.
http://www.omg.org/spec/BPMN/2.0/ (2011)

18. Hirsch, A.K., Garg, D.: Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang. 6(POPL), 1–27 (2022). https://doi.org/10.1145/
3498684, https://doi.org/10.1145/3498684

19. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9 (2016). https://doi.org/10.1145/2827695, also: POPL, pages
273–284, 2008

20. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052

21. Intl. Telecommunication Union: Recommendation Z.120: Message Sequence Chart
(1996)

22. Jongmans, S., van den Bos, P.: A predicate transformer for choreographies—
computing preconditions in choreographic programming. In: Müller, P. (ed.) Pro-
gramming Languages and Systems - 31st European Symposium on Programming,

https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://arxiv.org/abs/2005.09520
https://fabriziomontesi.com/files/gmprsw21.pdf
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052

ESOP 2022, Proceedings. Lecture Notes in Computer Science, vol. To appear.
Springer (2022)

23. López, H.A., Nielson, F., Nielson, H.R.: Enforcing availability in failure-aware
communicating systems. In: Albert, E., Lanese, I. (eds.) Procs. FORTE. Lec-
ture Notes in Computer Science, vol. 9688, pp. 195–211. Springer (2016). https:
//doi.org/10.1007/978-3-319-39570-8_13

24. Montesi, F.: Choreographic Programming. Ph.D. Thesis, IT University of Copen-
hagen (2013)

25. Montesi, F.: Introduction to Choreographies. Cambridge University Press (2022),
to appear

26. Murphy VII, T., Crary, K., Harper, R., Pfenning, F.: A symmetric modal lambda
calculus for distributed computing. In: 19th IEEE Symposium on Logic in Com-
puter Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. pp.
286–295. IEEE Computer Society (2004). https://doi.org/10.1109/LICS.2004.
1319623, https://doi.org/10.1109/LICS.2004.1319623

27. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978). https://doi.

org/10.1145/359657.359659

28. OpenID Foundation: OpenID Specification. https://openid.net/developers/specs/
(2014)

29. Pierce, B.C.: Types and programming languages. MIT Press (2002)
30. Pohjola, J.Å., Gómez-Londoño, A., Shaker, J., Norrish, M.: Kalas: A verified, end-

to-end compiler for a choreographic language. In: Andronick, J., de Moura, L.
(eds.) 13th International Conference on Interactive Theorem Proving, ITP 2022,
August 7-10, 2022, Haifa, Israel. LIPIcs, vol. 237, pp. 27:1–27:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITP.
2022.27, https://doi.org/10.4230/LIPIcs.ITP.2022.27

31. Vollbrecht, J., Carlson, J.D., Blunk, L., Aboba, D.B.D., Levkowetz, H.: Extens-
ible Authentication Protocol (EAP). RFC 3748 (Jun 2004). https://doi.org/10.
17487/RFC3748, https://rfc-editor.org/rfc/rfc3748.txt

32. W3C: WS Choreography Description Language. http://www.w3.org/TR/ws-cdl-
10/ (2004)

33. Weisenburger, P., Wirth, J., Salvaneschi, G.: A survey of multitier program-
ming. ACM Comput. Surv. 53(4), 81:1–81:35 (2020). https://doi.org/10.1145/
3397495, https://doi.org/10.1145/3397495

A Single Sign-on Authentication

We now implement the single sign-on authentication protocol inspired by the
OpenID specification [28], the Choral implementation of which we described in
Example 1. We first implement the choreography in a parametric way that allows
us to specify the means of communication, and then combine it with the secure
communication from the previous example.

The protocol involves three roles with the client C wanting to authenticate
with the server S via a third party identity provider I. If authentication succeeds,
the client and the server both get a unique token from the identity provider.

We use the following local functions for working with user credentials

username(R) : Credentials@R→ String@R

https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://openid.net/developers/specs/
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.17487/RFC3748
https://doi.org/10.17487/RFC3748
https://doi.org/10.17487/RFC3748
https://doi.org/10.17487/RFC3748
https://rfc-editor.org/rfc/rfc3748.txt
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495

password(R) : Credentials@R→ String@R

calcHash(R) : String@R→ String@R→ String@R

computing the username and password from a local type Credentials@R (which
can be a pair, for example), and the hash of a string with a given salt. These are
mainly used by the client.

In addition, we require functions for retrieving the salt, validating the hash,
and creating a token for a given username, which are used by the identity pro-
vider:

getSalt(R) : String@R→ String@R

check(R) : String@R→ String@R→ Bool@R

createToken(R) : String@R→ String@R.

Given the above helper functions, the authentication protocol is as follows.
Here we use if-then-else as syntactic sugar for case:

authenticate(S,C, I) = λcredentials : Credentials@C.
λcomcip : String@C → String@I. λcomipc : String@I → String@C.
λcomips : String@I → String@S.

((λuser : String@I. (λsalt : String@C. (λhash : String@I.
if check(I) user hash then

selectI,C ok (selectI,S ok
(λtoken : String@I. inl (pair (comipc token) (comips token)))
(createToken(I) user))

else
selectI,C ko (selectI,S ko inr ()@I))

(comcip (calcHash(C) salt (password(C) credentials))))
(comipc (getSalt(I) user)))

(comcip (username(C) credentials)))

As mentioned, the choreography is parametrised over three channels between
the participants, allowing the communication to be customized (comcip, comipc
and comips). The client first sends their username to the identity provider who
replies with the appropriate salt. The client then calculates a salted hash of their
password and sends it back to the identity provider. Finally, the identity provider
validates the hash and either sends a token to both participants or returns a unit.
The shared token is again represented using a pair of equal values, visible from
the type of the choreography:

Credentials@C → (String@C → String@I)→ (String@I → String@C)

→ (String@I → String@S)→ ((String@C × String@S) + ()@I)

We can now combine authenticate(S,C, I) and makeSecureChannels(P,Q) (from
Section 4.1) to can obtain a choreography main(S,C, I) that carries out the au-
thentication securely. Using makeSecureChannels(P,Q), the participants first es-
tablish secure channels backed by encryption keys derived using diffieHellman(P,Q).

After the secure communication is in place, the participants can execute the au-
thentication protocol specified by authenticate(S,C, I).

main(S,C, I) =
(λk1 : Int@C × Int@I. λk2 : Int@I × Int@S.

(λc1 : (String@C → String@I)× (String@I → String@C).
λc2 : (String@I → String@S)× (String@S → String@I).

(λt : (String@C × String@S) + ()@I.
case t of

Inl x⇒ ”Authentication successful”@C
Inr x⇒ ”Authentication failed”@C)

(authenticate(S,C, I) (fst c1) (snd c1) (fst c2)))
(makeSecureChannels(C, I) k1) (makeSecureChannels(I, S) k2))

(diffieHellman(C, I) csk ipsk csg ipsg csp ipsp)
(diffieHellman(I, S) ipsk ssk ipsg ssg ipsp ssp)

In this example, the client simply reports whether the authentication has suc-
ceeded with a value, which can be checked in a larger context. Or, alternatively,
we could parameterise main over choreographic continuations to be invoked in
case of success or failure.

We denote by Γ the set of typings we have given so far in this section. Then
we can type {S,C, I}; ∅;Γ ` main(S,C, I) : String@C.

B Full definitions and proofs

Definition 4 (Free Variables). Given a choreography M , the free variables
of M , fv(M) are defined as:

fv(N N ′) = fv(N) ∪ fv(N ′) fv(selectS,R l M) = fv(M)
fv(x) = x fv(λx : T.N) = fv(N) \ {x}
fv(()@R) = ∅ fv(comS,R) = ∅
fv(f) = ∅ fv(Pair V V ′) = fv(V) ∪ fv(V ′)
fv(case N of Inl x⇒M ; Inr y ⇒M ′) = fv(N) ∪ (fv(M) \ {x}) ∪ (fv(M ′) \ {y})
fv(fst) = fv(snd) = ∅ fv(Inl V) = fv(Inr V) = fv(V)

Definition 5 (Merging). Given two behaviours B and B′, B t B′ is defined
as follows.

B1 B2 tB′1 B′2 = (B1 tB′1) (B2 tB′2)

case B1 of Inl x⇒ B2; Inr y ⇒ B3 t case B′1 of Inl x⇒ B′2; Inr y ⇒ B′3 =

case (B1 tB′1) of Inl x⇒ (B2 tB′2); Inr y ⇒ (B3 tB′3)

⊕R ` B t ⊕R ` B′ = ⊕R ` (B tB′)
&{`i : Bi}i∈I t&{`j : B′j}j∈J = &

(
{`k : Bk tB′k}k∈I∩J ∪ {`i : Bi}i∈I\J ∪ {`j : B′j}j∈J\I

)
x t x = x λx : T.B t λx : T.B′ = λx : T.(B tB′)

fst t fst = fst snd t snd = snd

roles(T →ρ T
′);Σ;Γ, x : T `M : T ′ roles(T →ρ T

′) ⊆ Θ
Θ;Σ;Γ ` λx : T.M : T →ρ T

′ [TAbs]

x : T ∈ Γ roles(T) ⊆ Θ
Θ;Σ;Γ ` x : T

[TVar]
Θ;Σ;Γ ` N : T →ρ T

′ Θ;Σ;Γ `M : T

Θ;Σ;Γ ` N M : T ′
[TApp]

Θ;Σ;Γ ` N : T1 + T2 Θ;Σ;Γ, x : T1 `M ′ : T Θ;Σ;Γ, x′ : T2 `M ′′ : T

Θ;Σ;Γ ` case N of Inl x⇒M ′; Inr x′ ⇒M ′′ : T
[TCase]

Θ;Σ;Γ `M : T S,R ∈ Θ
Θ;Σ;Γ ` selectS,R l M : T

[TSel]

f(~R′) : T ∈ Γ ~R ⊆ Θ ||~R|| = || ~R′|| distinct(~R)

Θ;Σ;Γ ` f(~R) : T [~R′ := ~R]
[TDef]

R ∈ Θ
Θ;Σ;Γ ` ()@R : ()@R

[TUnit]
S,R ∈ Θ roles(T) = S

Θ;Σ;Γ ` comS,R : T →∅ T [S := R]
[TCom]

Θ;Σ;Γ ` V : T Θ;Σ;Γ ` V ′ : T ′

Θ;Σ;Γ ` Pair V V ′ : (T × T ′)
[TPair]

roles(T × T ′) ⊆ Θ
Θ;Σ;Γ ` fst : (T × T ′)→∅ T

[TProj1]
roles(T × T ′) ⊆ Θ

Θ;Σ;Γ ` snd : (T × T ′)→∅ T ′
[TProj2]

Θ;Σ;Γ ` V : T roles(T + T ′) ⊆ Θ
Θ;Σ;Γ ` Inl V : (T + T ′)

[TInl]
Θ;Σ;Γ ` V : T ′ roles(T + T ′) ⊆ Θ

Θ;Σ;Γ ` Inr V : (T + T ′)
[TInR]

Θ;Σ;Γ `M : t@~R t@ ~R′ =Σ T ||~R|| = || ~R′|| distinct(~R)

Θ;Σ;Γ `M : T [~R′ := ~R]
[TEq]

∀f(~R) ∈ domain(D) : f(~R) : T ∈ Γ ~R;Σ;Γ ` D(f(~R)) : T distinct(~R) ~R ⊆ Θ
Θ;Σ;Γ ` D [TDefs]

Figure 4. Full set of typing rules for Chorλ.

λx : T.M V
τ,∅−−→D M [x := V]

[AppAbs]
M

`,R−−→D M ′

λx : T.M
λ,R−−→D λx : T.M ′

[InAbs]

M
`,R−−→D M ′ ` = λ⇒ R ∩ roles(N) = ∅

M N
τ,R−−→D M ′ N

[App1]

N
τ,R−−→D N ′

V N
τ,R−−→D V N ′

[App2]
N

τ,R−−→D N ′ R ∩ roles(M) = ∅

M N
τ,R−−→D M N ′

[App3]

N
τ,R−−→D N ′

case N of Inl x⇒M ; Inr x′ ⇒M ′
τ,R−−→D case N ′ of Inl x⇒M ; Inr x′ ⇒M ′

[Case]

M1
`,R−−→D M ′1 M2

`,R−−→D M ′2 R ∩ roles(N) = ∅

case N of Inl x⇒M1; Inr x
′ ⇒M2

`,R−−→D case N of Inl x⇒M ′1; Inr x
′ ⇒M ′2

[InCase]

case Inl V of Inl x⇒M ; Inr x′ ⇒M ′
τ,∅−−→D M [x := V]

[CaseL]

case Inr V of Inl x⇒M ; Inr x′ ⇒M ′
τ,∅−−→D M ′[x′ := V]

[CaseR]

fst Pair V V ′
τ,∅−−→D V

[Proj1]
snd Pair V V ′

τ,∅−−→D V ′
[Proj2]

D(f(~R′)) = M

f(~R)
τ,∅−−→D M [~R′ := ~R]

[Def]

fv(V) = ∅

comS,R V
τ,{S,R}−−−−−→D V [S := R]

[Com]
selectS,R l M

τ,{S,R}−−−−−→D M
[Sel]

M
`,R−−→D M ′ R ∩ {S,R} = ∅

selectS,R ` M
`,R−−→D selectS,R ` M ′

[InSel]
M ∗ N N

τ,R−−→ N ′

M
τ,R−−→D M ′

[Str]

Figure 5. Semantics of Chorλ

Inl L t Inl L′ = Inl (L t L′) Inr L t Inr L′ = Inr (L t L′)
Pair L1 L2 t Pair L′1 L

′
2 = Pair (L1 t L′1) (L2 t L′2) f t f = f

recvR t recvR = recvR sendR t sendR = sendsendR

Choreographies:

JM NKR =



JMKR JNKR if R ∈ roles(type(M)) or R ∈ roles(M) ∩ roles(N)

⊥ if JMKR = JNKR = ⊥

JMKR if JNKR = ⊥

JNKR otherwise

Jλx : T.MKR =

{
λx. JMKR if R ∈ roles(type(x : T.M))

⊥ otherwise

r
case M of Inl x ⇒ N; Inr x′ ⇒ N

′z

R
=



case JMKR of Inl x ⇒ JNKR; Inr x′ ⇒
r
N
′z

R
if R ∈ roles(type(M))

⊥ if JMKR = JNKR =
r
N′

z

R
= ⊥

JMKR if JNKR =
r
N′

z

R
= ⊥

JNKR t
r
N
′z

R
if JMKR = ⊥

(λx
′′

: ⊥. JNKR t
r
N
′z

R
) JMKR for some x′′ /∈ fv(N) ∪ fv(N′)

otherwise

r
select

S,S′ ` M
z

R
=


⊕
S′ ` JMKR if R = S 6= S′

&S{` : JMKR} if R = S′ 6= S

JMKR otherwise

r
com

S,S′
z

R
=



λx.x if R = S = S′

send
S′ if R = S 6= S′

recvS if R = S′ 6= S

⊥ otherwise

J()@SKR =

{
() if S = R

⊥ otherwise
JxKR =

{
x if R ∈ roles(type(x))

⊥ otherwise

r
f(~R)

z

R
=

fi(R1, . . . , Ri−1, Ri+1, . . . , Rn) if ~R = R1, . . . , Ri−1, R, Ri+1, . . . , Rn

⊥ otherwise

JPair V V
′KR =

{
Pair JV KR JV ′KR if R ∈ roles(type(V) × type(V ′))

⊥ otherwise

JfstKR =

{
fst if R ∈ roles(type(fst))

⊥ otherwise
JsndKR =

{
snd if R ∈ roles(type(snd))

⊥ otherwise

JInl V KR =

{
Inl JV KR if R ∈ roles(type(Inl V))

⊥ otherwise
JInr V KR =

{
Inr JV KR if r ∈ roles(type(Inr V))

⊥ otherwise

Types:

JT →ρ T
′KR =

{
JTKR → JT ′KR if R ∈ ρ ∪ roles(T) ∪ roles(T ′)

⊥ otherwise
J()@SKR =

{
() if S = R

⊥ otherwise

JT × T ′KR =

{
JTKR × JT ′KR if R ∈ roles(T × T ′)

⊥ otherwise
JT + T

′KR =

{
JTKR + JT ′KR if R ∈ roles(T + T ′)

⊥ otherwise

r
t@~R

z

R
=

ti if ~R = R1, . . . , Ri−1, R, Ri+1, . . . , Rn

⊥ otherwise

Definitions:

JDK = {fi(R1, . . . , Ri−1, Ri+1, . . . , Rn) 7→ JD(f(R1, . . . , Rn))KRi
| f(R1, . . . , Rn) ∈ domain(D)}}

Figure 6. Projecting Chorλ onto a role

C Proof of Theorem 1

Proof (Proof of Theorem 1). We prove this by induction on the typing derivation
of Θ;Σ;Γ ` M : T . Most cases either M is a value, or the result follows from
simple induction, we go through the rest.

– Assume we use rule TApp, so M = N1 N2, Θ;Σ;Γ ` N1 : T ′ →ρ T , and
Θ;Σ;Γ ` N2 : T ′. If N1 or N2 is not a value then the result follows from
induction and using rule App1 or rule App2. Otherwise, we have four cases:
• Assume Θ;Σ;Γ ` N1 : T ′ →ρ T uses rule TAbs. Then the result follows

using rule AppAbs.
• Assume Θ;Σ;Γ ` N1 : T ′ →ρ T uses rule TCom. Then, since M is

closed, the result follows by rule Com.
• Assume Θ;Σ;Γ ` N1 : T ′ →ρ T uses rule TProj1. Then, since M is

closed and N2 is a value, N2 = Pair V V ′, and consequently the result
follows using rule Proj1.

• Assume Θ;Σ;Γ ` N1 : T ′ →ρ T uses rule TProj2. Then, since M is
closed and N2 is a value, N2 = Pair V V ′, and consequently the result
follows using rule Proj2.

– Assume we use rule TCase, so M = case N1 of Inl x ⇒ N2; Inr x′ ⇒ N3,
Θ;Σ;Γ ` N1 : T1 + T2, Θ;Σ;Γ, x : T1 ` N2 : T , and Θ;Σ;Γ, x′ : T2 ` N3 :
T . Then if N1 is not a value the result follows from induction and using
rule Case. If N1 is a value then, since M is closed, either N1 = Inl V or
N1 = Inr V , and the result follows by rule CaseL or rule CaseR respectively.

– Assume we use rule TSel so M = selectS,R l N : T , Θ;Σ;Γ ` N : T , and
S,R ∈ Θ. Then the result follows from using rule Sel.

– Assume we use rule TDef and M = f(~R), f(~R′ : T ′ ∈ Γ , ~R ⊆ Θ, ||~R|| =

|| ~R′||, distinct(~R), and T = T ′[~R′ := ~R]. Then the result follows from D
containing f , Θ;Σ;Γ ` D and rule Def.

D Proof of Theorem 2

Lemma 1. Given a choreography, M , if Θ;Σ;Γ `M then Θ ∪Θ′;Σ;Γ `M

Proof. Follows from the typing rules only ever discussing subsets of Θ.

Lemma 2 (Type preservation under rewriting). Let M be a choreography.
If there exists a typing context Θ;Σ;Γ such that Θ;Σ;Γ `M : T , then Θ;Σ;Γ `
M ′ : T for any M ′ such that M M ′.

Proof. We prove this by case analysis of the the rewriting rules:

rule R-AbsR Then M = ((λx : T1.N1) N2) N3, and from the typing rules we
get that there exist T2 and ρ such that Θ;Σ;Γ, x : T1 ` N1 : T2 →ρ T ,
Θ;Σ;Γ ` N2 : T1, and Θ;Σ;Γ ` N3 : T2, and M ′ = (λx : T1.(N1 N3)) N2.
The result follows from using rules TApp and TAbs and x /∈ fv(N3).

rule R-AbsL Then M = N1 ((λx : T1.N3) N2), Θ;Σ;Γ, x : T1 ` N1 : T2 →ρ T ,
Θ;Σ;Γ ` N2 : T1, and Θ;Σ;Γ ` N3 : T2, and M ′ = (λx : T1.(N1 N3)) N2.
The result follows from using rules TApp and TAbs and x /∈ fv(N1).

rule R-CaseR Then M = case N1 of Inl x⇒ N2; Inr x′ ⇒ N3) N4, and from
the typing rules we get that there exist T1, T2, T3, and ρ such that Θ;Σ;Γ `
N1 : T1 +T2, Θ;Σ;Γ, x : T1 ` N2 : T3 →ρ T , Θ;Σ;Γ, x′ : T2 ` N3 : T3 →ρ T ,
and Θ;Σ;Γ ` N4 : T3, and M ′ = case N1 of Inl x ⇒ N2 N4; Inr x′ ⇒
N3 N4). The result follows from using rules TAbs and TCase and x, x′ /∈
fv(N4).

rule R-CaseL This case is similar to the previous.
rule R-SelR Then M = N1 (selectS,R l N2), and from the typing rules we

get that there exist T ′, and ρ such that Θ;Σ;Γ ` N1 : T ′ →ρ T and
Θ;Σ;Γ ` N2 : T ′, and M ′ = selectS,R l (N1 N2). The result follows from
using rules TAbs and TSel.

rule R-SelL This case is similar to the previous.

Proof (Proof of Theorem 2). We prove this by induction on the derivation of

M
τ,R−−→D M ′. The cases for rules AppAbs, App1 and App2 are standard for

simply-typed λ-calculus. And the cases for rules InAbs, App3, Case, InCase
and InSel follow from simple induction. We go through the rest.

– Assume we use rule CaseL. Then we know that M = case Inl V of Inl x⇒
N1; Inr x′ ⇒ N2, and from the typing rules we get that there exists T ′ such
that Θ;Σ;Γ ` V : T ′ and Θ;Σ;Γ, x : T ′ ` N1 : T . Therefore, Θ;Σ;Γ `
N1[x := V] : T .

– Assume we use rule CaseR. This is similar to the previous case.
– Assume we use rule Proj1. Then we know M = fst Pair V V ′, and from

the typing rules we get that Θ;Σ;Γ ` V : T .
– Assume we use rule Proj2. This is similar to the previous case.
– Assume we use rule Def. From the typing of M we get that there exists
f(~R′) : T ∈ Γ such that ||~R|| = || ~R′||, ~R ⊆ Θ, and distinct(~R′). From the

typing of D we get that distinct(~R′) and ~R′;Σ;Γ ` D(f(~R′)). Therefore, by

Lemma 1, we get Θ;Σ;Γ ` D(f(~R′)).
– Assume we use rule Com. Then we know that M = comS,R V , fv(V) = ∅,

and there exists T ′ such that Θ;Σ;Γ ` V : T ′, roles(T ′) = {S}, and T =
T ′[S := R]. We see from our typing rules that the only time we use roles
not mentioned in the choreography in typing is when handling free variables.
Therefore we get that Θ;Σ;Γ ` V [S := R] : T .

– Assume we use rule Sel. Then we know that M = selectS,R l N and
Θ;Σ;Γ ` N : T . The result follows.

– Assume we use rule Str. Then the result follows from Lemma 2 and induc-
tion.

	Functional Choreographic Programming

